JPH11106916A - Plasma treating device - Google Patents

Plasma treating device

Info

Publication number
JPH11106916A
JPH11106916A JP9284689A JP28468997A JPH11106916A JP H11106916 A JPH11106916 A JP H11106916A JP 9284689 A JP9284689 A JP 9284689A JP 28468997 A JP28468997 A JP 28468997A JP H11106916 A JPH11106916 A JP H11106916A
Authority
JP
Japan
Prior art keywords
substrate
plasma
voltage
substrate holder
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9284689A
Other languages
Japanese (ja)
Other versions
JP4008077B2 (en
Inventor
Riyouji Andou
了至 安藤
Hajime Sahase
肇 佐長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP28468997A priority Critical patent/JP4008077B2/en
Publication of JPH11106916A publication Critical patent/JPH11106916A/en
Application granted granted Critical
Publication of JP4008077B2 publication Critical patent/JP4008077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To electrostatically attract a substrate in a stable way by uniform electrostatic attracting force in the process of the treatment and to remove the substrate from a substrate holder in a short time after the treatment. SOLUTION: A substrate S set to a position to be treated by plasma P is electrostatically attracted to the surface of a substrate holder 4 by an electrostatic attracting mechanism 5. As for the mechanism 5, voltage is applied to a pair of attracting electrodes 53 and 54 provided in a substrate holder 3 from attracting power sources 55 and 56, a dielectric block 41 is dielectrically polarized, ad the substrate is electrostatically attracted. A control part 5 controlling the application of voltage to the electrodes 53 and 54 applies the same voltage to a pair of electrodes 53 and 54 at the time of the treatment, and voltage is applied in such a manner that the alternately reverse electric fields are set between a pair of the electrodes 53 and 54 at the time of removing the substrate from the substrate holder 3 after the completion of the treatment and at the time of attracting the substrate S before the start of the treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願の発明は、プラズマを形
成しながら基板に所定の処理を行う装置、例えば、スパ
ッタリング装置、プラズマ化学蒸着(CVD)装置、プ
ラズマエッチング装置等に関するものである。より具体
的には、このようなプラズマ処理装置における基板の静
電吸着に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for performing a predetermined process on a substrate while forming a plasma, such as a sputtering apparatus, a plasma chemical vapor deposition (CVD) apparatus, and a plasma etching apparatus. More specifically, the present invention relates to electrostatic attraction of a substrate in such a plasma processing apparatus.

【0002】[0002]

【従来の技術】プラズマを形成しながら基板に所定の処
理を行う装置は、スパッタリング装置、プラズマ化学蒸
着(CVD)装置、プラズマエッチング装置等として知
られている(以下、プラズマ処理装置と総称する)。図
2は、従来のプラズマ処理装置の概略構成を示す図であ
る。図2に示すプラズマ処理装置は、排気系11を備え
た処理チャンバー1と、処理チャンバー1内に所定のガ
スを導入するガス導入手段2と、処理チャンバー1内に
プラズマPを形成するプラズマ形成手段3と、形成され
たプラズマPによって処理される位置に基板Sを配置す
るための基板ホルダー4と、基板ホルダー4の表面に基
板Sを静電吸着する静電吸着機構5とを有している。
2. Description of the Related Art An apparatus for performing a predetermined process on a substrate while forming plasma is known as a sputtering apparatus, a plasma chemical vapor deposition (CVD) apparatus, a plasma etching apparatus, and the like (hereinafter, referred to as a plasma processing apparatus). . FIG. 2 is a diagram showing a schematic configuration of a conventional plasma processing apparatus. The plasma processing apparatus shown in FIG. 2 includes a processing chamber 1 having an exhaust system 11, a gas introducing unit 2 for introducing a predetermined gas into the processing chamber 1, and a plasma forming unit for forming a plasma P in the processing chamber 1. 3, a substrate holder 4 for arranging the substrate S at a position to be processed by the formed plasma P, and an electrostatic chucking mechanism 5 for electrostatically holding the substrate S on the surface of the substrate holder 4. .

【0003】静電吸着機構5は、表面に基板Sが載置さ
れる基板ホルダー4の誘電体ブロック41内に設けられ
た吸着電極51と、吸着電極51に所定の電圧を与える
吸着電源52とから主に構成されている。図2に示す従
来例では、吸着電極51は一つであり、円盤状の部材に
なっている。そして、吸着電源52は、正の直流電圧を
吸着電極に与えるようになっている。
The electrostatic suction mechanism 5 includes a suction electrode 51 provided in the dielectric block 41 of the substrate holder 4 on which the substrate S is mounted, a suction power supply 52 for applying a predetermined voltage to the suction electrode 51, and It is mainly composed of In the conventional example shown in FIG. 2, the number of the suction electrodes 51 is one, which is a disk-shaped member. Then, the suction power supply 52 supplies a positive DC voltage to the suction electrode.

【0004】基板ホルダー4には、高周波電源からなる
バイアス用電源6が接続されている。基板ホルダー4に
高周波電圧が印加されると、プラズマPと高周波との相
互作用により、負の自己バイアス電圧が基板Sの表面に
与えられる。吸着電源52が吸着電極51に負の直流電
圧を与えると、誘電体ブロック41の表面は正の電位に
誘電分極し、負に自己バイアスされている基板Sを静電
吸着することが可能となる。
The substrate holder 4 is connected to a bias power supply 6 composed of a high-frequency power supply. When a high frequency voltage is applied to the substrate holder 4, a negative self-bias voltage is applied to the surface of the substrate S due to the interaction between the plasma P and the high frequency. When the suction power supply 52 applies a negative DC voltage to the suction electrode 51, the surface of the dielectric block 41 is dielectrically polarized to a positive potential, and the substrate S that is negatively self-biased can be electrostatically suctioned. .

【0005】また、バイアス用電源6が接続されておら
ず基板ホルダー4が接地電位である場合でも、静電吸着
は可能である。即ち、基板Sの表面は誘電体ブロック4
1を介して接地電位から浮いており、基板Sの表面はプ
ラズマPに対して浮遊電位となる。浮遊電位は、電子の
高い移動度のため、数ボルト程度の負の電位となる。従
って、同様に吸着電極5に正の電圧を与えて誘電体ブロ
ック4の表面を正電位に誘電分極させることで基板Sを
吸着することが可能である。
[0005] Even when the bias power supply 6 is not connected and the substrate holder 4 is at the ground potential, electrostatic attraction is possible. That is, the surface of the substrate S is
1, the surface of the substrate S is at a floating potential with respect to the plasma P. The floating potential is a negative potential of about several volts due to the high mobility of electrons. Accordingly, the substrate S can be sucked by similarly applying a positive voltage to the suction electrode 5 to dielectrically polarize the surface of the dielectric block 4 to a positive potential.

【0006】図2に示す以外の従来例として、一対の吸
着電極の間に電界を設定して静電吸着する例がある。図
3は、この例の構成を示すものであり、従来のプラズマ
処理装置の別の例の概略構成を示す図である。図3に示
すプラズマ処理装置では、基板ホルダー4を構成する誘
電体ブロック41内には、一対の吸着電極53,54が
埋設されている。そして、一方の吸着電極53には第一
の吸着電源55によって正の直流電圧が与えられ、他方
の吸着電極54には第二の吸着電源56によって負の直
流電圧が与えられるようになっている。このため、一対
の吸着電極53,54の間に直流電界が設定され、この
電界によって誘電体ブロック41が誘電分極する。この
結果、誘電体ブロック41の表面に電荷が現れ、基板S
が静電吸着される。
As a conventional example other than that shown in FIG. 2, there is an example in which an electric field is set between a pair of suction electrodes to perform electrostatic suction. FIG. 3 shows a configuration of this example, and is a diagram showing a schematic configuration of another example of the conventional plasma processing apparatus. In the plasma processing apparatus shown in FIG. 3, a pair of suction electrodes 53 and 54 are embedded in a dielectric block 41 constituting the substrate holder 4. A positive DC voltage is applied to one adsorption electrode 53 by a first adsorption power supply 55, and a negative DC voltage is applied to the other adsorption electrode 54 by a second adsorption power supply 56. . Therefore, a DC electric field is set between the pair of adsorption electrodes 53 and 54, and the electric field causes the dielectric block 41 to be dielectrically polarized. As a result, charges appear on the surface of the dielectric block 41 and the substrate S
Is electrostatically attracted.

【0007】[0007]

【発明が解決しようとする課題】上述したプラズマ処理
装置のうち、図2に示す従来例では、次のような問題が
あった。即ち、処理の終了後に基板Sを基板ホルダー4
から取り去る際、吸着電源52による電圧印加を停止
し、不図示の搬送機構のアーム等によって基板Sを基板
ホルダー4から持ち上げるようにする。しかしながら、
電圧印加を停止しても誘電体ブロック41の表面の電荷
が直ぐに消滅せず、電圧印加停止後も誘電体ブロック4
1の表面には電荷が多く残留している。このため、処理
停止した後も直ぐに基板Sを持ち上げようとすると、基
板ホルダー41に吸着されている基板Sを無理矢理引き
離すことになるため、基板Sが破損したり、引き離した
反動で基板Sがずれてアームから落下して搬送エラーに
なったりする問題がある。また、電荷が多く残留してい
る状態で基板Sを基板ホルダー4から引き離すと、基板
Sの裏面が剥離帯電してしまう。この結果、基板Sの裏
面が塵埃を多く吸い寄せてしまい、その塵埃が表面側に
回り込むことによって基板Sを汚損する原因となる。こ
のため、図2に示す従来例では、電圧印加停止後に誘電
体ブロック41の表面の電荷が自然に消滅するのを待つ
必要があり、この時間に数十秒程度を要していた。この
時間のため、装置のスループットが低下し、生産性の低
下の要因となっていた。
Among the above-described plasma processing apparatuses, the conventional example shown in FIG. 2 has the following problems. That is, after the processing is completed, the substrate S is placed on the substrate holder 4.
When the substrate S is removed from the substrate holder, the voltage application by the suction power supply 52 is stopped, and the substrate S is lifted from the substrate holder 4 by an arm or the like of a transfer mechanism (not shown). However,
Even when the voltage application is stopped, the electric charge on the surface of the dielectric block 41 does not disappear immediately.
A large amount of charge remains on the surface of No. 1. For this reason, if the substrate S is lifted immediately after the processing is stopped, the substrate S adsorbed on the substrate holder 41 is forcibly separated, and the substrate S is damaged, or the substrate S is displaced by the separated recoil. There is a problem that it may fall from the arm and cause a transport error. Further, if the substrate S is separated from the substrate holder 4 in a state where a large amount of charge remains, the back surface of the substrate S is separated and charged. As a result, the back surface of the substrate S attracts a large amount of dust, and the dust goes around to the front surface side, thereby causing the substrate S to be soiled. For this reason, in the conventional example shown in FIG. 2, it is necessary to wait for the electric charge on the surface of the dielectric block 41 to disappear naturally after the voltage application is stopped, and this time required several tens of seconds. Due to this time, the throughput of the apparatus has been reduced, which has been a factor of a reduction in productivity.

【0008】一方、図3に示す装置では、処理の終了
後、基板Sを基板ホルダー4から取り去る際、一対の吸
着電極53,54の間には、処理の際とは逆方向の直流
電界が設定される。即ち、制御スイッチを使用して、一
方の吸着電極53に負の直流電圧を与え、他方の吸着電
極54に正の直流電圧を与える。この結果、誘電体ブロ
ック41内に誘起されていた電荷は急速に消滅し、誘電
体ブロックの表面にも電荷が存在しなくなる。このた
め、この動作の後に直ちに基板Sの取り去りを行って
も、基板Sを破損したり搬送エラーになったり、さらに
は基板Sの裏面が塵埃を吸い寄せたりする問題は生じな
い。従って、スループットの点では、図3の装置は図2
の装置より優れている。
On the other hand, in the apparatus shown in FIG. 3, when the substrate S is removed from the substrate holder 4 after the processing, a DC electric field in a direction opposite to that of the processing is applied between the pair of adsorption electrodes 53 and 54. Is set. That is, using a control switch, a negative DC voltage is applied to one suction electrode 53 and a positive DC voltage is applied to the other suction electrode 54. As a result, the charge induced in the dielectric block 41 is rapidly eliminated, and the charge does not exist on the surface of the dielectric block. Therefore, even if the substrate S is removed immediately after this operation, there is no problem that the substrate S is damaged, a transport error occurs, and further, the back surface of the substrate S attracts dust. Thus, in terms of throughput, the device of FIG.
Better than the device.

【0009】しかしながら、この図3に示す装置では、
基板ホルダー4に対する基板Sの静電吸着力の面内分布
が不均一になる問題がある。即ち、この図3に示す装置
でも、プラズマP中のイオンを引き出して基板Sに入射
させる等の目的から、基板Sに自己バイアス電圧を与え
る場合がある。この場合、例えば上述したような負の自
己バイアス電圧が基板Sに与えられると、正の直流電圧
が印加されている一方の吸着電極53の部分の誘電体ブ
ロック41の表面では、静電吸着力は、一対の吸着電極
53,54の間の直流電界によるもののみならず、基板
Sと誘電体ブロック41との間の電界によって生じ、静
電吸着力は強くなる。しかし、負の直流電圧が印加され
る他方の吸着電極54の部分の誘電体ブロック41の表
面では、基板Sと誘電体ブロック41の間の電界は弱く
て静電吸着力は殆ど生じず、もっぱら一対の吸着電極5
3,54の間の電界によるもののみとなる。このため、
この部分では静電吸着力は弱くなってしまう。従って、
図3に示す装置における静電吸着機構の構成は、処理後
の基板の取り去りの際には都合の良い構成であるが、処
理の際の均一な静電吸着という点では問題があった。
However, in the device shown in FIG.
There is a problem that the in-plane distribution of the electrostatic attraction force of the substrate S to the substrate holder 4 becomes non-uniform. That is, even in the apparatus shown in FIG. 3, a self-bias voltage may be applied to the substrate S for the purpose of extracting ions from the plasma P and causing the ions to enter the substrate S. In this case, for example, when the above-described negative self-bias voltage is applied to the substrate S, the surface of the dielectric block 41 at the part of the attraction electrode 53 to which the positive DC voltage is applied has an electrostatic attraction force. Is caused not only by the DC electric field between the pair of adsorption electrodes 53 and 54 but also by the electric field between the substrate S and the dielectric block 41, and the electrostatic adsorption force is increased. However, on the surface of the dielectric block 41 where the negative DC voltage is applied, the electric field between the substrate S and the dielectric block 41 is weak and almost no electrostatic attraction force is generated. A pair of adsorption electrodes 5
Only due to the electric field between 3, 54. For this reason,
In this portion, the electrostatic attraction force is weakened. Therefore,
The configuration of the electrostatic attraction mechanism in the apparatus shown in FIG. 3 is convenient for removing the substrate after processing, but has a problem in terms of uniform electrostatic attraction during processing.

【0010】本願の発明は、かかる課題を解決するため
になされたものである。即ち、本願の発明は、処理中に
は均一な静電吸着力によって安定して基板を静電吸着す
ることができ、処理後には、短時間のうちに基板を基板
ホルダーから取り去ることができる構成を備えたプラズ
マ処理装置を提供することを目的する。
The invention of the present application has been made to solve such a problem. That is, the invention of the present application has a configuration in which a substrate can be stably electrostatically attracted by a uniform electrostatic attraction force during processing, and the substrate can be removed from the substrate holder in a short time after processing. It is an object of the present invention to provide a plasma processing apparatus provided with:

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、本願の請求項1記載の発明は、排気系を備えた処理
チャンバーと、処理チャンバー内にプラズマを形成する
プラズマ形成手段と、形成されたプラズマによって処理
される位置に基板を配置するための基板ホルダーと、基
板ホルダーの表面に基板を静電吸着する静電吸着機構と
を有するプラズマ処理装置であって、静電吸着機構は、
基板ホルダー内に設けられた一対又は複数対の吸着電極
と、電極に静電吸着用の電圧を印加する吸着電源と、吸
着電極への電圧印加を制御する制御部とを備えており、
この制御部は、プラズマを形成しながら基板に対して処
理を行う際には吸着電極に同一の電圧を与え、処理終了
後に基板ホルダーから基板を取り去る際には対を構成す
る吸着電極の間に交互に逆の向きの電界が設定されるよ
う電圧を与えるものであるという構成を有する。上記課
題を解決するため、請求項2記載の発明は、上記請求項
1の構成において、前記基板ホルダーには、基板に所定
のバイアス電圧を与えるためのバイアス用電源が接続さ
れているを備えているという構成を有する。上記課題を
解決するため、請求項3記載の発明は 上記請求項1又
は2の構成において、前記制御部は、プラズマを形成す
る前に対を構成する吸着電極の間に交互に逆の向きの電
界が設定されるよう電圧を与えて基板を基板ホルダーに
吸着させるものであるという構成を有する。
According to a first aspect of the present invention, there is provided a processing chamber having an exhaust system, and plasma forming means for forming plasma in the processing chamber. A plasma processing apparatus having a substrate holder for arranging a substrate at a position to be processed by the plasma and an electrostatic adsorption mechanism for electrostatically adsorbing the substrate to the surface of the substrate holder, wherein the electrostatic adsorption mechanism is
A pair or a plurality of pairs of suction electrodes provided in the substrate holder, a suction power supply that applies a voltage for electrostatic suction to the electrodes, and a control unit that controls voltage application to the suction electrodes,
This control unit applies the same voltage to the suction electrodes when performing processing on the substrate while forming plasma, and between the suction electrodes forming a pair when removing the substrate from the substrate holder after the processing is completed. It has a configuration in which a voltage is applied so that electric fields in opposite directions are set alternately. According to a second aspect of the present invention, in order to solve the above problem, in the configuration of the first aspect, the substrate holder is provided with a bias power supply for applying a predetermined bias voltage to the substrate. There is a configuration that there is. In order to solve the above-mentioned problem, the invention according to claim 3 is the configuration according to claim 1 or 2, wherein the control unit alternately reverses the directions between the pair of adsorption electrodes before forming plasma. It has a configuration in which a voltage is applied so that an electric field is set and the substrate is attracted to the substrate holder.

【0012】[0012]

【発明の実施の形態】以下、本願発明の実施の形態につ
いて説明する。図1は、本願発明の実施形態に係るプラ
ズマ処理装置の概略構成を示す正面図である。図1に示
すプラズマ処理装置は、排気系11を備えた処理チャン
バー1と、処理チャンバー1内に所定のガスを導入する
ガス導入手段2と、処理チャンバー1内にプラズマPを
形成するプラズマ形成手段3と、形成されたプラズマP
によって処理される位置に基板Sを配置するための基板
ホルダー4と、基板ホルダー4の表面に基板を静電吸着
する静電吸着機構とを有している。
Embodiments of the present invention will be described below. FIG. 1 is a front view showing a schematic configuration of a plasma processing apparatus according to an embodiment of the present invention. The plasma processing apparatus shown in FIG. 1 includes a processing chamber 1 having an exhaust system 11, a gas introducing unit 2 for introducing a predetermined gas into the processing chamber 1, and a plasma forming unit for forming a plasma P in the processing chamber 1. 3 and the formed plasma P
A substrate holder 4 for arranging the substrate S at a position where the substrate S is to be processed, and an electrostatic chucking mechanism for electrostatically holding the substrate on the surface of the substrate holder 4.

