JPS58106868A - Insulated gate type field-effect semiconductor device and manufacture thereof - Google Patents
Insulated gate type field-effect semiconductor device and manufacture thereofInfo
- Publication number
- JPS58106868A JPS58106868A JP56203745A JP20374581A JPS58106868A JP S58106868 A JPS58106868 A JP S58106868A JP 56203745 A JP56203745 A JP 56203745A JP 20374581 A JP20374581 A JP 20374581A JP S58106868 A JPS58106868 A JP S58106868A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- source
- insulated gate
- substrate
- type field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823493—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は絶縁ゲート型電界効果半導体装置、特KM工8
F I T (Metal 工n5ulator F
Leldlffect Transtator )で構
成された相補ル#−導体素子、及びその製造方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides an insulated gate field effect semiconductor device, special KM Engineering 8
F I T (Metal engineering n5ulator F
The present invention relates to a complementary conductor element constructed of a conductor (transistor) and a method for manufacturing the same.
これまでのOM OEl (oompl、mentar
y M O8)によれば、IpHLばN型シリコン基板
の一生In−に深いPIIiウェル會形成し、この昨工
ん内KNチャネxMI8FIIITk設けると共に、N
型シリコンの@KPチャネpbMXH1tlATt−股
tj?イ、I:+。Lかし、このような0M0Bには次
の間組点かめるため、その高速化、高集横化轡を図る上
で限度かめることが分っている。Previous OM OEl (oompl, mental
According to YMO8), a deep PIIi well is formed in the In- region of an N-type silicon substrate in IpHL, a KN channel xMI8FIIITk is provided in this process, and an N
Type silicon @KP channel pbMXH1tlATt-crotch tj? I, I:+. However, it has been found that such 0M0B requires a limit in order to increase the speed and increase the number of combination points.
(1)、製造条件上、ウニ凡の不純物5itt−1!k
<丁ることが離し%Aため、コンダクタンスCgMk>
又はキャリアのモビリティが悪<by工8シ鴬TO高遍
化會図りに(い。(1) Due to manufacturing conditions, impurities in sea urchins are 5 itt-1! k
<Conductance CgMk due to separation %A>
Or if the carrier's mobility is bad, it is difficult to plan for a high-level meeting.
(2)、仁れに関連して、ウェル−拡散領域間の接合容
量が大きくなるから、動作スピードが低下してしまう。(2) In connection with the bulge, the junction capacitance between the well and the diffusion region increases, resulting in a decrease in operation speed.
(3)、昨エルは比較的大きな面積1占めることから、
全体としての集exe上げるのが難しい。(3), since last year occupies a relatively large area 1,
It is difficult to raise the exe as a whole.
(4)、 Ptl1ウエル内のM + xii拡散f
il城−P脂つェル−M製基板関、及びNm基板のP+
型拡散伽動域1714基板−P型つェル関に、夫々NP
M及びPNP寄生トランジスタが形成され、この寄生ト
ランジスタに@(PMPM賃イリスタ構造が異常電圧の
印加時に都通し易く、これにぶって一方の素子から他方
の素子へ電#lが流れ込むいわゆるラッチアッグ構象か
生じ、耐圧を劣化させてしオう。(4), M + xii diffusion f in Ptl1 well
il castle-P fatwell-M substrate connection and P+ of Nm substrate
Type diffusion movement range 1714 substrate-P type twell, respectively NP
M and PNP parasitic transistors are formed, and this parasitic transistor has a so-called latch-ag structure in which the PMPM resistor structure easily conducts power when an abnormal voltage is applied, and the current flows from one element to the other. This will cause the breakdown voltage to deteriorate.
従って、本発明の1的は、上記の如き間組点を解消した
高速、高集積度、高耐圧のlA縁ゲート脂1.、。Therefore, one object of the present invention is to provide a high-speed, high-integration, and high-voltage lA edge gate resin that eliminates the above-mentioned problems. ,.
電界効果半導体装置tII供することKあ磐、かりそう
した#P専体装置を再現性良く作成可能な製造方法t−
提供することkある。Field-effect semiconductor device tII is provided by a manufacturing method capable of producing such #P-dedicated device with good reproducibility t-
I have a lot to offer.
