TW201104839A - Integrated circuit memory devices having vertical transistor arrays therein and methods of forming same - Google Patents
Integrated circuit memory devices having vertical transistor arrays therein and methods of forming same Download PDFInfo
- Publication number
- TW201104839A TW201104839A TW098142912A TW98142912A TW201104839A TW 201104839 A TW201104839 A TW 201104839A TW 098142912 A TW098142912 A TW 098142912A TW 98142912 A TW98142912 A TW 98142912A TW 201104839 A TW201104839 A TW 201104839A
- Authority
- TW
- Taiwan
- Prior art keywords
- memory
- semiconductor
- ground
- film
- semiconductor device
- Prior art date
Links
- 238000000034 method Methods 0.000 title description 18
- 238000003491 array Methods 0.000 title description 2
- 239000004065 semiconductor Substances 0.000 claims abstract description 201
- 230000015654 memory Effects 0.000 claims description 93
- 239000000758 substrate Substances 0.000 claims description 65
- 238000003860 storage Methods 0.000 claims description 52
- 239000012535 impurity Substances 0.000 claims description 41
- 239000000463 material Substances 0.000 claims description 2
- 125000006850 spacer group Chemical group 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 238000000059 patterning Methods 0.000 description 10
- 230000010354 integration Effects 0.000 description 9
- 238000005530 etching Methods 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910000449 hafnium oxide Inorganic materials 0.000 description 6
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 230000010365 information processing Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000001272 nitrous oxide Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical group [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910002115 bismuth titanate Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000002507 cathodic stripping potentiometry Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000004793 poor memory Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 150000004772 tellurides Chemical class 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/80—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/06—Arrangements for interconnecting storage elements electrically, e.g. by wiring
- G11C5/063—Voltage and signal distribution in integrated semi-conductor memory access lines, e.g. word-line, bit-line, cross-over resistance, propagation delay
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/30—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
201104839 六、發明說明: 【發明所屬之技術領域】 、其製造方法及操作方 本發明係關於一種半導體裝置 法0 【先前技術】 為了滿b肖費者所要求之優異性能及廉價,需要使半導 體裝置之集成度增加。於記憶體半導體裝置之情形時,其 集成度為衫產品價格之重要因t,因此特別需要經增^ 之集成度。於先前之二維或平面性記憶體半導體裝置之情 形時,其集成度主要取決於單位記憶胞所佔之面積,因此 對微細圖案形成技術之水準會帶來較大影響。然、而,為了 圖案之微細化,需要超高價格之裴備,因此二維記憶體半 導體裝置之集成度雖在增加,卻仍舊存在限制。 【發明内容】 [發明所欲解決之問題] —本發明係料上述問題點開發而成者,纟目的在於提供 一種具有經增加之集成度之記憶體半導體裝置。201104839 VI. Description of the Invention: [Technical Field] The present invention relates to a semiconductor device method. [Prior Art] In order to satisfy the excellent performance and low cost required by a person, it is necessary to make a semiconductor. The integration of the device is increased. In the case of a memory semiconductor device, the degree of integration is an important factor in the price of the shirt product, and thus it is particularly necessary to increase the degree of integration. In the case of the previous two-dimensional or planar memory semiconductor device, the degree of integration mainly depends on the area occupied by the unit memory cell, and thus the level of the fine pattern forming technology is greatly affected. However, in order to miniaturize the pattern, a high price is required, and thus the integration of the two-dimensional memory semiconductor device is increasing, but there are still limitations. SUMMARY OF THE INVENTION [Problems to be Solved by the Invention] The present invention has been developed in view of the above problems, and it is an object of the invention to provide a memory semiconductor device having an increased degree of integration.
本發明之另-目的在於提供—種具有經增加之集成度之 記憶體半導體裝置的製造方法。 X 本發明之另-目的在於提供一種具有經增加之集成度之 記憶體半導體裝置的操作方法。 " [解決問題之技術手段] 為了達成上述目的,本發明之態樣之記憶體半導體裝置 包含:複數個半導體圖帛,其具有與基板之上部表面垂直 145224.doc 201104839 的長軸’並且呈二維排列;以及複數條字元線,其具有橫 穿上述複數個半導體圖案之長軸,且在上述半導體圖案之 間呈三維排列。 根據一實施形態,可進而包含插入於上述半導體圖案與 上述子元線之間之資訊儲存膜圖案(例如,電荷儲存膜)。 根據一實施形態,上述字元線構成為控制與其鄰接之上 述半導體圖案之電位。或者,排列於相同層之字元線之配 置構造與排列於其他層之字元線之配置構造實質上相同。 根據一實施形態,上述記憶體半導體裝置可進而包含: 共用源極電極,其係將複數個上述半導體圖案之下部區域 加以電性連接;以及位元線,其係沿著橫穿上述字元線之 方向將複數個上述半導體圖案之上部區域加以電性連接。 根據一實施形態,上述基板可為包含雜質擴散區域之半 導體基板,於此情形時,上述雜質擴散區域可用作將複數 個上述半導體圖案之下端加以電性連接之共用源極電極。 根據一實施形態,可於上述基板與上述字元線之間形成 用作共用源極電極之導電膜。 根據一實施形態,可於上述複數條字元線之間進而形成 用作共用源極電極之與上述字元線平行之導電圖案。 根據本發明之實施形‘態,上述基板可包含單元(cell)陣 列區域、及形成於上述單元陣列區域之周圍之核心區域。 '凊形時,上述基板之上部表面在上述單元陣列區域可 較在上述核心區域進而更低。根據一實施形態,上述字元 線之各”包含與上述基板之上部表面平行之配線區間、 145224.doc 201104839 及向上述基板之上部表面傾斜之接觸區間。此時,上述接 觸區間可形成於上述單元陣列區域之鄰接於上述核心區域 之區域。又’上述字元線係其配線區間越自上述基板之上 部表面更遠地隔開,其接觸區間越自上述核心區域隔開而 形成。根據一實施形態,上述字元線之接觸區間之上部表 面可形成為實質上相同之高度。 又’為了達成上述技術性課題,本發明之記憶體半導體 裝置可包括:下部配線;至少1個上部配線,其配置於上 述下部配線之上;至少1個中間配線構造體,其包含依序 積層之複數條中間配線,並且配置於上述下部配線與上述 上部配線之間;至少1個半導體圖案,其配置於上述中間 配線構造體之側面,用以將上述下部配線與上述上部配線 加以連接;以及至少1個資訊儲存圖案,其配置於上述半 導體圖案與上述中間配線構造體之間。 根據一實施形態,上述中間配線之各個可為與上述上部 配線交叉之線形圖案。 根據本發明之實施形態,上述半導體圖案可包含連接於 上述上部配線之上部雜質區域、及配置於上述中間配線構 造體之側壁以將上述上部雜質區域與上述下部配線加以連 接之通道區域。此時,上述通道區域可具有與上述上部雜 質區域不同之導電型態,或者處於未摻雜之狀態。根據一 貫她形態,對上述上部配線及上述下部配線所施加之電壓 向上述通道區域之傳送,可由與上述上部配線及上述下部 配線之各個最鄰接的一對中間配線來控制。 145224.doc 201104839 又,為了達成上述一技術性課題,本發明之記憶體半導 體裝置之製造方法包含形成依序且反覆地積層之絕緣膜圖 案、以及包含中間配線之至少^巾間l線構造體之階 段。具體而言,該方法可包含如下階段:於基板上形成上 述中間配線構造體,並且形成覆蓋至少上述中間配線構造 體之側壁之至少1個資訊儲存膜圖案、以及至少半導體 圖案之後,形成連接於上述半導體圖案且橫穿上述中間配 線之至少1條位元線。 又’為了達成上述-技術性課題,用以驅動本發明之記 憶體半導體裝置之操作方法包含:半導體圖案,其具有與 基板之上部表面垂直之長軸,並且呈二維排歹“以及字元 線,其具有橫穿上述半導體圖案之長轴,並且在上述半導 體圖案之間呈三維排列。具體而言,該記憶體半導體裝置 可進而包含:共用源極電極,其係將複數個上述半導體圖 案之下部區域加以電性連接;以及位元線,其係沿著橫穿 上述字元線之方向將複數個上述半導體圖案之上部區域加 以電性連接;上述操作方法可包含如下階段:利用對字元 線所施加之電壓來控制半導體圖案之電位,藉此控制半導 體圖案與共用源極電極或位元線間之電性連接。 [發明之效果] 根據本發明之實施形態’呈三維排列之複數條字元線配 置於具有與該等垂直之長軸、且呈二維排列之複數個半導 體圖案之間。由於複數條字元線呈三維排列,因此本發明 之,己憶K牛不僅具有經增加之集成度,而且各個記憶胞 145224.doc 201104839 可獨立地控制。 另方面,已提出一部分如下之方法:藉由依序積層呈 二維排列之複數個記憶胞,來實現三維記憶胞。然而,如 此之類的方法由於係基於步驟階段之反覆因此製造費用 大蝠增加然而,根據本發明,複數條字元線及用作通道 區域之複數個半導體圖案實際上可經過卜欠步驟階段而形 成。因& ’根據本發明,可製作呈三維排列之記憶體元 件,而不會因步驟階段之增加而引起製造費用明顯增加。 【實施方式】 以上之本發明之目#、其他目#、特徵及優點應該可透 過隨附之圖式以及相關之以下較理想的實施形態而容易地 得到理解。,然而,本發明並不限定於此處所說明之實施形 l而可具體化為其他形態。且說,此處所介紹之實施形 態係為使所揭示之内容激底而完全,並且為使本發明之思 想充分傳達至業者而提供。 在本說明書中,於§及某膜位於不同之膜或基板上之情 形時,係指其可直接形成於不同之膜或基板上,或者可於 該等之間插入有第3膜。又,於圖式中,膜及區域之厚度 係為了有效說明技術性内容而被誇張表示。又,於本說明 書之各種實施形態中第i、帛2、帛3等之用係用以記述 各種區域、膜等,但是該等區域、膜並不由上述用語來限 定。該等用語僅係用以使某特定區域或膜與其他區域或膜 相區別。因此,言及某—實施形態之第1膜質之膜質於其 他貫鈀形態中可能言及第2膜質。此處所說明、例示之各 145224.doc 201104839 實施形態亦包含其詳細補充的實施形態。 圖1係表示本發明之一實施形態之半導體裝置之立體 圖。 參照圖1,於基板1 0上配置中間配線構造體200。上述中 間配線構造體200包含依序反覆積層之複數個絕緣膜圖案 131、132、133、134、135及複數條中間配線 141、142、 143、1 44。於上述中間配線構造體2〇〇之側壁配置至少i個 半導體圖案65 ’於上述半導體圖案65與上述中間配線構造 體200之間配置資訊儲存圖案55。於上述半導體圖案65與 上述基板10之間可配置將上述半導體圖案65之複數個下部 區域加以連接之下部配線20,於上述中間配線構造體2〇〇 之上部可配置與上述複數個半導體圖案65連接之上部配線 上述基板10可包含半導體、導電性物質及絕緣性物質中 之至少1個。根據一實施形態,上述基板1〇為單晶構造之 矽膜,上述下部配線20可為形成於上述基板1〇内之雜質擴 散區域。於此情形時’上述基板1G與用作上述下部配線20 之雜質擴散區域可具有互不相同之導電型態。Another object of the present invention is to provide a method of fabricating a memory semiconductor device having increased integration. X Another object of the present invention is to provide a method of operating a memory semiconductor device having increased integration. <Technical means for solving the problem] In order to achieve the above object, a memory semiconductor device according to an aspect of the present invention includes: a plurality of semiconductor patterns having a long axis ' perpendicular to the upper surface of the substrate 145224.doc 201104839 and And a plurality of word lines having a long axis traversing the plurality of semiconductor patterns and arranged in three dimensions between the semiconductor patterns. According to an embodiment, an information storage film pattern (e.g., a charge storage film) interposed between the semiconductor pattern and the sub-line may be further included. According to one embodiment, the word line is configured to control the potential of the semiconductor pattern adjacent thereto. Alternatively, the arrangement of the word lines arranged in the same layer is substantially the same as the arrangement of the word lines arranged in the other layers. According to one embodiment, the memory semiconductor device may further include: a common source electrode electrically connecting a plurality of lower regions of the semiconductor pattern; and a bit line traversing the word line The direction is electrically connected to a plurality of upper regions of the semiconductor pattern. According to one embodiment, the substrate may be a semiconductor substrate including an impurity diffusion region. In this case, the impurity diffusion region may be used as a common source electrode for electrically connecting a plurality of lower ends of the semiconductor pattern. According to one embodiment, a conductive film serving as a common source electrode can be formed between the substrate and the word line. According to one embodiment, a conductive pattern parallel to the word line can be formed between the plurality of word lines as a common source electrode. According to an embodiment of the present invention, the substrate may include a cell array region and a core region formed around the cell array region. In the case of a dome shape, the upper surface of the substrate may be lower in the cell array region than in the core region. According to one embodiment, each of the word lines includes a wiring section parallel to the upper surface of the substrate, 145224.doc 201104839, and a contact section inclined to the upper surface of the substrate. In this case, the contact section may be formed in the above The cell array region is adjacent to the region of the core region. Further, the word line is formed such that the wiring interval is further apart from the upper surface of the substrate, and the contact region is formed apart from the core region. In a form, the upper surface of the contact section of the word line can be formed to have substantially the same height. In order to achieve the above technical problem, the memory semiconductor device of the present invention may include: a lower wiring; at least one upper wiring; Arranging on the lower wiring; at least one intermediate wiring structure including a plurality of intermediate wirings sequentially stacked and disposed between the lower wiring and the upper wiring; at least one semiconductor pattern disposed on the a side surface of the intermediate wiring structure for connecting the lower wiring and the upper wiring And at least one information storage pattern disposed between the semiconductor pattern and the intermediate wiring structure. According to an embodiment, each of the intermediate wirings may be a linear pattern intersecting the upper wiring. In one embodiment, the semiconductor pattern may include an impurity region connected to an upper portion of the upper wiring and a channel region disposed on a sidewall of the intermediate wiring structure to connect the upper impurity region and the lower wiring. The region may have a different conductivity type from the upper impurity region or be in an undoped state. According to the consistent form, the voltage applied to the upper wiring and the lower wiring to the channel region may be transmitted to the upper portion. In addition, in order to achieve the above-described technical problem, the method for manufacturing the memory semiconductor device of the present invention includes forming a layered layer in sequence and repeatedly in order to achieve the above-described technical problem. Insulation film pattern, and A stage including at least one intermediate structure of the intermediate wiring. Specifically, the method may include the steps of: forming the intermediate wiring structure on the substrate, and forming at least one sidewall covering at least the intermediate wiring structure; After the information storage film pattern and at least the semiconductor pattern, at least one bit line connected to the semiconductor pattern and crossing the intermediate wiring is formed. Further, in order to achieve the above-mentioned technical problem, the memory of the present invention is driven A method of operating a semiconductor device includes: a semiconductor pattern having a long axis perpendicular to an upper surface of the substrate, and having a two-dimensional row and a word line having a long axis crossing the semiconductor pattern, and in the semiconductor pattern Between the three dimensions. Specifically, the memory semiconductor device may further include: a common source electrode electrically connecting a plurality of lower regions of the semiconductor pattern; and a bit line traversing the word line The direction electrically connects the plurality of upper regions of the semiconductor pattern; the operation method may include the following steps: controlling the potential of the semiconductor pattern by using a voltage applied to the word line, thereby controlling the semiconductor pattern and the common source electrode or Electrical connection between bit lines. [Effects of the Invention] The plurality of character lines arranged in three dimensions according to the embodiment of the present invention are disposed between a plurality of semiconductor patterns having two axes perpendicular to the vertical axis. Since the plurality of character lines are arranged in three dimensions, the present invention has not only increased integration, but also individual memory cells 145224.doc 201104839 can be independently controlled. On the other hand, a part of the method has been proposed in which a three-dimensional memory cell is realized by sequentially stacking a plurality of memory cells arranged in two dimensions. However, such a method is based on the repetition of the step-by-step process, so that the manufacturing cost is increased. However, according to the present invention, the plurality of word lines and the plurality of semiconductor patterns serving as the channel regions can actually pass through the step of form. According to the present invention, a memory element in a three-dimensional arrangement can be produced without a significant increase in manufacturing cost due to an increase in the number of steps. [Embodiment] The above-described objects, features, and advantages of the present invention are readily understood by the accompanying drawings and the preferred embodiments below. However, the present invention is not limited to the embodiment described herein, but may be embodied in other forms. It is to be understood that the embodiments described herein are intended to be thorough and complete, and are intended to convey the teachings of the invention. In the present specification, when § and a film are on different films or substrates, it means that they can be formed directly on different films or substrates, or a third film can be inserted between them. Further, in the drawings, the thickness of the film and the region are exaggerated in order to effectively explain the technical contents. Further, in the various embodiments of the present specification, the use of the i, 帛2, 帛3, etc. is used to describe various regions, films, and the like, but the regions and films are not limited by the above terms. These terms are only used to distinguish a particular region or film from other regions or films. Therefore, the film quality of the first film of a certain embodiment may be referred to as the second film quality in the other palladium form. Each of the embodiments described and illustrated herein is also exemplified by a detailed supplementary embodiment. Fig. 1 is a perspective view showing a semiconductor device according to an embodiment of the present invention. Referring to Fig. 1, an intermediate wiring structure 200 is disposed on a substrate 10. The intermediate wiring structure 200 includes a plurality of insulating film patterns 131, 132, 133, 134, and 135 and a plurality of intermediate wirings 141, 142, 143, and 144 which are laminated in this order. At least one semiconductor pattern 65' is disposed on the side wall of the intermediate wiring structure 2'', and an information storage pattern 55 is disposed between the semiconductor pattern 65 and the intermediate wiring structure 200. A plurality of lower regions of the semiconductor pattern 65 may be connected to the lower portion wiring 20 between the semiconductor pattern 65 and the substrate 10, and the plurality of semiconductor patterns 65 may be disposed on the upper portion of the intermediate wiring structure 2? Connecting the upper portion wiring The substrate 10 may include at least one of a semiconductor, a conductive material, and an insulating material. According to one embodiment, the substrate 1A is a tantalum film having a single crystal structure, and the lower wiring 20 may be an impurity diffusion region formed in the substrate 1A. In this case, the substrate 1G and the impurity diffusion region serving as the lower wiring 20 may have mutually different conductivity types.
semiconductor,本質半導體)。 晶半導體。此 擴散區域之情形時’上述半 配線20與二極體之方式具有 型態。根據一實施形態,上 之狀態之半導體(intrinsic I45224.doc 201104839 另一方面’以後參照圖2〇及圖21進行說明,上述下部配 線20可由導電性物質形成,於此情形時,為了實現如上述 二極體般之整流元件,上述半導體圖案65包括具有互不相 同之導電型態之至少2個部分。例如,配置於上述複數條 中間配線141〜144周邊之上述半導體圖案65之一部分區域 (以下,稱為本體部)B,可於導電型態方面與接觸於上述 下部配線20之上述半導體圖案65之其他區域(源極區域)不 同。而且’上述半導體圖案65之上部區域之一部分(以 下,稱為汲極區域)D可形成為具有與上述本體部B不同之 導電型態。 上述半導體圖案65如圖所示,可自上述中間配線構造體 200之一側面延長,而與配置於上述中間配線構造體之 另一側面之其他半導體圖案65連接。於此情形時,上述半 導體圖案65亦配置於上述中間配線構造體200之上部表面 上,上述上部配線75可經由特定之插塞70 ,而與上述中間 配線構造體200之上部表面上所形成之上述半導體圖案65 連接。 上述複數條中間配線141〜144可為複數個導電性物質中 之至少1個。例如,上述複數條中間配線141〜144可包含經 摻雜之半導體、複數個金屬 '複數個金屬氮化物及金屬矽 化物中之至少1個。此時,上述中間配線141〜144可形成於 與上述上部配線75交叉之方向。 根據本發明之一態樣,上述複數條中間配線141〜144可 藉由控制上述半導體圖案65之電位’而控制上述上部配線 145224.doc 201104839 75與上述下部配線20之間之電性連接。更具體而言,上述 半導體圖案65可藉由與上述中間配線141〜144電容耦合 (capacitively coupled),而構成 M〇s(Metal 〇别6Semiconductor, the essence of semiconductors). Crystal semiconductor. In the case of this diffusion region, the above-described half wiring 20 and the diode are of a type. According to one embodiment, the semiconductor in the upper state (intrinsic I45224.doc 201104839, on the other hand, will be described later with reference to FIG. 2A and FIG. 21, the lower wiring 20 may be formed of a conductive material, and in this case, in order to achieve the above In the diode-like rectifying element, the semiconductor pattern 65 includes at least two portions having mutually different conductivity patterns. For example, a portion of the semiconductor pattern 65 disposed around the plurality of intermediate wirings 141 to 144 (hereinafter, The main body portion B may be different from the other region (source region) of the semiconductor pattern 65 that is in contact with the lower wiring 20 in terms of a conductive type, and may be a part of the upper portion of the semiconductor pattern 65 (hereinafter, The drain region D can be formed to have a different conductivity type from the main body portion B. The semiconductor pattern 65 can be extended from one side surface of the intermediate wiring structure 200 and disposed in the middle as shown in the drawing. The other semiconductor patterns 65 on the other side of the wiring structure are connected. In this case, the semiconductor pattern 65 is also The upper wiring 75 is placed on the upper surface of the intermediate wiring structure 200, and the upper wiring 75 is connected to the semiconductor pattern 65 formed on the upper surface of the intermediate wiring structure 200 via a specific plug 70. The wirings 141 to 144 may be at least one of a plurality of conductive materials. For example, the plurality of intermediate wirings 141 to 144 may include a doped semiconductor, a plurality of metals, a plurality of metal nitrides, and a metal halide. At this time, the intermediate wirings 141 to 144 may be formed in a direction crossing the upper wiring 75. According to an aspect of the present invention, the plurality of intermediate wirings 141 to 144 may be controlled by the semiconductor pattern 65. The electrical connection between the upper wiring 145224.doc 201104839 75 and the lower wiring 20 is controlled by the potential '. More specifically, the semiconductor pattern 65 can be capacitively coupled to the intermediate wirings 141 144 144. And constitute M〇s (Metal screening 6
Semiconductor,金屬氧化物半導體)電容器。於此情形 時,對上述中間配線141〜144所施加之電壓能夠可變地控 制與其鄰接之上述半導體圖案65之電位,且上述半導體圖 案65之能帶可藉由對上述中間配線141〜144所施加之電壓 而反轉(inversion)。因此,上述上部配線75與上述下部配 線20之間之電性連接可藉由對構成上述中間配線構造體 200之複數條中間配線14144所施加之電壓而控制。 另一方面’如此之電性連接可於在上述複數條中間配線 141〜144各自之側面所反轉之複數個區域互相重疊時實 現。上述複數條中間配線141〜丨44之間的絕緣膜圖案 132〜134能夠以小於上述被反轉之區域之最大寬度之2倍的 厚度而形成,以使得如此之複數個反轉區域可重疊。上述 絕緣膜圖案131〜135可為複數個絕緣性物質中之至少η固, 可包含氧化矽膜、氮化矽膜及氮氧化矽膜中之至少1個。 然而’最上部之絕緣膜圖案1 35可於後續圖案化步驟中用 作姓刻遮罩,因此能夠以較其他複數個絕緣膜圖案 1 3 1〜1 34更厚之厚度而形成。而且,根據快閃記憶體裝置 之本發明之實施形態,可向上述最下部中間配線141施加 使與上述基板1 〇或上述下部配線2〇之間之絕緣破壞 (breakdown)現象發生之高電壓。因此,最下部之絕緣膜圖 案131如圖所示,能夠以較插入於上述複數條中間配線 145224.doc -10- 201104839 141〜144之間之複數個絕緣膜圖案131〜134更厚的厚度而形 成。 根據本發明之另一態樣,上述中間配線141〜144可與上 述半導體圖案65—併用以變更上述資訊儲存圖案55中所儲 存之育訊。根據上述本發明之一態樣,當獨立地調節對上 述複數條中間配線141〜144之各個所施加之.電壓時,特定 之中間配線側面之半導體圖案6 5可選擇性地連接於上述上 部配線75或上述下部配線20中之一個。即,與特定之中間 配線(例如,142)相對向之半導體圖案65之一部分區域可根 據對其他複數條中間配線141、143、144所施加之電壓, 而與上述上部配線75或上述下部配線20處於相等電位。因 此,當對上述經選擇之中間配線142施加與上述上部配線 75或上述下部配線20不同之電壓時,可於該資訊儲存圖案 55之兩端生成可用以變更資訊之電位差。 根據本發明之一態樣,上述資訊儲存圖案55、上述半導 體圖案65及上述中間配線141〜144均可用作構成M〇s電晶 體之電容器介電膜。因此,上述資訊儲存圖案55包含絕緣 性物質中之至少1個。 根據本發明之另一態樣,上述資訊儲存圖案55可與上述 半導體圖案65及上述中間配線141〜144 一併構成M〇s電晶 體。於此情形時,上述半導體圖案65用作通道區域,上述 中間配線用作閘極電極,上述資訊儲存圖案“用 作閘極絕緣膜。此時,上述絕緣膜圖案55側面之半導體圖 案65之一部分區域係藉由對上述中間配線14i〜i44所施加 145224.doc 201104839 之電塵而反轉’因此可用作上述则電㈣之源極/沒極 電極。上述半導體圖案65配置於上述複數條中間配線 141〜144之側壁,因此將其用作通道區域之m〇s電晶體之 電流方向與上述基板1〇之上部表面垂直。 上述資訊儲存圖案55包含絕緣性物質,可包含氧化矽 膜、氮化石夕膜、氮氧化石夕膜及高介電膜中之至少⑽。此 時’上述高介電膜係指具有較上述氧化石夕膜更高之介電常 數之複數個絕緣性物質,可包含氧化㈣、氧化鈦膜、氧 化給膜、氧化錯膜、氧化賴、氧化_、氧化銳膜、氧 化鉋膜、氧化銦膜、氧化銥膜' 謝加丨⑽伽加‘ tiUnate,鈦酸鋰鋇)膜及 pzT(Lead ,鍅 鈦酸鉛)膜。 圖2係用以說明本發明之_眚 十《 /3心貫轭形態之資訊儲存圖案之 剖面圖。 參照圓2 ’上述資訊儲存圖案55可包含:隧道絕緣膜 5 5a其鄰接於上述半導體圖案65 ;結塊絕緣膜“ο,其鄰 接於上述中間配線構造體2〇〇 ;以及電荷儲存膜,其插 入於上述隧道絕緣膜55a及上述結塊絕緣膜Me之間。 此時,上述結塊絕緣膜55c可包含氧化矽膜、氮化矽 膜、氮氧化石夕膜及高介電膜中之至少_,根據一實施形 心可為包含兩介電膜之多層薄膜。上述隧道絕緣膜55a 可由具有較上述結塊絕緣膜55c更低之介電常數之物質所 形成上述電荷儲存臈55b可為電荷捕獲陷阱(trap site)豐 虽之絕緣性薄膜(例如,氮化矽膜)、或者包含複數個導電 145224.doc 12 201104839 性粒子之絕緣性薄膜。根據一實施形態,上述隧道絕緣膜 55a可為氧化矽膜,上述電荷儲存膜55b可為氮化矽膜,上 述結塊絕緣膜55c可為包含氧化鋁膜之絕緣膜。於此情形 時’上述中間配線141〜144可包含氮化钽膜。 圖3係用以說明本發明之一實施形態之記憶體半導體裝 置之單元陣列構造之電路圖。 參照圖3,本實施形態之記憶體半導體裝置包含:複數 條位元線BL;共用源極電極CSL;複數個半導體圖案65,Semiconductor, metal oxide semiconductor) capacitors. In this case, the voltage applied to the intermediate wirings 141 to 144 can variably control the potential of the semiconductor pattern 65 adjacent thereto, and the energy band of the semiconductor pattern 65 can be applied to the intermediate wirings 141 to 144. The applied voltage is inverted. Therefore, the electrical connection between the upper wiring 75 and the lower wiring 20 can be controlled by the voltage applied to the plurality of intermediate wirings 14144 constituting the intermediate wiring structure 200. On the other hand, such an electrical connection can be realized when a plurality of regions which are reversed on the respective sides of the plurality of intermediate wirings 141 to 144 overlap each other. The insulating film patterns 132 to 134 between the plurality of intermediate wirings 141 to 144 may be formed to have a thickness smaller than twice the maximum width of the inverted region so that the plurality of inverted regions may overlap. The insulating film patterns 131 to 135 may be at least one of a plurality of insulating materials, and may include at least one of a hafnium oxide film, a tantalum nitride film, and a hafnium oxynitride film. However, the uppermost insulating film pattern 1 35 can be used as a mask for the subsequent patterning step, and thus can be formed with a thicker thickness than the other plurality of insulating film patterns 1 3 1 to 1 34. Further, according to the embodiment of the present invention of the flash memory device, a high voltage for causing an insulation breakdown phenomenon with the substrate 1 or the lower wiring 2 can be applied to the lowermost intermediate wiring 141. Therefore, the lowermost insulating film pattern 131 can have a thicker thickness than the plurality of insulating film patterns 131 to 134 inserted between the plurality of intermediate wirings 145224.doc -10- 201104839 141 to 144 as shown in the drawing. form. According to another aspect of the present invention, the intermediate wirings 141 to 144 may be used in conjunction with the semiconductor pattern 65 to change the information stored in the information storage pattern 55. According to an aspect of the present invention, when the voltage applied to each of the plurality of intermediate wirings 141 to 144 is independently adjusted, the semiconductor pattern 65 of the side of the specific intermediate wiring can be selectively connected to the upper wiring. 75 or one of the lower wirings 20 described above. That is, a partial region of the semiconductor pattern 65 opposed to the specific intermediate wiring (for example, 142) may be combined with the upper wiring 75 or the lower wiring 20 according to a voltage applied to the other plurality of intermediate wirings 141, 143, and 144. At the same potential. Therefore, when a voltage different from the upper wiring 75 or the lower wiring 20 is applied to the selected intermediate wiring 142, a potential difference that can be used to change the information can be generated at both ends of the information storage pattern 55. According to an aspect of the present invention, the information storage pattern 55, the semiconductor pattern 65, and the intermediate wirings 141 to 144 can be used as a capacitor dielectric film constituting an M 〇 electric crystal. Therefore, the information storage pattern 55 includes at least one of insulating materials. According to another aspect of the present invention, the information storage pattern 55 may be combined with the semiconductor pattern 65 and the intermediate wirings 141 to 144 to constitute an M 〇 electric crystal. In this case, the semiconductor pattern 65 is used as a channel region, the intermediate wiring is used as a gate electrode, and the information storage pattern "uses as a gate insulating film. At this time, a portion of the semiconductor pattern 65 on the side of the insulating film pattern 55 is used. The region is reversed by applying electric dust of 145224.doc 201104839 to the intermediate wirings 14i to i44. Therefore, it can be used as the source/dot electrode of the electric (four). The semiconductor pattern 65 is disposed in the middle of the plurality of strips. The side walls of the wirings 141 to 144, so that the current direction of the m〇s transistor used as the channel region is perpendicular to the upper surface of the substrate 1〇. The information storage pattern 55 includes an insulating material and may include a hafnium oxide film and nitrogen. At least (10) of the fossil film, the oxynitride film, and the high dielectric film. The high dielectric film refers to a plurality of insulating materials having a higher dielectric constant than the oxidized film. Contains oxidized (tetra), titanium oxide film, oxidized film, oxidized film, oxidized lanthanum, oxidized _, oxidized sharp film, oxidized diced film, indium oxide film, yttrium oxide film 'Xiajia 丨 (10) gamma' tiU Nate, lithium titanate ruthenium film and pzT (Lead, lead bismuth titanate) film. Fig. 2 is a cross-sectional view showing the information storage pattern of the _眚10/3 heart yoke form of the present invention. The information storage pattern 55 may include a tunnel insulating film 55a adjacent to the semiconductor pattern 65, an agglomerated insulating film "o, adjacent to the intermediate wiring structure 2", and a charge storage film inserted in the above Between the tunnel insulating film 55a and the above-mentioned agglomerated insulating film Me. In this case, the agglomerated insulating film 55c may include at least one of a hafnium oxide film, a tantalum nitride film, a nitrous oxide film, and a high dielectric film, and may be a multilayer film including two dielectric films according to an embodiment. . The tunnel insulating film 55a may be formed of a substance having a lower dielectric constant than the agglomerating insulating film 55c. The charge storage port 55b may be an insulating film of a charge trap trap (for example, tantalum nitride). Membrane), or an insulating film comprising a plurality of conductive particles 145224.doc 12 201104839. According to one embodiment, the tunnel insulating film 55a may be a hafnium oxide film, the charge storage film 55b may be a tantalum nitride film, and the agglomerate insulating film 55c may be an insulating film including an aluminum oxide film. In this case, the above intermediate wirings 141 to 144 may include a tantalum nitride film. Fig. 3 is a circuit diagram for explaining a cell array structure of a memory semiconductor device according to an embodiment of the present invention. Referring to Fig. 3, the memory semiconductor device of the present embodiment includes a plurality of bit lines BL, a common source electrode CSL, and a plurality of semiconductor patterns 65.
