JPH10189320A - Anisotropic magnet alloy powder, and its manufacture - Google Patents

Anisotropic magnet alloy powder, and its manufacture

Info

Publication number
JPH10189320A
JPH10189320A JP8359766A JP35976696A JPH10189320A JP H10189320 A JPH10189320 A JP H10189320A JP 8359766 A JP8359766 A JP 8359766A JP 35976696 A JP35976696 A JP 35976696A JP H10189320 A JPH10189320 A JP H10189320A
Authority
JP
Japan
Prior art keywords
magnet
alloy powder
iron
boron
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8359766A
Other languages
Japanese (ja)
Inventor
Yasumasa Kasai
靖正 葛西
Yasuhiko Iriyama
恭彦 入山
Takayuki Nishio
孝幸 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP8359766A priority Critical patent/JPH10189320A/en
Publication of JPH10189320A publication Critical patent/JPH10189320A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rare earth-iron-boron anisotropic magnet alloy powder of high energy product by a method wherein in a flaky powder manufactured by a single roller type quenching magnetization of the flake is made larger in the thickness direction than in the longitudinal direction. SOLUTION: A material alloy is prepared so as to be, in composition, Rx Fe100-x-y-z Coy Bz (R is rare earth element containing Y, x=12.5-16, y=0-10, z=4.8-6.5), or, Rx Fe100-x-y-z-w Coy Bz Tw (R is rare earth element containing Y, T is one or more kinds selected among Ga, Si, Al, C, Ni, Cu, Zn, In, Mn, Nb, Ta, Ti, x=12.5-16, y=0-10, z=4.8-6.5, w=0-1), and then filled in a nozzle of alumina or quartz provided with a circular hole at its bottom, for high-frequency melting. Then with such single rollers as Cu, Fe, etc., rotated, a molten alloy is jetted to the roller for rapid cooling for solidification, then quenched to be solidified, and the quenched and solidified ribbon is continuously plastic ally processed to give magnet powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は希土類−鉄−ボロン系異
方性磁石に関し、詳しくは、磁石合金の粉末と、それを
樹脂バインダーにより結合し着磁してなる樹脂ボンド磁
石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-iron-boron anisotropic magnet, and more particularly, to a powder of a magnet alloy and a resin-bonded magnet obtained by binding and magnetizing the powder with a resin binder.

【0002】[0002]

【従来の技術】希土類−鉄−ボロン系磁石は、高い磁気
性能を有するため、OA機器、AV機器等を構成するモ
ーターの部品として多く使用されている。希土類−鉄−
ボロン系磁石は、大別して焼結磁石、熱間加工磁石およ
び樹脂ボンド磁石の3種類がある。焼結磁石は概ね以下
に述べるプロセスにしたがって製造される。まず、希土
類−鉄−ボロン系合金を微粉砕することにより微粉体を
得る。次に磁場プレス機にて該微粉体に磁場を印加し
て、結晶のc軸方向を一方向に揃えながらプレスするこ
とによりグリーン成形体を得る。希土類−鉄−ボロン系
材料はc軸が容易軸であるので、c軸を一方向に揃える
ことでその方向に異方的に強い磁化をもたせることがで
きる。次に、高温における焼結工程を経て高密度化する
ことにより強力な異方性焼結磁石が製造できる。
2. Description of the Related Art Rare earth-iron-boron magnets have high magnetic performance and are therefore often used as motor components for OA equipment, AV equipment, and the like. Rare earth-iron-
Boron-based magnets are roughly classified into three types: sintered magnets, hot-worked magnets, and resin-bonded magnets. Sintered magnets are generally manufactured according to the process described below. First, fine powder is obtained by finely pulverizing a rare earth-iron-boron alloy. Next, a green field is obtained by applying a magnetic field to the fine powder using a magnetic field press and pressing the crystal while aligning the c-axis direction of the crystal in one direction. Since the rare-earth-iron-boron-based material has an easy c-axis, the c-axis can be anisotropically strong in one direction by aligning the c-axis in one direction. Next, a strong anisotropic sintered magnet can be manufactured by increasing the density through a sintering step at a high temperature.

【0003】また、熱間加工磁石もc軸が一方向に揃っ
ており、ホットプレスあるいは押し出し成形などの熱間
加工工程を経て高密度化された強力磁石である。ただ
し、この場合c軸が揃うメカニズムが焼結磁石と異な
る。希土類−鉄−ボロン系磁石材料は、結晶の方向がラ
ンダムな場合でも熱間で塑性加工を加えると、結晶の方
向が歪みの加わる方向に揃うという特質をもつ。このと
き、結晶の方向を一方向に揃えるためには塑性加工の温
度が500〜900℃の範囲であることが好ましいとさ
れている。この特質を利用して所定の方向に異方的に強
い磁化をもつように塑性変形させることにより製造され
るのが熱間加工磁石である。この製造方法は磁場を印加
せずに異方性化できることが特徴である。前二者の焼結
磁石および熱間加工磁石は、エネルギー積が特に高いの
が特徴であり、高い磁束密度が要求される場合によく用
いられている。
[0003] A hot-worked magnet is also a strong magnet whose c-axis is aligned in one direction and which has been densified through a hot working process such as hot pressing or extrusion. However, in this case, the mechanism for aligning the c-axis is different from that of the sintered magnet. The rare-earth-iron-boron-based magnet material has a characteristic that, even when the direction of the crystal is random, if plastic working is performed hot, the direction of the crystal is aligned with the direction in which strain is applied. At this time, it is considered that the temperature of the plastic working is preferably in the range of 500 to 900 ° C. in order to align the direction of the crystal in one direction. A hot-worked magnet is manufactured by plastically deforming the material so as to have anisotropically strong magnetization in a predetermined direction using this characteristic. This manufacturing method is characterized in that it can be made anisotropic without applying a magnetic field. The former two sintered magnets and hot-worked magnets are characterized by a particularly high energy product, and are often used when a high magnetic flux density is required.

【0004】一方、樹脂ボンド磁石は、磁石粉末と樹脂
バインダーを混合後に成形するという工程で製造される
ために、形状自由度および寸法精度に優れるのが特徴で
ある。OA機器、AV機器用モーターに使用される磁石
の多くは薄肉かつ寸法精度が要求されるので、これらの
用途に希土類−鉄−ボロン系樹脂ボンド磁石がよく使用
されている。しかしながら、現在用いられているボンド
磁石用希土類−鉄−ボロン系磁石粉末は、回転ロール式
の急冷粉であり、結晶の方向性がランダムな等方性磁石
材料である。このために、結晶がほぼ一方向に揃ってい
る異方性の焼結磁石あるいは熱間加工磁石よりもエネル
ギー積が低い。それに加えて、樹脂ボンド磁石はバイン
ダーの存在により磁性相の体積占有率が焼結磁石あるい
は熱間加工磁石よりも低いことが原因して、磁石として
のエネルギー積が焼結あるいは熱間加工磁石の20〜3
0%程度にとどまっているのが現状である。
[0004] On the other hand, resin-bonded magnets are characterized by being excellent in shape flexibility and dimensional accuracy because they are manufactured in a process of molding after mixing magnet powder and resin binder. Many of the magnets used in motors for OA equipment and AV equipment require a thin wall and high dimensional accuracy. For these applications, rare-earth-iron-boron-based resin bonded magnets are often used. However, the rare-earth-iron-boron-based magnet powder for bond magnets currently used is a quenched powder of a rotating roll type, and is an isotropic magnet material having random crystal orientation. For this reason, the energy product is lower than that of an anisotropic sintered magnet or a hot-worked magnet in which crystals are aligned in almost one direction. In addition, due to the fact that the volume occupation ratio of the magnetic phase of the resin-bonded magnet is lower than that of the sintered magnet or the hot-worked magnet due to the presence of the binder, the energy product as the magnet is lower than that of the sintered or hot-worked magnet. 20-3
At present, it is only about 0%.

【0005】この理由からボンド磁石のエネルギー積を
高めるために多くの検討がなされてきており、これまで
に高エネルギー積化のための手法がいくつか提案されて
いる。一例を挙げれば、Journal of App
lied Physics、64巻10号、5293〜
5295頁(1988)で開示されているような希土類
−鉄−ボロン系熱間加工磁石の粉砕粉を使用した樹脂ボ
ンド磁石がある。この方法は、まず回転ロール法により
希土類−鉄−ボロン系急冷粉末を製造し、次にこの急冷
粉末をプレス等により高密度化し、さらに高温で塑性変
形させることで磁気的な異方性化を実現させるものであ
る。これをボンド磁石とするためには、異方性化した合
金塊を粉砕した後に樹脂バインダーと混合し成形するこ
とが必要である。この方法によれば等方性のボンド磁石
よりも高いエネルギー積をもつ異方性ボンド磁石を得る
ことが可能である。しかしながら、本方法は、上述のよ
うに、異方性化のために高密度化、塑性加工という複雑
な工程が必要で、しかもボンド磁石化のためには、さら
に粉砕工程を必要とする。このように、ボンド磁石のエ
ネルギー積を高めるための異方性化の手段は、現状では
複雑な工程を必要とし、コストがかかるという問題点が
あり、したがって低コスト化のためには、より簡単な異
方性化工程の開発が望まれる。
For this reason, many studies have been made to increase the energy product of the bonded magnet, and several techniques for increasing the energy product have been proposed. One example is the Journal of App
led Physics, Vol. 64, No. 10, 5293-
There is a resin-bonded magnet using a pulverized powder of a rare-earth-iron-boron-based hot-worked magnet as disclosed on page 5295 (1988). In this method, first, a rare-earth-iron-boron-based quenched powder is produced by a rotating roll method, and then the quenched powder is densified by a press or the like, and is further plastically deformed at a high temperature to make it magnetically anisotropic. It is what makes it happen. In order to make this a bonded magnet, it is necessary to pulverize the anisotropic alloy mass, mix it with a resin binder, and mold it. According to this method, it is possible to obtain an anisotropic bonded magnet having a higher energy product than an isotropic bonded magnet. However, as described above, this method requires complicated steps of high density and plastic working for anisotropy, and further requires a pulverizing step for forming a bonded magnet. As described above, the anisotropic means for increasing the energy product of the bonded magnet requires a complicated process at present and has a problem that the cost is high. Development of an anisotropic process is desired.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、高エ
ネルギー積を有する希土類−鉄−ボロン系ボンド磁石材
料を提供すること、および高エネルギー積の希土類−鉄
−ボロン系磁石材料を得るために簡単でかつ安価な製造
方法を提供すること、およびそのための製造装置を提供
することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a rare earth-iron-boron based bonded magnet material having a high energy product and to obtain a rare earth-iron-boron based magnet material having a high energy product. Another object of the present invention is to provide a simple and inexpensive manufacturing method, and a manufacturing apparatus therefor.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討を重ねた結果、希土類−鉄−
ボロン系合金溶湯の片ロールへの噴射による急冷固化
と、固化により生成した希土類−鉄−ボロンリボンの塑
性加工とを連続的に行うという簡単な工程により、高磁
気性能の磁石粉末が製造できることを見い出し本発明の
完成に到った。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have found that rare earth-iron-
By a simple process of continuously performing quenching and solidification by injecting a molten boron-based alloy onto one roll and plastic working of a rare earth-iron-boron ribbon generated by the solidification, it is possible to produce magnet powder with high magnetic performance. The present invention has been completed.

【0008】すなわち、本発明の磁石粉末は、片ロール
式急冷法により製造される薄片状粉末であって、薄片の
長手方向よりも厚み方向の磁化が大きいことを特徴とす
る希土類−鉄−ボロン系異方性磁石合金粉末である。
[0008] That is, the magnet powder of the present invention is a flaky powder produced by a one-roll quenching method, characterized in that the magnetization in the thickness direction is larger than the longitudinal direction of the flake, and is rare earth-iron-boron. Anisotropic magnet alloy powder.

【0009】また、本発明の樹脂ボンド磁石は、上記の
希土類−鉄−ボロン系異方性磁石合金粉末と樹脂バイン
ダーを混合後、成形することにより製造される樹脂ボン
ド磁石である。
The resin bonded magnet of the present invention is a resin bonded magnet manufactured by mixing the above rare earth-iron-boron anisotropic magnet alloy powder and a resin binder and then molding.

【0010】本発明の磁石合金組成は、基本的に希土類
−鉄−ボロン系であり、具体的には組成式RFe
100−x−y−zCo(ただし、RはYを含む
希土類元素、xが12.5以上16以下,y=0以上1
0以下,z=4.8以上6.5以下)であらわされる。
[0010] The magnet alloy composition of the present invention is basically a rare earth-iron-boron system, and more specifically, the composition formula R x Fe
100-x-y-z Co y B z ( where a rare earth element R, including the Y, x is 12.5 to 16, y = 0 or 1
0 or less, z = 4.8 or more and 6.5 or less).

【0011】あるいは、本発明の磁石合金組成は、希土
類−鉄−ボロン−T系であり、具体的には組成式R
100−x−y−z−wCo(ただし、R
はYを含む希土類元素、TはGa,Si,Al,C,N
i,Cu,Zn,In,Mn,Nb,Ta,Tiから選
ばれる1種または2種以上、x=12.5以上16以
下,y=0以上10以下,z=4.8以上6.5以下,
w=0以上1以下)であらわされる。
Alternatively, the magnet alloy composition of the present invention is a rare earth-iron-boron-T system, and more specifically, the composition formula R x F
e 100-x-y-z -w Co y B z T w ( wherein, R
Is a rare earth element containing Y, and T is Ga, Si, Al, C, N
one or more selected from i, Cu, Zn, In, Mn, Nb, Ta, and Ti; x = 12.5 to 16; y = 0 to 10; z = 4.8 to 6.5; Less than,
w = 0 or more and 1 or less).

【0012】本発明の樹脂ボンド磁石は、請求項1ない
し3に記載の希土類−鉄−ボロン系異方性磁石合金粉末
が樹脂バインダーにより結合されたことを特徴とする。
A resin-bonded magnet according to the present invention is characterized in that the rare earth-iron-boron anisotropic magnet alloy powder according to any one of claims 1 to 3 is bonded by a resin binder.

【0013】本発明の第1の磁石合金粉末の製造方法
は、希土類−鉄−ボロン系合金溶湯を片ロールへ噴射し
急冷固化させ製造されたリボンを急冷固化後の冷却中に
加熱して塑性加工することを特徴とする。
In the first method for producing a magnetic alloy powder according to the present invention, a rare earth-iron-boron alloy melt is sprayed onto a single roll and quenched and solidified, and the manufactured ribbon is heated during cooling after quenched and solidified to form a plastic. It is characterized by processing.

【0014】本発明の第2の磁石合金粉末の製造方法
は、希土類−鉄−ボロン系合金溶湯を片ロールへ噴射し
急冷固化させ製造されたリボンを急冷固化後の冷却中に
加熱して塑性加工することを特徴とする。
According to a second method for producing a magnetic alloy powder of the present invention, a rare earth-iron-boron alloy melt is sprayed onto a single roll and quenched and solidified, and the produced ribbon is heated during cooling after quenched and solidified to form a plastic. It is characterized by processing.

【0015】本発明の第2の磁石合金粉末の製造方法
は、第1ないし第2の製造方法おいて塑性加工の方法が
ロール圧延であることを特徴とする。
A second method for producing a magnetic alloy powder according to the present invention is characterized in that the plastic working method in the first or second production method is roll rolling.

【0016】さらに、本発明の第4の磁石合金粉末の製
造方法は、第1ないし第3の製造方法において塑性加工
の温度が500℃以上900℃以下であることを特徴と
する。
Further, a fourth method for producing a magnetic alloy powder according to the present invention is characterized in that, in the first to third production methods, the temperature of the plastic working is 500 ° C. or more and 900 ° C. or less.

【0017】[0017]

【発明の実施の形態】以下に本発明の磁石合金粉末およ
び樹脂ボンド磁石の製造方法について詳しく説明する。
本発明における磁石合金組成は、基本的に希土類−鉄−
ボロン系であり、具体的には下記組成式であらわされる
組成範囲にあることが必要である。 RFe100−x−y−zCo (ただし、RはYを含む希土類元素、x=12.5〜1
6,y=0〜10,z=4.8〜6.5)
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for producing a magnet alloy powder and a resin-bonded magnet of the present invention will be described in detail.
The magnet alloy composition in the present invention is basically a rare earth-iron-
It is a boron-based material, and specifically needs to be in a composition range represented by the following composition formula. R x Fe 100-x-y -z Co y B z ( where a rare earth element R, including the Y, x = from 12.5 to 1
6, y = 0 to 10, z = 4.8 to 6.5)

【0018】R量xが12.5未満になると、塑性加工
工程において加工性が著しく悪化し、異方性化の度合い
が小さく、しかも最終的に得られる磁石の保磁力が小さ
く実用的でない。また、xが16を越えると磁化が減少
し、その結果エネルギー積が低下してしまう。Coを添
加すると、キュリー温度が上昇するので耐熱性が向上す
るという利点がある。しかし、yが10を越えると磁化
が減少するので好ましくない。B量zは4.8〜6.5
の範囲にあることが好ましい。4.8未満では保磁力が
低く実用的でない。また、zが6.5を越えると塑性加
工が困難となる。
If the R amount x is less than 12.5, the workability in the plastic working step is remarkably deteriorated, the degree of anisotropy is small, and the coercive force of the finally obtained magnet is too small to be practical. When x exceeds 16, the magnetization decreases, and as a result, the energy product decreases. The addition of Co has the advantage that the Curie temperature rises and heat resistance improves. However, when y exceeds 10, magnetization decreases, which is not preferable. B amount z is 4.8 to 6.5.
Is preferably within the range. If it is less than 4.8, the coercive force is too low to be practical. If z exceeds 6.5, plastic working becomes difficult.

【0019】また、保磁力、残留磁化あるいは最大エネ
ルギー積などのいずれかの磁気特性の改善のためには微
量の元素Tを添加することが有効である。Tとしては、
Ga,Si,Al,C,Ni,Cu,Zn,In,M
n,Nb,Ta,Tiが挙げられる。このとき、添加元
素の種類により効果は異なり、例えば、Ga,Si,A
lなどは残留磁化を向上させ、Cu,Znなどは保磁力
を向上させる。したがって、目的の磁気特性になるよう
にこれらの添加元素および添加量を選択すればよい。こ
のときの磁石合金組成は、下記組成式であらわされる組
成範囲にあることが好ましい。 RFe100−x−y−z−wCo (ただし、RはYを含む希土類元素、TはGa,Si,
Al,C,Ni,Cu,Zn,In,Mn,Nb,T
a,Tiから選ばれる1種または2種以上、x=12.
5〜16,y=0〜10,z=4.8〜6.5,w=0
〜1)
It is effective to add a small amount of element T to improve any of the magnetic properties such as coercive force, residual magnetization, and maximum energy product. As T,
Ga, Si, Al, C, Ni, Cu, Zn, In, M
n, Nb, Ta, and Ti. At this time, the effect differs depending on the type of the additive element. For example, Ga, Si, A
1 and the like improve the residual magnetization, and Cu and Zn improve the coercive force. Therefore, these additional elements and their amounts may be selected so as to obtain desired magnetic properties. The magnet alloy composition at this time is preferably in a composition range represented by the following composition formula. R x Fe 100-x-y -z-w Co y B z T w ( wherein, R is rare earth element including Y, T is Ga, Si,
Al, C, Ni, Cu, Zn, In, Mn, Nb, T
a, one or more selected from Ti, x = 12.
5-16, y = 0-10, z = 4.8-6.5, w = 0
~ 1)

【0020】Tの添加量wが1を越えると磁化の低下が
大きくなるので好ましくない。製造工程中に不可避的に
混入するN,O,F,Mg,P,S,Caなどの元素が
微量含まれていても磁気特性への影響は小さい。
If the addition amount w of T exceeds 1, the decrease in magnetization is undesirably large. Even if a trace amount of elements such as N, O, F, Mg, P, S, Ca, etc. which are inevitably mixed during the manufacturing process, the influence on the magnetic properties is small.

【0021】本発明の異方性磁石粉末は、(1)高周波
溶解、(2)片ロールによる急冷、(3)塑性加工の工
程を経て製造できる。また、この粉末からなる樹脂ボン
ド磁石は、上記工程に引き続いて、(4)樹脂バインダ
ー混合、(5)磁場中圧縮プレス成形あるいは磁場中射
出成形の工程を経て製造できる。また、工程(2)と
(3)の間に急冷リボンの加熱工程を設けることも有効
である。以下にそれぞれの工程について説明する。
The anisotropic magnet powder of the present invention can be produced through the steps of (1) high frequency melting, (2) quenching with a single roll, and (3) plastic working. The resin-bonded magnet made of this powder can be manufactured through the steps of (4) resin binder mixing, (5) compression press molding in a magnetic field, or injection molding in a magnetic field, following the above steps. It is also effective to provide a quenching ribbon heating step between steps (2) and (3). The respective steps will be described below.

【0022】(1)高周波溶解 原料合金を目的の組成になるように調合し、底部に円形
の孔を有するアルミナ製あるいは石英製等のノズルに充
填した後に高周波溶解する。このときの好ましい溶解温
度範囲は1400〜1600℃程度である。また、合金
の酸化を防ぐために、溶解中はAr,Heあるいは真空
などの不活性雰囲気とすることが好ましい。
(1) High frequency melting A raw material alloy is prepared so as to have a desired composition, and charged into a nozzle made of alumina or quartz having a circular hole at the bottom and then melted by high frequency. A preferable melting temperature range at this time is about 1400 to 1600 ° C. In addition, in order to prevent oxidation of the alloy, it is preferable to use an inert atmosphere such as Ar, He or vacuum during melting.

【0023】(2)回転ロールによる急冷 Cu,Feなどの金属製片ロールを回転させておき、合
金溶湯をロールに噴射することにより急冷固化させる。
生成する急冷リボンにおいてNdFe14B結晶は等
方性でありランダムな方向を向いている。このあとの塑
性加工を有効に行わしめるためには急冷後のリボンにお
ける結晶粒径を0.1nm〜1μm程度に適度に細かく
することが望まれる。適度な結晶粒度を得るためにはロ
ール周速度の範囲を15〜35m/秒にすることが好ま
しい。
(2) Rapid Cooling by Rotating Rolls A metal piece roll of Cu, Fe or the like is rotated, and a molten alloy is sprayed onto the rolls to be rapidly cooled and solidified.
In the resulting quenched ribbon, the Nd 2 Fe 14 B crystal is isotropic and oriented in a random direction. In order to effectively perform the subsequent plastic working, it is desired to appropriately reduce the crystal grain size of the ribbon after quenching to about 0.1 nm to 1 μm. In order to obtain an appropriate crystal grain size, the range of the peripheral speed of the roll is preferably set to 15 to 35 m / sec.

【0024】(3)塑性加工 急冷固化したリボンを連続的に塑性加工することが本発
明の特徴である。ここで意味する連続的な塑性加工と
は、急冷固化したリボンを直ちに、言い換えればリボン
が室温付近まで冷却されないうちに塑性加工を施すこと
である。溶湯がロールと接触し固化してから数秒の間
は、リボンは500〜900℃程度の高温状態を保つと
予想される。このような高温状態でリボンに塑性加工を
施すことにより結晶のc軸が一方向に揃い、塑性加工後
の材料において、c軸が揃った方向の磁化が上昇する異
方性化が期待される。本発明の磁石合金の製造方法は、
このことを狙って、急冷固化後数秒以内に塑性加工を施
す方法である。塑性加工の方法としてはロール圧延、一
軸圧縮プレス等が考えられるが、これらのうち急冷後に
すみやかに塑性加工を加えることを考慮した場合、ロー
ル圧延が装置の構造上、特に有効と考えられる。片ロー
ル急冷とロール圧延加工を連続的に行うための装置の一
例を図1に記した。ロール圧延による塑性加工を施した
場合、リボンの厚みが減少する方向に塑性変形するの
で、圧延後はリボンの厚み方向の磁化が上昇し、長手方
向の磁化が減少することになる。また、異方性化の度合
いをさらに高める目的で、塑性加工直前のリボン温度を
若干高めるためにリボンを加熱することも有効である。
リボン加熱を行う場合、急冷固化後に空中を飛行中のリ
ボンを短時間で加熱しなければならないので、加熱方法
としては、レーザービームによる加熱、赤外線加熱ある
いは高周波加熱等が有効である。
(3) Plastic working It is a feature of the present invention to continuously perform plastic working on a rapidly solidified ribbon. The term “continuous plastic working” as used herein means to apply plastic working to a rapidly solidified ribbon immediately, in other words, before the ribbon is cooled to around room temperature. For a few seconds after the molten metal comes into contact with the roll and solidifies, the ribbon is expected to maintain a high temperature state of about 500 to 900 ° C. By subjecting the ribbon to plastic working in such a high temperature state, the c-axis of the crystal is aligned in one direction, and the material after plastic working is expected to be anisotropic, in which the magnetization in the direction in which the c-axis is aligned increases. . The manufacturing method of the magnet alloy of the present invention,
With this aim, plastic working is performed within seconds after quenching and solidification. Roll rolling, uniaxial compression press, and the like can be considered as a method of the plastic working. Among them, in consideration of promptly performing plastic working after rapid cooling, roll rolling is considered to be particularly effective in terms of the structure of the apparatus. FIG. 1 shows an example of an apparatus for continuously performing single roll quenching and roll rolling. When plastic working by roll rolling is performed, plastic deformation occurs in the direction in which the thickness of the ribbon decreases, so that the magnetization in the thickness direction of the ribbon increases after rolling, and the magnetization in the longitudinal direction decreases. In order to further increase the degree of anisotropy, it is also effective to heat the ribbon to slightly increase the ribbon temperature immediately before plastic working.
When performing ribbon heating, the ribbon in flight in the air must be heated in a short period of time after quenching and solidification, so that heating by a laser beam, infrared heating, high-frequency heating, or the like is effective.

【0025】以上の工程により本発明の磁石合金粉末を
製造することができる。これを用いてボンド磁石を製造
するためには、引き続いて、樹脂バインダー混合、磁場
中成形を行う。以下にこれらの工程について説明する。
The magnet alloy powder of the present invention can be manufactured by the above steps. In order to manufacture a bonded magnet using this, subsequently, mixing of a resin binder and molding in a magnetic field are performed. Hereinafter, these steps will be described.

【0026】(4)樹脂バインダー混合 本発明の磁石合金粉末と混合する樹脂バインダーについ
ては特に限定はないが、例えばエポキシ樹脂、フェノー
ル樹脂のような熱硬化性樹脂やナイロン樹脂のような熱
可塑性樹脂等が挙げられる。エポキシ樹脂は圧縮成形を
行う場合に用いられる。良好な磁気特性を得るためのエ
ポキシ量は、磁石粉末に対し1〜5重量%程度である。
樹脂混合の際にシラン系あるいはTi系カップリング剤
やステアリン酸塩などの滑剤を同時に混合することも有
効である。
(4) Mixing of resin binder The resin binder mixed with the magnetic alloy powder of the present invention is not particularly limited. For example, a thermosetting resin such as an epoxy resin or a phenol resin, or a thermoplastic resin such as a nylon resin. And the like. Epoxy resin is used when performing compression molding. The amount of epoxy for obtaining good magnetic properties is about 1 to 5% by weight based on the magnet powder.
It is also effective to mix a silane-based or Ti-based coupling agent or a lubricant such as a stearate at the same time when mixing the resins.

【0027】ナイロン樹脂は射出成形や押し出し成形を
行う場合に用いられる。良好な磁気特性を得るためのナ
イロン量は、磁石粉末に対し4〜8重量%程度である。
この場合も樹脂混合の際にカップリング剤、滑剤等を添
加することは有効である。
Nylon resin is used when performing injection molding or extrusion molding. The amount of nylon for obtaining good magnetic properties is about 4 to 8% by weight based on the magnet powder.
Also in this case, it is effective to add a coupling agent, a lubricant and the like at the time of resin mixing.

【0028】(5)磁場中圧縮成形、磁場中射出成形 樹脂と混合した磁石合金粉末を磁場中で配向させなが
ら、圧縮成形あるいは射出成形することにより樹脂ボン
ド磁石を得ることができる。磁石粉末を十分に配向させ
るためには、好ましくは8kOe以上の磁場、より好ま
しくは10kOe以上の磁場を発生させるのがよい。圧
縮成形の場合、成形後に150℃前後の温度でエポキシ
樹脂のキュア処理を行う。
(5) Compression molding in a magnetic field, injection molding in a magnetic field A resin bonded magnet can be obtained by compression molding or injection molding while orienting a magnet alloy powder mixed with a resin in a magnetic field. In order to sufficiently orient the magnet powder, it is preferable to generate a magnetic field of preferably 8 kOe or more, more preferably 10 kOe or more. In the case of compression molding, a curing treatment of the epoxy resin is performed at a temperature of about 150 ° C. after molding.

【0029】[0029]

【実施例】以下に実施例によりさらに詳しく本発明につ
いて説明する。
The present invention will be described in more detail with reference to the following examples.

【0030】実施例1 Nd13.36Fe74.93Co6.095.62
の組成の合金を、底部に直径約0.5mmの円孔をもつ
石英ノズルに充填し、高周波加熱により約1500℃と
して溶融状態とした後、溶湯を周速22m/秒で回転さ
せたCu製片ロール上に噴射固化した。固化により生成
した合金リボンはロールの回転と同方向に飛ばされた。
その前方に二重ロールを設置しておき、飛んできた合金
リボンを加工率約60%になるように圧延加工した。図
1は、ここまでの製造方法についての説明図である。圧
延加工後に得た合金薄片の厚み方向および長手方向の磁
気特性を振動試料型磁力計(VSM)を用いて測定した
結果、厚み方向については、残留磁化(Br)は12.
4kG,保磁力(iHc)は15.3kOe、であり、
また、長手方向についてはBrが1.6kG,iHcが
8.6kOeであった。次に、この圧延後の合金薄片の
粒度を乳鉢粉砕により100〜300mm程度に調整し
た後、エポキシ樹脂を磁石粉末に対し2重量%の割合で
混合した。この混合物を充填した金型を磁場プレスにセ
ットし、15kOeの磁場を印加することにより粒子配
向させながら10ton/cmの圧力でプレスするこ
とにより圧縮成形体を得た。この成形体をAr雰囲気中
150℃で1時間加熱し、エポキシ樹脂を硬化させ、圧
縮成形樹脂ボンド磁石を得た。得られた樹脂ボンド磁石
の磁気特性をBHトレーサーにより測定した結果、Br
が8.8kG,iHcが15.2kOe,最大エネルギ
ー積((BH)max)が16.8MGOeであり高特
性のボンド磁石が製造できた。
Example 1 Nd 13.36 Fe 74.93 Co 6.09 B 5.62
Is filled in a quartz nozzle having a circular hole with a diameter of about 0.5 mm at the bottom and made into a molten state at about 1500 ° C. by high-frequency heating, and then the molten metal is rotated at a peripheral speed of 22 m / sec. It was spray-solidified on one roll. The alloy ribbon produced by solidification was blown in the same direction as the rotation of the roll.
A double roll was placed in front of the roll, and the flying alloy ribbon was rolled to a working rate of about 60%. FIG. 1 is an explanatory diagram of the manufacturing method up to this point. As a result of measuring the magnetic properties in the thickness direction and the longitudinal direction of the alloy flake obtained after the rolling using a vibrating sample magnetometer (VSM), the residual magnetization (Br) was 12.1 in the thickness direction.
4 kG, coercive force (iHc) is 15.3 kOe,
In the longitudinal direction, Br was 1.6 kG and iHc was 8.6 kOe. Next, the grain size of the alloy flakes after the rolling was adjusted to about 100 to 300 mm by mortar pulverization, and then the epoxy resin was mixed at a ratio of 2% by weight to the magnet powder. The mold filled with the mixture was set in a magnetic field press, and pressed at a pressure of 10 ton / cm 2 while applying a magnetic field of 15 kOe to orient the particles to obtain a compression-molded body. This molded body was heated at 150 ° C. for 1 hour in an Ar atmosphere to cure the epoxy resin, thereby obtaining a compression-molded resin bonded magnet. As a result of measuring the magnetic properties of the obtained resin-bonded magnet with a BH tracer, Br
Was 8.8 kG, iHc was 15.2 kOe, and the maximum energy product ((BH) max) was 16.8 MGOe, so that a high-performance bonded magnet could be manufactured.

【0031】比較例1 実施例1と同一組成の合金を実施例1と同様の方法でC
u製片ロール上に溶湯を噴射固化することによりリボン
を得た。ただし、本比較例1では実施例1における圧延
加工を施さなかった。得られたリボンの厚み方向および
長手方向の磁気特性を実施例1と同様に測定した結果、
厚み方向については、Brは7.8kG,iHcは1
5.8kOeであり、また、長手方向についてはBrが
7.9kG,iHcが15.9kOeであった。この結
果から、圧延加工を施さない場合は磁気的に等方的な性
質を示すことがわかる。次に本比較例1で得たリボンを
用いて実施例1と同様の方法で樹脂ボンド磁石を製造し
た結果、Brが5.9kG,iHcが15.7kOe,
(BH)maxが8.5MGOeであり、低い特性しか
得られなかった。
Comparative Example 1 An alloy having the same composition as in Example 1 was prepared in the same manner as in Example 1 to obtain C
The ribbon was obtained by spray-solidifying the molten metal on the u-piece roll. However, in Comparative Example 1, the rolling process in Example 1 was not performed. As a result of measuring the magnetic properties in the thickness direction and the longitudinal direction of the obtained ribbon in the same manner as in Example 1,
In the thickness direction, Br is 7.8 kG, iHc is 1
In the longitudinal direction, Br was 7.9 kG and iHc was 15.9 kOe. From this result, it can be seen that when the rolling process is not performed, the material exhibits magnetically isotropic properties. Next, a resin-bonded magnet was manufactured in the same manner as in Example 1 using the ribbon obtained in Comparative Example 1, and as a result, Br was 5.9 kG, iHc was 15.7 kOe,
(BH) max was 8.5 MGOe, and only low characteristics were obtained.

【0032】実施例2 表1に記載する組成の合金薄片を、実施例1と同様の方
法で製造した後、実施例1と同様の方法で樹脂ボンド磁
石を製造した。得られた樹脂ボンド磁石の磁気特性を表
1に示す。
Example 2 An alloy flake having the composition shown in Table 1 was produced in the same manner as in Example 1, and then a resin-bonded magnet was produced in the same manner as in Example 1. Table 1 shows the magnetic characteristics of the obtained resin-bonded magnet.

【0033】[0033]

【表1】 [Table 1]

【0034】実施例3 実施例1記載の製造方法において、急冷固化後のリボン
を加熱できるようにレーザービーム照射装置を設置し
た。Nd13.43Fe74.97Co6.01
5.59の組成の合金を、実施例1と同様に溶解し、溶
湯を周速22m/秒で回転させたCu製片ロール上に噴
射固化した。さらに、固化後の合金リボンにレーザービ
ームを照射することにより、800℃程度まで加熱し
た。その直後に二重ロールにより合金リボンを加工率約
60%になるように圧延加工した。圧延加工後の薄片の
厚み方向および長手方向の磁気特性をVSMを用いて測
定した結果、厚み方向について、Brは13.5kG,
iHcは15.1kOeであり、また、長手方向につい
てはBrが1.1kG,iHcが8.0kOeであっ
た。次に、圧延後の薄片の粒度を乳鉢粉砕により100
〜150mm程度に調整した後、実施例1と同様の方法
で樹脂ボンド磁石を得た。得られた樹脂ボンド磁石の磁
気特性は、Brが9.1kG,iHcが14.9kO
e,(BH)maxが18.9MGOeであった。
Example 3 In the manufacturing method described in Example 1, a laser beam irradiation device was installed so that the ribbon after quenching and solidification could be heated. Nd 13.43 Fe 74.97 Co 6.01 B
An alloy having a composition of 5.59 was melted in the same manner as in Example 1, and the melt was injected and solidified on a Cu piece roll rotated at a peripheral speed of 22 m / sec. Further, the solidified alloy ribbon was heated to about 800 ° C. by irradiating a laser beam. Immediately thereafter, the alloy ribbon was rolled by a double roll so as to have a working ratio of about 60%. As a result of measuring the magnetic properties in the thickness direction and the longitudinal direction of the flakes after rolling using VSM, Br was 13.5 kG in the thickness direction.
iHc was 15.1 kOe, and in the longitudinal direction, Br was 1.1 kG and iHc was 8.0 kOe. Next, the grain size of the flakes after rolling was reduced to 100 by mortar pulverization.
After adjusting to about 150 mm, a resin bonded magnet was obtained in the same manner as in Example 1. The magnetic properties of the obtained resin-bonded magnet are as follows: Br is 9.1 kG, iHc is 14.9 kO.
e, (BH) max was 18.9 MGOe.

【0035】[0035]

【発明の効果】本発明に関わる異方性磁石粉末製造方法
によれば、リボンは製造同時に磁気異方性化されるの
で、従来の磁石粉末とほぼ同じ工程でリボンを処理する
ことにより安価に異方性磁石粉末ができ、さらに本発明
に関わる異方性磁石粉末はあらかじめ磁気異方性化され
ているので、成形後の塑性加工等の異方性化の工程が省
略可能であり、従来の等方性磁石とほぼ同じ工程で異方
性磁石を製造することがでる。本発明を用いることによ
り磁気特性の優れた高特性の磁石を安価に製造すること
が可能である。
According to the method for producing anisotropic magnet powder according to the present invention, the ribbon is made magnetically anisotropic at the same time as the production. Since anisotropic magnet powder is produced, and the anisotropic magnet powder according to the present invention is magnetically anisotropic in advance, it is possible to omit anisotropic steps such as plastic working after molding. The anisotropic magnet can be manufactured in substantially the same process as that of the isotropic magnet. By using the present invention, it is possible to inexpensively manufacture a high-performance magnet having excellent magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の異方性磁石合金粉末の製造装置の基本
説明図である。
FIG. 1 is a basic explanatory diagram of an apparatus for producing an anisotropic magnet alloy powder of the present invention.

【符号の説明】[Explanation of symbols]

1 磁石粉末の製造装置 2 溶湯容器 3 高周波加熱用コイル 4 合金溶湯 5 急冷用片ロール 6 急冷されたリボン 7 圧延ロール 8 塑性加工された合金粉末 9 レーザービーム照射装置 9a レーザービーム DESCRIPTION OF SYMBOLS 1 Magnet powder manufacturing apparatus 2 Molten vessel 3 High frequency heating coil 4 Alloy melt 5 Rapid cooling single roll 6 Rapidly cooled ribbon 7 Rolling roll 8 Plastically processed alloy powder 9 Laser beam irradiation apparatus 9a Laser beam

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01F 1/053 H01F 1/04 H ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01F 1/053 H01F 1/04 H

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 片ロール式急冷法により製造された薄片
状粉末であって、薄片の長手方向よりも厚み方向の磁化
が大きいことを特徴とする希土類−鉄−ボロン系異方性
磁石合金粉末。
1. A rare-earth-iron-boron-based anisotropic magnet alloy powder, which is a flaky powder produced by a single-roll quenching method and has a larger magnetization in a thickness direction than in a longitudinal direction of the flake. .
【請求項2】 組成式RFe100−x−y−zCo
(ただし、RはYを含む希土類元素、xが12.
5以上16以下,y=0以上10以下,z=4.8以上
6.5以下)であらわされる組成をもつ請求項に1記載
の希土類−鉄−ボロン系異方性磁石合金粉末。
2. A composition formula of R x Fe 100-xyz Co.
y B z (where a rare earth element R, including the Y, x is 12.
The rare-earth-iron-boron-based anisotropic magnet alloy powder according to claim 1, having a composition represented by 5 to 16; y = 0 to 10; z = 4.8 to 6.5).
【請求項3】 組成式RFe100−x−y−z−w
Co(ただし、RはYを含む希土類元素、T
はGa,Si,Al,C,Ni,Cu,Zn,In,M
n,Nb,Ta,Tiから選ばれる1種または2種以
上、x=12.5以上16以下,y=0以上10以下,
z=4.8以上6.5以下,w=0以上1以下)であら
わされる組成をもつ請求項1に記載の希土類−鉄−ボロ
ン系異方性磁石合金粉末。
3. The composition formula R x Fe 100-xyzw
Co y B z T w (provided that the rare earth element R, including a Y, T
Is Ga, Si, Al, C, Ni, Cu, Zn, In, M
one or more selected from n, Nb, Ta, and Ti; x = 12.5 to 16; y = 0 to 10;
2. The rare earth-iron-boron anisotropic magnet alloy powder according to claim 1, having a composition represented by the formula: z = 4.8 to 6.5, w = 0 to 1).
【請求項4】 請求項1ないし3に記載の希土類−鉄−
ボロン系異方性磁石合金粉末が樹脂バインダーにより結
合されたことを特徴とする樹脂ボンド磁石。
4. The rare earth-iron according to claim 1, wherein:
A resin-bonded magnet, wherein boron-based anisotropic magnet alloy powder is bound by a resin binder.
【請求項5】 希土類−鉄−ボロン系合金溶湯を片ロー
ルへ噴射し急冷固化させ製造されたリボンを急冷固化後
の冷却中に塑性加工することを特徴とする請求項1記載
の磁石合金粉末の製造方法。
5. The magnet alloy powder according to claim 1, wherein the rare-earth-iron-boron alloy melt is sprayed onto one roll to be rapidly cooled and solidified, and the produced ribbon is subjected to plastic working during cooling after the rapid cooling and solidification. Manufacturing method.
【請求項6】 希土類−鉄−ボロン系合金溶湯を片ロー
ルへ噴射し急冷固化させ製造されたリボンを急冷固化後
の冷却中に加熱して塑性加工することを特徴とする請求
項5に記載の磁石合金粉末製造方法。
6. The method according to claim 5, wherein the rare-earth-iron-boron alloy melt is sprayed onto one roll and rapidly cooled and solidified, and the manufactured ribbon is heated during cooling after the rapid cooling and solidified to perform plastic working. Method of producing magnet alloy powder.
【請求項7】 請求項5ないし6に記載の磁石合金粉末
の製造方法において塑性加工の方法がロール圧延である
ことを特徴とする磁石合金粉末の製造方法。
7. The method for producing a magnet alloy powder according to claim 5, wherein the plastic working method is roll rolling.
【請求項8】 請求項5ないし7に記載の磁石合金粉末
の製造方法において塑性加工の温度が500℃以上90
0℃以下であることを特徴とする磁石合金粉末の製造方
法。
8. The method for producing a magnetic alloy powder according to claim 5, wherein the temperature of the plastic working is 500 ° C. or more and 90 ° or more.
A method for producing a magnet alloy powder, wherein the temperature is 0 ° C. or lower.
JP8359766A 1996-12-25 1996-12-25 Anisotropic magnet alloy powder, and its manufacture Pending JPH10189320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8359766A JPH10189320A (en) 1996-12-25 1996-12-25 Anisotropic magnet alloy powder, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8359766A JPH10189320A (en) 1996-12-25 1996-12-25 Anisotropic magnet alloy powder, and its manufacture

Publications (1)

Publication Number Publication Date
JPH10189320A true JPH10189320A (en) 1998-07-21

Family

ID=18466189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8359766A Pending JPH10189320A (en) 1996-12-25 1996-12-25 Anisotropic magnet alloy powder, and its manufacture

Country Status (1)

Country Link
JP (1) JPH10189320A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2351235A (en) * 1997-08-25 2000-12-27 Nikki Universal Co Ltd Adsorption,decomposition and deodorization element
JP2002088451A (en) * 2000-07-10 2002-03-27 Sumitomo Special Metals Co Ltd Rare earth magnet and its manufacturing method
CN110753978A (en) * 2017-05-19 2020-02-04 罗伯特·博世有限公司 Thermally deformable magnet and method for producing same
CN115927975A (en) * 2022-12-28 2023-04-07 中南大学 Fe-Cu alloy and preparation method and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2351235A (en) * 1997-08-25 2000-12-27 Nikki Universal Co Ltd Adsorption,decomposition and deodorization element
GB2351235B (en) * 1997-08-25 2002-06-12 Nikki Universal Co Ltd Adsorptive decomposition deodorizing element
JP2002088451A (en) * 2000-07-10 2002-03-27 Sumitomo Special Metals Co Ltd Rare earth magnet and its manufacturing method
CN110753978A (en) * 2017-05-19 2020-02-04 罗伯特·博世有限公司 Thermally deformable magnet and method for producing same
JP2020520414A (en) * 2017-05-19 2020-07-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Hot-working magnet and method for manufacturing the hot-working magnet
CN110753978B (en) * 2017-05-19 2021-09-28 罗伯特·博世有限公司 Thermally deformable magnet and method for producing same
CN115927975A (en) * 2022-12-28 2023-04-07 中南大学 Fe-Cu alloy and preparation method and application thereof
CN115927975B (en) * 2022-12-28 2024-03-22 中南大学 Fe-Cu alloy and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
US20190153565A1 (en) ANISOTROPIC COMPLEX SINTERED MAGNET COMPRISING MnBi WHICH HAS IMPROVED MAGNETIC PROPERTIES AND METHOD OF PREPARING THE SAME
EP3291249B1 (en) Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor
EP3288043B1 (en) Pressureless sintering method for anisotropic complex sintered magnet containing manganese bismuth
EP0657899A1 (en) Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom
EP0542529B1 (en) Method of making alloy powders of the RE-Fe/Co-B-M-type and bonded magnets containing this alloy powder
JP2731150B2 (en) Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
JP2002057015A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JPH10189320A (en) Anisotropic magnet alloy powder, and its manufacture
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JPH01171209A (en) Manufacture of permanent magnet
JPH01192105A (en) Manufacture of permanent magnet
JP2000040611A (en) Resin coupled permanent magnet material and magnetization thereof as well as encoder using the same
JP2002057014A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JPH02125402A (en) Magnetic powder and manufacture thereof
JP3515339B2 (en) Angle sensor
JPH11233323A (en) Manufacture of anisotropic magnet material and manufacture of bond magnet using the same
JPH06260360A (en) Production of rare-earth metal and iron-based magnet
JPH01234518A (en) Production of rare earth permanent magnet stock
JP2005019714A (en) Method of manufacturing anisotropical bond magnet
JPH07176417A (en) Iron based bonded magnet and its manufacture
JPH0483307A (en) Manufacture of rare-earth element magnet
JPH1167568A (en) Manufacture of bonded magnet
JPH1167567A (en) Manufacture for bond magnet