以下、本発明10MO8工OK適用した実jtI鉤を図
gK)%Aで詳細に述べる。Hereinafter, the actual jtI hook to which the present invention is applied with 10MO8 OK will be described in detail with reference to Figure gK)%A.
盲ず第1図及び算21について、本実施ガによる0M0
Iの構造會説明する。M@シリコン基板1〇−主面に、
MI8F1e丁のソース及びドレイン領域に対応する位
置に厚さtoooムと比較的厚いsto口II2.3.
4.5が夫々設けられ、この810=ll上に厚さ30
00〜5000AOII!1!シjj:yン層6及びp
gシリコン層7が夫々形成されている。11り、これら
のシ9=rン層を分−するためにフィーんド絶緻118
0が選択的に形成畜れ、そO澱Iiにおいて上記810
1112〜5と連設せしめられている。M@シリコン層
6では、1110m#2及び3上にt+麿ソース儂域8
及びドレイ/11域9か形lE畜れ、これら内書域間の
ゲート酸化劇10上には多―蟲1/91ンOゲート電@
11が設けられてv%a、−万、pH&l:sy層7て
は、810゜馬番及び尋上9711:、M @ドレイ
ン領域12及びソース参域13が形成され、これら内領
域間のゲート酸化1110上には多結晶シリコンのゲー
ト電極14か設けられている。なお、15は多結晶シリ
コンの表向酸化躾、tart層間絶縁聞納してのりンシ
リケートガラス躾である。ガラス11161通して設け
た各コンタクトホールを介し、各アルミニウム配[17
,18,19が夫々設けられ、夏チャネルM111P]
@72GとPチャネAM18?mテ゛ 21とが公知の
配線形式で**されることによって0M0Bが構成され
る。Regarding blind figure 1 and calculation 21, 0M0 according to this implementation
I will explain the structure of I. M@Silicon substrate 1〇-On the main surface,
A comparatively thick sto port II2.3.
4.5 is provided respectively, and a thickness of 30 is provided on this 810=ll.
00~5000AOII! 1! shinjj: yin layer 6 and p
g silicon layer 7 is formed respectively. 11, in order to separate these 9=r layers
0 is selectively formed, and the above 810
1112 to 5 are arranged in series. In M@silicon layer 6, t+maro source region 8 is placed on 1110m #2 and 3.
And Dray / 11 area 9 or form lE damn, there are many insects on the gate oxidation play 10 between these internal areas 1/91 n O gate electric @
11 is provided and v%a, -10,000, pH&l:sy layer 7 is formed with 810° horse number and 9711:, M @ drain region 12 and source region 13, and gate oxidation between these inner regions. A polycrystalline silicon gate electrode 14 is provided on the gate electrode 1110. Note that 15 is a surface oxidation layer of polycrystalline silicon, and a phosphorus silicate glass layer for interlayer insulation. Each aluminum wiring [17
, 18, 19 are provided respectively, and the summer channel M111P]
@72G and P channel AM18? 0M0B is constructed by wiring m21 in a known wiring format.
上記の如くに構成された0M0IIKよれば、基板l上
に各シリコン層6.7を設け、この中に各11?のソー
ス及びドレイン領域を形成して−るか、両シリコン層6
%7共に同−Sさてあって選択的な不純物拡散により夫
々M!m化及びpH化することが可能で弗る。従って、
従来の構造のように深いP履つェルt−拡散形成するこ
とt要しないThe、%KpH層7の不純物SIl!を
低くコントミールすることが移易となp、その分中ヤリ
アの毫ビリティか同上してsatかせぐ仁とかでき、高
−遍一作を行なわせることができる。しかもこの場合、
ソース及びドレイン領域は比較的厚い810III2〜
8によって基板1から分離されているため1、l1i4
[1との聞O答量が大幅に小さくなっている(II&容
量の約1/3)上K、各ソース及ヒトレイン領域のなす
PMll会は外霧万にしか形成されていない。この結果
、接合容量を含む全体としての容量(寄生容量)を小名
(できるから、容量分に基(遷延時間【短かくして動作
の高速化に図れる。According to the 0M0IIK constructed as described above, each silicon layer 6.7 is provided on the substrate l, and each 11? The source and drain regions of both silicon layers 6 are formed.
%7 are both the same -S Now, due to selective impurity diffusion, each is M! It is possible to change the temperature and pH value. Therefore,
It is not necessary to form a deep P well t-diffusion as in the conventional structure. It's easy to move to a low contomire, and you can use Yaria's ability or the same as the above to make a sat attack, and you can make it perform a high-level attack. Moreover, in this case,
The source and drain regions are relatively thick 810III2~
1 because it is separated from the substrate 1 by 8, l1i4
[The volume of response with 1 is significantly smaller (about 1/3 of II & capacity), and the PMII association formed by each source and human region is only formed in the outer fog. As a result, the overall capacitance (parasitic capacitance) including the junction capacitance can be reduced based on the capacitance (delay time), resulting in faster operation.
tた、従来の構造のようKP[ウェル會形成してはいな
いから、そのウェル分の面積やソース及びドレイン領域
との位置会せ等を考慮する必要がなく、このために集*
tt高めることができる。In addition, unlike the conventional structure, a KP well is not formed, so there is no need to consider the area of the well or the alignment with the source and drain regions.
tt can be increased.
これに加えて、各ソース及びドレイン慟域下には#1G
、l12〜5が存在していて、P夏接縫は各ソース及び
ドレイン領域の−1にしかy#成されていないから、−
万の11テOノーヌードレイン領域と他方OνITのソ
ース・ドレイン領域との距離が公知の0M0Bよりもず
っと長くなっている。In addition to this, #1G is placed under each source and drain region.
, l12 to 5 exist, and the P summer seam is only made in y# of each source and drain region -1, so -
The distance between the OνIT source/drain region and the OνIT source/drain region is much longer than the known 0M0B.
このため、既述した如きP)TP又は121W生トラン
ジスタの電流増幅率hν1か小さくなり、既述し−たラ
ッチアップ魂象か生じ難いから、耐圧劣化による素子破
壊會防止することができる。Therefore, the current amplification factor hv1 of the P)TP or 121W raw transistor as described above becomes small, and the latch-up phenomenon described above is less likely to occur, so that element destruction due to breakdown voltage deterioration can be prevented.
I!rt*、!<上記PチャネAM[Fl’J’冑では
、l型シリ57層6と基板lと1−11t、ているので
、電流分として薔与しないキャリアがシリコン層6から
基板lへと1!1に抜けることになる。I! rt*,! <In the above P-channel AM [Fl'J' film, since the l-type silicon 57 layer 6 and the substrate l are connected to 1-11t, carriers that do not contribute as a current flow from the silicon layer 6 to the substrate l by 1!1 It will pass through.
このため、シリコン層6の電位を安定1c保持でき、そ
の変動i小さくすることかできる。これに対し、公仰の
1i1’08 ([1icon On 8apphir
e )構造に従って、サファイア基板上KMI811テ
管形成した場診には、そのWETのチャネル像域での上
記の如きキャリアはサファイア基板貴へ抜けることがで
きず、チャネル像域の電位変動が大きくなってしまう。Therefore, the potential of the silicon layer 6 can be kept stable 1c, and its fluctuation i can be reduced. On the other hand, [1icon On 8apphir
e) According to the structure, when a KMI811 tube was formed on a sapphire substrate, carriers such as those described above in the channel image area of the WET could not pass through to the sapphire substrate, and the potential fluctuation in the channel image area became large. I end up.
なお、第1図及びm2tlAK示した0M0B構造は、
第3図及び纂411gの如くに一鄭度更してもよい。The 0M0B structure shown in Figure 1 and m2tlAK is
You may also make some changes as shown in Figure 3 and 411g.
lllN3図によれば、fllえばPfヤネルM工81
1テにおいて、上記の810.@2.3tより短かくし
、P+朧ソースlI賊8及びドレイン9域91基板1負
へ部分的にはみ出させている。このようKしても、第2
図の構造よりもIII会容量は幾分大きくなるが、同様
の効果が得られることが珈解されよう。According to the diagram lllN3, if it is full, Pf Yarnel M Eng. 81
1 Te, the above 810. It is made shorter than @2.3t, and partially protrudes to the negative side of the P+ source lI region 8 and drain 9 region 91 substrate 1. Even if K is like this, the second
It can be seen that the same effect can be obtained, although the III capacity is somewhat larger than in the structure shown in the figure.
ll4tjlJによれば、ガえばPチャネルM工8FM
Tにおいて、ドレイン1域9下の61oト膜3Fi第2
図と同様に設けるが、ソース働竣8@の8101誤2F
i全く形成しないようKしている。この場&には、ドレ
イン領域9には高電圧か加わるために基板lとの関に生
じる寄生容量會なくす上で5tol膜3が必要であるが
、ソース領域8の万はそうした対蒙は不費であるから8
101膜2Fi必ずしも必要ではない。しかも、ドレイ
ン儂域9は高電圧の印加によって既述した寄生トランジ
スタのトリガ榔となp得ることもあって、図示の如(K
IIIO1aSt*けてPMIII会【置方にのみ形成
することが必要でめゐ。なお、ドレイン儂域911Mの
8tol膜3の存在によってそこから空乏層が伸び難く
なっているので、シl−トチャネル化した場縫KM工8
1鳳!のしきい線電圧Vthの低下1防いで比較的高い
@に保持でき、高vth化の要求【充たすこと力1でき
る。According to ll4tjlJ, Gaba P Channel M Engineering 8FM
At T, the 61° film 3Fi 2nd below the drain 1 region 9
It is set up as shown in the figure, but the source work completed 8@8101 error 2F
iK is set so that it does not form at all. In this case, the 5tol film 3 is required to eliminate the parasitic capacitance that occurs in the relationship with the substrate 1 due to the high voltage applied to the drain region 9, but in the case of the source region 8, such protection is not necessary. 8 because it is an expense
101 film 2Fi is not necessarily required. Furthermore, the drain region 9 can act as a trigger for the parasitic transistor mentioned above due to the application of a high voltage.
IIIO1aSt* and PMIII meeting Note that the presence of the 8tol film 3 in the drain region 911M makes it difficult for the depletion layer to extend from there, so the field
1 pho! It is possible to prevent the threshold line voltage Vth from decreasing by 1 and maintain it at a relatively high level, thereby satisfying the demand for higher Vth.
なお、第4図においては、一点鎖−で示すようff81
0.膜3tll!に伸ばし、かつソース参域8下にもs
to、l[2を部分的に般けてもよい。また、二点鎖■
で示すようKaLO,@3f更に伸ばす(810*1I
2tlなし)ようにすれば、上記に比べてより効果か大
きくなる。In addition, in FIG. 4, ff81 is indicated by a chain -.
0. Membrane 3tll! Stretch it out, and also under the source area 8
to, l[2 may be partially expanded. Also, two-point chain■
KaLO, @3f is further extended as shown in (810*1I
If you do this (without 2tl), the effect will be greater than the above.
次く、纂2図に示したONα8の製造方法を纂5図につ
いて説明するが、第3図及び纂番図の構造−同様に作成
可能である。Next, the manufacturing method of ONα8 shown in Figure 2 will be explained with reference to Figure 5, but it can be produced in the same manner as the structure shown in Figure 3 and Figure 3.
普ず第5ム図のように、M[シリコン基板lの一主面に
、熱酸化技術によって810.1全面に成長させ、 I
!&[フォトエツチング技術でソース及びドレイン像域
に対応する位@にのみ[0,92〜5′を夫々残す。As shown in Fig. 5, M [810.
! &[[0,92 to 5' are left only at the positions corresponding to the source and drain image areas by photoetching technology, respectively.
次いでIE5B図のように、化学的気相成長技術(OV
D)[よって全面に多結晶シリコン層30を犀さ300
0〜5oooXに析出させる。しかる後、例えばルビー
レーザーによるレーザー光31t−gX/cdOエネル
ギーで照射してレーザーアニールを施すか、或いFiガ
えば1000〜1100℃で1〜数時間、不活性雰囲気
中で高温熱処@會施すことによって、多結晶シリコン層
30全体を箒結晶シリコンに変換させる。この檗結晶シ
リコンはすべて、基板1上でエピタキシャル的に成長す
る。Next, as shown in Figure IE5B, chemical vapor deposition technology (OV
D) [Therefore, a polycrystalline silicon layer 30 is placed on the entire surface.
0 to 5oooX. After that, laser annealing is performed by irradiation with a laser beam of 31t-gX/cdO energy using a ruby laser, for example, or high-temperature heat treatment in an inert atmosphere at 1000 to 1100°C for 1 to several hours. The application converts the entire polycrystalline silicon layer 30 into broom crystalline silicon. All of this oak-crystalline silicon is grown epitaxially on the substrate 1.
次いでw450図のように、上記の如くに得られた単結
晶シリコン層320表面を熱鹸化して薄い保11[(i
D810.躾33【形IEL、更VCソ(DよK CV
Dで8LsN、t−堆積場ぜてからフォトエツチング技
術でパターニングして耐酸化マスクとしてのstem、
瞑s4.35151丁。Next, as shown in FIG.
D810. Discipline 33 [Form IEL, further VC So (D YoK CV
8LsN in D, T-deposition field and then patterned using photoetching technology to form a stem as an oxidation-resistant mask.
Meditation s4.35151.
次いでl15D1glのようKvLOOO8(LOaa
lOXiaatiOn of 8LlioOn )技@
にぶる熱鹸化で111sMa@34.35以外の@域に
フィールド絶縁lA(ginsg’)801遥択的に成
長させる。このフィールド絶縁に80は単結晶シリコン
層32【貫通して基板IK達するために、単結晶シリコ
ン層32は各素子領域に分離される。Then KvLOOO8(LOaa
lOXiaatiOn of 8LlioOn )techniques@
Field insulation lA (ginsg') 801 is selectively grown in the @ region other than [email protected] by thermal saponification. This field insulation 80 penetrates the single-crystal silicon layer 32 to reach the substrate IK, and the single-crystal silicon layer 32 is separated into each element region.
次いでIIE51図のように% B1畠N41134.
35及びaio*l[331エツチングで除去した後、
−万の素子慟域上tマスタ(例えばフォトレジスト)3
6でa%A、この軟線でガえばイオン打込み技術によっ
てヒ素又はリンを単結晶シリコン層32に導入し、Nf
f1lシリコン層6に選択的に形成する。Then, as shown in Figure IIE51, % B1 Hatake N41134.
35 and aio*l [331 after removal by etching,
- Master (e.g. photoresist) with 3 million elements
6 a%A, if this soft wire is used, arsenic or phosphorus is introduced into the single crystal silicon layer 32 by ion implantation technology, and Nf
It is selectively formed on the f1l silicon layer 6.
次いで*sywJのように、他方の単結晶シリコン層3
2に上記と同IIKボロンを導入してP烏シリコン層7
t:al択的に形成してから、全i1に熱酸化してゲー
ト絶縁stow形成し、IKOVDで全面に成長させた
多結晶シリコンtフォトエツチングでバターニングして
ゲート電極形状の多結晶シリコンJll111.14を
形成する。Next, as in *sywJ, the other single crystal silicon layer 3
The same IIK boron as above is introduced into 2 to form the P-silicon layer 7.
After selectively forming t:al, thermally oxidize the entire i1 to form a gate insulation stow, and pattern the polycrystalline silicon grown on the entire surface by IKOVD by photoetching to form polycrystalline silicon Jll111 in the shape of a gate electrode. Form .14.
次いで第5G図のように、熱酸化で多結晶シリプン層i
t、taの表面に810105を形成してから全面に薄
い81sMalKaovt堆積り、 ?!ml’リコン
層711tffスタ(iFIlえばown−sto虐膜
)37で傍い、この状Iでボロンのイオンビーム38t
−照射してMfIiシリコン層6に対してボロン會遺択
的に打込む。これによって、多結晶シリコン層11及び
フィールド5iOsl[8のマスク作用で、P+朧ソー
ス領域8及びドレイン領域9が上記810 * II
2.3上に自己整合的に夫々形成される。Next, as shown in FIG. 5G, a polycrystalline silicone layer i is formed by thermal oxidation.
After forming 810105 on the surface of t and ta, a thin 81s MalKaovt is deposited on the entire surface, ? ! ml' recon layer 711tff star (in case of iFI, own-sto film) 37 and next to it, in this state I, a boron ion beam 38t
- selectively implanting boron into the MfIi silicon layer 6 by irradiation; As a result, by the masking action of the polycrystalline silicon layer 11 and the field 5iOsl[8, the P+ hazy source region 8 and drain region 9 are
2 and 3 in a self-aligned manner.
次いで第6H図のように、今度はPillシリコン層7
に対して上記と同様にしてヒ素又はりンを選択的に打込
み、MII!ドレイン領域12及びソース1域tSt上
記810■瞑4.5上に夫々形成する。IK、マスク3
7と811N4哄40t−除去した螢全面KOVDてリ
ンシリケートガラス11161r析出さぜ、そしてフォ
トエツチングでガフス[116を通して各コンタクトホ
ールを形成した後、真空蒸着技術で付着させたアAfニ
ウム【フォトエツチングてバターニングして第2図に示
した各アルixウム配@!17〜191夫々形成する。Next, as shown in FIG. 6H, the pill silicon layer 7 is
Arsenic or phosphorus is selectively implanted into MII! in the same manner as above. The drain region 12 and the source 1 region tSt are formed on the above-mentioned 810×4.5, respectively. IK, mask 3
Phosphorsilicate glass 11161r was precipitated by KOVD on the entire surface of the removed fireflies, and after each contact hole was formed through the gaffs [116] by photoetching, Afnium was deposited by vacuum evaporation technique [photoetching]. Each aluminum arrangement shown in Figure 2 after buttering! 17 to 191, respectively.
仁のようにして0M0Iil&!造するプロ七スは、以
下に述べる幾つかの刹点を有している。Like Jin, 0M0Iil&! The Pro 7th to be constructed has several points as described below.
まず、第51図及び31151図のニーにシいて。First, look at the knees in Figures 51 and 31151.
ソース及びドレイン1域の位gKaio=娯2〜5を予
め残した伏動で堆*Sせ次多細晶シリコン30を単結晶
シリコン32に&換させ、この単結晶シリコン32KM
工811Aテを形成しているから、従来の0M013の
製造方法とは根本的に異なってpHウェルの拡散が不要
である上に、各単結晶シリコン32への不純物導入をコ
ントロール良く行なえる。従って、上述した如き高速、
高集積置の(Ill性の良い0M08Yr再現性良く作
成できる。Convert the polycrystalline silicon 30 into single crystal silicon 32 by leaving the positions 2 to 5 in advance in the source and drain region 1, and convert this single crystal silicon 32KM.
Since the structure 811A is formed, it is fundamentally different from the conventional manufacturing method of 0M013, and there is no need for pH well diffusion, and impurities can be introduced into each single crystal silicon 32 with good control. Therefore, the high speed as mentioned above,
Highly integrated 0M08Yr with good Illability can be produced with good reproducibility.
この揚台、ソース及びドレイン領域は上記810゜11
2〜5上に選択的に形成できるから、基板との間の寄生
容量を小さくできる。しかも、8LOsil12〜Sa
ンース及びドレイン@賊の位置にのみ形成すればよく、
これら肉―域は微細パターン化に伴なって占1!面積が
小さいことから1次Kwt長寧せた多結晶シリコン3o
と基板lとの接着面積を充分大きくとれる。このため、
単結晶化時に基板1上に単結晶シリコンがエビ!キシャ
ル成長し易くなり1本結晶シリコン層32會W1実に形
成できる。This platform, source and drain regions are 810°11 as described above.
Since it can be selectively formed on the substrates 2 to 5, the parasitic capacitance with the substrate can be reduced. Moreover, 8LOsil12~Sa
It is only necessary to form the source and drain at the location of the drain.
These flesh areas become 1 in fortune telling as they become finely patterned! Polycrystalline silicon 3o has a long primary Kwt due to its small area.
The bonding area between the substrate 1 and the substrate 1 can be made sufficiently large. For this reason,
During single crystallization, monocrystalline silicon grows on substrate 1! This facilitates axial growth and allows the formation of a single crystalline silicon layer 32W1.
1+、上記ato、@2〜5を予めソース及びドレイン
領域の位置に残しているから、第50図〜115H図(
2)LOOOEl&びMI8F]IITO作成工穆にお
いて、素子分離用のフィーhド絶縁膜をはじめ、ソース
及びドレインit+塚’t−所望の位置に夫々選択的に
形成することができる。1+, since the above ato and @2 to 5 are left in advance at the source and drain region positions, FIGS. 50 to 115H (
2) LOOOEL & MI8F] In the IITO production process, it is possible to selectively form a feed insulating film for element isolation, as well as sources and drains at desired positions.
以上、本発明t−ガ示したが、上述の実施IFilは本
発明の技術的思想に基いて更に変形か可能である。Although the present invention has been described above, the above-described implementation IFil can be further modified based on the technical idea of the present invention.
例tば、5tol@z〜5のパターンは様々に変更して
よいし、その厚みも寄生容量を抑え得る範囲で変化させ
てよい。また、ゲート電極の材質は多結晶シリコンに隔
らス、モリブデン、タンタル、タングステン等の高融点
金属又はそのシリサイドからなっていてよい。また、製
造工1に関し、多結晶シリコン30に代見て非晶質(ア
モ^ファス)シリコンを堆積させ、これt−C結晶化し
てもよい。For example, the pattern 5tol@z~5 may be varied in various ways, and its thickness may also be varied within a range that can suppress parasitic capacitance. Further, the material of the gate electrode may be polycrystalline silicon, a high melting point metal such as molybdenum, tantalum, tungsten, or a silicide thereof. Further, regarding the manufacturing process 1, amorphous silicon may be deposited in place of the polycrystalline silicon 30, and this may be t-C crystallized.
これらの堆積方法は上述したOVD以外に真空蒸着技術
によってもよい。また、上述のガでは、特KMJIIシ
リコン層6は基板lからの不純物のドーピングて形成さ
れ得るので、第51tIAK示した不祠物導入工1il
は必ずしもIflI*ではな^。その他、各不純物の導
入方法として、気相拡散技術、イオン打込み技術等から
選択して採用することができ第 3 図
第 41¥!
第5AI¥l
第531
?!
第5 Cr21
第5D図
第5E図
第5F図
第5Q図
t
第5H図These deposition methods may be vacuum evaporation techniques other than the above-mentioned OVD. In addition, in the above-mentioned case, since the special KMJII silicon layer 6 can be formed by doping impurities from the substrate 1, the impurity introduction process 1il shown in the 51st IAK is performed.
is not necessarily IflI*^. In addition, as a method for introducing each impurity, you can choose from vapor phase diffusion technology, ion implantation technology, etc. 5th AI¥l 531st? ! 5th Cr21 Fig. 5D Fig. 5E Fig. 5F Fig. 5Q Fig. t Fig. 5H
Claims (1)
牛導捧基体上に絶縁膜が設けられ、この絶縁11tjF
して前記牛導体基体上に形成された半導体層がこの半導
体層を厚み方向El通した絶縁物層によって素子伽域に
分離され、所定の素子餉域内Kをいて前記牛11陣層に
絶縁ゲート型電界効釆トランジスタのソース及びドレイ
ン動域が前記絶縁−の少なくとも上部に位置せしめられ
ている仁と會特黴とする絶縁ゲート型電界効果牛導体i
i*。 2、少なくともドレイン領域管形成すべき位IIにおい
て#Ps体基体上体上縁膜を形成するニーと、このJ1
!縁#を介して前記牛魯体基体上に多結晶半導体層を一
橡に形帆するニーと、この多結晶千勢体層管拳結晶牛導
体層に変換せしめる1柳と、この単結晶牛昏体層tその
厚与方向に貫通さ?た絶縁管層によって素子動域に分離
する王権と、少なくともドレイン伽域が前記絶縁膜の少
なくとも上部に位置するように所定の素子像域内の前配
檗結晶手導体層に不純*1−導入してソース及びドレイ
ン領域vc*、h形成するl1とを有すること管特徴と
する絶縁ゲート型電界効果半導体装置の製造方法。[Claims] 1. An insulating film is provided on the cow guide base at least at the position where the drain region tube is to be formed, and this insulating film 11tjF
The semiconductor layer formed on the conductor substrate is separated into element regions by an insulating layer passing through the semiconductor layer in the thickness direction, and an insulated gate is formed in the element region through a predetermined element region K. An insulated gate type field effect conductor in which the source and drain active regions of the type field effect transistor are located at least above the insulation layer and the insulated gate type field effect transistor.
i*. 2. At least at the position II where the drain region tube is to be formed, the knee forming the #Ps body substrate upper body upper border membrane, and this J1
! A knee for forming a polycrystalline semiconductor layer on the conductive body substrate through the edge #, a willow for converting this polycrystalline semiconductor layer into a conductive layer, and this single crystal conductive layer. Is the coma layer t penetrated in the direction of its thickness? an impurity*1 is introduced into the front crystal conductor layer in a predetermined device image area so that at least the drain region is located at least above the insulating film; A method for manufacturing an insulated gate field effect semiconductor device, characterized in that the tube has source and drain regions vc* and l1 formed by h.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56203745A JPS58106868A (en) | 1981-12-18 | 1981-12-18 | Insulated gate type field-effect semiconductor device and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56203745A JPS58106868A (en) | 1981-12-18 | 1981-12-18 | Insulated gate type field-effect semiconductor device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58106868A true JPS58106868A (en) | 1983-06-25 |
Family
ID=16479141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56203745A Pending JPS58106868A (en) | 1981-12-18 | 1981-12-18 | Insulated gate type field-effect semiconductor device and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58106868A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01143253A (en) * | 1987-11-27 | 1989-06-05 | Nec Corp | Semiconductor device and manufacture thereof |
US4862232A (en) * | 1986-09-22 | 1989-08-29 | General Motors Corporation | Transistor structure for high temperature logic circuits with insulation around source and drain regions |
US5043778A (en) * | 1986-08-11 | 1991-08-27 | Texas Instruments Incorporated | Oxide-isolated source/drain transistor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5236982A (en) * | 1975-09-18 | 1977-03-22 | Matsushita Electric Ind Co Ltd | Process for production of mos type semiconductor integrated circuit de vices |
JPS5244579A (en) * | 1975-10-06 | 1977-04-07 | Matsushita Electric Ind Co Ltd | Process for production of mos type semiconductor device |
JPS5686184A (en) * | 1979-12-17 | 1981-07-13 | Kyowa Hakko Kogyo Co Ltd | Novel mitomycin c derivative |
-
1981
- 1981-12-18 JP JP56203745A patent/JPS58106868A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5236982A (en) * | 1975-09-18 | 1977-03-22 | Matsushita Electric Ind Co Ltd | Process for production of mos type semiconductor integrated circuit de vices |
JPS5244579A (en) * | 1975-10-06 | 1977-04-07 | Matsushita Electric Ind Co Ltd | Process for production of mos type semiconductor device |
JPS5686184A (en) * | 1979-12-17 | 1981-07-13 | Kyowa Hakko Kogyo Co Ltd | Novel mitomycin c derivative |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5043778A (en) * | 1986-08-11 | 1991-08-27 | Texas Instruments Incorporated | Oxide-isolated source/drain transistor |
US4862232A (en) * | 1986-09-22 | 1989-08-29 | General Motors Corporation | Transistor structure for high temperature logic circuits with insulation around source and drain regions |
JPH01143253A (en) * | 1987-11-27 | 1989-06-05 | Nec Corp | Semiconductor device and manufacture thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040007737A1 (en) | Ultra small size vertical MOSFET device and method for the manufacture thereof | |
JPS6252963A (en) | Manufacture of bipolar transistor | |
JPS62290173A (en) | Manufacture of semiconductor integrated circuit device | |
JPH06318676A (en) | Manufacture of semiconductor device | |
JPS58106868A (en) | Insulated gate type field-effect semiconductor device and manufacture thereof | |
JPH0324069B2 (en) | ||
JPS5947757A (en) | Semiconductor integrated circuit device and manufacture thereof | |
JPS5840851A (en) | Complementary metal oxide semiconductor device and its manufacture | |
JPS5856467A (en) | Manufacture of semiconductor device | |
JPS58176964A (en) | Preparation of complementary mos semiconductor device | |
JPS6217867B2 (en) | ||
JPS5856460A (en) | Semiconductor device | |
JP2969846B2 (en) | Method for manufacturing BiCMOS integrated circuit device | |
JP2000323665A (en) | Manufacture of semiconductor device | |
JPH0226061A (en) | Manufacture of semiconductor integrated circuit | |
JPH0517701B2 (en) | ||
JP3479393B2 (en) | Method for manufacturing semiconductor device | |
JPH10289961A (en) | Method of manufacturing semiconductor device | |
JPS5931988B2 (en) | Method for manufacturing complementary MOS gate circuit device | |
JPS58142542A (en) | Semiconductor integrated circuit device of dielectric isolation structure and manufacture thereof | |
JPS59105366A (en) | Manufacture of metal oxide semiconductor type transistor | |
JPS5878456A (en) | Semiconductor device and its manufacture | |
JPS59124767A (en) | Manufacture of semiconductor-integrated circuit device | |
JPS63283152A (en) | Semiconductor device and manufacture thereof | |
JPH05267668A (en) | Thin-film semiconductor device and its manufacture |