其係將上述複數條位元線BL各個與上述共用源極電極CSL 之間加以連接;以及複數條中間配線140,其與上述複數 個半導體圖案65相對向,並且橫穿上述複數條位元線BL。 於上述半導體圖案65與上述位元線BL、或者與上述共用源 極電極CSL之間可配置整流元件。於上述令間配線14〇與 上述半導體圖案65之間可配置資訊儲存體。根據一實施形 態,上述貧訊儲存體如參照圖2所說明般可包含電荷儲存 用薄膜。 本實施形態之記憶體半導體裝置之單位記憶胞uc包含 上述半導體圖案65、與其相對向之一個中間配線}4〇、以 及插入於該等之間的資訊儲存體。此時,於上述位元線肌 與上述共用源極電極CSL之間依序配置與一個半導體圖案 65相對向之複數條中間配線14〇。因此,共有一個半導體 圖案65之複數個單位記憶胞uc將上述位元線5[與上述共 用源極電極CSL加以串聯連接。本實施形態之記憶體半導 體裝置之單元串STR包含上述位4bL、上述共用源極電 145224.doc 201104839 極CSL、以及於該等之間串聯連接之上述複數個單位記憶 胞UC。 根據一實施形態,最鄰接於上述位元線BL之中間配線 可用作控制上述單元串STR與該位元線BL之間的電性連接 之上部選擇線USL。而且,最鄰接於上述共用源極電極 CSL之中間配線可用作控制上述單元串STR與上述共用源 極電極CSL之間的電性連接之下部選擇線LSL。上述上部 及下部選擇線USL、LSL之間的複數條中間配線140可用作 用以變更上述單位記憶胞UC之資訊之複數條字元線WL。 為了簡化說明,於圖式中圖示有2條字元線,但是上述單 元串STR可包含更多數量之字元線。 上述複數條字元線WL可連接於複數個全域字元線 GWL。此時,構成一個單元串STR之字元線WL之各個連 接於互不相同之全域字元線GWL。根據一實施形態,如圖 所示,上述全域字元線GWL係配置於與上述位元線BL平 行之方向,用以將上述字元線WL加以電性連接。另一方 面,於如此之上述全域字元線GWL與上述位元線BL平行 之情形時,上述上部選擇線USL及上述下部選擇線LSL可 形成於橫穿上述位元線BL之方向,以使得可選擇上述單位 記憶胞U C。 圖4係表示本發明之一實施形態之記憶體半導體裝置之 單元陣列一部分的立體圖。本實施形態之記憶體半導體裝 置具有參照上述圖1及圖2之實施形態中所說明之本發明之 技術特徵。因此,為了簡化說明,對於重複之技術特徵之 145224.doc -14- 201104839 說明可予以省略。 參照圖4 ’本實施形態之記憶體半導體裝置包括配置於 基板10上之複數個中間配線構造體2〇〇。上述複數個中間 配線構造體2 0 0可互相平行地配置,且其各自可包含依序 並且反覆地積層之複數個絕緣膜圖案1 3 1〜13 5、及複數條 中間配線141〜144。 於上述複數個中間配線構造體200之兩側面可配置橫穿 上述複數個中間配線構造體200之複數個半導體圖案65。 根據一實施形態,上述半導體圖案65可於上述複數個中間 配線構造體200之上部表面及該等之間的底面互相連接。 於此情形時,如圖所示,上述半導體圖案65能夠以橫穿上 述複數個中間配線構造體2〇〇 '、且覆蓋上述複數個中間配 線構造體200之側面之線形圖案而形成。 於上述半導體圖案65與上述中間配線構造體2〇〇之間可 配置資訊儲存圖案55。根據本實施形態,上述資訊儲存圖 案55如參照圖2所說明般,可包含電荷儲存膜,上述資訊 儲存圖案55中所儲存之資訊可利用因上述半導體圖案65與 上述中間配線141〜144之間之電壓差異所產生之FN穿隧 (Fowler-Nordheim turnneling ’ 佛洛一諾罕穿隧)而變更。 於上述複數個中間配線構造體2〇〇下方之基板1〇内可形 成下部配線20(或下部雜質區域)。上述下部雜質區域2〇如 圖所不,不僅形成於上述複數個中間配線構造體200之下 方而且形成於該等之間的基板1 〇内,從而可將複數個半 導體圖案65加以電性連接。於上述中間配線構造體200之 145224.doc •15- 201104839 上部,可配置連接於上述半導體圖案65、或者橫穿上述複 數條中間配線141〜144之複數個上部配線75。根據本實施 形態’上述下部雜質區域20可用作共用源極電極(圖3之 CSL),上述上部配線75可用作複數條位元線(圖3之BL), 該等複數條位元線係施加用以變更上述資訊儲存圖案55中 所儲存之資訊之寫入電壓、或用以讀取所儲存之資訊之讀 取電壓者。 另一方面,根據本發明之一實施形態,除了與下述上部 配線之連接用接觸區間以外,排列於特定層之複數條中間 配線(例如,141)之配置構造可與排列於其他層之複數條中 間配線(例如,142〜144)之配置構造實質上相同。 圖5至圖1 〇係用以說明本發明之一實施形態之記憶體半 導體裝置之製造方法之立體圖。 參照圖5,準備具有單元陣列區域(CeU Array Region)及 核心區域(Core Region)之基板1 〇 *上述單元陣列區域之上 部表面形成得低於上述核心區域之上部表面。根據一實施 形態’如此之構造可經由在上述單元陣列區域使上述基板 1 〇形成凹槽之圖案化階段而形成。根據另一實施形態,如 此之構造可經由如下階段而形成,即,於上述基板1〇上形 成具有與上述2個區域之間的階差相對應之厚度之特定薄 膜後’於上述單元陣列區域蝕刻上述薄膜。 以後’如圖所示,於上述基板1〇上依序並且反覆地蒸鍍 複數個絕緣膜31、32、33、34、35以及複數個導電膜41、 42、43、44。此時,上述複數個絕緣膜31〜35及複數個導 145224.doc -16 - 201104839 電膜41〜44可保形地(conformai)形成於上述基板1〇上。上 述複數個絕緣膜3 1〜3 5及複數個導電膜41〜44之合計厚度可 小於上述單元陣列區域與上述核心區域之間的階差Η。 上述複數個絕緣膜31〜35可為氧化矽臈、氮化矽膜及氮 氧化矽膜。另一方面,與上述複數個導電膜41〜44之間所 插入的複數個絕緣膜32〜34之厚度可在令使圖i中所說明之 反轉區域重疊(〇vedap Qf inversi〇n regi(ms)之技術特徵全 部具備之範圍内選擇。然而,最上部之絕緣膜35可於後續 圖案化步财用作似,㈣罩,因此㈣讀其他複數個絕 、.彖膜31〜34更厚之厚度而形成。而且,最下部之絕緣膜^ 係以較與上述複數個導電膜41〜44之間所插入的複數個絕 ”彖膜32 34更厚之厚度而形成,以可預防最下部中間配線 (圖3之141)與上述基板1G或下部雜質區域2()間之絕緣破壞 (breakdown) ° 上述複數個導電膜41〜44可包含經摻雜之半導體、金 屬、金屬氮化物及金屬矽化物中之至少丨個。如圖1所示: 本發明之實施形態之記憶胞電晶體具有垂直之通道,上述 複數個導電膜41〜44之厚度係m述記憶胞電晶體之= 道長度。在如此之態樣中,上述複數個導電膜41〜44之厚 度可在使與記憶胞電晶體之通道長度相關之技術性要: (例如,預防短通道效應)充分滿足的範圍内選擇。 根據一實施形態,於形成上述複數個絕緣膜31〜35及上 述複數個導電膜41〜44之前,可於上述基板1〇之單元陣列 區域形成下部雜質區域20。上述下部雜質區域2〇可形成為 145224.doc •17- 201104839 具有與上述基板1 〇不同之導電型態,於此情形時,可用作 參照圖3所說明之共用源極電極CSL。 參照圖6,將上述複數個絕緣膜3 1〜35及上述複數個導電 膜41〜44加以圖案化,形成界定使上述基板10之上部表面 露出之複數個溝槽Τ之中間配線構造體200。上述中間配線 構造體200可包含:複數個絕緣膜圖案13ι、132、133、 134、135 ’其係藉由將上述複數個絕緣膜31〜35及上述複 數個導電膜41〜44加以圖案化而形成;以及複數條中間配 線141、142、143、144。如圖所示,上述複數條中間配線 141〜144及上述複數個絕緣膜圖案131〜135之側面經露出而 界定上述溝槽Τ。 上述複數個中間配線構造體2〇〇可於經由照相及蝕刻步 驟將上述最上部絕緣膜135加以圖案化之後,經由將上述 經圖案化之最上部絕緣膜丨3 5用作硬式遮罩之圖案化步驟 而形成。根據變形之實施形態,可於形成上述複數個中間 配線構造體200之前,進而包含如下階段,即,為了降低 由上述單元陣列區域與上述核心區域之間的階差所引起之 圖案化上之難度,於將上述蝕刻遮罩用之其他遮罩膜形成 於基板之前面後’對其結果物進行平坦化蝕刻。 根據另一變形之實施形態,上述複數個中間配線構造體 200可經由複數次圖案化階段而形成。例如,上述複數個 絕緣膜31〜35及上述複數個導電膜41〜44可於上述核心區域 及上述單元陣列區域獨立地圖案化。具體而言,如此之圖 案化階段可包含如下階段,,首先於上述核心區域將上 -J8- M5224.doc 201104839 述薄膜加以圖案化,形成覆蓋上述經圖案化之核心區域之 遮罩膜之後,將上述單元陣列區域加以圖案化。 參照圖7,於形成覆蓋上述中間配線構造體2〇〇之側面之 資訊儲存膜圖案55後’於其結果物上形成半導體膜6〇。 上述資A儲存膜圖案55係自上述中間配線構造體2〇〇之 側面延長而覆蓋上述中間配線構造體2〇〇之上部表面。根 據本貫施形態,上述資訊儲存膜圖案5 5能夠以於上述溝槽 T之底部使上述基板10之上部表面露出之方式而形成。』 此,可進而實施用以於上述溝槽T之底部去除上述資訊儲 存膜圖案5 5之钱刻步驟。 ☆根據變形之實施形態,為了防止上述資訊儲存膜圖案55 受損’上述_步驟可於以特定之保護膜覆蓋上述資訊儲 存膜圖案55之狀態下實施。例如,上述半導體該可經由 兩次以上之_步驟而形成,最早被蒸敎轉體膜可用 作上述保護膜。 根據冑把形態,上述資訊儲存膜圖案Μ可包含電荷儲 存膜。例如,上述資訊儲存膜圖案55可包含如圖2所示依 序積層之結塊絕緣膜55e、電荷儲存膜说及隧道絕緣膜 5心上述結塊絕緣膜…可包含氧切膜、氮切膜、氮 氧化石夕膜及高介電膜中之至少1個,彳包含複數個膜。此 時’上述高介電膜係指具有較上述氧切膜更高之介電常 數之絕緣性物質,可包含氧化组膜、氧化鈦膜、氧化給 膜、氧化锆膜、氧化鋁膜、氧化釔膜、氧化鈮膜、氧化绝 膜、氧化銦膜、.氧化銀膜、贿膜、及ρζτ膜。上述隨道 145224.doc -19· 201104839 *、a可由具有較上述結塊絕緣膜…更低之介電常數 々質所A成上述電荷儲存膜55b可為電荷捕獲陷牌豐 富的絕緣㈣膜(例如,氮切膜)、或者包含複數個導電 Η子之、.g緣J·生相。根據_實施形態,上述隨道絕緣膜 可為氧化石夕膜’上述電荷儲存膜55b可為氮化石夕膜,上 述結塊絕緣膜55c可為包含氧化銘膜之絕緣膜。、 上料導體膜60可為單晶半導體或多晶半導體,可使用 氣相蒸鍍技術或磊晶技術而形成。上述半導體膜6〇可如圖 所示以保形之厚度而形成,或者形成為實質上填埋形成有 上述資訊儲存膜圖案55之溝槽τ之剩餘空間。根據一實施 形心上述半導體臈6〇可具有與上述下部雜質區域2〇不同 之導電型態,以構成上述下部雜質區域2〇及二極體。 參照圖8 ’㈣成有Λ述半導體膜6〇之結果物加以平坦 化蝕刻而使上述基板10之上部表面露出。另一方面,如上 所述,上述複數個絕緣膜31〜35及上述複數個導電膜4ι〜44 之合計厚度t可小於上述單元陣列區域與上述核心區域之 間的階差Η。於如此之實施形態之情形時,上述複數條中 間配線141〜144及上述複數個絕緣膜圖案131〜135藉由上述 平坦化触刻而限定地配置於上述單元陣列區域内部。 另一方面,限定於上述單元陣列區域内部之上述複數條 中間配線141〜144之各個,可具有與上述基板1〇之上部表 面平行之配線區間、及自上述配線區間之一端或兩端延長 之接觸區間。此時,上述複數條中間配線141〜144之接觸 區間配置於上述單元陣列區域與上述核心區域之邊界附 145224.doc •20· 201104839 近’作為上述平坦化敍刻之結果,該等之上部表面能夠以 與上述基板ίο所露出之上部表面相同之高度而形成。 根據一實施形態,於上述平坦化蝕刻之前,可進而形成The plurality of bit lines BL are connected to the common source electrode CSL; and the plurality of intermediate lines 140 are opposite to the plurality of semiconductor patterns 65 and traverse the plurality of bit lines BL. A rectifying element may be disposed between the semiconductor pattern 65, the bit line BL, or the common source electrode CSL. An information storage body can be disposed between the inter-command wiring 14A and the semiconductor pattern 65. According to an embodiment, the above-described poor memory storage body may include a film for charge storage as described with reference to Fig. 2 . The unit memory cell uc of the memory semiconductor device of the present embodiment includes the semiconductor pattern 65, an intermediate wiring layer 4 〇 opposite thereto, and an information storage body interposed therebetween. At this time, a plurality of intermediate wirings 14A opposed to one semiconductor pattern 65 are sequentially disposed between the bit line muscle and the common source electrode CSL. Therefore, a plurality of unit memory cells uc sharing a semiconductor pattern 65 are connected in series with the above-described common source electrode CSL. The cell string STR of the memory semiconductor device of the present embodiment includes the above-mentioned bit 4bL, the common source electrode 145224.doc 201104839 pole CSL, and the above-mentioned plurality of unit cells UC connected in series therebetween. According to an embodiment, the intermediate wiring most adjacent to the bit line BL can be used as the upper selection line USL for controlling the electrical connection between the cell string STR and the bit line BL. Further, the intermediate wiring which is most adjacent to the common source electrode CSL can be used as an electrical connection lower selection line LSL between the cell string STR and the common source electrode CSL. The plurality of intermediate wirings 140 between the upper and lower selection lines USL and LSL can be used as a plurality of word line lines WL for changing the information of the unit memory cells UC. To simplify the description, there are two word lines illustrated in the drawing, but the above cell string STR may contain a greater number of word lines. The plurality of word line lines WL may be connected to a plurality of global word lines GWL. At this time, each of the word lines WL constituting one unit string STR is connected to the mutually different global word line GWL. According to one embodiment, as shown in the figure, the global word line GWL is disposed in a direction parallel to the bit line BL for electrically connecting the word line WL. On the other hand, when the above-described global word line GWL is parallel to the bit line BL, the upper selection line USL and the lower selection line LSL may be formed in a direction crossing the bit line BL, so that The above unit memory cell UC can be selected. Fig. 4 is a perspective view showing a part of a cell array of a memory semiconductor device according to an embodiment of the present invention. The memory semiconductor device of this embodiment has the technical features of the present invention described with reference to the above-described embodiments of Figs. 1 and 2 . Therefore, in order to simplify the description, the description of the repeated technical features 145224.doc -14-201104839 can be omitted. Referring to Fig. 4', the memory semiconductor device of the present embodiment includes a plurality of intermediate wiring structures 2 disposed on the substrate 10. The plurality of intermediate wiring structures 200 may be arranged in parallel with each other, and each of them may include a plurality of insulating film patterns 1 3 1 to 13 5 sequentially stacked and repeatedly stacked, and a plurality of intermediate wirings 141 to 144. A plurality of semiconductor patterns 65 traversing the plurality of intermediate wiring structures 200 may be disposed on both side faces of the plurality of intermediate wiring structures 200. According to one embodiment, the semiconductor pattern 65 may be connected to each other on the upper surface of the plurality of intermediate wiring structures 200 and the bottom surface therebetween. In this case, as shown in the figure, the semiconductor pattern 65 can be formed by a linear pattern that traverses the plurality of intermediate wiring structures 2'' and covers the side faces of the plurality of intermediate wiring structures 200. An information storage pattern 55 can be disposed between the semiconductor pattern 65 and the intermediate wiring structure 2A. According to the embodiment, the information storage pattern 55 may include a charge storage film as described with reference to FIG. 2, and the information stored in the information storage pattern 55 may be utilized between the semiconductor pattern 65 and the intermediate wirings 141 to 144. The FN tunneling (Fowler-Nordheim turnneling) caused by the voltage difference is changed. A lower wiring 20 (or a lower impurity region) may be formed in the substrate 1A below the plurality of intermediate wiring structures 2''. The lower impurity region 2 is formed not only under the plurality of intermediate wiring structures 200 but also in the substrate 1 between the plurality of intermediate wiring structures 200, so that the plurality of semiconductor patterns 65 can be electrically connected. On the upper portion of the intermediate wiring structure 200, 145224.doc •15-201104839, a plurality of upper wirings 75 connected to the semiconductor pattern 65 or across the plurality of intermediate wirings 141 to 144 may be disposed. According to the present embodiment, the lower impurity region 20 can be used as a common source electrode (CSL of FIG. 3), and the upper wiring 75 can be used as a plurality of bit lines (BL of FIG. 3), and the plurality of bit lines A write voltage for changing information stored in the information storage pattern 55 or a read voltage for reading the stored information is applied. On the other hand, according to an embodiment of the present invention, in addition to the contact section for connection of the upper wiring described below, the arrangement structure of a plurality of intermediate wirings (for example, 141) arranged in a specific layer may be plural to those arranged in other layers. The arrangement structure of the strip intermediate wirings (for example, 142 to 144) is substantially the same. Fig. 5 to Fig. 1 are perspective views for explaining a method of manufacturing a memory semiconductor device according to an embodiment of the present invention. Referring to Fig. 5, a substrate 1 having a cell array region (CeU Array Region) and a core region (Core Region) is prepared. * The upper surface of the cell array region is formed lower than the upper surface of the core region. According to an embodiment, such a configuration can be formed via a patterning stage in which the substrate 1 is formed into a groove in the cell array region. According to another embodiment, the configuration may be formed by forming a specific film having a thickness corresponding to the step difference between the two regions on the substrate 1A after the unit array region The above film is etched. Thereafter, as shown in the figure, a plurality of insulating films 31, 32, 33, 34, 35 and a plurality of conductive films 41, 42, 43, 44 are vapor-deposited sequentially and repeatedly on the substrate 1''. At this time, the plurality of insulating films 31 to 35 and the plurality of conductive layers 145224.doc -16 - 201104839 are formed conformally on the substrate 1 . The total thickness of the plurality of insulating films 3 1 to 3 5 and the plurality of conductive films 41 to 44 may be smaller than the step Η between the cell array region and the core region. The plurality of insulating films 31 to 35 may be a hafnium oxide, a tantalum nitride film, or a hafnium oxynitride film. On the other hand, the thickness of the plurality of insulating films 32 to 34 interposed between the plurality of conductive films 41 to 44 may be such that the inverted regions illustrated in Fig. i overlap (〇vedap Qf inversi〇n regi ( The technical characteristics of the ms) are all within the range of the selection. However, the uppermost insulating film 35 can be used as a pattern in the subsequent patterning, (4) reading (4) reading other plural, 彖 film 31~34 thicker The lowermost insulating film is formed to have a thicker thickness than the plurality of insulating films 32 34 interposed between the plurality of conductive films 41 to 44 to prevent the lowermost portion. Insulation breakdown between the intermediate wiring (141 of FIG. 3) and the substrate 1G or the lower impurity region 2 () The plurality of conductive films 41 to 44 may include doped semiconductors, metals, metal nitrides, and metals. At least one of the tellurides. As shown in FIG. 1, the memory cell of the embodiment of the present invention has a vertical channel, and the thickness of the plurality of conductive films 41 to 44 is the memory cell crystal. In such a situation, the above plurality of conductive The thickness of the films 41 to 44 can be selected within a range that satisfies the technical length of the channel length of the memory cell: (for example, preventing the short channel effect). According to an embodiment, the plurality of insulating films are formed. Before the plurality of conductive films 41 to 44 and the plurality of conductive films 41 to 44, the lower impurity region 20 may be formed in the cell array region of the substrate 1 . The lower impurity region 2 may be formed as 145224.doc • 17-201104839 having the substrate 1 〇 different conductivity types, in this case, can be used as the common source electrode CSL described with reference to Fig. 3. Referring to Fig. 6, the plurality of insulating films 3 1 to 35 and the plurality of conductive films 41 to 44 is patterned to form an intermediate wiring structure 200 defining a plurality of trenches for exposing the upper surface of the substrate 10. The intermediate wiring structure 200 may include a plurality of insulating film patterns 13, 132, 133, and 134. 135' is formed by patterning the plurality of insulating films 31 to 35 and the plurality of conductive films 41 to 44, and a plurality of intermediate wirings 141, 142, 143, and 144. The plurality of intermediate wirings 141 to 144 and the side surfaces of the plurality of insulating film patterns 131 to 135 are exposed to define the trench Τ. The plurality of intermediate wiring structures 2 can be formed by photolithography and etching steps. After the uppermost insulating film 135 is patterned, it is formed by using the patterned uppermost insulating film 丨35 as a patterning step of the hard mask. According to the modified embodiment, the plurality of intermediate wirings may be formed. Before the structure 200, further comprising a step of forming another mask film for etching the mask in order to reduce the difficulty in patterning caused by the step difference between the cell array region and the core region The resultant is planarized and etched after the front side of the substrate. According to another embodiment of the present invention, the plurality of intermediate wiring structures 200 can be formed through a plurality of patterning stages. For example, the plurality of insulating films 31 to 35 and the plurality of conductive films 41 to 44 may be independently patterned in the core region and the cell array region. Specifically, the patterning stage may include the following steps: first, patterning the film of the above-mentioned core region to form a mask film covering the patterned core region, The above cell array regions are patterned. Referring to Fig. 7, after the information storage film pattern 55 covering the side surface of the intermediate wiring structure 2 is formed, a semiconductor film 6 is formed on the resultant. The above-mentioned asset A storage film pattern 55 is extended from the side surface of the intermediate wiring structure 2 to cover the upper surface of the intermediate wiring structure 2 . According to the present embodiment, the information storage film pattern 55 can be formed such that the upper surface of the substrate 10 is exposed at the bottom of the trench T. Therefore, the step of removing the information storage film pattern 5 at the bottom of the trench T can be further carried out. ☆ According to the embodiment of the deformation, in order to prevent the information storage film pattern 55 from being damaged, the above-described step can be carried out in a state where the information storage film pattern 55 is covered with a specific protective film. For example, the above semiconductor may be formed by two or more steps, and the earliest vaporized transfer film may be used as the above protective film. The information storage film pattern Μ may include a charge storage film according to the shape of the ruthenium. For example, the information storage film pattern 55 may include an agglomerated insulating film 55e sequentially stacked as shown in FIG. 2, a charge storage film, and a tunnel insulating film. The above-mentioned agglomerated insulating film may include an oxygen cut film or a nitrogen cut film. At least one of a nitrous oxide film and a high dielectric film, the ruthenium comprising a plurality of films. In this case, the above-mentioned high dielectric film means an insulating material having a higher dielectric constant than the above oxygen film, and may include an oxide film, a titanium oxide film, an oxide film, a zirconium oxide film, an aluminum oxide film, and oxidation. Antimony film, hafnium oxide film, oxidized film, indium oxide film, silver oxide film, brittle film, and ρζτ film. The above-mentioned accompanying channel 145224.doc -19·201104839*, a may have a lower dielectric constant than the above-mentioned agglomerating insulating film... The above-mentioned charge storage film 55b may be an insulating (four) film rich in charge trapping traps ( For example, a nitrogen film), or a plurality of conductive tweezers, a .g edge J. phase. According to the embodiment, the above-mentioned track insulating film may be an oxide film. The charge storage film 55b may be a nitride film, and the agglomerate film 55c may be an insulating film containing an oxide film. The feeding conductor film 60 may be a single crystal semiconductor or a polycrystalline semiconductor, and may be formed by a vapor phase evaporation technique or an epitaxial technique. The semiconductor film 6A may be formed in a conformal thickness as shown in the figure, or may be formed to substantially fill a remaining space of the trench τ in which the information storage film pattern 55 is formed. According to an embodiment, the semiconductor 臈6 〇 may have a different conductivity type from the lower impurity region 2 , to constitute the lower impurity region 2 二 and the diode. Referring to Fig. 8 (4), the result of the semiconductor film 6 is described as being planarized and etched to expose the upper surface of the substrate 10. On the other hand, as described above, the total thickness t of the plurality of insulating films 31 to 35 and the plurality of conductive films 4 to 44 may be smaller than the step Η between the cell array region and the core region. In the case of such an embodiment, the plurality of intermediate wirings 141 to 144 and the plurality of insulating film patterns 131 to 135 are disposed inside the unit array region so as to be limited by the flattening. On the other hand, each of the plurality of intermediate wirings 141 to 144 limited to the inside of the unit array region may have a wiring section parallel to the upper surface of the substrate 1 and an extension of one or both ends of the wiring section. Contact interval. At this time, the contact section of the plurality of intermediate wirings 141 to 144 is disposed at a boundary between the unit array region and the core region 145224.doc • 20·201104839 near as a result of the flattening characterization, the upper surface It can be formed at the same height as the upper surface of the substrate ίο exposed. According to an embodiment, the planarization etching may be further formed
覆蓋形成有上述半導體膜60之結果物、且填埋上述溝槽T 之填埋絕緣膜88。於此情形時,上述複數條中間配線 14i〜144之接觸區間之上部表面於上述基板1〇與上述填埋 絕緣膜之間露出。 ' 參照圖9,將上述半導體膜6〇加以圖案化而形成橫穿上 述中間配線構造體2〇〇之複數個半導體圖案65。形成上述 半導體圖案65之階段可包含如下階段,即,將上述填埋絕 緣膜88加以圖案化而形成界定使上述半導體膜60露出之開 口部99a之填埋絕緣膜圖案99之後,蝕刻上述已露出之半 導體膜60。此時’上述開口部99a可形成於橫穿上述中間 酉^構造㈣〇之方向H上述半導體㈣65形成於 橫穿上述中間配線構造體2〇〇之方向。 蝕刻上述填埋絕緣膜之階段可利用對於上述半導體膜 具有钮刻選擇性之各向異性㈣之方法來實施,钱刻上述 半導體膜60之階段可利用對於上述填埋絕緣膜具有钮刻選 擇性之敍刻方法來實施。钮刻上述半導體膜6〇之階段可通 過各向同性蚀刻之方法以可在上述中間配線構造體細之 側面分離上述半導體膜60之方式來實施。然而,上述半導 體膜60之姓刻階段可通過各向異性飯刻方法及各向同性蝕 刻方法之各個、或該等之組合之方法來實施。 根據-實施形態’於形成上述半導體圖案&之後,可如 I45224.doc -21 - 201104839 圖所示’以使上述中間配線構造體200露出之方式,進而 蝕刻上述資訊儲存膜圖案55。 參照圖10 ’在形成有上述半導體圖案65之結果物上形成 填埋上述開口部99a之絕緣膜(未圖示)之後,形成與上述半 導體圖案65及上述複數條中間配線14丨〜丨44連接之上部配 線75。與上述半導體圖案65及上述複數條中間配線 141〜144分別連接之上述上部配線75係用作參照圖3所說明 之複數條位元線BL及全域中間配線gwl。 而且,形成上部配線75之後,可形成與上述最上部中間 配線144及上述最下部中間配線141分別連接之上部選擇線 USL及下部選擇線LSL。上述上部及下部選擇線慨及说 如圖所示,可形成於橫穿上述位元線BL之方向。 圖11及圖12係用以說明本發明之另—實施形態之記憶體 半導體裝置之單元陣列構造的電路圆及立體圖。為了簡化 說明,省略對於與參照上述圖3及圖4所說明之實施形態重 複之技術特徵之說明。 參照圖11及圖12,根據本實施形,態,上述下部選擇線 LSL可沿著與上述位元線BL平行之方向將上述單元串_ 加以連接。然而,與參照圖3所說明之實施形態相同上 述上部選擇線USL係將橫穿上述位元線BL之方向之單元串 STR加以連接。於此情形時’ -個單元串可藉由上述位元 線BL與上述上部選擇線USL來選擇。 圖13,用以5兒明本發明之另—實施形態之記憶體半導體 裝置之單元陣列構造之電路圖,圖Μ及圖Μ係用以說明本 145224.doc •22- 201104839 實施形態之半導體裝置之製造方法之立體圖。為了簡化說 明,省略對於與參照上述圖3及圖4所說明之實施形態重複 之技術特徵之說明。 根據本實施形態,如圖14所示,於一個上述中間配線構 造體200之兩側面可配置複數個經局部化之上述半導體圖 案65a、65b。與上述實施形態不同,本實施形態之上述半 導體圖案65a、65b並不延長至上述中間配線構造體2〇〇之 相反之側面,而是於其上部被切斷。此時,配置於上述中 間配線構造體200之一側面之半導體圖案65a可配置於複數 個半導體圖案65b之間’該等複數個半導體圖案65b係配置 於上述中間配線構造體2〇〇之另一側面。即,上述半導體 圖案65a、65b沿著上述中間配線構造體2〇〇交替地排列於 兩側6由於形成如此之構造,因此上述填埋絕緣膜圖案99 之開口部99a可形成為於互不相同之兩個方向傾斜地橫穿 上述中間配線構造體200。即,上述開口部99a能夠以網構 造而形成。 如圖15所示,配置於上述中間配線構造體2〇〇之一側面 之半導體圖案65a與配置於另一側面之鄰接之半導體圖案 65b連接於互不相同之複數條位元線。於此情形時,如 圖13所不’各個經局部化之半導體圖案65a、6515構成可獨 立控制之單元串STR,因此與上述參照圖3所說明之實施 形態相比,所增加之個數之記憶胞可形成於相同面積之單 7C陣列區域内。 圖16及圖17係用以說明本發明之實施形態之中間配線之 145224.doc •23- 201104839 電性連接構造的立體圖。 如參照圖5所說明’上述複數個導電膜41〜44可保形地形 成。於此情形時,上述複數條中間配線141 ~ 144之接觸區 間與上述基板1〇之上部表面之間的角度,可和上述單元陣 列區域與上述核心區域之邊界面和上述基板1〇之上部表面 所成之角度實質上相同。例如,如圖丨6所示,當上述單元 陣列區域與上述核心區域之邊界面垂直於上述基板丨〇之上 部表面時’上述複數條中間配線141〜144之接觸區間亦仍 然與上述基板1 〇之上部表面垂直地形成。 另一方面’根據本發明之另一實施形態,如圖17所示, 上述單元陣列區域與上述核心區域之邊界面相對於上述基 板10之上部表面形成小於90度之角度Θ。於此情形時,藉 由上述平坦化蝕刻而露出之上述複數條中間配線141〜144 之上部表面之面積與上述實施形態相比得以增加。具體而 言,若上述中間配線之厚度及寬度分別為&及b,則如此之 中間配線之露出面積於上述實施形態之情形時為ab,於本 實施形態之情形時為ab/sine。因此,上述角度越減小,則 上述複數條中間配線141〜144之露出面積越增加。根據一 實施形態’上述角度可處於3〇度至90度之間。 圖1 8至圖2 1係分別用以說明本發明之變形之實施形態之 下部配線的電性連接構造之立體圖。 參照圖18,根據本實施形態,上述下部雜質區域2〇可於 形成上述中間配線構造體2〇〇之後,利用使用上述中間配 線構造體200作為離子遮罩之離子注入步驟而形成。於此 145224.doc -24 - 201104839 it形時’上述下部雜質區域2〇可局部地形成於上述複數個 中間配線構造體200之間(即,上述溝槽之基板10内)。 另—方面,為使上述下部雜質區域20可如上所述用作共 用源極電極CSL,該等可相互電性連接。例如,如圖19所 示上述下部雜質區域20可自上述單元陣列區域延長至上 述核心區域之側壁及上部表面。於此情形時,向用作上述 共用源極電極CSL之上述下部雜質區域2〇之電性連接變得 谷易。即,如圖19所示,上述經延長之下部雜質區域別可 連接於傳送源極電壓之上述源極線SL。 根據本發明之變形之實施形態,上述共用源極電極CSL 用上述下部配線20可由導電性物質所形成。例如,如圖20 所不,形成於上述溝槽τ之下部的導電性線2〇a可用作上述 共用源極電極CSLe於此情形時,可於上述半導體圖案“ 之下方,以構成二極體之方式形成具有與上述本體部B不 同之導電型態之源極雜質區域S。上述源極雜質區域s需要 形成得較最下部之中間配線141更低,以使得上述導電性 線2〇a可用作上述共用源極電極况。因此,上述最下部絕 緣膜圖案131能夠以較上述半導體膜及上述導電性線20a 之厚度更厚之厚度而形成。 根據另-變形之實施形態,如圖21所禾,上述半導體圖 案6 5可連接於用作上述共用源極電極c s l之特定導電性板 20b之上部表面。於此情形時,上述導電性板鳥能夠以限 疋於::陣列區域内之方式而圖案化。另-方面,根據如 此之貧把形態’上述基板1〇不需要限定為半導體物質。因 145224.doc -25- 201104839 此’本實施形態可應用於在絕緣性基板上形成上述單元陣 列構造之後’利用晶圓接合技術等與周邊電路連接之方 式。然而’於上述基板10為半導體或導電性物質之情形 時,於上述基板10與上述導電性板20b之間可進而插入絕 緣性薄膜12。 圖22及圖23分別係用以說明本發明之另一實施形態之記 憶體半導體裝置之單元陣列構造的立體圖及電路圖。為了 簡化說明,可省略對於與參照圖丨至圖2丨所說明之實施形 態重複之技術特徵之說明。 參照圖22及圖23,提供一種包含接地選擇區域GSR、串 選擇區域SSR、及配置於該等之間之記憶體區域MMR的基 板10 〇 於上述基板10之記憶體區域MMR上配置至少丨個字元線 構造體及至少1個半導體圖案65。上述字元線構造體包含 2序積層之複數條字元線WL,上述半導體圖案65與上述 字兀線構造體相對向,而且橫穿上述字元線WL。於上述 字元線構造體與上述半導體圖案65之間可插入資訊儲存圖 案55。上述貝訊儲存圖案55可與參照圖7所說明之實施形 態者相同。 ;这土板之接地選擇區域GSR上配置將接地選擇線 GSL用作閘極電極之複數個接地選擇電晶體⑽,於上述 土板0之φ選擇區域SSR上配置將串選擇線饥用作閑極 電極之串選擇電晶體SST。上述接地選擇線GSL及上述串 選擇線SSL可形成為具有與上述字元線WL平行之長軸。根 145224.doc -26· 201104839The buried insulating film 88 in which the result of the above-described semiconductor film 60 is formed and the trench T is filled is covered. In this case, the upper surface of the contact section of the plurality of intermediate wirings 14i to 144 is exposed between the substrate 1A and the buried insulating film. Referring to Fig. 9, the semiconductor film 6 is patterned to form a plurality of semiconductor patterns 65 which traverse the intermediate wiring structure 2A. The step of forming the semiconductor pattern 65 may include a step of patterning the buried insulating film 88 to form a buried insulating film pattern 99 defining an opening portion 99a for exposing the semiconductor film 60, and etching the exposed portion The semiconductor film 60. At this time, the opening portion 99a may be formed in a direction H across the intermediate structure (four), and the semiconductor (four) 65 may be formed in a direction crossing the intermediate wiring structure 2'. The step of etching the buried insulating film can be carried out by a method of anisotropic (4) for the above-mentioned semiconductor film, and the stage of the semiconductor film 60 can be utilized for the above-mentioned buried insulating film. The method of narration is implemented. The step of engraving the semiconductor film 6 can be carried out by means of isotropic etching so that the semiconductor film 60 can be separated on the side surface of the intermediate wiring structure. However, the last stage of the above-described semiconductor film 60 can be carried out by the anisotropic meal engraving method and the isotropic etching method, or a combination thereof. According to the embodiment, after the semiconductor pattern & is formed, the information storage film pattern 55 can be further etched so that the intermediate wiring structure 200 is exposed as shown in the drawing of I45224.doc - 21 - 201104839. Referring to Fig. 10', after forming an insulating film (not shown) in which the opening portion 99a is filled in the result of forming the semiconductor pattern 65, the semiconductor pattern 65 and the plurality of intermediate wirings 14A to 44 are formed. The upper wiring 75. The upper wiring 75 connected to the semiconductor pattern 65 and the plurality of intermediate wirings 141 to 144 is used as a plurality of bit lines BL and a global intermediate wiring gw1 described with reference to Fig. 3 . Further, after the upper wiring 75 is formed, the upper selection line USL and the lower selection line LSL are connected to the uppermost intermediate wiring 144 and the lowermost intermediate wiring 141, respectively. The upper and lower selection lines are formed in a direction crossing the bit line BL as shown in the figure. Figs. 11 and 12 are circuit diagrams and perspective views for explaining a cell array structure of a memory semiconductor device according to another embodiment of the present invention. In order to simplify the description, the description of the technical features repeated with the embodiment described with reference to Figs. 3 and 4 above will be omitted. Referring to Fig. 11 and Fig. 12, according to the present embodiment, the lower selection line LSL can connect the cell strings _ in a direction parallel to the bit line BL. However, in the same manner as the embodiment described with reference to Fig. 3, the upper selection line USL is connected to the cell string STR which is directed across the bit line BL. In this case, the - cell string can be selected by the above bit line BL and the above upper selection line USL. FIG. 13 is a circuit diagram showing a structure of a cell array of a memory semiconductor device according to another embodiment of the present invention. FIG. 13 is a circuit diagram for explaining a semiconductor device of the embodiment of 145224.doc. 22-201104839. A perspective view of the manufacturing method. For the sake of simplification of the description, the description of the technical features overlapping with the embodiments described with reference to Figs. 3 and 4 will be omitted. According to the present embodiment, as shown in Fig. 14, a plurality of localized semiconductor patterns 65a and 65b can be disposed on both side faces of one of the intermediate wiring structures 200. Unlike the above-described embodiment, the semiconductor patterns 65a and 65b of the present embodiment are not extended to the side opposite to the intermediate wiring structure 2, but are cut at the upper portion thereof. At this time, the semiconductor pattern 65a disposed on one side surface of the intermediate wiring structure 200 may be disposed between the plurality of semiconductor patterns 65b. The plurality of semiconductor patterns 65b are disposed on the other of the intermediate wiring structures 2 side. In other words, the semiconductor patterns 65a and 65b are alternately arranged on the both sides 6 along the intermediate wiring structure 2, and the openings 99a of the buried insulating film pattern 99 can be formed to be different from each other. The intermediate wiring structure 200 is slanted across the two directions. That is, the opening portion 99a can be formed by a mesh structure. As shown in Fig. 15, the semiconductor pattern 65a disposed on one side surface of the intermediate wiring structure 2 and the adjacent semiconductor pattern 65b disposed on the other side surface are connected to a plurality of bit lines different from each other. In this case, as shown in FIG. 13, each of the localized semiconductor patterns 65a and 6515 constitutes an independently controllable cell string STR, so that the number is increased as compared with the embodiment described above with reference to FIG. The memory cells can be formed in a single 7C array region of the same area. Fig. 16 and Fig. 17 are perspective views for explaining the electrical connection structure of the intermediate wiring 145224.doc • 23-201104839 according to the embodiment of the present invention. As described with reference to Fig. 5, the plurality of conductive films 41 to 44 can be conformally formed. In this case, an angle between a contact section of the plurality of intermediate wirings 141 to 144 and an upper surface of the substrate 1 可 may be a boundary surface between the unit array region and the core region and an upper surface of the substrate 1 The angles formed are essentially the same. For example, as shown in FIG. 6, when the boundary surface between the cell array region and the core region is perpendicular to the upper surface of the substrate, the contact interval of the plurality of intermediate wires 141 to 144 is still adjacent to the substrate 1 The upper surface is formed vertically. On the other hand, according to another embodiment of the present invention, as shown in Fig. 17, the boundary surface between the cell array region and the core region forms an angle 小于 of less than 90 degrees with respect to the upper surface of the substrate 10. In this case, the area of the upper surface of the plurality of intermediate wirings 141 to 144 exposed by the planarization etching is increased as compared with the above embodiment. Specifically, if the thickness and width of the intermediate wiring are & and b, respectively, the exposed area of such intermediate wiring is ab in the case of the above embodiment, and ab/sine in the case of the present embodiment. Therefore, as the angle is decreased, the exposed area of the plurality of intermediate wirings 141 to 144 is increased. According to an embodiment, the above angle may be between 3 degrees and 90 degrees. Fig. 18 to Fig. 2 are perspective views each showing an electrical connection structure of a lower wiring of an embodiment of a modification of the present invention. Referring to Fig. 18, according to the present embodiment, the lower impurity region 2 can be formed by the ion implantation step using the intermediate wiring structure 200 as an ion mask after the intermediate wiring structure 2 is formed. Here, the lower impurity region 2〇 may be partially formed between the plurality of intermediate wiring structures 200 (i.e., in the substrate 10 of the trench). On the other hand, in order to make the above-mentioned lower impurity region 20 usable as the common source electrode CSL as described above, these may be electrically connected to each other. For example, as shown in Fig. 19, the lower impurity region 20 may be extended from the cell array region to the sidewalls and the upper surface of the core region. In this case, the electrical connection to the lower impurity region 2A serving as the common source electrode CSL becomes easy. That is, as shown in Fig. 19, the extended lower impurity region may be connected to the source line SL of the transfer source voltage. According to an embodiment of the present invention, the common source electrode CSL can be formed of a conductive material by the lower wiring 20. For example, as shown in FIG. 20, the conductive line 2〇a formed under the trench τ can be used as the common source electrode CSLe in this case, and can be formed below the semiconductor pattern to form a diode. The source impurity region S having a conductivity type different from that of the body portion B is formed in a bulk manner. The source impurity region s needs to be formed lower than the lowermost intermediate wiring 141 so that the above-mentioned conductive line 2〇a The lowermost insulating film pattern 131 can be formed to have a thickness thicker than the thickness of the semiconductor film and the conductive line 20a. The embodiment according to another modification is as shown in the figure. 21, the semiconductor pattern 65 may be connected to the upper surface of the specific conductive plate 20b serving as the common source electrode cs1. In this case, the conductive plate bird can be limited to:: array area In other respects, according to such a poor form, the substrate 1 does not need to be limited to a semiconductor material. This embodiment can be applied to 145224.doc -25-201104839 After the unit array structure is formed on the insulating substrate, the method of connecting to the peripheral circuit by a wafer bonding technique or the like is used. However, when the substrate 10 is a semiconductor or a conductive material, the substrate 10 and the conductive plate 20b are formed. The insulating film 12 can be further inserted between them. Fig. 22 and Fig. 23 are respectively a perspective view and a circuit diagram for explaining a cell array structure of a memory semiconductor device according to another embodiment of the present invention. 2 to 23, there is provided a ground selection region GSR, a string selection region SSR, and a memory region MMR disposed between the two. The substrate 10 has at least one word line structure and at least one semiconductor pattern 65 disposed on the memory region MMR of the substrate 10. The word line structure includes a plurality of word lines WL of the two sequential layers, The semiconductor pattern 65 faces the word line structure and traverses the word line WL. The word line structure and the half The information storage pattern 55 can be inserted between the body patterns 65. The above-mentioned Bayesian memory pattern 55 can be the same as that described with reference to FIG. 7. The ground selection area GSR of the earth plate is configured to use the ground selection line GSL as a gate. a plurality of ground selection transistors (10) of the electrode electrodes are arranged on the φ selection region SSR of the earth plate 0. The string selection transistor SST for using the string selection line as the idle electrode is disposed. The ground selection line GSL and the string selection line The SSL can be formed to have a long axis parallel to the above-described word line WL. Root 145224.doc -26· 201104839
據一實施形態,上述接地選擇電晶體GST及上述串選擇電 bb體SST可為將上述基板1〇用作通道區域之m〇§feT (Metal-Oxide-Semiconductor «Field-Effect-Transistor,金屬 氧化物半導體場效電晶體)。於上述接地選擇線GSL兩側之 基板10内,以及於上述串選擇電晶體SST之兩側之基板10 内’可形成用作上述接地選擇電晶體GST之源極及汲極電 極之雜質區域25。根據一實施形態,上述半導體圖案65可 形成為具有與上述雜質區域25不同之導電型態β 而且,上述接地選擇電晶體GST之源極電極共通地連接 於與上述字元線WL平行之共用源極線CSL,上述接地選擇 電晶體GST之汲極電極之各個可連接於上述半導體圖案65 各個之一端。因此,上述半導體圖案65可自上述記憶體區 域MMR延長至上述接地選擇區域GSR為止。上述_選擇電 晶體sst之汲極電極可連接於具有橫穿上述字元線wL之方 向之長軸的複數條位元線BL,上述串選擇電晶體SST之源 極電極可連接於上述半導體圖案65之另一端。因此,上述 半導體圖案65可自上述記憶體區域MMRs長至上述串選 擇區域SSR為止。 根據一實施形態,於上述字元線構造體之下方可配置下 部絕緣膜12。上述下部絕緣臈12可為界定活性區域之元件 分離膜’例如’淺溝槽隔離絕緣層(STI : shallow trench .lation)藉此,上述記憶體區域MMR上之上述半導體 圖案65可自上述基板1〇隔開而形成。 上述半導體圖案65可為 句糟由虱、或其中包含氫之氣體而 145224.doc -27· 201104839 處里之多日日石夕膜’其厚度可為5⑽至_⑽。根據一實施 形態,上述半導體圖案65之厚度可為大致15⑽至25nm。 上述半導體圖案65可用作將上述接地選擇電晶體gst與上 述串選擇電晶體SST之間、或上述共用源極線csl與上述 位元線BL之間加以連接之電性路徑。 方面如此之電性路徑可藉由對與該半導體圖案65 相鄰接之上述字元線i 义于兀琛WL所施加之電壓、以及與上述字元 線WL相鄰接之上述資訊儲存圖案65之電位(electric P —)而選擇性地完成,上述資訊儲存圖案“之電位可 根據上述資訊儲存圖案55中所儲存之資訊而不同。結果如 圖23所不’上述半導體圖案65之各個構成單元串中之一 個’該單元串係構成反及陣列(NANDarray)者。 圖24及圖25係用以說明本發明之另一實施形態之記憶體 半導體裝置之單元陣列構造的立體圖及平面圖。為了簡化 說明’可省略對於與參照圖1至圖23所說明之實施形態重 複之技術特徵之說明。 、參照圖24及圖25,配置有相互隔開之複數個中間配線構 &體200 _L述複數個中間配線構造體綱可包含相互隔開 =妾地選擇構造體Gss及串選擇構造體挪、以及配置於 3亥寺之間的至少1個字元線構造體WLS。此時,上述複數 個令間配線構造體_之各個可包含依序積層之複數條中 間配線ϋ此,上述接地選擇構造體gss包含用作接地選 擇線GSL之複數個經積層之中間配線,上述串選擇構造體 SSS包3用作串選擇線SSL之複數個經積層之中間配線, 145224.doc -28- 201104839 上述字元線構造體WLS可包含用作字元線WL之複數個經 積層之中間配線。根據一實施形態,上述接地選擇構造體 GSS、上述串選擇構造體sss及上述字元線構造體wls均 可由貫質上相同之構造而形成。 於上述中間配線構造體200之兩側面可配置橫穿上述中 間配線構造體200之複數個半導體圖案65。根據一實施形 態,上述半導體圖案65可於上述中間配線構造體2〇〇之上 部表面及該等之間的底面相互連接。於此情形時,如圖24 所示,上述半導體圖案65能夠以橫穿上述複數個中間配線 構造體200、並且覆蓋上述中間配線構造體2〇〇之側面之線 形圖案而形成。 於上述半導體圖案65與上述中間配線構造體200之間可 配置資訊儲存圖案55。根據本實施形態,上述資訊儲存圖 案55如參照圖2所說明般,可包含電荷儲存膜,上述資訊 儲存圖案55巾所料之資訊可利用由上料導體圖案65與 上述中間配線141〜144之間之電壓差異所產生之FN穿隧而 變更。 與上述串選擇構造體sss及上述接地選擇構造體GW相 鄰接之上述半導體圖案65之一部分區域65d,可形成為具 有與其他區域65b不同之導電型態。例如,於上述串選擇 構造體SSS及上述接地選擇構造體Gss之上部所配置的上 述半導體圖案65之-部分㈣65d,可形成為具有與鄰接 於上述字元線構造體WLS之側壁的上述半導體圖案65之其 他區域65b不同之導電型態。根據另一實施形態,如圖25 145224.doc -29- 201104839 所示’於上述複數個中間配線構造體2〇〇之上部與上述複 數個中間配線構造體2〇〇之間,可形成利用與覆蓋上述中 間配線構造體200之側壁之本體部65b不同之導電型態的雜 質而摻雜之雜質區域65d。上述雜質區域65d可利用將覆蓋 上述中間配線構造體2〇〇之側壁的間隔件Sp用作離子注入 遮罩之離子注入步驟而形成。上述雜質區域65(1與上述中 間配線構造體200之間的距離可小於藉由施加至上述中間 配線之電壓而生成之反轉區域之最大寬度。 於上述複數個中間配線構造體2〇〇之上部配置有橫穿該 等之複數條位元線BL。上述複數條位元線bl可透過上述 位元線插塞BL_PLG而連接於與上述串選擇構造體sss相鄰 接之上述雜質區域65d。於上述複數個中間配線構造體2〇〇 之上部,可配置將鄰接於上述接地選擇構造體〇 s s之雜質 區域65d加以電性連接之共用源極線csl。 根據參照圖24及圖25所說明之實施形態,如上所述,上 述接地選擇構造體GSS、上述串選擇構造體sss及上述字 元線構造體WLS均可形成實質上相同之構造。因此,與由 互不相同之構造而形成該等之情形相比,可使製造方法簡 單化。與參照圖22及圖23所說明之實施形態相比,根據本 貫施形態’不僅可減小接地選擇電晶體及串選擇電晶體用 面積’而且可降低由接地選擇線與所積層之字元線之間的 南度差異所引起之製造步驟中之技術性難度。而且,於結 果性的構造中,於圖24之半導體裝置之情形時,可不增加 aa片.面積及增加製造步驟之複雜性,而增加構成^一個單元 145224.doc -30· 201104839According to one embodiment, the ground selection transistor GST and the string selection electric BB body SST may be a metal-oxide-transistor (Metal-Oxide-Semiconductor «Field-Effect-Transistor) using the substrate 1〇 as a channel region. Semiconductor field effect transistor). An impurity region 25 serving as a source and a drain electrode of the ground selection transistor GST may be formed in the substrate 10 on both sides of the ground selection line GSL and in the substrate 10 on both sides of the string selection transistor SST . According to an embodiment, the semiconductor pattern 65 may be formed to have a different conductivity type β than the impurity region 25, and the source electrode of the ground selection transistor GST is commonly connected to a common source parallel to the word line WL. Each of the drain electrodes of the ground selection transistor GST may be connected to one of the ends of the semiconductor pattern 65. Therefore, the semiconductor pattern 65 can be extended from the memory region MMR to the ground selection region GSR. The drain electrode of the above-mentioned selective transistor sst may be connected to a plurality of bit lines BL having a long axis crossing the direction of the word line wL, and the source electrode of the string selection transistor SST may be connected to the semiconductor pattern The other end of 65. Therefore, the semiconductor pattern 65 can be elongated from the memory region MMRs to the string selection region SSR. According to one embodiment, the lower insulating film 12 can be disposed under the word line structure. The lower insulating germanium 12 may be an element isolation film that defines an active region, such as a shallow trench isolation insulating layer (STI). The semiconductor pattern 65 on the memory region MMR may be from the substrate 1 The 〇 is formed by separation. The above-mentioned semiconductor pattern 65 may be a ruthenium or a gas containing hydrogen therein, and the thickness of the plurality of solar cells 145224.doc -27 201104839 may be 5 (10) to _ (10). According to an embodiment, the thickness of the semiconductor pattern 65 may be approximately 15 (10) to 25 nm. The semiconductor pattern 65 can be used as an electrical path connecting the ground selection transistor gst and the string selection transistor SST or the common source line cs1 and the bit line BL. The electrical path may be such that the voltage applied by the word line i adjacent to the semiconductor pattern 65 is applied to the 兀琛WL and the information storage pattern 65 adjacent to the word line WL. The potential (electric P -) is selectively performed, and the potential of the information storage pattern "may be different according to the information stored in the information storage pattern 55. As a result, the constituent elements of the semiconductor pattern 65 are not shown in FIG. Fig. 24 and Fig. 25 are a perspective view and a plan view showing a cell array structure of a memory semiconductor device according to another embodiment of the present invention, in order to simplify the NANDarray. The description may omit the description of the technical features overlapping with the embodiments described with reference to FIGS. 1 to 23. Referring to FIG. 24 and FIG. 25, a plurality of intermediate wiring structures and bodies 200 _L are arranged. The intermediate wiring structure body may include at least one character line structure WLS that is spaced apart from each other, the ground selection structure Gss and the string selection structure, and between the three temples. In this case, each of the plurality of inter-wiring wiring structures may include a plurality of intermediate wirings sequentially stacked, and the ground selection structure gss includes a plurality of intermediate wirings which are used as the ground selection line GSL. The string selection structure SSS packet 3 is used as a plurality of laminated intermediate wirings of the string selection line SSL, 145224.doc -28- 201104839 The above word line structure WLS may include a plurality of laminated layers used as the word line WL. According to one embodiment, the ground selection structure GSS, the string selection structure sss, and the word line structure wls may each be formed of the same structure. The two sides of the intermediate wiring structure 200 are formed. A plurality of semiconductor patterns 65 traversing the intermediate wiring structure 200 may be disposed. According to one embodiment, the semiconductor patterns 65 may be connected to each other on the upper surface of the intermediate wiring structure 2 and the bottom surface therebetween. In this case, as shown in FIG. 24, the semiconductor pattern 65 can traverse the plurality of intermediate wiring structures 200 and cover the intermediate wiring. The information storage pattern 55 is disposed between the semiconductor pattern 65 and the intermediate wiring structure 200. According to the embodiment, the information storage pattern 55 is as described with reference to FIG. Generally, the charge storage film may be included, and the information of the information storage pattern 55 may be changed by the FN tunneling caused by the voltage difference between the feeding conductor pattern 65 and the intermediate wirings 141 to 144. The selected structure sss and a partial region 65d of the semiconductor pattern 65 adjacent to the ground selection structure GW may be formed to have a different conductivity type from the other regions 65b. For example, the portion (four) 65d of the semiconductor pattern 65 disposed on the upper portion of the string selection structure SSS and the ground selection structure Gss may be formed to have the semiconductor pattern adjacent to the sidewall of the word line structure WLS. The other regions of 65 are different in conductivity type 65b. According to another embodiment, as shown in FIG. 25 145224.doc -29-201104839, the upper portion of the plurality of intermediate wiring structures 2 与 and the plurality of intermediate wiring structures 2 可 can be formed and utilized. The impurity region 65d doped with impurities of different conductivity types of the main body portion 65b of the side wall of the intermediate wiring structure 200 is covered. The impurity region 65d can be formed by using an ion implantation step in which the spacer Sp covering the side wall of the intermediate wiring structure 2 is used as an ion implantation mask. The distance between the impurity region 65 (1) and the intermediate wiring structure 200 may be smaller than the maximum width of the inversion region generated by the voltage applied to the intermediate wiring. The plurality of intermediate wiring structures 2 The upper plurality of bit lines BL are disposed across the upper portion, and the plurality of bit lines b1 are connected to the impurity regions 65d adjacent to the string selection structure sss via the bit line plugs BL_PLG. A common source line cs1 electrically connected to the impurity region 65d adjacent to the ground selection structure 〇ss may be disposed above the plurality of intermediate wiring structures 2A. The description will be made with reference to FIGS. 24 and 25. According to the embodiment, as described above, the ground selection structure GSS, the string selection structure sss, and the word line structure WLS may each have substantially the same structure. Therefore, the structure is formed by structures different from each other. Compared with the case of the case, the manufacturing method can be simplified. Compared with the embodiment described with reference to FIGS. 22 and 23, the ground selection electro-crystal can be reduced according to the present embodiment. And selecting the area for the transistor 'and the technical difficulty in the manufacturing step caused by the difference in southness between the ground selection line and the word line of the layer. Moreover, in the result of the construction, In the case of a semiconductor device of 24, the aa chip area can be increased without increasing the complexity of the manufacturing steps, and the composition is increased by a unit 145224.doc -30· 201104839
接也及串選擇電晶體之個數。如此之選擇電晶體之個 數增加可有效抑制洩漏電流,因此本實施形態之反及快閃 記憶體裝置具有經改善之電性特性。 、A . 圖26係簡略表示包括本發明之快閃記憶體裝置之記憶卡 • 1200之一實施形態的方塊圖。參照圖26,為了支持高容量 之資料儲存能力,記憶卡1200中安裝本發明之快閃記憶體 裝置1210。树明之記憶卡120〇包含控制主機Host與快閃 記憶體裝置1210之各種資料轉換之記憶體控制器122〇。 SRAM(static rand〇m access mem〇ry,靜態隨機存取記憶 體)1221用作處理單元1222之操作記憶體。主機介面咖 包括與記憶卡U00連接之主機之資料轉換協定。錯誤訂正 區塊1224係檢測及訂正自多位元快閃記憶體装置ΐ2ι〇所讀 取之資料中所包含之錯誤。記憶體介面1225係與本發明之 快閃記憶體裝置1210進行介面連接。處理單元^^係執行 記憶體控制器122〇之資料轉換用各種控制操作。圖式中雖 然未圖示,但是具有本領域之通常知識者當知,本發明之 記憶卡1200可進而提供儲存與主之介面連接用瑪資 料之R〇M(read-〇nlymemory,唯讀記憶體)(未圖示)等。 藉由以上之本發明之快閃記憶體裝置及記憶卡或記憶體 系、統,可通過已改善虛設單元之刪除特性之快間記憶體裝 置mo«供_種可靠性較高之記憶體系統。本發明之快 間記憶體裝置尤其能夠以如最近得到活躍發展之半導體磁 碟裝置(Solid State Disk(固態磁碟):以下 般之記憶體系統而提供。於此情平時 · ^ I月心時’可藉由阻斷自虛設 145224.doc • 31 · 201104839 單元所產生之讀取錯誤來實現可靠性 干又呵之S己憶體系鲚。 圖27係簡略表示安裝本發明之快 ' ^ 己隐體系統13 10之資 訊處理糸統1300之方塊圖。參照_,向如行 桌上型電腦般之資訊處理系統安裝本二〆 θ <快閃記憶體牵 統1310。本發明之資訊處理系統 ” w I 3快閃記情體糸 13 10、與各系統匯流排J 36〇電性 ,、 电丨連接之调制解調器1320、 中央處理裝置 1330、RAM(random access me 敗々揞牌、Ηζιλχζ mem〇ry,隨機存 H)m〇及使用者介面135〇。快閃記憶體系統咖 可與上述所說明之記憶體系統或快閃記憶體系統實質上相 同地構成。在快閃記憶體系統13附,儲存有藉由中麥處 理裝置1330而處理之資料、或自外部所輸入之資料。此 處,上述快閃記憶體系統⑽可包含半導體磁碟裝置 ss二,於此情形時,資訊處理系統13〇〇可將大容量之資料 穩定地儲存於快閃記憶體系統1310中。並且,隨著可靠性 之增大,快閃記憶體系統131〇可節省錯誤訂正所需要之資 源,因此資訊處理系統13〇〇可提供高速之資料轉換功能。 雖未圖不但是具有本領域之通常知識者當知,於本發明 之育讯處理系統1300中可進而提供應用晶片組(APPlicationSelect the number of transistors and also the string. Such an increase in the number of selected transistors can effectively suppress leakage current, and thus the inverse flash memory device of the present embodiment has improved electrical characteristics. Figure 26 is a block diagram schematically showing an embodiment of a memory card 1200 including the flash memory device of the present invention. Referring to Fig. 26, in order to support high-capacity data storage capability, the flash memory device 1210 of the present invention is installed in the memory card 1200. The tree memory card 120 includes a memory controller 122 that controls various data conversions between the host Host and the flash memory device 1210. An SRAM (static rand 〇 access mem ryry) 1221 is used as the operational memory of the processing unit 1222. The host interface coffee includes a data conversion protocol of the host connected to the memory card U00. The error correction block 1224 detects and corrects errors contained in the data read from the multi-bit flash memory device ΐ2ι〇. The memory interface 1225 is interfaced with the flash memory device 1210 of the present invention. The processing unit is configured to perform various control operations for data conversion by the memory controller 122. Although not shown in the drawings, it is known to those of ordinary skill in the art that the memory card 1200 of the present invention can further provide R〇M (read-〇nlymemory, read-only memory) for storing the data associated with the interface of the host. Body) (not shown), etc. According to the above flash memory device and memory card or memory system of the present invention, it is possible to pass the memory device of the fast memory device mo« which has improved the deletion characteristics of the dummy cells. The inter-memory memory device of the present invention can be provided, in particular, by a recently developed semiconductor disk device (Solid State Disk): the following memory system. 'After blocking the read errors generated by the self-deficient 145224.doc • 31 · 201104839 unit, the reliability is both dry and sorrowful. Figure 27 is a simplified representation of the installation of the invention. The block diagram of the information processing system 1300 of the body system 13 10. Referring to _, the present invention is installed on the information processing system like a desktop computer, and the flash memory is integrated 1310. The information processing system of the present invention ” w I 3 flashing 糸 13 10, with each system bus J 36 〇 electrical, 丨 connected modem 1320, central processing unit 1330, RAM (random access me 々揞 Ηζ, Ηζιλχζ Mem〇ry, random memory H) m〇 and user interface 135. The flash memory system can be constructed substantially the same as the above described memory system or flash memory system. In the flash memory system 13 attached, stored The data processed by the medium wheat processing device 1330 or the data input from the outside. Here, the flash memory system (10) may include the semiconductor magnetic disk device ss 2, and in this case, the information processing system 13 The large-capacity data is stably stored in the flash memory system 1310. And as the reliability increases, the flash memory system 131 can save resources required for erroneous correction, and thus the information processing system 13〇〇 A high speed data conversion function can be provided. Although not shown to those skilled in the art, an application chip set can be further provided in the communication processing system 1300 of the present invention.
ChiPSet)、相機影像處理器(Camera lmage Sensor:CIS)、輸 入輸出裝置等。 本&明之快閃記憶體裝置或記憶體系統能夠以各種形態 之包裝而安获 , 装。例如,本發明之快閃記憶體裝置或記憶體 系統能夠D丄 乂如下方式包裝化而安裝:P〇P(Package onChiPSet), Camera lmage Sensor (CIS), input and output devices, etc. This & clear flash memory device or memory system can be packaged and packaged in various forms. For example, the flash memory device or memory system of the present invention can be packaged and installed in the following manner: P〇P (Package on
Package,去峰肚 m 、J 衣噠加)、Ball grid arrays(BGAs,球形柵陣 145224.doc -32- 201104839 列)、Chip scale packages(CSPs,晶片尺寸封裝)、plastic Leaded Chip Carrier(PLCC’ 塑膠晶粒承載封裝)、piastic Dual In-Line Package(PDIP,塑料雙列直插式封裝)、Die in Waffle Pack(晶圓内壓模封裝)、Die in Wafer Form(晶圓 内壓模成型)、Chip On Board(COB,基板覆晶接合)、 Ceramic Dual In-Line Package(CERDIP,陶竟雙列直插封 裝)、Plastic Metric Quad Flat Pack(MQFP,塑料公製四方 扁平封裝)' Thin Quad Flat pack(TQFP,薄型四方扁平封 裝)、Small Out line(SOIC,小外形封裝)、shrink Small Out line Package(SS0P,縮小外型封裝)、TMn 〇加 line(TSOP,薄型小尺寸封裝)、Thin Quad Flat pack(TQFp, 薄型四方扁平封裝)、System In Package(SIP,系統級封 裝)、Multi Chip Package(MCP,多晶片封裝)、WafeMevel Fabricated PaCkage(WFP,晶圓級裝配式封裝)、Wafer_Package, go to peak belly m, J 哒 )), Ball grid arrays (BGAs, spherical grid array 145224.doc -32- 201104839 column), Chip scale packages (CSPs, wafer size package), plastic Leaded Chip Carrier (PLCC' Plastic die-loaded package), piastic Dual In-Line Package (PDIP), Die in Waffle Pack, Die in Wafer Form , Chip On Board (COB, substrate flip chip bonding), Ceramic Dual In-Line Package (CERDIP), Plastic Metric Quad Flat Pack (MQFP, plastic metric quad flat package) ' Thin Quad Flat Pack (TQFP, thin quad flat package), Small Out line (SOIC, small outline package), shrink Small Out line Package (SS0P, reduced form factor package), TMn line (TSOP, thin small package), Thin Quad Flat pack (TQFp, thin quad flat package), System In Package (SIP, system-in-package), Multi Chip Package (MCP, multi-chip package), WafeMevel Fabricated PaCkage (WFP, wafer-level package) , Wafer_
Level Processed Stack package(wsp,晶圓級堆疊封裝) 等。 ’ 【圖式簡單說明】 圖1係表示本發明之一實施形態之半導體裝置之立體 圖; 圖2係用以說明本發明之一實施形態之資訊儲存圖案之 步驟剖面圖; 圖3係用以說明本發明之一實施形態之記憶體半導體裝 置之單元陣列構造的電路圖; 圖4係表示本發明之一實施形態之記憶體半導體裝置之 145224.doc •33- 201104839 單元陣列一部分的立體圖; 圖5係用以說明本發明之一實施形態之記憶體半導體裝 置之製造方法的立體圖; 圖6係用以說明本發明之—實施形態之記憶體半導體裝 置之製造方法的立體圖; 圖7係用以說明本發明之一實施形態之記憶體半導體裝 置之製造方法的立體圖; 圖8係用以說明本發明之一實施形態之記憶體半導體裝 置之製造方法的立體圖; 圖9係用以說明本發明之一實施形態之記憶體半導體裝 置之製造方法的立體圖; 圖1 〇仏用以說明本發明之_實施形態之記憶體半導體裝 置之製造方法的立體圖; 圖11係用以說明本發明之另一實施形態之記憶體半導體 裝置之單元陣列構造的電路圖; 圖12係用以說明本發明之另一實施形態之記憶體半導體 裝置之單元陣列構造的立體圖; 圖U係用以說明本發明之另一實施形態之記憶體半導體 裝置之單元陣列構造的電路圖; 圖14係用以說明本發明之另一實施形態之半導體裝置之 製造方法的立體圖; 圖〗5係用以說明本發明之另一實施形態之半導體裝置之 製造方法的立體圖; 圖1 6係用以說明本發明之實施形態之複數條中間配線之 145224.doc -34- 201104839 電性連接構造的立體圖; 圖17係用以說明本發明之實施形態之複數條中間配線之 電性連接構造的立體圖; 圖18係用以說明本發明之實施形態之複數條下部配線之 電性連接構造的立體圖; 圖19係用以說明本發明之實施形態之複數條下部配線之 電性連接構造的立體圖; 圖20係用以說明本發明之實施形態之複數條下部配線之 電性連接構造的立體圖; 圖21係用以說明本發明之實施形態之複數條下部配線之 電性連接構造的立體圖; 圖22係用以說明本發明之另一實施形態之記憶體半導體 裝置之單元陣列構造的立體圖; 圖23係用以說明本發明之另一實施形態之記憶體半導體 裝置之單元陣列構造的電路圖; 圖24係用以說明本發明之另一實施形態之記憶體半導體 裝置之單元陣列構造的立體圖; 圖25係用以說明本發明之另一實施形態之記憶體半導體 裝置之單元陣列構造的平面圖; 圖26係簡略地表示包括本發明之快閃記憶體裝置之記憶 卡之一實施形態的方塊圖;及 圖27係簡略地表示包括本發明之快閃記憶體裝置之記憶 卡之一實施形態的方塊圖。 【主要元件符號說明】 I45224.doc •35· 201104839 10 基板 20 下部配線. 55 資訊儲存圖案 65 半導體圖案 75 上部配線 131 、 132 、 133 、 134 、 135 絕緣膜圖案 141 、 142 、 143 、 144 中間配線 200 中間配線構造體 145224.doc •36Level Processed Stack package (wsp, wafer level stack package) and so on. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a semiconductor device according to an embodiment of the present invention; FIG. 2 is a cross-sectional view showing a step of explaining an information storage pattern according to an embodiment of the present invention; Figure 4 is a circuit diagram showing a cell array structure of a memory semiconductor device according to an embodiment of the present invention; and Figure 4 is a perspective view showing a portion of a cell array of a memory semiconductor device according to an embodiment of the present invention; 145224.doc • 33-201104839; FIG. 6 is a perspective view for explaining a method of manufacturing a memory semiconductor device according to an embodiment of the present invention; FIG. 7 is a perspective view for explaining a method of manufacturing a memory semiconductor device according to an embodiment of the present invention; FIG. 8 is a perspective view for explaining a method of manufacturing a memory semiconductor device according to an embodiment of the present invention; FIG. 9 is a view for explaining an implementation of the present invention; A perspective view of a method of manufacturing a memory semiconductor device of the form; FIG. 1 is a view for explaining the present invention FIG. 11 is a circuit diagram for explaining a cell array structure of a memory semiconductor device according to another embodiment of the present invention; FIG. 12 is a view for explaining another structure of the present invention; FIG. 14 is a circuit diagram for explaining a cell array structure of a memory semiconductor device according to another embodiment of the present invention; FIG. 14 is a view for explaining another embodiment of the present invention; Fig. 5 is a perspective view for explaining a method of manufacturing a semiconductor device according to another embodiment of the present invention; and Fig. 16 is a view for explaining a plurality of intermediate portions of an embodiment of the present invention FIG. 17 is a perspective view for explaining an electrical connection structure of a plurality of intermediate wirings according to an embodiment of the present invention; FIG. 18 is a perspective view for explaining the implementation of the present invention. FIG. 19 is a perspective view showing the electrical connection structure of a plurality of lower wirings of the form; FIG. FIG. 20 is a perspective view for explaining an electrical connection structure of a plurality of lower wirings according to an embodiment of the present invention; FIG. 21 is a perspective view for explaining an embodiment of the present invention. FIG. 22 is a perspective view showing a cell array structure of a memory semiconductor device according to another embodiment of the present invention; FIG. 23 is a view for explaining another embodiment of the present invention. Figure 24 is a perspective view showing a cell array structure of a memory semiconductor device according to another embodiment of the present invention; and Figure 25 is a view for explaining another embodiment of the present invention. FIG. 26 is a block diagram schematically showing an embodiment of a memory card including the flash memory device of the present invention; and FIG. 27 is a simplified representation of the present invention. A block diagram of one embodiment of a memory card of a flash memory device. [Main component symbol description] I45224.doc •35· 201104839 10 Substrate 20 lower wiring. 55 Information storage pattern 65 Semiconductor pattern 75 Upper wiring 131, 132, 133, 134, 135 Insulation film patterns 141, 142, 143, 144 Intermediate wiring 200 intermediate wiring structure 145224.doc •36
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22786309P | 2009-07-23 | 2009-07-23 | |
KR1020090121107A KR101759926B1 (en) | 2009-07-23 | 2009-12-08 | Memory Semiconductor Device and Methods of Fabricating and Operating the Same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201104839A true TW201104839A (en) | 2011-02-01 |
TWI597821B TWI597821B (en) | 2017-09-01 |
Family
ID=43615573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098142912A TWI597821B (en) | 2009-07-23 | 2009-12-15 | A memory semiconductor device, a manufacturing method and a method of operating the memory semiconductor device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5566675B2 (en) |
KR (1) | KR101759926B1 (en) |
TW (1) | TWI597821B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104576538A (en) * | 2013-10-22 | 2015-04-29 | 旺宏电子股份有限公司 | Storage device and manufacturing method thereof |
TWI569265B (en) * | 2011-06-09 | 2017-02-01 | 愛思開海力士有限公司 | Semiconductor memory device |
TWI809605B (en) * | 2020-12-22 | 2023-07-21 | 南韓商三星電子股份有限公司 | Semiconductor memory device |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5651415B2 (en) * | 2010-09-21 | 2015-01-14 | 株式会社東芝 | Nonvolatile semiconductor memory device and manufacturing method thereof |
JP5002719B1 (en) | 2011-03-10 | 2012-08-15 | 株式会社東芝 | Information processing device, external storage device, host device, relay device, control program, and information processing device control method |
JP5405513B2 (en) | 2011-03-22 | 2014-02-05 | 株式会社東芝 | MEMORY SYSTEM, NONVOLATILE MEMORY DEVICE, NONVOLATILE MEMORY DEVICE CONTROL METHOD, AND PROGRAM |
KR101182942B1 (en) | 2011-05-24 | 2012-09-13 | 에스케이하이닉스 주식회사 | 3d structured non-volatile memory device and method for manufacturing the same |
KR101965709B1 (en) * | 2011-10-18 | 2019-08-14 | 삼성전자주식회사 | Three Dimensional Semiconductor Memory Device |
KR101868047B1 (en) * | 2011-11-09 | 2018-06-19 | 에스케이하이닉스 주식회사 | Nonvolatile memory device and method for fabricating the same |
JP5740296B2 (en) | 2011-12-16 | 2015-06-24 | 株式会社東芝 | Semiconductor memory device, semiconductor memory device control method, and control program |
JP5112566B1 (en) | 2011-12-16 | 2013-01-09 | 株式会社東芝 | Semiconductor memory device, nonvolatile semiconductor memory inspection method, and program |
JP5586718B2 (en) | 2012-06-19 | 2014-09-10 | 株式会社東芝 | CONTROL PROGRAM, HOST DEVICE CONTROL METHOD, INFORMATION PROCESSING DEVICE, AND HOST DEVICE |
KR102056893B1 (en) * | 2012-08-24 | 2019-12-17 | 에스케이하이닉스 주식회사 | Semiconductor device |
JP2014187324A (en) | 2013-03-25 | 2014-10-02 | Toshiba Corp | Nonvolatile semiconductor storage device and method of manufacturing nonvolatile semiconductor storage device |
KR101995910B1 (en) * | 2013-03-26 | 2019-07-03 | 매크로닉스 인터내셔널 컴퍼니 리미티드 | 3d nand flash memory |
KR102083483B1 (en) | 2013-08-12 | 2020-03-02 | 에스케이하이닉스 주식회사 | Semiconductor memory device and method of manufacturing the same |
JP5819570B1 (en) | 2014-03-03 | 2015-11-24 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. | Semiconductor device |
WO2015189916A1 (en) * | 2014-06-10 | 2015-12-17 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッド | Columnar semiconductor memory device and method for manufacturing same |
TWI593007B (en) * | 2014-08-27 | 2017-07-21 | 旺宏電子股份有限公司 | Semiconductor device and method for fabricating the same |
JP2016225614A (en) | 2015-05-26 | 2016-12-28 | 株式会社半導体エネルギー研究所 | Semiconductor device |
KR102629970B1 (en) * | 2017-02-21 | 2024-01-30 | 삼성전자주식회사 | Three dimensional semiconductor memory device and method of operating the same |
KR101999902B1 (en) * | 2017-11-15 | 2019-10-01 | 도실리콘 씨오., 엘티디. | Nand flash memory device having facing bar and fabricating method therefor |
US10566059B2 (en) * | 2018-04-30 | 2020-02-18 | Sandisk Technologies Llc | Three dimensional NAND memory device with drain select gate electrode shared between multiple strings |
KR20220055513A (en) * | 2020-10-26 | 2022-05-04 | 삼성전자주식회사 | Semiconductor memory device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100356773B1 (en) * | 2000-02-11 | 2002-10-18 | 삼성전자 주식회사 | Flash memory device and method of forming thereof |
JP4822841B2 (en) * | 2005-12-28 | 2011-11-24 | 株式会社東芝 | Semiconductor memory device and manufacturing method thereof |
JP5248819B2 (en) * | 2006-08-07 | 2013-07-31 | 三星電子株式会社 | Transistor and manufacturing method thereof |
KR100876082B1 (en) * | 2006-12-07 | 2008-12-26 | 삼성전자주식회사 | Memory device and forming method thereof |
JP4772656B2 (en) * | 2006-12-21 | 2011-09-14 | 株式会社東芝 | Nonvolatile semiconductor memory |
JP4445514B2 (en) * | 2007-04-11 | 2010-04-07 | 株式会社東芝 | Semiconductor memory device |
JP2009094236A (en) * | 2007-10-05 | 2009-04-30 | Toshiba Corp | Nonvolatile semiconductor storage device |
JP2009164485A (en) * | 2008-01-09 | 2009-07-23 | Toshiba Corp | Nonvolatile semiconductor storage device |
-
2009
- 2009-12-08 KR KR1020090121107A patent/KR101759926B1/en active IP Right Grant
- 2009-12-15 TW TW098142912A patent/TWI597821B/en active
- 2009-12-16 JP JP2009285708A patent/JP5566675B2/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI569265B (en) * | 2011-06-09 | 2017-02-01 | 愛思開海力士有限公司 | Semiconductor memory device |
CN104576538A (en) * | 2013-10-22 | 2015-04-29 | 旺宏电子股份有限公司 | Storage device and manufacturing method thereof |
CN104576538B (en) * | 2013-10-22 | 2017-07-21 | 旺宏电子股份有限公司 | Memory and its manufacture method |
TWI809605B (en) * | 2020-12-22 | 2023-07-21 | 南韓商三星電子股份有限公司 | Semiconductor memory device |
US11917805B2 (en) | 2020-12-22 | 2024-02-27 | Samsung Electronics Co., Ltd. | Semiconductor memory device |
Also Published As
Publication number | Publication date |
---|---|
TWI597821B (en) | 2017-09-01 |
KR101759926B1 (en) | 2017-07-21 |
JP5566675B2 (en) | 2014-08-06 |
KR20110010045A (en) | 2011-01-31 |
JP2011029586A (en) | 2011-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201104839A (en) | Integrated circuit memory devices having vertical transistor arrays therein and methods of forming same | |
US9831265B2 (en) | Semiconductor device | |
KR102234799B1 (en) | Semiconductor device | |
KR102492979B1 (en) | Vertical type memory device | |
KR101539697B1 (en) | Three Dimensional Memory Device Using Vertical Pillar As Active Region And Methods Of Fabricating And Operating The Same | |
KR102247914B1 (en) | Semiconductor device and method of manufacturing the same | |
US8592873B2 (en) | Semiconductor memory devices and methods of forming the same | |
KR102039708B1 (en) | Non-volatile memory device and manufacturing the same | |
US8748966B2 (en) | Three dimensional non-volatile memory device and method of manufacturing the same | |
US20150372000A1 (en) | Memory device | |
KR101936752B1 (en) | Semiconductor device | |
KR20160000503A (en) | Semiconductor device | |
TW200524083A (en) | Apparatus and method for split gate NROM memory | |
KR20170086746A (en) | Memory device | |
KR20120122673A (en) | Vertical structure non-volatile memory device and method for manufacturing the same | |
KR20160049619A (en) | Three dimensional semiconductor device | |
CN102290420A (en) | Vertical Semiconductor Devices and method of making the same | |
KR20160028087A (en) | Semiconductor device | |
CN109509756A (en) | Semiconductor devices and its manufacturing method | |
US11107824B2 (en) | Semiconductor device and manufacturing method thereof | |
KR20210052934A (en) | Semiconductor memory device and manufacturing method thereof | |
US8187967B2 (en) | Method of manufacturing a non-volatile memory device | |
CN109285789A (en) | Semiconductor device and its manufacturing method | |
KR20130091949A (en) | Semiconductor device and method of manufacturing the same | |
CN105870121B (en) | Three dimensional nonvolatile NOR type flash memory |