【0013】図1には、プラズマ処理装置の一例とし
て、スパッタリング装置の構成が示されている。即ち、
プラズマ形成手段3は、処理チャンバー1内に被スパッ
タ面を露出させるようにして配置されたターゲット31
1を有するカソード31と、カソード31に所定の電圧
を与えてターゲット311をスパッタするスパッタ電源
32とから主に構成されている。
FIG. 1 shows a configuration of a sputtering apparatus as an example of a plasma processing apparatus. That is,
The plasma forming means 3 includes a target 31 disposed in the processing chamber 1 so as to expose the surface to be sputtered.
1 and a sputtering power supply 32 for applying a predetermined voltage to the cathode 31 to sputter the target 311.

【0014】ガス導入手段2によってアルゴン等のスパ
ッタ率の高いガスを導入しながら、スパッタ電源32に
よって例えば負の直流電圧をカソードに与えると、導入
されたガスがスパッタ放電してターゲット311がスパ
ッタされる。スパッタ放電が持続されるとガスはプラズ
マ化し、プラズマPが形成される。また、スパッタされ
たターゲット311の材料は処理チャンバー1内の空間
を飛行して基板Sに達し、ターゲット311の材料より
なる薄膜を基板Sの表面に堆積する。例えば、アルミニ
ウム製のターゲット311を使用することで、集積回路
の配線用のアルミニウム薄膜を基板S上に作成すること
ができる。
When, for example, a negative DC voltage is applied to the cathode by the sputtering power supply 32 while introducing a gas having a high sputtering rate, such as argon, by the gas introducing means 2, the introduced gas is sputtered to discharge the target 311. You. When the sputter discharge is continued, the gas is turned into plasma and plasma P is formed. The sputtered material of the target 311 travels in the space in the processing chamber 1 and reaches the substrate S, and a thin film made of the material of the target 311 is deposited on the surface of the substrate S. For example, by using the target 311 made of aluminum, an aluminum thin film for wiring an integrated circuit can be formed on the substrate S.

【0015】尚、基板ホルダー4には、高周波電源より
なるバイアス用電源6が接続されており、前述したのと
同様に、基板Sには、自己バイアス電圧が与えられるよ
うになっている。また、基板ホルダー4内には、不図示
のヒータが設けられている。このヒータは、基板Sを所
定温度に加熱してプラズマPによる処理の効率化をはか
るよう構成されている。
The substrate holder 4 is connected to a bias power supply 6 composed of a high-frequency power supply, and a self-bias voltage is applied to the substrate S in the same manner as described above. Further, a heater (not shown) is provided in the substrate holder 4. This heater is configured to heat the substrate S to a predetermined temperature to increase the efficiency of the processing by the plasma P.

【0016】さて、本実施形態の静電吸着機構は、基板
ホルダー4を構成する誘電体ブロック41内に埋設され
た一対の吸着電極53,54と、正の直流電源よりなる
第一の吸着電源55と、負の直流電源よりなる第二の吸
着電源56と、第一第二の吸着電源による電圧印加を制
御する制御部5とから主に構成されている。制御部5
は、処理中に第一の吸着電源55に対して第一第二の吸
着電極53、54を並列につなげる第一にスイッチ57
1と、処理後に第一第二の吸着電極53、54に第一第
二の吸着電源55、56を交互に切り替えて接続する第
二のスイッチ572と、第一・第二のスイッチ571、
572を駆動するスイッチ駆動回路57とを有してい
る。
The electrostatic chucking mechanism according to the present embodiment comprises a pair of chucking electrodes 53 and 54 embedded in a dielectric block 41 constituting the substrate holder 4 and a first chucking power supply comprising a positive DC power supply. 55, a second adsorption power supply 56 composed of a negative DC power supply, and a control unit 5 for controlling voltage application by the first and second adsorption power supplies. Control unit 5
Is a first switch 57 that connects the first and second suction electrodes 53 and 54 in parallel to the first suction power source 55 during processing.
1, a second switch 572 for alternately connecting the first and second suction power supplies 55 and 56 to the first and second suction electrodes 53 and 54 after the processing, and a first and second switch 571,
572 for driving the switch 572.

【0017】図1に示すように、第一のスイッチ571
の入力側には四つの端子ある。そして、第一の吸着電源
55からは並列に二つの給電ラインが延び、第一のスイ
ッチ571の入力側のうちの二つの端子(以下、吸着用
端子Tc)にそれぞれ接続されている。また、第一のス
イッチ571の入力側の残りの端子は、脱着用端子Tr
である。この二つの脱着用端子Trは、第二のスイッチ
572の出力側の二つの端子にそれぞれ接続されてい
る。そして、第一のスイッチ571の出力側は二つの端
子があり、一方が第一の吸着電極53に接続され、他方
が第二の吸着電極54に接続されている。第一のスイッ
チ571は、二つの出力側の端子を吸着用端子Tcに短
絡させるか、脱着用端子Trに短絡させるかが切り替え
られるようになっている。
As shown in FIG. 1, the first switch 571
There are four terminals on the input side. Two power supply lines extend in parallel from the first suction power supply 55 and are connected to two terminals (hereinafter, suction terminals Tc) on the input side of the first switch 571, respectively. The remaining terminals on the input side of the first switch 571 are detachable terminals Tr.
It is. The two detachable terminals Tr are connected to two terminals on the output side of the second switch 572, respectively. The output side of the first switch 571 has two terminals, one is connected to the first suction electrode 53 and the other is connected to the second suction electrode 54. The first switch 571 is configured to switch between short-circuiting the two output-side terminals to the suction terminal Tc or short-circuiting to the detachable terminal Tr.

【0018】また、第二のスイッチ572の入力側にも
同様に四つの端子がある。このうち、二つの端子は、第
一の吸着電源55に並列に接続された正電圧用端子Tp
であり、残りの二つ端子は第二の吸着電源56に接続さ
れた負電圧用端子Tnである。そして、図1に示すよう
に、第二のスイッチ572は、出力側の二つの端子に対
して、一方に正電圧用端子Tpを短絡して他方に負電圧
端子Tnを短絡する第一の状態(以下、順方向状態)
と、一方に負電圧端子Tnを短絡して他方に正電圧端子
Tpを短絡する第二の状態(以下、逆方向状態)との間
でスイッチの切り替えを行うよう構成されている。尚、
スイッチ駆動回路57は、OPアンプIC又はリレ−な
どを使用して第一第二のスイッチ571、572を駆動
するように構成されている。
The input side of the second switch 572 also has four terminals. Two of these terminals are the positive voltage terminals Tp connected in parallel to the first suction power supply 55.
The remaining two terminals are negative voltage terminals Tn connected to the second adsorption power supply 56. As shown in FIG. 1, the second switch 572 has a first state in which one of the two terminals on the output side is short-circuited to one of the positive voltage terminal Tp and the other to the negative voltage terminal Tn. (Hereinafter, forward state)
And a second state in which the negative voltage terminal Tn is short-circuited on one side and the positive voltage terminal Tp is shorted on the other side (hereinafter, a reverse state). still,
The switch drive circuit 57 is configured to drive the first and second switches 571 and 572 using an OP amplifier IC or a relay.

【0019】上記構成に係る本実施形態のプラズマ処理
装置の動作について説明する。まず、不図示のゲートバ
ルブを通して基板Sを処理チャンバー1内に搬入し、基
板ホルダー4上に載置する。そして、上記静電吸着機構
を動作させ、基板ホルダー4への基板Sの静電吸着の準
備をする。この際、上記第一のスイッチ571は出力端
子を吸着用端子Tcに短絡する状態とされる。このた
め、一対の吸着電極53,54には、第一の吸着電源5
5の電圧が並列に与えられ、従って、一対の吸着電極に
は同一の正の直流電圧が与えられる。また、バイアス用
電源6も動作して基板ホルダー4に所定の高周波電圧を
与える。尚、基板ホルダー4内のヒータが動作して基板
ホルダー4を所定温度に加熱しており、基板ホルダー4
に載置された基板Sはこの基板ホルダー4の温度まで加
熱されてこの温度が維持される。
The operation of the plasma processing apparatus according to this embodiment having the above configuration will be described. First, the substrate S is carried into the processing chamber 1 through a gate valve (not shown), and is placed on the substrate holder 4. Then, the electrostatic attraction mechanism is operated to prepare for electrostatic attraction of the substrate S to the substrate holder 4. At this time, the first switch 571 is in a state in which the output terminal is short-circuited to the suction terminal Tc. For this reason, the first suction power source 5 is connected to the pair of suction electrodes 53 and 54.
5 are applied in parallel, so that the same positive DC voltage is applied to the pair of adsorption electrodes. The bias power supply 6 also operates to apply a predetermined high-frequency voltage to the substrate holder 4. The heater in the substrate holder 4 operates to heat the substrate holder 4 to a predetermined temperature.
Is heated to the temperature of the substrate holder 4 and maintained at this temperature.

【0020】そして、ゲートバルブを閉じた後にガス導
入手段2が動作して所定のガスが導入され、プラズマ形
成手段3が動作してプラズマPが形成される。この結
果、プラズマPと高周波との相互作用により基板Sに負
の自己バイアス電圧が生じ、一対の吸着電極53,54
に与えられた正の直流電圧によって基板Sが基板ホルダ
ー4に静電吸着される。そして、プラズマPを形成する
スパッタ放電の過程でスパッタされたターゲット311
の材料により、基板Sに所定の薄膜が作成される。
After the gate valve is closed, the gas introducing means 2 operates to introduce a predetermined gas, and the plasma forming means 3 operates to form the plasma P. As a result, a negative self-bias voltage is generated on the substrate S due to the interaction between the plasma P and the high frequency, and the pair of adsorption electrodes 53 and 54 are generated.
The substrate S is electrostatically attracted to the substrate holder 4 by the positive DC voltage given to the substrate S. Then, the target 311 sputtered in the process of the sputter discharge for forming the plasma P
A predetermined thin film is formed on the substrate S with the above material.

【0021】所定時間処理を行った後、プラズマ形成手
段3、ガス導入手段2及びバイアス用電源6の動作を停
止させる。この際、静電吸着機構では、スイッチ駆動回
路57の第一スイッチ571が出力側端子を脱着用端子
Trに短絡するよう切り替えられる。そして、第二のス
イッチ572は、順方向状態と逆方向状態とが交互に周
期的に切り替わるように動作する。この結果、一方の吸
着電極53に正の直流電圧が印加されるとともに他方の
吸着電極54に負の直流電圧が印加される第一の状態
と、一方の吸着電極53に負の直流電圧が印加されると
ともに他方の吸着電極に正の直流電圧が印加される第二
の状態とが交互に周期的に切り替わるような状態とな
る。
After performing the processing for a predetermined time, the operations of the plasma forming means 3, the gas introducing means 2, and the bias power supply 6 are stopped. At this time, in the electrostatic attraction mechanism, the first switch 571 of the switch drive circuit 57 is switched to short-circuit the output terminal to the detachable terminal Tr. Then, the second switch 572 operates so that the forward state and the backward state are alternately and periodically switched. As a result, a first state in which a positive DC voltage is applied to one adsorption electrode 53 and a negative DC voltage is applied to the other adsorption electrode 54, and a negative DC voltage is applied to one adsorption electrode 53 And a second state in which a positive DC voltage is applied to the other adsorption electrode is alternately and periodically switched.

【0022】つまり、一対の吸着電極53,54の間の
電界の向きが交互に逆になる。このため、処理終了時に
残留していた誘電体ブロック41の表面の電荷は、この
交互に逆になる電界によって急速に消滅し、短時間のう
ちに基板ホルダー4からの基板Sの取り去り動作が可能
となる。尚、このようなスイッチ動作を行うスイッチ駆
動回路57は、タイマーやリレーを内蔵してシーケンス
制御を行う機械的なものであってもよいし、制御プログ
ラムを記憶させたROM等を内蔵した電子回路により行
う電子的なものであってもよい。
That is, the direction of the electric field between the pair of adsorption electrodes 53 and 54 is alternately reversed. For this reason, the electric charges on the surface of the dielectric block 41 remaining at the end of the processing are rapidly eliminated by the alternating electric field, and the operation of removing the substrate S from the substrate holder 4 can be performed in a short time. Becomes The switch drive circuit 57 that performs such a switch operation may be a mechanical circuit that performs a sequence control by incorporating a timer or a relay, or may be an electronic circuit that incorporates a ROM or the like in which a control program is stored. May be electronic.

【0023】具体的なスイッチ動作について説明する
と、処理時に一対の吸着電極53,54に与えていた正
の直流電圧が500V、処理時間(電圧印加時間)が1
分、誘電体ブロック41の材質がアルミナ、基板Sがシ
リコンウェーハである場合、第一の状態と第二の状態と
が例えば2秒ごとに切り替わるような動作でよい。ま
た、この交互に切り替える際の電圧は、+500V、−
500程度でよい。
The specific switch operation will be described. The positive DC voltage applied to the pair of adsorption electrodes 53 and 54 at the time of processing is 500 V, and the processing time (voltage application time) is 1
When the material of the dielectric block 41 is alumina and the substrate S is a silicon wafer, the operation may be such that the first state and the second state are switched, for example, every two seconds. The voltage at the time of this alternate switching is +500 V,-
It may be about 500.

【0024】上記説明から分かるように、本実施形態の
装置によれば、処理の際には一対の吸着電極53,54
に同一の電圧が与えられるので静電吸着力が不均一にな
る問題はなく、また、処理の後の基板Sの取り去りの際
には、一対の電極53,54に互いの極性が逆の電圧が
交互に切り替わるように与えられるので、電荷の消滅が
迅速に行える。このため、基板Sの破損や搬送エラーさ
らには基板Sの裏面への塵埃の付着を効果的に防止でき
るとともに高いスループットが得られる。
As can be seen from the above description, according to the apparatus of the present embodiment, a pair of suction electrodes 53 and 54 are used during processing.
Since the same voltage is applied to the substrate S, there is no problem that the electrostatic attraction force becomes non-uniform. When the substrate S is removed after the processing, the pair of electrodes 53 and 54 have the opposite polarities. Are provided so as to be alternately switched, so that the charge can be eliminated quickly. For this reason, damage to the substrate S, a transport error, and adhesion of dust to the back surface of the substrate S can be effectively prevented, and a high throughput can be obtained.

【0025】また、上記実施形態の構成において、プラ
ズマPを形成した処理の開始前においては、一対の吸着
電極53,54に異なる極性の直流電圧を印加すると、
処理の開始前においても基板Sが基板ホルダー4に吸着
されるのでさらに好適である。この場合は、一対の吸着
電極53,54に異なる極性の直流電圧を印加して基板
Sを基板ホルダー4に吸着するとともに、プラズマ形成
手段3を動作させてプラズマPを形成する直前に吸着電
極53,54に同一の正の直流電圧を印加するように切
り替えるようにする。上記のように、不図示のヒータに
よって加熱された基板ホルダー4に基板Sを載置するこ
とで基板Sを所定温度に加熱維持した後に処理を開始す
る構成では、処理前に基板Sを静電吸着できるようにし
ておくと、この処理前の温度制御の精度が向上するの
で、極めて好適である。
Further, in the configuration of the above-described embodiment, before the start of the process of forming the plasma P, when DC voltages of different polarities are applied to the pair of adsorption electrodes 53 and 54,
It is more preferable that the substrate S is adsorbed on the substrate holder 4 even before the processing is started. In this case, a DC voltage having a different polarity is applied to the pair of adsorption electrodes 53 and 54 to adsorb the substrate S to the substrate holder 4 and operate the plasma forming means 3 to form the adsorption electrode 53 immediately before forming the plasma P. , 54 so as to apply the same positive DC voltage. As described above, in the configuration in which the substrate S is placed on the substrate holder 4 heated by a heater (not shown) and the processing is started after the substrate S is heated and maintained at a predetermined temperature, the substrate S is electrostatically charged before the processing. It is very preferable to be able to adsorb, since the accuracy of the temperature control before the treatment is improved.

【0026】尚、上記説明では、吸着電極53,54は
一対であったが、二対、三対又はそれ以上でもよい。い
ずれの場合も、処理の際にはすべての吸着電極に同一の
電圧を印加し、基板の取り去りの際には、対を構成する
吸着電極に対し互いに極性の異なる電圧を交互に切り替
えて与えるようにする。
In the above description, the number of the attracting electrodes 53 and 54 is one, but may be two, three or more. In any case, the same voltage is applied to all the attracting electrodes during the processing, and the voltages having different polarities are alternately applied to the attracting electrodes constituting the pair while the substrate is removed. To

【0027】また、上記説明では、バイアス用電源6は
高周波電源であったが、直流電源の場合もある。さら
に、対を構成する吸着電極53,54の間に電界を設定
する構成として、互いに極性の異なる直流電圧を与える
例を示したが、一方が接地電位であり、他方が正又は負
の直流電圧を与えるような構成でも良い。
In the above description, the bias power supply 6 is a high-frequency power supply, but may be a DC power supply. Further, as a configuration for setting an electric field between the attraction electrodes 53 and 54 forming a pair, an example in which DC voltages having different polarities are applied has been described, but one is a ground potential and the other is a positive or negative DC voltage. May be provided.

【0028】尚、吸着電極53、54に同一の電圧を処
理中に与える場合、負の電圧であっても基板Sの静電吸
着が可能な場合がある。即ち、例えば基板Sが浮遊電位
である場合、この浮遊電位を打ち消し、プラズマ電位と
の間で相当程度の電位差が得られるような負の直流電圧
を吸着電極53,54に与えることで基板Sの静電吸着
が可能な場合もある。
When the same voltage is applied to the suction electrodes 53 and 54 during processing, there is a case where the substrate S can be electrostatically suctioned even with a negative voltage. That is, for example, when the substrate S has a floating potential, the floating potential is canceled out, and a negative DC voltage is applied to the attraction electrodes 53 and 54 so as to obtain a considerable potential difference from the plasma potential. In some cases, electrostatic adsorption is possible.

【0029】[0029]

【発明の効果】以上説明した通り、本願の請求項1記載
の発明によれば、処理の際には対を構成する吸着電極に
同一の電圧が与えられるので静電吸着力が不均一になる
問題はなく、また、処理の後の基板の取り去りの際に
は、対を構成する吸着電極に互いの極性が逆の電圧が交
互に切り替わるように与えられるので、電荷の消滅が迅
速に行える。このため、基板の破損や搬送エラーさらに
は基板の裏面への塵埃の付着を効果的に防止できるとと
もに高いスループットが得られる。また、請求項2記載
の発明によれば、プラズマ中からイオンを引き出して利
用することが可能になるとともに、この際にも静電吸着
力が不均一になる問題が生じない。また、請求項3記載
の発明によれば、プラズマを形成する前に対を構成する
吸着電極の間に交互に逆の向きの電界が設定されて基板
が基板ホルダーに吸着される。このため、処理の開始前
にも基板の位置ずれ等が生じず、また、基板ホルダー内
に設けたヒータによって処理前に予め基板の温度制御を
行う場合に特に好適な構成となる。
As described above, according to the first aspect of the present invention, the same voltage is applied to the attraction electrodes forming a pair during processing, so that the electrostatic attraction force becomes non-uniform. There is no problem, and at the time of removing the substrate after the processing, the charges are quickly eliminated because the adsorption electrodes constituting the pair are applied so that voltages having opposite polarities are alternately switched. For this reason, breakage of the substrate, transport error, and adhesion of dust to the back surface of the substrate can be effectively prevented, and high throughput can be obtained. According to the second aspect of the present invention, it is possible to extract ions from the plasma and use them, and at this time, there is no problem that the electrostatic attraction force becomes non-uniform. Further, according to the third aspect of the invention, before forming the plasma, the electric field in the opposite direction is alternately set between the pair of adsorption electrodes, and the substrate is adsorbed to the substrate holder. For this reason, there is no displacement of the substrate even before the processing is started, and the configuration is particularly suitable when the temperature of the substrate is controlled in advance by the heater provided in the substrate holder before the processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の実施形態に係るプラズマ処理装置の
概略構成を示す正面図である。
FIG. 1 is a front view showing a schematic configuration of a plasma processing apparatus according to an embodiment of the present invention.

【図2】従来のプラズマ処理装置の概略構成を示す図で
ある。
FIG. 2 is a diagram showing a schematic configuration of a conventional plasma processing apparatus.

【図3】従来のプラズマ処理装置の別の例の概略構成を
示す図である。
FIG. 3 is a diagram showing a schematic configuration of another example of a conventional plasma processing apparatus.

【符号の説明】[Explanation of symbols]

1 処理チャンバー 11 排気系 2 ガス導入手段 3 プラズマ形成手段 4 基板ホルダー 41 誘電体ブロック 5 制御部 53 吸着電極 54 吸着電極 55 吸着電源 56 吸着電源 57 スイッチ駆動回路 571 第一のスイッチ 572 第二のスイッチ 6 バイアス用電源 DESCRIPTION OF SYMBOLS 1 Processing chamber 11 Exhaust system 2 Gas introduction means 3 Plasma formation means 4 Substrate holder 41 Dielectric block 5 Control part 53 Suction electrode 54 Suction electrode 55 Suction power supply 56 Suction power supply 57 Switch drive circuit 571 First switch 572 Second switch 6. Power supply for bias

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/3065 H01L 21/31 C 21/31 H05H 1/46 A H05H 1/46 H01L 21/302 A Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/3065 H01L 21/31 C 21/31 H05H 1/46 A H05H 1/46 H01L 21/302 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 排気系を備えた処理チャンバーと、処理
チャンバー内にプラズマを形成するプラズマ形成手段
と、形成されたプラズマによって処理される位置に基板
を配置するための基板ホルダーと、基板ホルダーの表面
に基板を静電吸着する静電吸着機構とを有するプラズマ
処理装置であって、 静電吸着機構は、基板ホルダー内に設けられた一対又は
複数対の吸着電極と、電極に静電吸着用の電圧を印加す
る吸着電源と、吸着電極への電圧印加を制御する制御部
とを備えており、この制御部は、プラズマを形成しなが
ら基板に対して処理を行う際には吸着電極に同一の電圧
を与え、処理終了後に基板ホルダーから基板を取り去る
際には対を構成する吸着電極の間に交互に逆の向きの電
界が設定されるよう電圧を与えるものであることを特徴
とするプラズマ処理装置。
1. A processing chamber provided with an exhaust system, plasma forming means for forming plasma in the processing chamber, a substrate holder for arranging a substrate at a position to be processed by the formed plasma, A plasma processing apparatus having an electrostatic chuck mechanism for electrostatically chucking a substrate on a surface, the electrostatic chuck mechanism comprising: a pair or a plurality of pairs of suction electrodes provided in a substrate holder; And a control unit for controlling the application of voltage to the attraction electrode. This control unit is the same as the attraction electrode when performing processing on the substrate while forming plasma. When the substrate is removed from the substrate holder after the processing is completed, the voltage is applied so that electric fields in opposite directions are alternately set between the suction electrodes constituting the pair. Plasma processing apparatus for.
【請求項2】 前記基板ホルダーには、基板に所定のバ
イアス電圧を与えるためのバイアス用電源が接続されて
いることを特徴とする請求項1記載のプラズマ処理装
置。
2. The plasma processing apparatus according to claim 1, wherein a bias power supply for applying a predetermined bias voltage to the substrate is connected to the substrate holder.
【請求項3】 前記制御部は、プラズマを形成する前に
対を構成する吸着電極の間に交互に逆の向きの電界が設
定されるよう電圧を与えて基板を基板ホルダーに吸着さ
せるものであることを特徴とする請求項1又は2記載の
プラズマ処理装置。
3. The control section applies a voltage so that electric fields in opposite directions are alternately set between a pair of adsorption electrodes before forming plasma, and causes the substrate to be adsorbed to a substrate holder. 3. The plasma processing apparatus according to claim 1, wherein:
JP28468997A 1997-10-01 1997-10-01 Plasma processing apparatus and electrostatic adsorption mechanism Expired - Fee Related JP4008077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28468997A JP4008077B2 (en) 1997-10-01 1997-10-01 Plasma processing apparatus and electrostatic adsorption mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28468997A JP4008077B2 (en) 1997-10-01 1997-10-01 Plasma processing apparatus and electrostatic adsorption mechanism

Publications (2)

Publication Number Publication Date
JPH11106916A true JPH11106916A (en) 1999-04-20
JP4008077B2 JP4008077B2 (en) 2007-11-14

Family

ID=17681712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28468997A Expired - Fee Related JP4008077B2 (en) 1997-10-01 1997-10-01 Plasma processing apparatus and electrostatic adsorption mechanism

Country Status (1)

Country Link
JP (1) JP4008077B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083863A (en) * 2000-08-07 2002-03-22 Samsung Electronics Co Ltd Automatic electrostatic chuck driving power source discharging device for semiconductor facility
JP2009164620A (en) * 2009-02-13 2009-07-23 Canon Anelva Corp Sputtering apparatus
WO2009157228A1 (en) * 2008-06-26 2009-12-30 キヤノンアネルバ株式会社 Sputtering apparatus, sputtering method and light emitting element manufacturing method
JP2015207790A (en) * 2004-06-21 2015-11-19 東京エレクトロン株式会社 Plasma processing apparatus, plasma processing method, and storage medium capable of being read by computer
US9490105B2 (en) 2004-06-21 2016-11-08 Tokyo Electron Limited Plasma processing apparatus and method
US10529539B2 (en) 2004-06-21 2020-01-07 Tokyo Electron Limited Plasma processing apparatus and method
CN114645256A (en) * 2022-03-14 2022-06-21 苏州迈为科技股份有限公司 Device and method for reducing damage of silicon wafer substrate caused by sputtering coating

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244332A (en) * 1985-08-23 1987-02-26 Canon Inc Electro-static absorber
JPS6418236A (en) * 1987-07-13 1989-01-23 Tokyo Electron Ltd Removal of static electricity
JPH04132239A (en) * 1990-09-21 1992-05-06 Fujitsu Ltd Wafer chuck
JPH04246843A (en) * 1991-01-31 1992-09-02 Kyocera Corp Controlling device for electrostatic chuck
JPH05291194A (en) * 1991-04-15 1993-11-05 Anelva Corp Plasma procassing method and apparatus
JPH05291384A (en) * 1992-04-13 1993-11-05 Fujitsu Ltd Electrostatic attraction method
JPH0685045A (en) * 1992-08-31 1994-03-25 Fujitsu Ltd Separation of wafer
JPH06177081A (en) * 1992-12-04 1994-06-24 Tokyo Electron Ltd Plasma processor
JPH06244270A (en) * 1993-02-19 1994-09-02 Ulvac Japan Ltd Electrostatic attraction apparatus
JPH06310589A (en) * 1993-04-26 1994-11-04 Sony Corp Electrostatic absorption method and device
JPH0722499A (en) * 1993-06-18 1995-01-24 Kokusai Electric Co Ltd Method and apparatus for manufacturing semiconductor
JPH0855900A (en) * 1994-08-11 1996-02-27 Fujitsu Ltd Electrostatic attraction method and its device and manufacture of semiconductor device
JPH09213780A (en) * 1996-01-29 1997-08-15 Tokyo Electron Ltd Electrostatic chuck device, and method of separating electrostatic chuck

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244332A (en) * 1985-08-23 1987-02-26 Canon Inc Electro-static absorber
JPS6418236A (en) * 1987-07-13 1989-01-23 Tokyo Electron Ltd Removal of static electricity
JPH04132239A (en) * 1990-09-21 1992-05-06 Fujitsu Ltd Wafer chuck
JPH04246843A (en) * 1991-01-31 1992-09-02 Kyocera Corp Controlling device for electrostatic chuck
JPH05291194A (en) * 1991-04-15 1993-11-05 Anelva Corp Plasma procassing method and apparatus
JPH05291384A (en) * 1992-04-13 1993-11-05 Fujitsu Ltd Electrostatic attraction method
JPH0685045A (en) * 1992-08-31 1994-03-25 Fujitsu Ltd Separation of wafer
JPH06177081A (en) * 1992-12-04 1994-06-24 Tokyo Electron Ltd Plasma processor
JPH06244270A (en) * 1993-02-19 1994-09-02 Ulvac Japan Ltd Electrostatic attraction apparatus
JPH06310589A (en) * 1993-04-26 1994-11-04 Sony Corp Electrostatic absorption method and device
JPH0722499A (en) * 1993-06-18 1995-01-24 Kokusai Electric Co Ltd Method and apparatus for manufacturing semiconductor
JPH0855900A (en) * 1994-08-11 1996-02-27 Fujitsu Ltd Electrostatic attraction method and its device and manufacture of semiconductor device
JPH09213780A (en) * 1996-01-29 1997-08-15 Tokyo Electron Ltd Electrostatic chuck device, and method of separating electrostatic chuck

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083863A (en) * 2000-08-07 2002-03-22 Samsung Electronics Co Ltd Automatic electrostatic chuck driving power source discharging device for semiconductor facility
JP2015207790A (en) * 2004-06-21 2015-11-19 東京エレクトロン株式会社 Plasma processing apparatus, plasma processing method, and storage medium capable of being read by computer
US9490105B2 (en) 2004-06-21 2016-11-08 Tokyo Electron Limited Plasma processing apparatus and method
US10529539B2 (en) 2004-06-21 2020-01-07 Tokyo Electron Limited Plasma processing apparatus and method
US10546727B2 (en) 2004-06-21 2020-01-28 Tokyo Electron Limited Plasma processing apparatus and method
US10854431B2 (en) 2004-06-21 2020-12-01 Tokyo Electron Limited Plasma processing apparatus and method
WO2009157228A1 (en) * 2008-06-26 2009-12-30 キヤノンアネルバ株式会社 Sputtering apparatus, sputtering method and light emitting element manufacturing method
JP2009164620A (en) * 2009-02-13 2009-07-23 Canon Anelva Corp Sputtering apparatus
CN114645256A (en) * 2022-03-14 2022-06-21 苏州迈为科技股份有限公司 Device and method for reducing damage of silicon wafer substrate caused by sputtering coating
CN114645256B (en) * 2022-03-14 2023-09-15 苏州迈为科技股份有限公司 Device and method for reducing damage to silicon wafer substrate by sputtering coating

Also Published As

Publication number Publication date
JP4008077B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
KR0141659B1 (en) An apparatus for removing foreign particles and the method
JP4847909B2 (en) Plasma processing method and apparatus
JPH06103683B2 (en) Electrostatic adsorption method
JP3191139B2 (en) Sample holding device
JP2004047511A (en) Method for releasing, method for processing, electrostatic attracting device, and treatment apparatus
JP4008077B2 (en) Plasma processing apparatus and electrostatic adsorption mechanism
JPH1027780A (en) Plasma treating method
KR100483737B1 (en) Method and apparatus for chucking a substrate
JPH1187457A (en) Semiconductor manufacturing apparatus equipped with electrostatic attraction device with foreign matter removal function
JPH0722499A (en) Method and apparatus for manufacturing semiconductor
JP2001152335A (en) Method and apparatus for vacuum treatment
JPH04100257A (en) Treater provided with electrostatic suction mechanism and removal of residual charge in the electrostatic suction mechanism
JPH05291384A (en) Electrostatic attraction method
JP2000058514A (en) Method and device for plasma treatment
TWI725011B (en) Apparatus, substrate support, and method for removing particles accumulated on a substrate contact surface during substrate manufacturing processing
JPH04230051A (en) Control device for electrostatic chuck
JP4490524B2 (en) Electrostatic adsorption stage and substrate processing apparatus
JPH0513556A (en) Electrostatic chuck
US11121649B2 (en) Electrostatic workpiece-holding method and electrostatic workpiece-holding system
JP2003031553A (en) Plasma etching apparatus
JPS605539A (en) Electrostatic absorber
JP2009164620A (en) Sputtering apparatus
JP7579616B1 (en) Semiconductor wafer bonding apparatus and bonding method
JP7579617B1 (en) Semiconductor wafer bonding apparatus and bonding method
JPH04246843A (en) Controlling device for electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees