JPH09213780A - Electrostatic chuck device, and method of separating electrostatic chuck - Google Patents
Electrostatic chuck device, and method of separating electrostatic chuckInfo
- Publication number
- JPH09213780A JPH09213780A JP3441596A JP3441596A JPH09213780A JP H09213780 A JPH09213780 A JP H09213780A JP 3441596 A JP3441596 A JP 3441596A JP 3441596 A JP3441596 A JP 3441596A JP H09213780 A JPH09213780 A JP H09213780A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- electrostatic chuck
- wafer
- electrodes
- reverse voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Jigs For Machine Tools (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば半導体ウエ
ハを吸着保持するための静電チャック装置及び静電チャ
ックの離脱方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck device for sucking and holding a semiconductor wafer, for example, and a method for separating the electrostatic chuck.
【0002】[0002]
【従来の技術】枚葉式の半導体処理装置では、チャンバ
内の載置台上に1枚の半導体(以下ウエハ」という)を
載せてこのウエハの表面に所定の処理を施すようにして
いる。そしてその際には半導体ウエハの処理を確実に行
うために、ウエハを載置台上に保持することが必要であ
り、近年は、クランプ等の機械的な保持手段を使わずに
静電気力でウエハを載置台上に吸着保持するようにした
静電チャック型の載置台構造が採用されつつある。2. Description of the Related Art In a single-wafer type semiconductor processing apparatus, one semiconductor (hereinafter referred to as a wafer) is placed on a mounting table in a chamber and a predetermined processing is performed on the surface of the wafer. In that case, it is necessary to hold the wafer on the mounting table in order to surely process the semiconductor wafer. In recent years, the wafer is electrostatically charged without using mechanical holding means such as a clamp. An electrostatic chuck type mounting table structure, which is adapted to be held by suction on the mounting table, is being adopted.
【0003】この静電チャックは、図8に示すように、
例えばアルミニウムからなる載置台11の上面(載置
面)に、静電チャック12を設けて構成されている。静
電チャック12は、誘電体13の中に例えばタングステ
ン箔からなる一対の電極14を設けて構成され、電極1
4はリード線15及びスイッチ16を介して直流電源1
7に接続されている。This electrostatic chuck, as shown in FIG.
For example, the electrostatic chuck 12 is provided on the upper surface (mounting surface) of the mounting table 11 made of aluminum. The electrostatic chuck 12 is configured by providing a pair of electrodes 14 made of, for example, tungsten foil in a dielectric body 13.
4 is a DC power source 1 via a lead wire 15 and a switch 16
7 is connected.
【0004】この種の静電チャックは、例えばプラズマ
CVD(Chemical Vavor Deposi
tion)やプラズマエッチングのプラズマ処理装置に
適用される。ところで静電チャック12に用いられる誘
電体13としては、従来からポリイミドシートなどが用
いられていたが、ECRプラズマ処理ではプラズマによ
る損傷が大きいため、本発明者等は、Al2 O3 やAl
Nなどのセラミックスを用いることを検討している。This kind of electrostatic chuck is, for example, a plasma CVD (Chemical Vapor Deposi).
However, it is applied to a plasma processing apparatus for plasma etching or plasma etching. By the way, as the dielectric 13 used for the electrostatic chuck 12, a polyimide sheet or the like has been conventionally used. However, since the ECR plasma treatment causes a large amount of damage due to plasma, the inventors of the present invention have used Al 2 O 3 and Al.
We are considering using ceramics such as N.
【0005】この処理装置では、反応容器内に搬入され
たウエハは静電チャック12上に載置され、スイッチ1
6をオンにして電極14、14間に直流電圧を印加する
ことにより電気力線を形成し、これによってウエハWと
静電チャック12との間に静電引力が発生し、載置台1
1上にウエハWが吸着保持される。そしてプラズマ処理
後にウエハWを離脱させるときにはスイッチ16をオフ
にして直流電圧の印加を停止するのであるが、残留電荷
が大きいためプラズマをウエハWに照射して除電し、そ
の後図示しないプッシャーピンを載置台11の上面から
突出させてウエハWを浮上させ、図示しない搬送アーム
によりウエハを搬出するようにしていた。In this processing apparatus, the wafer carried into the reaction container is placed on the electrostatic chuck 12, and the switch 1
6 is turned on to form a line of electric force by applying a DC voltage between the electrodes 14 and 14, whereby an electrostatic attractive force is generated between the wafer W and the electrostatic chuck 12, and the mounting table 1
The wafer W is adsorbed and held on the wafer 1. When the wafer W is removed after the plasma processing, the switch 16 is turned off to stop the application of the DC voltage. However, since the residual charge is large, the wafer W is irradiated with the plasma to remove the electric charge, and then a pusher pin (not shown) is mounted. The wafer W is floated by protruding from the upper surface of the mounting table 11, and the wafer is unloaded by a transfer arm (not shown).
【0006】[0006]
【発明が解決しようとする課題】ところで誘電体13と
してAl2 O3 やAINなどのセラミックスを用いた場
合、熱酸化処理を経たウエハについは残留吸着力が相当
大きいということが分かった。これは、ウエハが加熱炉
内で熱酸化処理されるときにウエハの裏面にも熱酸化膜
が形成され、この熱酸化膜は絶縁性が高い上、前記セラ
ミックスも誘電率が相当大きい(絶縁性が高い)ことに
起因していると推察される。By the way, it has been found that when ceramics such as Al 2 O 3 and AIN are used as the dielectric 13, the residual adsorption force is considerably large for the wafer which has been subjected to the thermal oxidation treatment. This is because when a wafer is subjected to thermal oxidation in a heating furnace, a thermal oxide film is also formed on the back surface of the wafer, and this thermal oxide film has a high insulating property and the ceramics have a considerably large dielectric constant (insulating property). Is high).
【0007】しかしながらこのように残留吸着力が大き
いと、ウエハWを静電チャック12から離脱するために
プッシャーピンを突き上げたときにウエハWが割れてし
まうおそれがあった。またトランジスタのゲート酸化膜
がウエハW上の回路部に既に形成されている場合には、
離脱するときに過大な荷電粒子が流れ込み、これにより
ゲート酸化膜が破壊される場合もあった。However, if the residual suction force is large as described above, the wafer W may be cracked when the pusher pin is pushed up to separate the wafer W from the electrostatic chuck 12. Further, when the gate oxide film of the transistor is already formed in the circuit portion on the wafer W,
At the time of separation, excessive charged particles flowed in, which sometimes destroyed the gate oxide film.
【0008】ここで上述のような双極タイプの静電チャ
ックの離脱の手法として、特開平4−230051号公
報には、吸着時の直流電圧と逆極性の直流電圧を印加し
て残留電荷を除去する方法が記載されているが、ウエハ
Wの裏面に熱酸化膜や熱窒化膜などの絶縁層が形成され
ている場合には、単純に逆電圧を印加しただけでは離脱
が困難であるということを把握している。As a method for separating the bipolar electrostatic chuck as described above, Japanese Patent Laid-Open No. 4-230051 discloses that a DC voltage having a polarity opposite to that of a DC voltage at the time of adsorption is applied to remove residual charges. However, when an insulating layer such as a thermal oxide film or a thermal nitride film is formed on the back surface of the wafer W, it is difficult to separate the wafer W by simply applying a reverse voltage. Knows.
【0009】本発明は、このような事情の下になされた
ものでありその目的は、被保持体の離脱を容易に行うこ
とのできる静電チャック装置及び静電チャックの離脱方
法を提供することにある。The present invention has been made under the above circumstances, and an object thereof is to provide an electrostatic chuck device and a method of separating an electrostatic chuck that can easily separate a held body. It is in.
【0010】[0010]
【課題を解決するための手段】本発明は、例えば熱酸化
膜が裏面側(載置面側)に形成されたウエハを静電チャ
ック装置に吸着させ、吸着時に印加した直流電圧とは逆
極性の直流電圧(逆電圧)を印加して離脱しようとする
場合、逆電圧の値に脱着可能な範囲が存在し、その範囲
が誘電体の材質毎に吸着時の直流電流の値と静電チャッ
クの温度とに依存していることを把握したことに基づい
てなされたものである。According to the present invention, for example, a wafer having a backside surface (mounting surface side) on which a thermal oxide film is formed is attracted to an electrostatic chuck device, and the polarity is opposite to the DC voltage applied at the time of attraction. When a DC voltage (reverse voltage) is applied to release the reverse voltage, there is a range in which the reverse voltage can be detached and the range is different for each dielectric material. It was made based on the understanding that it depends on the temperature and.
【0011】即ち、請求項1の発明は、載置台の載置面
部を誘電体により構成すると共に、この誘電体の中に一
対の電極を設けて静電チャックを構成し、前記電極間に
吸着用の直流電圧を印加して、被保持体を前記誘電体に
静電吸着する静電チャック装置において、前記一対の電
極間に吸着用の直流電圧とは逆の極性の直流電圧である
逆電圧を離脱時に印加するための逆電圧印加手段と、吸
着用の直流電圧値と被保持体の温度とに応じて前記逆電
圧値を調整する制御手段と、を備えたことを特徴とす
る。That is, according to the first aspect of the invention, the mounting surface portion of the mounting table is made of a dielectric material, and a pair of electrodes are provided in the dielectric material to form an electrostatic chuck. In the electrostatic chuck device for applying a DC voltage for application to the dielectric body to electrostatically attract the held object, a reverse voltage having a polarity opposite to the DC voltage for attraction between the pair of electrodes. And a control means for adjusting the reverse voltage value according to the DC voltage value for adsorption and the temperature of the object to be held.
【0012】請求項2の発明は、請求項1記載の発明に
おいて、被保持体は、裏面に絶縁層が形成された半導体
ウエハであることを特徴とする。According to a second aspect of the invention, in the first aspect of the invention, the held body is a semiconductor wafer having an insulating layer formed on the back surface.
【0013】請求項3の発明は、請求項1または2記載
の発明において、誘電体は、セラミックスであることを
特徴とする。The invention of claim 3 is characterized in that, in the invention of claim 1 or 2, the dielectric is ceramics.
【0014】請求項4の発明は、載置台の載置面部を誘
電体により構成すると共に、この誘電体の中に一対の電
極を設けて静電チャックを構成し、前記電極間に吸着用
の直流電圧を印加して、被保持体を前記誘電体に静電吸
着する静電チャック装置において、被保持体を前記誘電
体に静電吸着した後、吸着用の直流電圧とは逆の直流電
圧である逆電圧を電極間に印加することにより被保持体
を離脱させる試験を行い、被保持体が離脱可能な逆電圧
の値と、吸着用の直流電圧の値と、被保持体の温度との
関係を示すデ−タを予め求める工程と、被保持体を前記
誘電体に静電吸着した後、前記デ−タと静電チャックの
温度と吸着用の直流電圧とに応じて調整された逆電圧
を、前記一対の電極間に印加して被保持体を離脱する工
程と、を含むことを特徴とする。According to a fourth aspect of the present invention, the mounting surface portion of the mounting table is made of a dielectric material, and a pair of electrodes are provided in the dielectric material to form an electrostatic chuck. In an electrostatic chuck device for applying a DC voltage to electrostatically attract a held body to the dielectric, a DC voltage opposite to the DC voltage for attraction after the held body is electrostatically attracted to the dielectric. The reverse voltage is applied between the electrodes to perform a test for detaching the retained body, and the value of the reverse voltage at which the retained body can be detached, the value of the DC voltage for adsorption, and the temperature of the retained body The step of previously obtaining the data indicating the relationship between the data and the object to be held is electrostatically adsorbed to the dielectric, and then adjusted according to the temperature of the data and the electrostatic chuck and the DC voltage for adsorption. Applying a reverse voltage between the pair of electrodes to release the held body. And butterflies.
【0015】[0015]
【発明の実施の形態】図1は本発明の実施の形態に係る
静電チャック装置を示す図である。図1中2は被保持体
例えばウエハWの載置台であり、この載置台2は、例え
ばアルミニウム製の載置台本体21の上にヒータ22と
静電チャック3とをこの順に設けて構成される。載置台
2には、図示しない昇降機構により、載置面より下方側
に没入した位置と上方に突出した位置との間で昇降する
プッシャピン23が設けられている。また載置台本体2
1の中には冷媒流路24が形成されており、ヒータ22
と共にウエハの温度調整手段を構成している。1 is a diagram showing an electrostatic chuck device according to an embodiment of the present invention. Reference numeral 2 in FIG. 1 denotes a mounting table for a held object, for example, a wafer W. The mounting table 2 is configured by providing a heater 22 and an electrostatic chuck 3 in this order on a mounting table body 21 made of, for example, aluminum. . The mounting table 2 is provided with a pusher pin 23 that is lifted and lowered between a position retracted downward from the mounting surface and a position protruding upward by a lifting mechanism (not shown). Also, the mounting table body 2
A coolant passage 24 is formed in the heater 1,
Together with this, it constitutes a wafer temperature adjusting means.
【0016】静電チャック3は、載置台2の載置台面部
を成し、例えば厚さ4mmの薄い円形板状の誘電体41
の中に例えばタングステン箔よりなる一対の電極4A、
4Bを埋設して構成される。この電極4A、4Bは各々
例えば図2に示すように平面形状が半円状に形成されて
おり、載置台2に上下方向に形成された貫通孔42内に
通された給電線43A、43Bの一端側に電気的に接続
されている。The electrostatic chuck 3 constitutes the mounting table surface of the mounting table 2, and is a thin circular plate-shaped dielectric 41 having a thickness of 4 mm, for example.
A pair of electrodes 4A made of, for example, tungsten foil,
4B is embedded. Each of the electrodes 4A and 4B is formed in a semicircular shape in plan view as shown in FIG. 2, for example, and the feed lines 43A and 43B passed through the through holes 42 formed in the mounting table 2 in the vertical direction. It is electrically connected to one end.
【0017】給電線43A、43Bの他端側は、給電部
5に接続されている。この給電部5は、電圧値を可変で
きる直流電源部51と、この直流電源部51よりの直流
電圧を給電線43A、43B間に給断するための給断用
スイッチ52と、前記給電線43A、43B間に印加さ
れる直流電圧の極性を切り替えるための極性切替用スイ
ッチ53とを備えている。The other ends of the power supply lines 43A and 43B are connected to the power supply section 5. The power supply unit 5 includes a DC power supply unit 51 whose voltage value can be varied, a power supply disconnection switch 52 for disconnecting a DC voltage from the DC power supply unit 51 between the power supply lines 43A and 43B, and the power supply line 43A. , 43B, and a polarity switching switch 53 for switching the polarity of the DC voltage applied.
【0018】前記極性切替用スイッチ53は、ウエハW
の離脱時に、電極4A、4Bに対して吸着時の直流電圧
とは逆極性の直流電圧(逆電圧)を直流電源部51から
与えるためのものであり、この実施の形態では、このス
イッチ53及び直流電源部51は、本発明の構成要素で
ある逆電圧印加手段を構成している。The polarity switch 53 is used for the wafer W.
This is for applying a DC voltage (reverse voltage) having a polarity opposite to that of the DC voltage at the time of adsorption to the electrodes 4A and 4B at the time of disconnection of the switch 53 in this embodiment. The DC power supply unit 51 constitutes a reverse voltage applying means which is a constituent element of the present invention.
【0019】そして直流電源部51の直流電圧値及び前
記スイッチ52、53は、制御手段6によって制御され
るようになっている。制御手段6は、吸着用の直流電圧
値とウエハWの温度と離脱可能な逆電圧値との関係を示
すテーブルを格納したメモリ61と、CPU(中央処理
部)62と、スイッチ切替部63と、電圧調整部64と
を備えている。The DC voltage value of the DC power supply 51 and the switches 52 and 53 are controlled by the control means 6. The control means 6 includes a memory 61 that stores a table showing the relationship between the suction DC voltage value, the temperature of the wafer W, and the detachable reverse voltage value, a CPU (central processing unit) 62, and a switch switching unit 63. , And a voltage adjusting unit 64.
【0020】CPU62は、所定のシーケンスプログラ
ムに基づいて、給断用スイッチ52のオン、オフ制御及
び極性切替用スイッチ53の切替制御を行う制御信号を
スイッチ切替部63に与えると共に、制御手段6に入力
された、プロセス時のウエハWの温度及び吸着用の直流
電圧値(吸着時に与える直流電圧値)と前記メモリ61
内のテーブルとに基づいて、適切な逆電圧の指令値を電
圧調整部64に与える機能を有する。電圧調整部64
は、CPU62からの指令値に基づいて直流電源部51
を制御し、これにより電極43A、43B間の逆電圧値
が適切な値つまり前記指令値に対応するように調整され
る。The CPU 62 gives a control signal to the switch switching section 63 for controlling ON / OFF of the power supply / disconnection switch 52 and switching control of the polarity switching switch 53 based on a predetermined sequence program, and also to the control means 6. The temperature of the wafer W during the process and the input DC voltage value for adsorption (DC voltage value given during adsorption) and the memory 61 which are input.
It has a function of giving an appropriate reverse voltage command value to the voltage adjusting unit 64 based on the table in FIG. Voltage adjusting unit 64
Is the DC power supply unit 51 based on the command value from the CPU 62.
Is controlled so that the reverse voltage value between the electrodes 43A and 43B is adjusted to an appropriate value, that is, the command value.
【0021】ただし逆電圧値の設定の手法については、
上述の方法の他、例えば図3に示すように予め吸着用の
直流電圧値、ウエハWの温度及び逆電圧値を書き込んだ
静電チャック3に関するレシピを、ウエハの処理種別毎
に定めておくと共に、これらレシピをメモリ内に格納し
ておき、ウエハの処理に対応するレシピを選択してその
レシピに書き込まれている逆電圧値に基づいて直流電源
部51を制御するようにしてもよい。However, regarding the method of setting the reverse voltage value,
In addition to the above-described method, for example, as shown in FIG. 3, a recipe for the electrostatic chuck 3 in which the suction DC voltage value, the temperature of the wafer W, and the reverse voltage value are written in advance is determined for each wafer processing type. Alternatively, these recipes may be stored in the memory, the recipe corresponding to the wafer processing may be selected, and the DC power supply unit 51 may be controlled based on the reverse voltage value written in the recipe.
【0022】次に上述のメモリ61内のテーブルデータ
やレシピのデータの設定について説明する。本発明者は
このデータを得るために、6インチウエハの表面にアル
ミニウムブロックを接着し、これを図1に示す静電チャ
ックに静電吸着させ、ワイヤの一端をアルミニウムブロ
ックに取り付けると共に、このワイヤの他端側を滑車に
通して、2Kgの重錘を取り付け、逆電圧を電極間に印
加してからどれくらいの時間でウエハが静電チャックか
ら離脱するかという試験を行った。Next, setting of table data and recipe data in the memory 61 will be described. In order to obtain this data, the present inventor adhered an aluminum block to the surface of a 6-inch wafer, electrostatically attracted it to the electrostatic chuck shown in FIG. 1, attached one end of the wire to the aluminum block, and The other end was passed through a pulley, a 2 kg weight was attached, and a test was conducted to see how long the wafer was released from the electrostatic chuck after applying a reverse voltage between the electrodes.
【0023】具体的には吸着用の直流電圧V1を電極間
に、残留吸着を発生させるに十分長い時間、この例では
2分間印加し、その後電極間に逆電圧V2を印加し、逆
電圧を印加してからウエハが離脱するまでの時間を測定
した。ウエハとしては、裏面側に約3000オングスト
ロームの厚さの熱酸化膜が形成されているものを用い
た。Specifically, a direct-current voltage V1 for adsorption is applied between the electrodes for a time long enough to generate residual adsorption, in this example, for 2 minutes, and then a reverse voltage V2 is applied between the electrodes. The time from the application to the separation of the wafer was measured. As the wafer, one having a thermal oxide film with a thickness of about 3000 angstrom formed on the back side was used.
【0024】図4は、横軸に逆電圧値、縦軸に離脱時間
を夫々とったグラフであり、●印及び■印は、ウエハW
の温度が160℃であって、V1を1000V及び16
00Vとした場合である。ただし誘電体としてはAlN
(窒素アルミニウム)を用いている。このグラフから分
かるように逆電圧V2の値が小さいと、離脱しにくく
(離脱時間が長く)、V2の値が大きくなるにつれて離
脱しやすくなってくる。しかしながらV2の値が大きけ
ればよいというわけではなく、ある領域を越えると、V
2の値が大きくなるにつれて離脱しにくくなってくる。
つまり離脱可能な逆電圧V2の範囲が存在することが分
かる。FIG. 4 is a graph in which the horizontal axis represents the reverse voltage value and the vertical axis represents the detachment time.
Temperature is 160 ° C., V1 is 1000 V and 16
This is the case when the voltage is set to 00V. However, the dielectric is AlN
(Aluminum nitrogen) is used. As can be seen from this graph, when the value of the reverse voltage V2 is small, it is difficult to separate (the separation time is long), and the larger the value of V2, the easier the separation becomes. However, it is not necessary that the value of V2 is large.
The larger the value of 2, the more difficult it is to come off.
That is, it can be seen that there is a range of reverse voltage V2 that can be separated.
【0025】実際の静電チャックにおいてウエハをプッ
シャーピンで突き上げたときにウエハがスムーズに静電
チャックから離脱するためには、上述の実験装置で離脱
時間が60秒以下であれば十分であることを予め確認し
てある。従って離脱可能な時間を60秒以下とすると、
離脱可能な逆電圧V2の範囲は、V1が1000Vの場
合およそ100V〜1250Vであり、V2が1600
Vの場合およそ200V〜1100Vである。In the actual electrostatic chuck, when the wafer is pushed up by the pusher pin, the wafer can be smoothly detached from the electrostatic chuck, and the detachment time of 60 seconds or less is sufficient in the above experimental apparatus. Has been confirmed in advance. Therefore, if the time that can be separated is 60 seconds or less,
The range of the removable reverse voltage V2 is about 100V to 1250V when V1 is 1000V, and V2 is 1600.
In the case of V, it is approximately 200V to 1100V.
【0026】このような試験を吸着用の直流電圧V1の
値を固定してウエハWの各温度毎に行うと、例えばV1
が1000Vの場合、離脱可能な逆電圧V2の範囲が温
度によってどのように変わっていくかを把握できる。図
5は、こうしたデータを、V1が500V、1000
V、1600Vの各条件下で求めた結果であり、横軸に
ウエハWの温度、縦軸に逆電圧V2をとったグラフであ
る。これら各プロットを結ぶグラフの内側が離脱可能な
逆電圧の範囲である。なお図6に、誘電体としてAl2
O3 (酸化アルミニウム)を用いた場合の試験結果につ
いても示しておく。When such a test is performed for each temperature of the wafer W while fixing the value of the DC voltage V1 for adsorption, for example, V1
Is 1000 V, it is possible to understand how the range of the removable reverse voltage V2 changes depending on the temperature. FIG. 5 shows such data with V1 of 500 V and 1000
3 is a graph in which the abscissa represents the temperature of the wafer W and the ordinate represents the reverse voltage V2. The inside of the graph connecting these plots is the range of reverse voltage that can be separated. Incidentally, in FIG. 6, Al 2 is used as a dielectric.
The test results when O 3 (aluminum oxide) is used are also shown.
【0027】実際に図1に示すメモリ61内にデータテ
ーブルあるいはレシピを格納する場合には上述のように
して誘電体の材質と吸着用の直流電圧V1とウエハWの
温度とで決まる条件下で離脱可能な逆電圧V2の値が書
き込まれる。When a data table or recipe is actually stored in the memory 61 shown in FIG. 1, under the conditions determined by the material of the dielectric material, the DC voltage V1 for adsorption and the temperature of the wafer W as described above. The reversible reverse voltage V2 value is written.
【0028】次いで上述の静電チャック装置を適用した
ECRプラズマ装置の全体構成について図7を参照しな
がら簡単に述べる。このECRプラズマ装置は、真空容
器7の上部側のプラズマ室71内に、高周波電源部E1
よりの例えば2.45GHZマイクロ波を導波管72か
ら透過窓73を介して導くと共に、プラズマガス用ノズ
ル74からプラズマ室71内にArガスやO2 ガス等の
プラズマガスを供給し、更にプラズマ室71の外側に設
けた電磁コイル75により磁界Bを印加して電子サイク
トロン共鳴を発生させるように構成されている。また真
空容器7の下部側の反応室76においては、反応性ガス
ノズル77が突入されると共に、底部に既述の載置台2
が設けられている。23はプッシャピンの昇降機構78
は排気管、79はゲートバルブ、E2はプラズマ引き込
み用電源部である。Next, the overall structure of the ECR plasma device to which the above electrostatic chuck device is applied will be briefly described with reference to FIG. This ECR plasma device includes a high frequency power supply unit E1 in a plasma chamber 71 on the upper side of the vacuum container 7.
For example, 2.45 GHZ microwave is guided from the waveguide 72 through the transmission window 73, and a plasma gas such as Ar gas or O 2 gas is supplied from the plasma gas nozzle 74 into the plasma chamber 71 to further generate plasma. A magnetic field B is applied by an electromagnetic coil 75 provided outside the chamber 71 to generate electron cyclotron resonance. In addition, in the reaction chamber 76 on the lower side of the vacuum container 7, the reactive gas nozzle 77 is projected and at the bottom, the above-described mounting table 2 is placed.
Is provided. 23 is a pusher pin lifting mechanism 78
Is an exhaust pipe, 79 is a gate valve, and E2 is a plasma drawing power source.
【0029】次に上述の実施の形態の作用について説明
する。先ずウエハWの温度及び吸着用の直流電圧値を制
御手段6に入力すると、これらの入力条件とメモリ61
内のデータテーブルとに基づいて逆電圧値が決定され
る。また図3に示すように、プラズマ処理の種別に応じ
たレシピの中に静電チャック3に関する条件が組み込ま
れている場合には、レシピの選択により逆電圧値が決定
される。Next, the operation of the above embodiment will be described. First, when the temperature of the wafer W and the DC voltage value for adsorption are input to the control means 6, these input conditions and the memory 61 are input.
The reverse voltage value is determined based on the data table in FIG. Further, as shown in FIG. 3, when the conditions regarding the electrostatic chuck 3 are incorporated in the recipe corresponding to the type of plasma processing, the reverse voltage value is determined by the selection of the recipe.
【0030】そして図7に示すゲートバルブ79を開い
て、図示しない搬送アームとプッシャピン23との協動
作用によりウエハWを載置台2上につまり静電チャック
3上に載置すると共に、ゲートバルブ79を閉じて真空
容器1内を所定の真空度まで真空引きにする。このとき
静電チャック3の電極4A、4B間には給電部5から例
えば1000Vの直流電圧が印加され、これによりウエ
ハWは静電チャック3に静電吸着される。そしてヒータ
22及び冷媒流路24の冷媒の組み合わせによりウエハ
Wを所定の温度例えば120℃に加熱すると共に、ノズ
ル74から例えばArガス及びO2 ガスを、ノズル77
から例えばSiH4 ガスを夫々真空容器7内に導入し、
反応室76内に流れ込んだプラズマイオンによりSiH
4 を活性化させて、ウエハW上にSiO2 膜を成膜す
る。Then, the gate valve 79 shown in FIG. 7 is opened, and the wafer W is mounted on the mounting table 2, that is, the electrostatic chuck 3 by the cooperative operation of the transfer arm (not shown) and the pusher pin 23. 79 is closed and the inside of the vacuum container 1 is evacuated to a predetermined vacuum degree. At this time, a DC voltage of, for example, 1000 V is applied between the electrodes 4A and 4B of the electrostatic chuck 3 from the power supply section 5, and the wafer W is electrostatically adsorbed to the electrostatic chuck 3. Then, the wafer W is heated to a predetermined temperature, for example, 120 ° C. by the combination of the heater 22 and the coolant in the coolant channel 24, and, for example, Ar gas and O 2 gas are discharged from the nozzle 74 to the nozzle 77.
, For example, SiH 4 gas is introduced into the vacuum container 7,
SiH is generated by plasma ions flowing into the reaction chamber 76.
4 is activated to form a SiO 2 film on the wafer W.
【0031】プラズマ処理が終了した後、給電部5のス
イッチ53のスイッチ接点を切り替えて、静電チャック
3の電極4A、4B間に逆電圧値を印加する。この逆電
圧値の印加は、既述のようにして決定された逆電圧値を
CPU62が読み込んで電圧調整部64により直流電源
部51の電圧値が調整されることによって行われる。こ
れによってウエハWの残留電荷が少なくなり、残留電荷
による静電吸着力が弱められ、プッシャピン23を突き
上げることによりウエハWが静電チャック3から離脱す
る。その後ウエハWは図示しない搬送アームに受け渡さ
れて真空容器7内から搬出される。After the plasma processing is completed, the switch contact of the switch 53 of the power feeding section 5 is switched to apply a reverse voltage value between the electrodes 4A and 4B of the electrostatic chuck 3. The application of the reverse voltage value is performed by the CPU 62 reading the reverse voltage value determined as described above and adjusting the voltage value of the DC power supply unit 51 by the voltage adjusting unit 64. This reduces the residual charge on the wafer W, weakens the electrostatic attraction force due to the residual charge, and pushes up the pusher pin 23 to separate the wafer W from the electrostatic chuck 3. Thereafter, the wafer W is transferred to a transfer arm (not shown) and unloaded from the vacuum container 7.
【0032】上述の実施の形態によれば、ウエハWが既
に熱酸化処理されていて裏面側に絶縁膜である熱酸化膜
が形成されており、かつ静電チャック3の誘電体41と
してセラミックスを用いた場合において、吸着用の直流
電圧を切った後にウエハWに存在する大きな残留電荷を
ウエハWの離脱に影響がない程度に小さくできる逆電圧
の範囲が、誘電体の材質毎に吸着用の直流電圧値とウエ
ハWの温度とに依存することを見出だし、予め試験を行
って得たデータに基づいて条件に応じた適切な逆電圧の
値に調整されるように構成しているため、ウエハWの静
電チャック3からの離脱を常にスムーズに行うことがで
き、従ってウエハWの割れが起こるおそれがないし、ま
たウエハWのデバイス中のゲート酸化膜の破壊のおそれ
もない。従って特に誘電体としてセラミックスを用いる
場合、非常に有効である。According to the above-described embodiment, the wafer W has already been subjected to the thermal oxidation treatment, the thermal oxide film which is the insulating film is formed on the back surface side, and ceramics is used as the dielectric 41 of the electrostatic chuck 3. When used, the range of the reverse voltage that can reduce the large residual charges existing in the wafer W after the direct-current voltage for adsorption is cut off to the extent that the separation of the wafer W is not affected is the range of the reverse voltage for each adsorption material. Since it is found that it depends on the DC voltage value and the temperature of the wafer W, and is configured to be adjusted to an appropriate reverse voltage value according to the conditions based on the data obtained by performing a test in advance, The wafer W can always be smoothly detached from the electrostatic chuck 3, and therefore the wafer W is not likely to be cracked, and the gate oxide film in the device of the wafer W is not likely to be broken. Therefore, it is very effective especially when ceramics are used as the dielectric.
【0033】ただしウエハWの裏面に形成された絶縁膜
としては、熱酸化膜に限られず、例えば窒化ケイ素膜で
あってもよい。また本発明の静電チャック装置が適用さ
れる処理装置はECRプラズマ処理装置に限られるもの
ではなく、CVD装置、エッチング装置やスパッタ装
置、イオン注入装置などに適用してもよい。更に静電チ
ャック装置は載置台に限らず搬送アームなどに組み合わ
せて用いてもよい。However, the insulating film formed on the back surface of the wafer W is not limited to the thermal oxide film and may be, for example, a silicon nitride film. The processing device to which the electrostatic chuck device of the present invention is applied is not limited to the ECR plasma processing device, and may be applied to a CVD device, an etching device, a sputtering device, an ion implantation device, or the like. Furthermore, the electrostatic chuck device is not limited to the mounting table and may be used in combination with a transfer arm or the like.
【0034】[0034]
【発明の効果】以上のように本発明によれば、静電チャ
ックに被保持体を吸着保持するにあたり、条件に応じた
適切な逆電圧を電極間に印加しているため、被保持体の
離脱が容易であり、被保持体の割れなどを防止できる。
そして本発明は、熱酸化膜などの絶縁膜が形成されたウ
エハを、セラミックスを用いた静電チャックに吸着保持
させる場合に特に有効である。As described above, according to the present invention, when an object to be held is attracted and held by the electrostatic chuck, an appropriate reverse voltage according to the conditions is applied between the electrodes. It can be easily detached, and the held object can be prevented from cracking.
The present invention is particularly effective when a wafer on which an insulating film such as a thermal oxide film is formed is attracted and held by an electrostatic chuck using ceramics.
【図1】本発明の実施の形態に係る静電チャック装置を
示す構成図である。FIG. 1 is a configuration diagram showing an electrostatic chuck device according to an embodiment of the present invention.
【図2】静電チャックを示す平面図である。FIG. 2 is a plan view showing an electrostatic chuck.
【図3】静電チャックの使用条件を規定するデータを示
す説明図である。FIG. 3 is an explanatory diagram showing data defining the usage conditions of the electrostatic chuck.
【図4】ウエハの離脱試験における逆電圧と離脱時間と
の関係を示すグラフである。FIG. 4 is a graph showing a relationship between a reverse voltage and a detachment time in a wafer detachment test.
【図5】誘電体としてAl2 O3 を用いたときのウエハ
温度と離脱可能な逆電圧の範囲との関係を示すグラフで
ある。FIG. 5 is a graph showing a relationship between a wafer temperature and a range of reversible reverse voltage when Al 2 O 3 is used as a dielectric.
【図6】誘電体としてAlNを用いたときのウエハ温度
と離脱可能な逆電圧の範囲との関係を示すグラフであ
る。FIG. 6 is a graph showing the relationship between the wafer temperature and the range of reversible reverse voltage when AlN is used as a dielectric.
【図7】本発明の実施の形態に係る静電チャック装置を
ECRプラズマ処理装置に適用した例を示す縦断側面図
である。FIG. 7 is a vertical cross-sectional side view showing an example in which the electrostatic chuck device according to the embodiment of the present invention is applied to an ECR plasma processing apparatus.
【図8】従来の静電チャック装置を示す構成図である。FIG. 8 is a configuration diagram showing a conventional electrostatic chuck device.
2 載置台 22 ヒータ 23 プッシャピン 24 冷媒流路 3 静電チャック 4A、4B 電極 41 誘電体 5 給電部 51 直流電源部 52、53 スイッチ 6 制御手段 7 真空容器 71 プラズマ室 75 電磁コイル 76 反応室 2 Mounting Table 22 Heater 23 Pusher Pin 24 Refrigerant Flow Path 3 Electrostatic Chuck 4A, 4B Electrode 41 Dielectric 5 Feeding Unit 51 DC Power Supply 52, 53 Switch 6 Control Means 7 Vacuum Container 71 Plasma Chamber 75 Electromagnetic Coil 76 Reaction Chamber
フロントページの続き (72)発明者 川村 剛平 神奈川県津久井郡城山町町屋1丁目2番41 号 東京エレクトロン東北株式会社相模事 業所内Front page continued (72) Inventor Gohei Kawamura 1-24-1 Machiya, Shiroyama-cho, Tsukui-gun, Kanagawa Prefecture Tokyo Electron Tohoku Co., Ltd. Sagami Business Office
Claims (4)
ると共に、この誘電体の中に一対の電極を設けて静電チ
ャックを構成し、前記電極間に吸着用の直流電圧を印加
して、被保持体を前記誘電体に静電吸着する静電チャッ
ク装置において、 前記一対の電極間に吸着用の直流電圧とは逆の極性の直
流電圧である逆電圧を離脱時に印加するための逆電圧印
加手段と、 吸着用の直流電圧値と被保持体の温度とに応じて前記逆
電圧値を調整する制御手段と、を備えたことを特徴とす
る静電チャック装置。1. A mounting surface portion of a mounting table is made of a dielectric material, and a pair of electrodes are provided in the dielectric material to form an electrostatic chuck, and a DC voltage for attraction is applied between the electrodes. In the electrostatic chuck device that electrostatically attracts the held body to the dielectric, a reverse voltage, which is a DC voltage having a polarity opposite to that of the DC voltage for attraction, is applied between the pair of electrodes at the time of separation. An electrostatic chuck device comprising: a reverse voltage applying unit; and a control unit that adjusts the reverse voltage value according to a DC voltage value for adsorption and a temperature of a held body.
半導体ウエハであることを特徴とする請求項1記載の静
電チャック装置。2. The electrostatic chuck device according to claim 1, wherein the held body is a semiconductor wafer having an insulating layer formed on the back surface.
徴とする請求項1または2記載の静電チャック装置。3. The electrostatic chuck device according to claim 1, wherein the dielectric is ceramics.
ると共に、この誘電体の中に一対の電極を設けて静電チ
ャックを構成し、前記電極間に吸着用の直流電圧を印加
して、被保持体を前記誘電体に静電吸着する静電チャッ
ク装置において、 被保持体を前記誘電体に静電吸着した後、吸着用の直流
電圧とは逆の直流電圧である逆電圧を電極間に印加する
ことにより被保持体を離脱させる試験を行い、被保持体
が離脱可能な逆電圧の値と、吸着用の直流電圧の値と、
被保持体の温度との関係を示すデ−タを予め求める工程
と、 被保持体を前記誘電体に静電吸着した後、前記デ−タと
静電チャックの温度と吸着用の直流電圧とに応じて調整
された逆電圧を、前記一対の電極間に印加して被保持体
を離脱する工程と、を含むことを特徴とする静電チャッ
クの離脱方法。4. The mounting surface portion of the mounting table is made of a dielectric material, and a pair of electrodes are provided in the dielectric material to form an electrostatic chuck, and a DC voltage for attraction is applied between the electrodes. Then, in the electrostatic chuck device that electrostatically attracts the held body to the dielectric, after the held body is electrostatically attracted to the dielectric, a reverse voltage that is a DC voltage opposite to the DC voltage for attraction is applied. A test for releasing the held body by applying it between the electrodes is performed, and the value of the reverse voltage at which the held body can be released and the value of the direct-current voltage for adsorption,
A step of preliminarily obtaining data indicating the relationship with the temperature of the held body; and after the held body is electrostatically adsorbed to the dielectric, the temperature of the data and the electrostatic chuck, and a DC voltage for adsorption. And a step of applying a reverse voltage adjusted in accordance with the above-mentioned method between the pair of electrodes to separate the held body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3441596A JP3320605B2 (en) | 1996-01-29 | 1996-01-29 | Plasma processing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3441596A JP3320605B2 (en) | 1996-01-29 | 1996-01-29 | Plasma processing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09213780A true JPH09213780A (en) | 1997-08-15 |
JP3320605B2 JP3320605B2 (en) | 2002-09-03 |
Family
ID=12413576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3441596A Expired - Fee Related JP3320605B2 (en) | 1996-01-29 | 1996-01-29 | Plasma processing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3320605B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11106916A (en) * | 1997-10-01 | 1999-04-20 | Anelva Corp | Plasma treating device |
JPH11297803A (en) * | 1998-04-08 | 1999-10-29 | Hitachi Ltd | Electrostatic adsorption device and separation of material to be adsorbed |
JP2002526923A (en) * | 1998-09-30 | 2002-08-20 | ラム リサーチ コーポレーション | Electrostatic dechucking method and apparatus for a dielectric workpiece in a vacuum processor |
JP2006269854A (en) * | 2005-03-25 | 2006-10-05 | Tokyo Electron Ltd | Destaticizing method for processed substrate, substrate processor, and program |
JP2006351726A (en) * | 2005-06-14 | 2006-12-28 | Shin Etsu Chem Co Ltd | Method of evaluating electrostatic chuck |
WO2007108192A1 (en) | 2006-03-20 | 2007-09-27 | Mitsubishi Heavy Industries, Ltd. | Electrostatic attraction apparatus for glass substrate and method for attracting and releasing such glass substrate |
CN100345274C (en) * | 2003-02-27 | 2007-10-24 | 株式会社日立高新技术 | Method of producing electrostatic suction cup |
JP2009164620A (en) * | 2009-02-13 | 2009-07-23 | Canon Anelva Corp | Sputtering apparatus |
US7837828B2 (en) | 2003-03-12 | 2010-11-23 | Tokyo Electron Limited | Substrate supporting structure for semiconductor processing, and plasma processing device |
US8593780B2 (en) | 2011-03-30 | 2013-11-26 | Tokyo Electron Limited | Substrate removing method and storage medium |
US8964350B2 (en) | 2011-03-30 | 2015-02-24 | Tokyo Electron Limited | Substrate removing method and storage medium |
JP2018527865A (en) * | 2015-06-16 | 2018-09-20 | デ ルーカ オーブン テクノロジーズ、 エルエルシー | High power appliance system |
KR20230119757A (en) * | 2022-02-08 | 2023-08-16 | (주)아이씨디 | Electrostatic Device And The Operating Method Of The Same |
-
1996
- 1996-01-29 JP JP3441596A patent/JP3320605B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11106916A (en) * | 1997-10-01 | 1999-04-20 | Anelva Corp | Plasma treating device |
JPH11297803A (en) * | 1998-04-08 | 1999-10-29 | Hitachi Ltd | Electrostatic adsorption device and separation of material to be adsorbed |
JP4698025B2 (en) * | 1998-09-30 | 2011-06-08 | ラム リサーチ コーポレーション | Electrostatic dechucking method and apparatus for dielectric workpieces in a vacuum processor |
JP2010050463A (en) * | 1998-09-30 | 2010-03-04 | Lam Res Corp | Electrostatic dechucking method and apparatus for dielectric workpiece in vacuum processor |
JP2010050464A (en) * | 1998-09-30 | 2010-03-04 | Lam Res Corp | Electrostatic dechucking method and apparatus for dielectric workpiece in vacuum processor |
JP2002526923A (en) * | 1998-09-30 | 2002-08-20 | ラム リサーチ コーポレーション | Electrostatic dechucking method and apparatus for a dielectric workpiece in a vacuum processor |
CN100345274C (en) * | 2003-02-27 | 2007-10-24 | 株式会社日立高新技术 | Method of producing electrostatic suction cup |
US7837828B2 (en) | 2003-03-12 | 2010-11-23 | Tokyo Electron Limited | Substrate supporting structure for semiconductor processing, and plasma processing device |
JP2006269854A (en) * | 2005-03-25 | 2006-10-05 | Tokyo Electron Ltd | Destaticizing method for processed substrate, substrate processor, and program |
JP4699061B2 (en) * | 2005-03-25 | 2011-06-08 | 東京エレクトロン株式会社 | Substrate removal method, substrate processing apparatus, program |
JP2006351726A (en) * | 2005-06-14 | 2006-12-28 | Shin Etsu Chem Co Ltd | Method of evaluating electrostatic chuck |
JP4580283B2 (en) * | 2005-06-14 | 2010-11-10 | 信越化学工業株式会社 | Evaluation method of electrostatic chuck |
US7995324B2 (en) | 2006-03-20 | 2011-08-09 | Mitsubishi Heavy Industries, Ltd. | Electrostatic attraction apparatus for glass substrate and method of attracting and releasing the same |
WO2007108192A1 (en) | 2006-03-20 | 2007-09-27 | Mitsubishi Heavy Industries, Ltd. | Electrostatic attraction apparatus for glass substrate and method for attracting and releasing such glass substrate |
JP2009164620A (en) * | 2009-02-13 | 2009-07-23 | Canon Anelva Corp | Sputtering apparatus |
US8593780B2 (en) | 2011-03-30 | 2013-11-26 | Tokyo Electron Limited | Substrate removing method and storage medium |
US8964350B2 (en) | 2011-03-30 | 2015-02-24 | Tokyo Electron Limited | Substrate removing method and storage medium |
JP2018527865A (en) * | 2015-06-16 | 2018-09-20 | デ ルーカ オーブン テクノロジーズ、 エルエルシー | High power appliance system |
KR20230119757A (en) * | 2022-02-08 | 2023-08-16 | (주)아이씨디 | Electrostatic Device And The Operating Method Of The Same |
Also Published As
Publication number | Publication date |
---|---|
JP3320605B2 (en) | 2002-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5159031B2 (en) | Method and apparatus for opening a substrate | |
US5946184A (en) | Electrostatic chuck, and method of and apparatus for processing sample | |
JP3245369B2 (en) | Method for separating workpiece from electrostatic chuck and plasma processing apparatus | |
JPH09213780A (en) | Electrostatic chuck device, and method of separating electrostatic chuck | |
TW200405443A (en) | Electrostatic absorbing apparatus | |
JP2004047511A (en) | Method for releasing, method for processing, electrostatic attracting device, and treatment apparatus | |
US20080242086A1 (en) | Plasma processing method and plasma processing apparatus | |
JP2004014868A (en) | Electrostatic chuck and processing apparatus | |
US6238160B1 (en) | Method for transporting and electrostatically chucking a semiconductor wafer or the like | |
JPH07335732A (en) | Electrostatic chuck, plasma treatment equipment using electrostatic chuck and its manufacture | |
JP3549188B2 (en) | Method for forming thin film on semiconductor substrate | |
JP3423186B2 (en) | Processing method | |
JP4330737B2 (en) | Vacuum processing method | |
JP4647122B2 (en) | Vacuum processing method | |
JPH06124998A (en) | Plasma process equipment | |
JP4129152B2 (en) | Substrate mounting member and substrate processing apparatus using the same | |
JP4039645B2 (en) | Vacuum processing equipment | |
JPH0982787A (en) | Plasma treating apparatus and method | |
JP2004047513A (en) | Electrostatic attracting structure, method for electrostatic attraction, apparatus and method for plasma processing | |
JP3776061B2 (en) | Plasma processing apparatus and plasma processing method | |
JP2985761B2 (en) | Sample processing method | |
JP2846890B2 (en) | Surface treatment method and apparatus | |
JPH06326177A (en) | Releasing method for treated material | |
JP2009141069A (en) | Plasma processing apparatus and processing method | |
JP3901128B2 (en) | Plasma processing apparatus and plasma processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110621 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110621 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140621 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |