JPH10199717A - Anisotropic magnet and its manufacturing method - Google Patents
Anisotropic magnet and its manufacturing methodInfo
- Publication number
- JPH10199717A JPH10199717A JP8359855A JP35985596A JPH10199717A JP H10199717 A JPH10199717 A JP H10199717A JP 8359855 A JP8359855 A JP 8359855A JP 35985596 A JP35985596 A JP 35985596A JP H10199717 A JPH10199717 A JP H10199717A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- metal container
- iron
- compression
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0576—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は希土類−鉄−ボロン系異
方性磁石に関し、詳しくは、磁石合金材料とそれを樹脂
バインダーにより結合し着磁してなる樹脂ボンド磁石な
らびにその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-iron-boron anisotropic magnet and, more particularly, to a magnet alloy material, a resin-bonded magnet obtained by bonding and magnetizing the same with a resin binder, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】希土類−鉄−ボロン系磁石は、高い磁気
性能を有するため、OA機器、AV機器等を構成するモ
ーターの部品として多く使用されている。希土類−鉄−
ボロン系磁石は、大別して焼結磁石、熱間加工磁石およ
び樹脂ボンド磁石の3種類がある。焼結磁石は概ね以下
に述べるプロセスにしたがって作製される。まず、希土
類−鉄−ボロン系合金を微粉砕することにより微粉体を
得る。次に磁場プレス機にて該微粉体に磁場を印加し
て、結晶のc軸方向を一方向に揃えながらプレスするこ
とによりグリーン成形体を得る。希土類−鉄−ボロン系
材料はc軸が容易軸であるので、c軸を一方向に揃える
ことでその方向に異方的に強い磁化をもたせることがで
きる。次に、高温における焼結工程を経て高密度化する
ことにより強力な異方性焼結磁石が作製できる。2. Description of the Related Art Rare earth-iron-boron magnets have high magnetic performance and are therefore often used as motor components for OA equipment, AV equipment, and the like. Rare earth-iron-
Boron-based magnets are roughly classified into three types: sintered magnets, hot-worked magnets, and resin-bonded magnets. Sintered magnets are generally made according to the process described below. First, fine powder is obtained by finely pulverizing a rare earth-iron-boron alloy. Next, a green field is obtained by applying a magnetic field to the fine powder using a magnetic field press and pressing the crystal while aligning the c-axis direction of the crystal in one direction. Since the rare-earth-iron-boron-based material has an easy c-axis, the c-axis can be anisotropically strong in one direction by aligning the c-axis in one direction. Next, a strong anisotropic sintered magnet can be manufactured by increasing the density through a sintering step at a high temperature.
【0003】また、熱間加工磁石もc軸が一方向に揃っ
ており、ホットプレスあるいは押し出し成形などの熱間
加工工程を経て高密度化された強力磁石である。ただ
し、この場合c軸が揃うメカニズムが焼結磁石と異な
る。たとえばJournal of Material
s Engineering、11巻、No.1,87
〜92頁(1989)に記載されているように希土類−
鉄−ボロン系磁石材料は、結晶の方向がランダムな場合
でも熱間で塑性加工を加えると、結晶の方向が歪みの加
わる方向に揃うという特質をもつ。この特質を利用して
所定の方向に異方的に強い磁化をもつように塑性変形さ
せることにより製造されるのが熱間加工磁石である。こ
の製造方法は磁場を印加せずに異方性化できることが特
徴である。前二者の焼結磁石および熱間加工磁石は、エ
ネルギー積が特に高いのが特徴であり、高い磁束密度が
要求される場合によく用いられている。[0003] A hot-worked magnet is also a strong magnet whose c-axis is aligned in one direction and which has been densified through a hot working process such as hot pressing or extrusion. However, in this case, the mechanism for aligning the c-axis is different from that of the sintered magnet. For example, Journal of Material
s Engineering, vol. 11, no. 1,87
Rare earths as described on page 92 (1989).
The iron-boron-based magnet material has a characteristic that, even when the direction of the crystal is random, when plastic working is performed hot, the direction of the crystal is aligned with the direction in which strain is applied. A hot-worked magnet is manufactured by plastically deforming the material so as to have anisotropically strong magnetization in a predetermined direction using this characteristic. This manufacturing method is characterized in that it can be made anisotropic without applying a magnetic field. The former two sintered magnets and hot-worked magnets are characterized by a particularly high energy product, and are often used when a high magnetic flux density is required.
【0004】一方、樹脂ボンド磁石は、磁石粉末と樹脂
バインダーを混合後に成形するという工程で製造される
ために、形状自由度および寸法精度に優れるのが特徴で
ある。OA機器、AV機器用モーターに使用される磁石
の多くは薄肉かつ寸法精度が要求されるので、これらの
用途に希土類−鉄−ボロン系樹脂ボンド磁石がよく使用
されている。しかしながら、現在用いられているボンド
磁石用希土類−鉄−ボロン系磁石粉末は、回転ロール式
の急冷粉であり、結晶の方向性がランダムな等方性磁石
材料である。このために、結晶がほぼ一方向に揃ってい
る異方性の焼結磁石あるいは熱間加工磁石よりもエネル
ギー積が低い。それに加えて、樹脂ボンド磁石はバイン
ダーの存在により磁性相の体積占有率が焼結磁石あるい
は熱間加工磁石よりも低いことが原因して、磁石として
のエネルギー積が焼結あるいは熱間加工磁石の20〜3
0%程度にとどまっているのが現状である。[0004] On the other hand, resin-bonded magnets are characterized by being excellent in shape flexibility and dimensional accuracy because they are manufactured in a process of molding after mixing magnet powder and resin binder. Many of the magnets used in motors for OA equipment and AV equipment require a thin wall and high dimensional accuracy. For these applications, rare-earth-iron-boron-based resin bonded magnets are often used. However, the rare-earth-iron-boron-based magnet powder for bond magnets currently used is a quenched powder of a rotating roll type, and is an isotropic magnet material having random crystal orientation. For this reason, the energy product is lower than that of an anisotropic sintered magnet or a hot-worked magnet in which crystals are aligned in almost one direction. In addition, due to the fact that the volume occupation ratio of the magnetic phase of the resin-bonded magnet is lower than that of the sintered magnet or the hot-worked magnet due to the presence of the binder, the energy product as the magnet is lower than that of the sintered or hot-worked magnet. 20-3
At present, it is only about 0%.
【0005】この理由からボンド磁石のエネルギー積を
高めるために多くの検討がなされてきており、これまで
に高エネルギー積化のための手法がいくつか提案されて
いる。一例を挙げれば、Journal of App
lied Physics、64巻10号、5293〜
5295頁(1988)で開示されているような希土類
−鉄−ボロン系熱間加工磁石の粉砕粉を使用した樹脂ボ
ンド磁石がある。この方法は、まず回転ロール法により
希土類−鉄−ボロン系急冷粉末を作製し、次にこの急冷
粉末をプレス等により高密度化し、さらに高温で塑性変
形させることで磁気的な異方性化を実現させるものであ
る。これをボンド磁石とするためには、異方性化した合
金塊を粉砕した後に樹脂バインダーと混合し成形するこ
とが必要である。この方法によれば等方性のボンド磁石
よりも高いエネルギー積をもつ異方性ボンド磁石を得る
ことが可能である。しかしながら、本方法は、上述のよ
うに、異方性化のために高密度化、塑性加工という複雑
な工程が必要で、しかもボンド磁石化のためには、さら
に粉砕工程を必要とする。このように、ボンド磁石のエ
ネルギー積を高めるための異方性化の手段は、現状では
複雑な工程を必要とし、コストがかかるという問題点が
あり、したがって低コスト化のためには、より簡単な異
方性化工程の開発が望まれる。For this reason, many studies have been made to increase the energy product of the bonded magnet, and several techniques for increasing the energy product have been proposed. One example is the Journal of App
led Physics, Vol. 64, No. 10, 5293-
There is a resin-bonded magnet using a pulverized powder of a rare-earth-iron-boron-based hot-worked magnet as disclosed on page 5295 (1988). In this method, first, a rare-earth-iron-boron-based quenched powder is produced by a rotating roll method, and then the quenched powder is densified by a press or the like, and is further plastically deformed at a high temperature to make magnetic anisotropy. It is what makes it happen. In order to make this a bonded magnet, it is necessary to pulverize the anisotropic alloy mass, mix it with a resin binder, and mold it. According to this method, it is possible to obtain an anisotropic bonded magnet having a higher energy product than an isotropic bonded magnet. However, as described above, this method requires complicated steps of high density and plastic working for anisotropy, and further requires a pulverizing step for forming a bonded magnet. As described above, the anisotropic means for increasing the energy product of the bonded magnet requires a complicated process at present and has a problem that the cost is high. Development of an anisotropic process is desired.
【0006】[0006]
【発明が解決しようとする課題】本発明の目的は、高エ
ネルギー積を有する希土類−鉄−ボロン系ボンド磁石材
料を提供すること、および高エネルギー積の希土類−鉄
−ボロン系磁石材料を得るために簡単でかつ安価な製造
方法を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to provide a rare earth-iron-boron based bonded magnet material having a high energy product and to obtain a rare earth-iron-boron based magnet material having a high energy product. Another object of the present invention is to provide a simple and inexpensive manufacturing method.
【0007】[0007]
【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討を重ねた結果、希土類−鉄−
ボロン系超急冷リボンまたは粉末を金属容器に充填し、
熱間で一軸圧縮するという簡単な工程により、高磁気性
能の磁石材料が作製できることを見い出し本発明の完成
に到った。Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have found that rare earth-iron-
Fill a metal container with a boron-based super-quenched ribbon or powder,
The present inventors have found that a magnet material having high magnetic performance can be produced by a simple process of uniaxially compressing with heat, and the present invention has been completed.
【0008】すなわち、本発明の磁石材料は、超急冷リ
ボンまたは粉末に塑性加工を施すことにより得られる塊
状物または粉末であって、磁気異方性を有することを特
徴とする希土類−鉄−ボロン系異方性磁石材料である。That is, the magnet material of the present invention is a lump or powder obtained by subjecting a super-quenched ribbon or powder to plastic working, and is characterized by having a magnetic anisotropy. It is a system anisotropic magnet material.
【0009】また、本発明の樹脂ボンド磁石は、上記の
希土類−鉄−ボロン系磁石材料と樹脂バインダーを混合
後、成形することにより作製される樹脂ボンド磁石であ
る。The resin-bonded magnet of the present invention is a resin-bonded magnet produced by mixing the above rare earth-iron-boron-based magnet material and a resin binder and then molding.
【0010】本発明の磁石合金組成は、基本的に希土類
−鉄−ボロン系であり、具体的には組成式RxFe
100−x−y−zCoyBz(ただし、RはYを含む
希土類元素、xが12.5以上16以下,y=0以上1
0以下,z=4.8以上6.5以下)であらわされる。[0010] The magnet alloy composition of the present invention is basically a rare earth-iron-boron system, and more specifically, the composition formula R x Fe
100-x-y-z Co y B z ( where a rare earth element R, including the Y, x is 12.5 to 16, y = 0 or 1
0 or less, z = 4.8 or more and 6.5 or less).
【0011】あるいは、本発明の磁石合金組成は、希土
類−鉄−ボロン−T系であり、具体的には組成式RxF
e100−x−y−z−wCoyBzTw(ただし、R
はYを含む希土類元素、TはGa,Si,Al,C,N
i,Cu,Zn,In,Mn,Nb,Ta,Tiから選
ばれる1種または2種以上、x=12.5以上16以
下,y=0以上10以下,z=4.8以上6.5以下,
w=0以上1以下)であらわされる。Alternatively, the magnet alloy composition of the present invention is a rare earth-iron-boron-T system, and more specifically, the composition formula R x F
e 100-x-y-z -w Co y B z T w ( wherein, R
Is a rare earth element containing Y, and T is Ga, Si, Al, C, N
one or more selected from i, Cu, Zn, In, Mn, Nb, Ta, and Ti; x = 12.5 to 16; y = 0 to 10; z = 4.8 to 6.5; Less than,
w = 0 or more and 1 or less).
【0012】本発明の磁石合金粉末の製造方法は、希土
類−鉄−ボロン系超急冷リボンまたは粉末を金属容器に
充填し、該金属容器を650℃〜900℃の温度におい
て一軸圧縮することにより得られる磁石材料の製造方法
である。ここで一軸圧縮とは物体の概ね平行に相対する
2面に対し、他の外力が物体になるべく加わらないよう
な状態で、該2面に概ね垂直な方向の力を加え、該2面
間の距離を圧縮することを言う。The method for producing a magnetic alloy powder of the present invention is obtained by filling a rare earth-iron-boron-based ultra-quenched ribbon or powder into a metal container and uniaxially compressing the metal container at a temperature of 650 ° C to 900 ° C. This is a method of manufacturing a magnet material to be used. Here, the uniaxial compression means that a force in a direction substantially perpendicular to the two surfaces is applied to two surfaces opposed to each other substantially parallel to each other in a state where other external force is not applied to the object as much as possible. Refers to compressing the distance.
【0013】上記の製造方法において、該金属容器の一
軸圧縮される方向の長さをhとし、圧縮力が作用する該
金属容器底面の面積をsとしたとき、圧縮前の金属容器
のh/sが0.1〜5.0であることが好ましい。ま
た、一軸圧縮前の金属容器の一軸圧縮される方向の長さ
をh0、一軸圧縮後の金属容器の一軸圧縮される方向の
長さをh1としたとき、金属容器の一軸圧縮前後の圧縮
比(h0/h1)が3.3〜20であることとが好まし
い。In the above manufacturing method, when the length of the metal container in the direction of uniaxial compression is h and the area of the bottom surface of the metal container on which a compressive force acts is s, h / h It is preferred that s is 0.1 to 5.0. When the length of the metal container in the uniaxial compression direction before uniaxial compression is h0 and the length of the metal container in the uniaxial compression direction after uniaxial compression is h1, the compression ratio before and after uniaxial compression of the metal container is defined as h1. (H0 / h1) is preferably from 3.3 to 20.
【0014】[0014]
【発明の実施の形態】以下に本発明の磁石材料および樹
脂ボンド磁石の製造方法について詳しく説明する。本発
明における磁石合金組成は、基本的に希土類−鉄−ボロ
ン系であり、具体的には下式であらわされる組成範囲に
あることが必要である。 RxFe100−x−y−zCoyBz (ただし、RはYを含む希土類元素、x=12.5〜1
6,y=0〜10,z=4.8〜6.5)BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for producing a magnet material and a resin-bonded magnet according to the present invention will be described in detail. The magnet alloy composition in the present invention is basically a rare earth-iron-boron system, and specifically needs to be in a composition range represented by the following formula. R x Fe 100-x-y -z Co y B z ( where a rare earth element R, including the Y, x = from 12.5 to 1
6, y = 0 to 10, z = 4.8 to 6.5)
【0015】Rが12.5未満になると、塑性加工工程
において加工性が著しく悪化し、異方性化の度合いが小
さく、しかも最終的に得られる磁石の保磁力が小さく実
用的でない。また、Rが16を越えると磁化が減少し、
その結果エネルギー積が低下してしまう。Coを添加す
ると、キュリー温度が上昇するので耐熱性が向上すると
いう利点がある。しかし、yが10を越えると磁化が減
少するので好ましくない。B量は4.8〜6.5の範囲
にあることが好ましい。4.8未満では保磁力が低く実
用的でない。また、B量が6.5を越えると塑性加工が
困難となる。If R is less than 12.5, the workability in the plastic working step is remarkably deteriorated, the degree of anisotropy is small, and the coercive force of the finally obtained magnet is too small to be practical. When R exceeds 16, the magnetization decreases,
As a result, the energy product decreases. The addition of Co has the advantage that the Curie temperature rises and heat resistance improves. However, when y exceeds 10, magnetization decreases, which is not preferable. The B amount is preferably in the range of 4.8 to 6.5. If it is less than 4.8, the coercive force is too low to be practical. If the amount of B exceeds 6.5, plastic working becomes difficult.
【0016】また、保磁力、残留磁化あるいは最大エネ
ルギー積などのいずれかの磁気特性の改善のためには微
量の元素Tを添加することが有効である。Tとしては、
Ga,Si,Al,C,Ni,Cu,Zn,In,M
n,Nb,Ta,Tiが挙げられる。このとき、添加元
素の種類により効果は異なり、例えば、Ga,Si,A
lなどは残留磁化を向上させ、Cu,Znなどは保磁力
を向上させる。したがって、目的の磁気特性になるよう
にこれらの添加元素および添加量を選択すればよい。こ
のときの磁石合金組成は、下式であらわされる組成範囲
にあることが好ましい。 RxFe100−x−y−z−wCoyBzTw (ただし、RはYを含む希土類元素、TはGa,Si,
Al,C,Ni,Cu,Zn,In,Mn,Nb,T
a,Tiから選ばれる1種または2種以上、x=12.
5〜16,y=0〜10,z=4.8〜6.5,w=0
〜1)It is effective to add a small amount of element T to improve any of the magnetic properties such as coercive force, residual magnetization, and maximum energy product. As T,
Ga, Si, Al, C, Ni, Cu, Zn, In, M
n, Nb, Ta, and Ti. At this time, the effect differs depending on the type of the additive element. For example, Ga, Si, A
1 and the like improve the residual magnetization, and Cu and Zn improve the coercive force. Therefore, these additional elements and their amounts may be selected so as to obtain desired magnetic properties. The magnet alloy composition at this time is preferably in a composition range represented by the following formula. R x Fe 100-x-y -z-w Co y B z T w ( wherein, R is rare earth element including Y, T is Ga, Si,
Al, C, Ni, Cu, Zn, In, Mn, Nb, T
a, one or more selected from Ti, x = 12.
5-16, y = 0-10, z = 4.8-6.5, w = 0
~ 1)
【0017】Tの添加量wが1を越えると磁化の低下が
大きくなるので好ましくない。製造工程中に不可避的に
混入するN,O,F,Mg,P,S,Caなどの元素が
微量含まれていても磁気特性への影響は小さい。If the amount w of T exceeds 1, the decrease in magnetization is undesirably large. Even if a trace amount of elements such as N, O, F, Mg, P, S, Ca, etc. which are inevitably mixed during the manufacturing process, the influence on the magnetic properties is small.
【0018】本発明の異方性磁石材料は、(1)高周波
溶解、(2)回転ロールによる超急冷、(3)超急冷リ
ボンの金属容器への充填、(4)熱間における該金属容
器の一軸圧縮の各工程を経て作製できる。また、この磁
石材料からなる樹脂ボンド磁石は、上記工程に引き続い
て、(5)樹脂バインダー混合、(6)磁場中圧縮プレ
ス成形あるいは磁場中射出成形の工程を経て作製でき
る。以下にそれぞれの工程について説明する。The anisotropic magnet material of the present invention comprises (1) high-frequency melting, (2) ultra-quenching by a rotating roll, (3) filling a super-quenched ribbon into a metal container, and (4) hot metal container. Can be manufactured through the steps of uniaxial compression. The resin-bonded magnet made of this magnet material can be manufactured through the steps of (5) mixing a resin binder, (6) compression press molding in a magnetic field, or injection molding in a magnetic field, following the above steps. The respective steps will be described below.
【0019】(1)高周波溶解 原料合金を目的の組成になるように調合し、底部に円形
の孔を有するアルミナ製あるいは石英製等のノズルに充
填した後に高周波溶解する。このときの好ましい溶解温
度範囲は1400〜1600℃程度である。また、合金
の酸化を防ぐために、溶解中はAr,Heあるいは真空
などの不活性雰囲気とすることが好ましい。(1) High frequency melting A raw material alloy is prepared so as to have a desired composition, and filled into a nozzle made of alumina or quartz having a circular hole at the bottom and then melted by high frequency. A preferable melting temperature range at this time is about 1400 to 1600 ° C. In addition, in order to prevent oxidation of the alloy, it is preferable to use an inert atmosphere such as Ar, He or vacuum during melting.
【0020】(2)回転ロールによる超急冷 Cu,Feなどの金属製ロールを回転させておき、合金
溶湯をロールに噴射することにより急冷固化させる。生
成する超急冷リボンにおいてNd2Fe14B結晶は等
方性でありランダムな方向を向いている。このあとの塑
性加工を有効に行わしめるためには超急冷後のリボンに
おける結晶粒径を0.1nm〜1μm程度に適度に細か
くすることが望まれる。適度な結晶粒度を得るためには
ロール周速度の範囲を15〜35m/秒にすることが好
ましい。(2) Ultra-Quenching by Rotating Roll A metal roll of Cu, Fe or the like is rotated, and a molten alloy is injected into the roll to be rapidly cooled and solidified. In the resulting super-quenched ribbon, the Nd 2 Fe 14 B crystals are isotropic and oriented in random directions. In order to effectively perform the subsequent plastic working, it is desired to appropriately reduce the crystal grain size of the ribbon after ultra-quenching to about 0.1 nm to 1 μm. In order to obtain an appropriate crystal grain size, the range of the peripheral speed of the roll is preferably set to 15 to 35 m / sec.
【0021】(3)超急冷リボンの金属容器への充填 超急冷リボンを金属製容器に充填する。ここで容器とし
て使用する金属種は特に限定はないが、例えば軟鋼、ス
テンレス鋼などのFe系金属材料やCu,Ni,Al,
Ti,Cr,Mn,Co系金属材料あるいはこれらから
なる合金等が挙げられる。なお、このあとに行う一軸圧
縮が650℃以上の熱間で行われるので、この温度範囲
で溶融してしまうZn,In等の低融点金属は容器とし
て適当でない。金属容器の形状については円柱状または
直方体状が好ましい。このとき、金属容器の高さ/底面
積比(h/s)が0.1〜5.0であることが好まし
い。0.1未満では、一軸圧縮によるNd−Fe−B超
急冷リボンの塑性加工が不十分であり、異方性化が良好
に行われない。また、5.0を越えると一軸圧縮中に容
器の座屈が起こりやすく有効な塑性加工ができない。容
器への超急冷リボンの充填量はかさ密度として1〜4g
/cm3程度が好ましい。1cm3未満では、このあと
の一軸圧縮で有効な塑性加工ができない。また、4g/
cm3を越えて充填することは手間を要し、実用的でな
い。超急冷リボンを充填したのちに、容器内を真空にす
ること、あるいは窒素、アルゴンなどのガスを充填し不
活性雰囲気とすることはリボンの酸化を防ぐ意味で有効
である。(3) Filling the super-quenched ribbon into a metal container The super-quenched ribbon is filled into a metal container. The type of metal used for the container is not particularly limited. For example, Fe-based metal materials such as mild steel and stainless steel, Cu, Ni, Al,
Examples include Ti, Cr, Mn, and Co-based metal materials and alloys made of these materials. Since the subsequent uniaxial compression is performed at a temperature of 650 ° C. or higher, low melting point metals such as Zn and In which melt in this temperature range are not suitable as containers. The shape of the metal container is preferably cylindrical or rectangular parallelepiped. At this time, it is preferable that the height / bottom area ratio (h / s) of the metal container is 0.1 to 5.0. If it is less than 0.1, the plastic working of the Nd-Fe-B super-quenched ribbon by uniaxial compression is insufficient, and the anisotropy is not satisfactorily performed. If it exceeds 5.0, buckling of the container tends to occur during uniaxial compression, and effective plastic working cannot be performed. The filling amount of the super-quenched ribbon in the container is 1 to 4 g as a bulk density.
/ Cm 3 is preferable. If it is less than 1 cm 3 , effective plastic working cannot be performed by subsequent uniaxial compression. Also, 4g /
Filling more than cm 3 is time-consuming and impractical. It is effective to vacuum the inside of the container after filling the ultra-quenched ribbon or to fill the container with a gas such as nitrogen or argon to form an inert atmosphere, in order to prevent oxidation of the ribbon.
【0022】(4)熱間一軸圧縮 金属容器を熱間一軸プレスすることにより圧縮し、超急
冷リボンを塑性変形させることにより異方性磁石材料が
得られる。このときの温度は650〜900℃であるこ
とが必要である。650℃未満では、異方性化が十分で
なくえられる磁石材料のエネルギー積が低い。また、9
00℃を越えると材料の保磁力が低下してしまうので実
用的でない。容器の加熱方法は抵抗炉による加熱、高周
波加熱など種々の方法が考えられる。また、金属容器の
一軸圧縮前後の圧縮比(h0/h1)は3.3〜20で
あることが好ましい。ただし、ここでh0は一軸圧縮前
の金属容器高さ、h1は一軸圧縮後の金属容器高さであ
る。圧縮比が3.3未満では異方性化が不十分であり、
また、20を越えて圧縮することは現実の装置の性能上
困難である。(4) Hot uniaxial compression The metal container is compressed by hot uniaxial pressing, and the super-quenched ribbon is plastically deformed to obtain an anisotropic magnet material. The temperature at this time needs to be 650 to 900 ° C. If the temperature is lower than 650 ° C., the energy product of the magnet material which cannot be sufficiently anisotropically formed is low. Also, 9
If the temperature exceeds 00 ° C., the coercive force of the material decreases, so that it is not practical. Various methods for heating the container, such as heating with a resistance furnace and high-frequency heating, can be considered. The compression ratio (h0 / h1) before and after uniaxial compression of the metal container is preferably 3.3 to 20. Here, h0 is the height of the metal container before uniaxial compression, and h1 is the height of the metal container after uniaxial compression. If the compression ratio is less than 3.3, the anisotropy is insufficient,
Also, it is difficult to compress beyond 20 due to the performance of an actual device.
【0023】以上の工程により本発明の磁石合金粉末を
作製することができる。これを用いてボンド磁石を作製
するためには、引き続いて、樹脂バインダー混合、磁場
中成形を行う。以下にこれらの工程について説明する。The magnet alloy powder of the present invention can be produced by the above steps. In order to produce a bonded magnet using this, subsequently, resin binder mixing and molding in a magnetic field are performed. Hereinafter, these steps will be described.
【0024】(5)樹脂バインダー混合 本発明の磁石合金粉末と混合する樹脂バインダーについ
ては特に限定はないが、例えばエポキシ樹脂、フェノー
ル樹脂のような熱硬化性樹脂やナイロン樹脂のような熱
可塑性樹脂等が挙げられる。エポキシ樹脂は圧縮成形を
行う場合に用いられる。良好な磁気特性を得るためのエ
ポキシ量は、磁石粉末に対し1〜5重量%程度である。
樹脂混合の際にシラン系あるいはTi系カップリング剤
やステアリン酸塩などの滑剤を同時に混合することも有
効である。(5) Resin Binder Mixing The resin binder mixed with the magnetic alloy powder of the present invention is not particularly limited. For example, a thermosetting resin such as an epoxy resin or a phenol resin, or a thermoplastic resin such as a nylon resin. And the like. Epoxy resin is used when performing compression molding. The amount of epoxy for obtaining good magnetic properties is about 1 to 5% by weight based on the magnet powder.
It is also effective to mix a silane-based or Ti-based coupling agent or a lubricant such as a stearate at the same time when mixing the resins.
【0025】ナイロン樹脂は射出成形や押し出し成形を
行う場合に用いられる。良好な磁気特性を得るためのナ
イロン量は、磁石粉末に対し4〜8重量%程度である。
この場合も樹脂混合の際にカップリング剤、滑剤等を添
加することは有効である。Nylon resin is used for injection molding or extrusion molding. The amount of nylon for obtaining good magnetic properties is about 4 to 8% by weight based on the magnet powder.
Also in this case, it is effective to add a coupling agent, a lubricant and the like at the time of resin mixing.
【0026】(6)磁場中圧縮成形、磁場中射出成形 樹脂と混合した磁石合金粉末を磁場中で配向させなが
ら、圧縮成形あるいは射出成形することにより樹脂ボン
ド磁石を得ることができる。磁石粉末を十分に配向させ
るためには、好ましくは8kOe以上の磁場、より好ま
しくは10kOe以上の磁場を発生させるのがよい。圧
縮成形の場合、成形後に150℃前後の温度でエポキシ
樹脂のキュア処理を行う。(6) Compression molding in magnetic field, injection molding in magnetic field A resin bonded magnet can be obtained by compression molding or injection molding while orienting magnet alloy powder mixed with resin in a magnetic field. In order to sufficiently orient the magnet powder, it is preferable to generate a magnetic field of preferably 8 kOe or more, more preferably 10 kOe or more. In the case of compression molding, a curing treatment of the epoxy resin is performed at a temperature of about 150 ° C. after molding.
【0027】[0027]
【実施例】以下に実施例によりさらに詳しく本発明につ
いて説明する。The present invention will be described in more detail with reference to the following examples.
【0028】実施例1 Nd13.31Fe74.98Co6.08B5.63
の組成の合金を、底部に直径約0.5mmの円孔をもつ
石英ノズルに充填し、高周波加熱により約1500℃と
して溶融状態とした後、溶湯を周速24m/秒で回転さ
せたCu製片ロール上に噴射固化し、超急冷リボンを得
た。該リボンを肉厚2mm、内径20mm、高さ50m
mの円柱状軟鋼容器に20g充填した。充填後に容器内
を真空とし密閉した。次に、該容器を箱型抵抗炉内で1
0分間保持し、800℃に加熱したのちに炉から容器を
取り出し、速やかに一軸プレス機により圧縮比2.5と
なるようにプレスした。圧縮後の軟鋼容器を室温まで冷
却し容器から、塊状となったNd−Fe−B材料を分離
した。塊状のNd−Fe−B材料を300mm以下に粉
砕し、得られた粉末を15kOeの磁場で配向させなが
らワックスで固めて磁気特性測定用の試料を得た。容易
軸および困難軸の磁気特性を振動試料型磁力計(VS
M)を用いて測定した結果、容易軸については、残留磁
化(Br)は12.5kG,保磁力(iHc)は16.
3kOeであり、また、困難軸についてはBrが1.4
kG,iHcが8.9kOeであった。次に、この磁石
粉末に対しエポキシ樹脂を2重量%の割合で混合した。
この混合物を充填した金型を磁場プレスにセットし、1
5kOeの磁場を印加することにより粒子配向させなが
ら10ton/cm2の圧力でプレスすることにより圧
縮成形体を得た。この成形体をAr雰囲気中150℃で
1時間加熱し、エポキシ樹脂を硬化させ、圧縮成形樹脂
ボンド磁石を得た。得られた樹脂ボンド磁石の磁気特性
をBHトレーサーにより測定した結果、Brが8.9k
G,iHcが16.2kOe,最大エネルギー積((B
H)max)が17.2MGOeであった。Example 1 Nd 13.31 Fe 74.98 Co 6.08 B 5.63
Is filled into a quartz nozzle having a circular hole with a diameter of about 0.5 mm at the bottom, heated to about 1500 ° C. and melted, and then the molten metal is rotated at a peripheral speed of 24 m / sec. It was spray-solidified on one roll to obtain a super-quenched ribbon. The ribbon has a thickness of 2 mm, an inner diameter of 20 mm, and a height of 50 m.
m was filled into a cylindrical mild steel container having a capacity of 20 g. After filling, the vessel was evacuated and sealed. Next, the container was placed in a box-type resistance furnace for 1 hour.
After holding for 0 minute and heating to 800 ° C., the container was taken out of the furnace and immediately pressed by a uniaxial press so that the compression ratio became 2.5. After the compression, the mild steel container was cooled to room temperature, and a massive Nd—Fe—B material was separated from the container. The massive Nd-Fe-B material was ground to 300 mm or less, and the obtained powder was solidified with wax while being oriented in a magnetic field of 15 kOe to obtain a sample for measuring magnetic properties. Vibration sample type magnetometer (VS
M), the remanent magnetization (Br) was 12.5 kG and the coercive force (iHc) was 16.
3 kOe, and Br is 1.4 for the hard axis.
kG and iHc were 8.9 kOe. Next, an epoxy resin was mixed with the magnet powder at a ratio of 2% by weight.
The mold filled with the mixture was set in a magnetic field press, and
A compression molded body was obtained by pressing at a pressure of 10 ton / cm2 while applying a magnetic field of 5 kOe while orienting the particles. This molded body was heated at 150 ° C. for 1 hour in an Ar atmosphere to cure the epoxy resin, thereby obtaining a compression-molded resin bonded magnet. As a result of measuring the magnetic properties of the obtained resin-bonded magnet with a BH tracer, Br was 8.9 k.
G, iHc is 16.2 kOe, maximum energy product ((B
H) max) was 17.2 MGOe.
【0029】比較例1 実施例1と同一組成の合金を実施例1と同様の方法でC
u製片ロール上に溶湯を噴射固化することによりリボン
を得た。得られたリボンを300mm以下に粉砕し、実
施例1と同様に磁気特性を測定した結果、容易軸につい
ては、Brは2.8kG,iHcは5.8kOeであ
り、また、困難軸についてはBrが2.9kG,iHc
が5.8kOeであり、等方性かつ特性の低い材料であ
った。Comparative Example 1 An alloy having the same composition as in Example 1 was prepared in the same manner as in Example 1 to obtain C
The ribbon was obtained by spray-solidifying the molten metal on the u-piece roll. The obtained ribbon was crushed to 300 mm or less, and the magnetic properties were measured in the same manner as in Example 1. As a result, Br was 2.8 kG for the easy axis, 5.8 kOe for iHc, and Br for the hard axis. Is 2.9 kG, iHc
Was 5.8 kOe, which was a material having isotropic and low characteristics.
【0030】実施例2 実施例1で得られた超急冷リボンを表1に示す条件で一
軸圧縮し、得られたNd−Fe−B材料を実施例1と同
様の方法によりボンド磁石を作製した。得られたボンド
磁石の磁気特性を表1に示す。Example 2 The ultra-quenched ribbon obtained in Example 1 was uniaxially compressed under the conditions shown in Table 1, and the obtained Nd—Fe—B material was used to produce a bonded magnet in the same manner as in Example 1. . Table 1 shows the magnetic properties of the obtained bonded magnet.
【0031】[0031]
【表1】 [Table 1]
【0032】実施例3 表2に記載する組成の超急冷リボンを実施例1と同様の
方法で作製し、実施例1と全く同条件で容器充填、一軸
圧縮およびボンド磁石作製を行った。得られたボンド磁
石の磁気特性を表2に示す。Example 3 An ultra-quenched ribbon having the composition shown in Table 2 was produced in the same manner as in Example 1, and the container was filled, uniaxially compressed, and a bonded magnet was produced under exactly the same conditions as in Example 1. Table 2 shows the magnetic properties of the obtained bonded magnet.
【0033】[0033]
【表2】 [Table 2]
【0034】[0034]
【発明の効果】本発明に関わる異方性磁石の製造方法に
よれば、従来よりも簡単な工程で磁気的に異方性化する
ことができる。磁気特性の面でも従来よりも高特性の磁
石を提供することが可能となる。According to the method of manufacturing an anisotropic magnet according to the present invention, the anisotropic magnet can be made magnetically anisotropic by a simpler process than before. In terms of magnetic characteristics, it is possible to provide a magnet having higher characteristics than before.
Claims (7)
すことにより得られる塊状物または粉末であって、磁気
異方性を有することを特徴とする希土類−鉄−ボロン系
異方性磁石材料。1. A rare earth-iron-boron anisotropic magnet material, which is a lump or powder obtained by subjecting a super-quenched ribbon or powder to plastic working and has magnetic anisotropy.
石材料と樹脂バインダーを混合後、成形することにより
作製される樹脂ボンド磁石。2. A resin-bonded magnet produced by mixing the rare-earth-iron-boron-based magnet material according to claim 1 and a resin binder, followed by molding.
yBz(ただし、RはYを含む希土類元素、xが12.
5以上16以下,y=0以上10以下,z=4.8以上
6.5以下)であらわされる組成をもつ請求項に1記載
の希土類−鉄−ボロン系異方性磁石合金粉末。3. The composition formula R x Fe 100-xyz Co
y B z (where a rare earth element R, including the Y, x is 12.
The rare-earth-iron-boron-based anisotropic magnet alloy powder according to claim 1, having a composition represented by 5 to 16; y = 0 to 10; z = 4.8 to 6.5).
CoyBzTw(ただし、RはYを含む希土類元素、T
はGa,Si,Al,C,Ni,Cu,Zn,In,M
n,Nb,Ta,Tiから選ばれる1種または2種以
上、x=12.5以上16以下,y=0以上10以下,
z=4.8以上6.5以下,w=0以上1以下)であら
わされる組成をもつ請求項1に記載の希土類−鉄−ボロ
ン系異方性磁石合金粉末。4. The composition formula R x Fe 100-xyzw
Co y B z T w (provided that the rare earth element R, including a Y, T
Is Ga, Si, Al, C, Ni, Cu, Zn, In, M
one or more selected from n, Nb, Ta, and Ti; x = 12.5 to 16; y = 0 to 10;
2. The rare earth-iron-boron anisotropic magnet alloy powder according to claim 1, having a composition represented by the formula: z = 4.8 to 6.5, w = 0 to 1).
は粉末を金属容器に充填し、該金属容器を650℃〜9
00℃の温度において一軸圧縮することを特徴とする請
求項1記載の磁石材料の製造方法。5. A metal container is filled with a rare-earth-iron-boron-based super-quenched ribbon or powder, and the metal container is heated to 650 ° C. to 9 ° C.
2. The method according to claim 1, wherein the material is uniaxially compressed at a temperature of 00.degree.
とし、圧縮力が作用する金属容器底面の面積をsとした
とき、圧縮前の金属容器のh/sが0.1〜5.0であ
ることを特徴とする請求項5記載の磁石材料の製造方
法。6. The length of the metal container in the uniaxial compression direction is h.
The h / s of the metal container before compression is 0.1 to 5.0, assuming that the area of the bottom surface of the metal container on which the compressive force acts is s, and the h / s is 0.1 to 5.0. Production method.
向の長さをh0、一軸圧縮後の金属容器の一軸圧縮され
る方向の長さをh1としたとき、金属容器の一軸圧縮前
後の圧縮比(h0/h1)が3.3〜20であることを
特徴とする請求項5記載の磁石材料の製造方法。7. The uniaxial compression before and after uniaxial compression of the metal container before uniaxial compression is defined as h0, and the length of the metal container after uniaxial compression in the uniaxial compression direction is defined as h1. The method according to claim 5, wherein the compression ratio (h0 / h1) is 3.3 to 20.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8359855A JPH10199717A (en) | 1996-12-27 | 1996-12-27 | Anisotropic magnet and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8359855A JPH10199717A (en) | 1996-12-27 | 1996-12-27 | Anisotropic magnet and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10199717A true JPH10199717A (en) | 1998-07-31 |
Family
ID=18466651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8359855A Pending JPH10199717A (en) | 1996-12-27 | 1996-12-27 | Anisotropic magnet and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10199717A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100414463B1 (en) * | 2000-05-31 | 2004-01-07 | 세이코 엡슨 가부시키가이샤 | Magnetic powder, manufacturing method of magnetic powder and bonded magnets |
KR100414460B1 (en) * | 2000-05-22 | 2004-01-07 | 세이코 엡슨 가부시키가이샤 | Magnetic powder, manufacturing method of magnetic powder and bonded magnets |
JP2011003662A (en) * | 2009-06-17 | 2011-01-06 | Toyota Motor Corp | Permanent magnet and method of manufacturing the same |
JP2015103681A (en) * | 2013-11-26 | 2015-06-04 | 日立金属株式会社 | Rare earth-transition metal-boron based sintered magnet |
-
1996
- 1996-12-27 JP JP8359855A patent/JPH10199717A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100414460B1 (en) * | 2000-05-22 | 2004-01-07 | 세이코 엡슨 가부시키가이샤 | Magnetic powder, manufacturing method of magnetic powder and bonded magnets |
KR100414463B1 (en) * | 2000-05-31 | 2004-01-07 | 세이코 엡슨 가부시키가이샤 | Magnetic powder, manufacturing method of magnetic powder and bonded magnets |
JP2011003662A (en) * | 2009-06-17 | 2011-01-06 | Toyota Motor Corp | Permanent magnet and method of manufacturing the same |
JP2015103681A (en) * | 2013-11-26 | 2015-06-04 | 日立金属株式会社 | Rare earth-transition metal-boron based sintered magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2530641B2 (en) | Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same | |
JP2596835B2 (en) | Rare earth anisotropic powder and rare earth anisotropic magnet | |
JP3618648B2 (en) | Anisotropic magnet, method for manufacturing the same, and motor using the same | |
JPH10199717A (en) | Anisotropic magnet and its manufacturing method | |
KR102632582B1 (en) | Manufacturing method of sintered magnet | |
KR102658773B1 (en) | Manufacturing method of sintered magnet | |
JP3622550B2 (en) | Anisotropic exchange spring magnet powder and method for producing the same | |
JP3618647B2 (en) | Anisotropic magnet, method for manufacturing the same, and motor using the same | |
JPH01171209A (en) | Manufacture of permanent magnet | |
JP2002075715A (en) | Anisotropic bulk exchange spring magnet and manufacturing method thereof | |
JP3275055B2 (en) | Rare earth bonded magnet | |
JP2000040611A (en) | Resin coupled permanent magnet material and magnetization thereof as well as encoder using the same | |
JPH10189320A (en) | Anisotropic magnet alloy powder, and its manufacture | |
JPH11233323A (en) | Manufacture of anisotropic magnet material and manufacture of bond magnet using the same | |
JPH0831677A (en) | Manufacture of magnetic anisotropy resin bonding type magnet and magnetic anisotropy resin type magnet | |
JPH0774012A (en) | Manufacture of bonded permanent magnet and raw material powder therefor | |
JPH09186012A (en) | Magnetically isotropic resin bond magnet | |
JPH044383B2 (en) | ||
JPH06260360A (en) | Production of rare-earth metal and iron-based magnet | |
JPS62261102A (en) | Bonded magnet for starter motor | |
JP2003342618A (en) | Method for manufacturing anisotropic rare-earth magnet powder | |
JPH11233359A (en) | Manufacture of bond magnet | |
JPH0733521B2 (en) | Method for producing alloy powder for anisotropic bonded magnet | |
JPS63312915A (en) | Production of permanent magnet | |
JPS63107009A (en) | Manufacture of permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051006 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060214 |