JP2015103681A - Rare earth-transition metal-boron based sintered magnet - Google Patents
Rare earth-transition metal-boron based sintered magnet Download PDFInfo
- Publication number
- JP2015103681A JP2015103681A JP2013243498A JP2013243498A JP2015103681A JP 2015103681 A JP2015103681 A JP 2015103681A JP 2013243498 A JP2013243498 A JP 2013243498A JP 2013243498 A JP2013243498 A JP 2013243498A JP 2015103681 A JP2015103681 A JP 2015103681A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- sintered magnet
- phase
- amount
- based sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
本発明は、R−T−B系焼結磁石に関する。 The present invention relates to an RTB-based sintered magnet.
R2T14B型化合物を主相とするR−T−B系焼結磁石(Rは軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDyおよび/またはTb、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)は、永久磁石の中で最も高性能な磁石として知られており、ハイブリッド自動車用、電気自動車用や家電製品用の各種モータ等に使用されている。 R-T-B based sintered magnet having R 2 T 14 B type compound as a main phase (R is composed of light rare earth element RL and heavy rare earth element RH, RL is Nd and / or Pr, RH is Dy and / or Tb and T are at least one of transition metal elements and must contain Fe), and are known as the most powerful magnets among permanent magnets. Various motors for hybrid vehicles, electric vehicles, and home appliances Etc. are used.
R−T−B系焼結磁石は、高温で保磁力HcJ(以下、単に「HcJ」と記載する場合がある)が低下し、不可逆熱減磁が起こる。そのため、特にハイブリッド自動車用や電気自動車用モータに使用される場合、高温下でも高いHcJを維持することが要求されている。 The RTB -based sintered magnet has a reduced coercive force H cJ (hereinafter sometimes simply referred to as “H cJ ”) at high temperatures, causing irreversible thermal demagnetization. Therefore, especially when used for a hybrid vehicle or an electric vehicle motor, it is required to maintain a high HcJ even at high temperatures.
従来、HcJ向上のために、R−T−B系焼結磁石に重希土類元素(主としてDy)が多量に添加されていたが、残留磁束密度Br(以下、単に「Br」と記載する場合がある)が低下するという問題があった。そのため、近年、R−T−B系焼結磁石の表面から内部に重希土類元素を拡散させて主相結晶粒の外殻部に重希土類元素を濃化してBrの低下を抑制しつつ、高いHcJを得る方法が採られている。 Conventionally, in order to improve HcJ , a large amount of heavy rare earth element (mainly Dy) has been added to the RTB-based sintered magnet, but the residual magnetic flux density B r (hereinafter simply referred to as “B r ”). There is a problem that it may decrease). Therefore, in recent years, while suppressing a decrease in B r was concentrated heavy rare earth element in the outer shell of the main phase crystal grains by diffusing a heavy rare earth elements from the surface of the R-T-B based sintered magnet therein, A method of obtaining high H cJ has been adopted.
しかし、Dyは、産出地が限定されている等の理由から、供給が不安定であったり、価格が変動するなどの問題を有している。そのため、Dyなどの重希土類元素をできるだけ使用せずにR−T−B系焼結磁石のHcJを向上させる技術が求められている。 However, Dy has problems such as unstable supply and fluctuating prices due to the limited production area. Therefore, there is a demand for a technique for improving the HcJ of an RTB -based sintered magnet without using a heavy rare earth element such as Dy as much as possible.
特許文献1には、通常のR−T−B系合金よりもB量を低くするとともに、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有させることによりR2T17相を生成させ、該R2T17相を原料として生成させた遷移金属リッチ相(R6T13M)の体積率を充分に確保することにより、Dyの含有量を抑制しつつ、保磁力の高いR−T−B系希土類焼結磁石が得られることが記載されている。
しかし、特許文献1は、従来よりもR量を多くB量を少なくしているため、主相の存在比率が低くなりBrが大幅に低下するという問題があった。
However, since
本発明は、上記問題を解決するためになされたものであり、Dyの含有量を抑制しつつ、高いBrと高いHcJを有するR−T−B系焼結磁石を提供することを目的とする。 The present invention has been made to solve the above problems, aims while suppressing the content of Dy, provides R-T-B based sintered magnet having a high B r and high H cJ And
本発明の態様1は、
式 uRwBxInyCuzAlqM(100−u−w−x−y−z−q)T(Rは軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDyおよび/またはTbであり、TはFeでありFeの10%以下をCoで置換でき、MはNbおよび/またはZrであり、u、w、x、y、z、q及び100−u−w−x−y−z−qは質量%を示し、不可避的不純物を含む)によって表わされ、
前記RHはR−T−B系焼結磁石の5質量%以下であり、
0.3≦x≦1.5、
0.07≦y≦0.2、
0.05≦z≦0.5、
0≦q≦0.1であり、
R−T−B系焼結磁石の酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u−(6α+10β+8γ)であって、v、wが、
50w−18.5≦v≦50w−14、
−12.5w+38.75≦v≦−62.5w+86.125、
を満足することを特徴とするR−T−B系焼結磁石である。
Formula uRwBxInyCuzAlqM (100-u-w-xy-z-q) T (R is composed of light rare earth element RL and heavy rare earth element RH, RL is Nd and / or Pr, RH is Dy and / or Tb , T is Fe and up to 10% of Fe can be replaced by Co, M is Nb and / or Zr, u, w, x, y, z, q and 100-u-wxyz -Q represents mass% and includes inevitable impurities)
The RH is 5% by mass or less of the R-T-B system sintered magnet,
0.3 ≦ x ≦ 1.5,
0.07 ≦ y ≦ 0.2,
0.05 ≦ z ≦ 0.5,
0 ≦ q ≦ 0.1,
When the oxygen content (mass%) of the RTB-based sintered magnet is α, the nitrogen content (mass%) is β, and the carbon content (mass%) is γ, v = u− (6α + 10β + 8γ) , V, w
50w-18.5 ≦ v ≦ 50w-14,
−12.5w + 38.75 ≦ v ≦ −62.5w + 86.125,
Is an RTB-based sintered magnet.
態様1において、酸素量が0.15質量%以下であることが好ましい。
In
本発明の態様2は、
式 uRwBxInyCuzAlqM(100−u−w−x−y−z−q)T(Rは軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDyおよび/またはTbであり、TはFeでありFeの10%以下をCoで置換でき、MはNbおよび/またはZrであり、u、w、x、y、z、q及び100−u−w−x−y−z−qは質量%を示し、不可避的不純物を含む)によって表わされ、
前記RHはR−T−B系焼結磁石の5質量%以下であり、
0.3≦x≦1.5、
0.07≦y≦0.2、
0.05≦z≦0.5
0≦q≦0.1であり、
R−T−B系焼結磁石の酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u−(6α+10β+8γ)であって、v、wが、
50w−18.5≦v≦50w−16.25、
−12.5w+38.75≦v≦−62.5w+86.125、
を満足することを特徴とするR−T−B系焼結磁石である。
Formula uRwBxInyCuzAlqM (100-u-w-xy-z-q) T (R is composed of light rare earth element RL and heavy rare earth element RH, RL is Nd and / or Pr, RH is Dy and / or Tb , T is Fe and up to 10% of Fe can be replaced by Co, M is Nb and / or Zr, u, w, x, y, z, q and 100-u-wxyz -Q represents mass% and includes inevitable impurities)
The RH is 5% by mass or less of the R-T-B system sintered magnet,
0.3 ≦ x ≦ 1.5,
0.07 ≦ y ≦ 0.2,
0.05 ≦ z ≦ 0.5
0 ≦ q ≦ 0.1,
When the oxygen content (mass%) of the RTB-based sintered magnet is α, the nitrogen content (mass%) is β, and the carbon content (mass%) is γ, v = u− (6α + 10β + 8γ) , V, w
50w-18.5 ≦ v ≦ 50w-16.25,
−12.5w + 38.75 ≦ v ≦ −62.5w + 86.125,
Is an RTB-based sintered magnet.
本発明により、DyやTbの含有量を抑制しつつ、高いBrと高いHcJを有するR−T−B系焼結磁石を提供することができる。 The present invention, while suppressing the content of Dy and Tb, it is possible to provide a R-T-B based sintered magnet having a high B r and high H cJ.
本発明者らは、上記問題を解決するために鋭意検討を重ねた結果、前記本発明の態様1または態様2に示す式で表される組成とすることにより、高いBrと高いHcJを有するR−T−B系焼結磁石が得られることを見出したものである。すなわち、本発明は、態様1または態様2に示す特定の割合で、R、B、In、Cu、Al、および必要に応じてMを含有させたR−T−B系焼結磁石である。
The present inventors have made intensive studies in order to solve the above problems, by a composition represented by the formula shown in
本発明の態様1または態様2に示す特定の割合の組成とすることにより、高いBrと高いHcJを有するR−T−B系焼結磁石が得られるメカニズムについては未だ不明な点もある。現在までに得られている知見を基に本発明者らが考えるメカニズムについて以下に説明する。以下のメカニズムについての説明は本発明の技術的範囲を制限することを目的とするものではないことに留意されたい。
With the composition of the particular proportions shown in
R−T−B系焼結磁石は、主相であるR2T14B型化合物の存在比率を高めることによりBrを向上させることができる。R2T14B型化合物の存在比率を高めるためには、R量、T量、B量をR2T14B型化合物の化学量論比に近づければよいが、R2T14B型化合物を形成するためのB量が化学量論比を下回ると、粒界に軟磁性のR2T17相が析出しHcJが急激に低下する。しかし、磁石組成にGaが含有されていると、R2T17相の代わりにR−T−Ga相が生成され、HcJの低下を防止することができる。 R-T-B based sintered magnet can be improved B r by increasing the existence ratio of R 2 T 14 B type compound as the main phase. To increase the abundance ratio of the R 2 T 14 B type compound is, R amount, T amounts, although the B amount should brought close to the stoichiometric ratio of R 2 T 14 B type compound, R 2 T 14 B-type When the amount of B for forming the compound is lower than the stoichiometric ratio, a soft magnetic R 2 T 17 phase is precipitated at the grain boundary, and H cJ is rapidly decreased. However, when Ga is contained in the magnet composition, an R—T—Ga phase is generated instead of the R 2 T 17 phase, and a decrease in H cJ can be prevented.
しかし、本発明者らが検討の結果、Gaの代わりにInを用いてもGaを用いた場合と同様に、R2T17相の代わりにR−T−In相が生成され、HcJの低下を防止できることが分かった。さらに、R−T−In相は若干の磁性を有しているので、R−T−B系焼結磁石における粒界、特に主にHcJに影響すると考えられる二つの主相間に存在する粒界(以下、二粒子粒界と記載する場合がある)にR−T−In相が多く存在すると、HcJ向上の妨げになっていることが分かった。また、R−T−In相の生成とともに、二粒子粒界にR−In相およびR−In−Cu相が生成されていることが分かった。そこで、本発明者らは、R−T−B系焼結磁石の二粒子粒界にR−In相およびR−In−Cu相が存在することによりHcJが向上すると想定した。また、R−In相およびR−In−Cu相を生成させるため、さらにはR2T17相を無くすためにはR−T−In相を生成させる必要はあるものの、高いHcJを得るにはその生成量を低く抑える必要があると想定した。そして、特に二粒子粒界において、R−In相およびR−In−Cu相を生成させつつ、R−T−In相の生成を極力抑えることができれば、さらにHcJを向上させることができると想定した。 However, as a result of the study by the present inventors, even when In is used instead of Ga, an R—T—In phase is generated instead of the R 2 T 17 phase as in the case of using Ga, and H cJ It was found that the decrease can be prevented. Further, since the R-T-In phase has some magnetism, the grain boundary in the R-T-B system sintered magnet, particularly the grains existing between two main phases that are considered to mainly affect HcJ. It was found that the presence of a large amount of RT-In phase at the boundary (hereinafter sometimes referred to as a two-grain grain boundary) hinders the improvement of HcJ . Further, it was found that an R-In phase and an R-In-Cu phase were generated at the grain boundary along with the generation of the R-T-In phase. Therefore, the present inventors assumed that HcJ is improved by the presence of the R-In phase and the R-In-Cu phase at the two-particle grain boundary of the RTB -based sintered magnet. In addition, in order to generate the R—In phase and the R—In—Cu phase, and in order to eliminate the R 2 T 17 phase, it is necessary to generate the R—T—In phase, but to obtain a high H cJ. Assumed that it was necessary to keep the production amount low. If the generation of the R-T-In phase can be suppressed as much as possible while generating the R-In phase and the R-In-Cu phase, especially at the two-grain grain boundary, the HcJ can be further improved. Assumed.
R−T−B系焼結磁石において、R−T−In相の生成量を低く抑えるためには、R量とB量とを適切な範囲にすることによってR2T17相の生成量を低くするとともに、R量とIn量をR2T17相の生成量に応じた最適な範囲にする必要がある。しかし、Rの一部はR−T−B系焼結磁石の製造過程において酸素、窒素、炭素と結合し消費されてしまうため、R2T17相やR−T−In相に使われる実際のR量は製造過程で変化してしまう。そのため、R−T−In相を生成させつつ、その生成量を低く抑えるために、R量の調整によりR2T17相やR−T−In相の生成量を抑制することは困難であることがわかった。本発明者らは、検討を重ねた結果、前記態様1または態様2に記載のように、R量(u)からR−T−B系焼結磁石における酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき6α+10β+8γを差し引いた値(v)を用いることにより、R2T17相やR−T−In相の生成量を調整することが可能であることを知見した。そして、R量(u)から6α+10β+8γを差し引いた値(v)とBとInとCuとAlを特定の割合で含有させれば、高いBrと高いHcJが得られることがわかった。これにより、R−T−B系焼結磁石全体において二粒子粒界にR−In相およびR−In−Cu相が存在し、さらに、R−T−In相がほとんど存在しない二粒子粒界が多く存在するという組織を得ることができると考えられる。このような組織が得られることでR−T−In相によるHcJ低下が抑えられ、さらに、R−T−In相の生成量を抑えた結果、R量やB量を主相の存在比率を大幅に低下させない程度にすることができるため、高いBrを得ることができると考えられる。特許文献1に記載の技術ではR量に関し、酸素量、窒素量、炭素量を考慮していないため、R2T17相やR−T−In相の生成量を抑制することは困難である。そもそも、特許文献1に記載の技術はR−T−Ga相の生成を促進することによってHcJを向上させるものであり、R−T−Ga(In)相の生成量を抑制するという技術思想はない。よって、特許文献1はR−T−Ga相の原料となるR2T17相の生成を促進するためにB量を従来よりも低くするとともに、R−T−Ga相の生成を促進するためにR量を多くする必要があるため、主相の存在比率が大きく低下して高いBrが得られていないと考えられる。
In the R-T-B system sintered magnet, in order to keep the production amount of the R-T-In phase low, the production amount of the R 2 T 17 phase is reduced by setting the R amount and the B amount in an appropriate range. In addition to lowering, it is necessary to set the R amount and the In amount within an optimum range according to the amount of R 2 T 17 phase generated. However, since a part of R is consumed by combining with oxygen, nitrogen and carbon in the manufacturing process of the RTB-based sintered magnet, it is actually used for the R 2 T 17 phase and the RT-In phase. The amount of R changes in the manufacturing process. Therefore, it is difficult to suppress the generation amount of the R 2 T 17 phase and the R-T-In phase by adjusting the R amount in order to suppress the generation amount while generating the R-T-In phase. I understood it. As a result of repeated studies, the inventors have changed the amount of oxygen (mass%) in the R-T-B system sintered magnet from the amount of R (u) to α, nitrogen as described in
[R−T−B系焼結磁石]
本発明は、式 uRwBxInyCuzAlqM(100−u−w−x−y−z−q)T(Rは軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDyおよび/またはTbであり、TはFeでありFeの10%以下をCoで置換でき、MはNbおよび/またはZrであり、u、w、x、y、z、q及び100−u−w−x−y−z−qは質量%を示し、不可避的不純物を含む)によって表わされ、
前記RHはR−T−B系焼結磁石の5質量%以下であり、
0.3≦x≦1.5、
0.07≦y≦0.2、
0.05≦z≦0.5、
0≦q≦0.1であり、
R−T−B系焼結磁石の酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u−(6α+10β+8γ)であって、v、wが、
50w−18.5≦v≦50w−14、
−12.5w+38.75≦v≦−62.5w+86.125、
を満足することを特徴とするR−T−B系焼結磁石、
あるいは、
式 uRwBxInyCuzAlqM(100−u−w−x−y−z−q)T(Rは軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDyおよび/またはTbであり、TはFeでありFeの10%以下をCoで置換でき、MはNbおよび/またはZrであり、u、w、x、y、z、q及び100−u−w−x−y−z−qは質量%を示し、不可避的不純物を含む)によって表わされ、
前記RHはR−T−B系焼結磁石の5質量%以下であり、
0.3≦x≦1.5、
0.07≦y≦0.2、
0.05≦z≦0.5、
0≦q≦0.1であり、
R−T−B系焼結磁石の酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u−(6α+10β+8γ)であって、v、wが、
50w−18.5≦v≦50w−16.25、
−12.5w+38.75≦v≦−62.5w+86.125、
を満足することを特徴とするR−T−B系焼結磁石、
である。
本発明のR−T−B系焼結磁石は不可避的不純物を含む。例えば、ジジム合金(Nd−Pr)、電解鉄、フェロボロンなどに通常含有される不可避的不純物を含有していても本発明の効果を奏することができる。不可避的不純物として例えば、La、Ce、Cr、Mn、Siなどを微量に含む。
[RTB-based sintered magnet]
The present invention has the formula uRwBxInyCuzAlqM (100-u-w-x-yz-q) T, where R is a light rare earth element RL and a heavy rare earth element RH, where RL is Nd and / or Pr, RH is Dy and / Or Tb, T is Fe and up to 10% of Fe can be replaced by Co, M is Nb and / or Zr, u, w, x, y, z, q and 100-u-w-x -Y-z-q represents% by mass and contains inevitable impurities)
The RH is 5% by mass or less of the R-T-B system sintered magnet,
0.3 ≦ x ≦ 1.5,
0.07 ≦ y ≦ 0.2,
0.05 ≦ z ≦ 0.5,
0 ≦ q ≦ 0.1,
When the oxygen content (mass%) of the RTB-based sintered magnet is α, the nitrogen content (mass%) is β, and the carbon content (mass%) is γ, v = u− (6α + 10β + 8γ) , V, w
50w-18.5 ≦ v ≦ 50w-14,
−12.5w + 38.75 ≦ v ≦ −62.5w + 86.125,
R-T-B system sintered magnet characterized by satisfying
Or
Formula uRwBxInyCuzAlqM (100-u-w-xy-z-q) T (R is composed of light rare earth element RL and heavy rare earth element RH, RL is Nd and / or Pr, RH is Dy and / or Tb , T is Fe and up to 10% of Fe can be replaced by Co, M is Nb and / or Zr, u, w, x, y, z, q and 100-u-wxyz -Q represents mass% and includes inevitable impurities)
The RH is 5% by mass or less of the R-T-B system sintered magnet,
0.3 ≦ x ≦ 1.5,
0.07 ≦ y ≦ 0.2,
0.05 ≦ z ≦ 0.5,
0 ≦ q ≦ 0.1,
When the oxygen content (mass%) of the RTB-based sintered magnet is α, the nitrogen content (mass%) is β, and the carbon content (mass%) is γ, v = u− (6α + 10β + 8γ) , V, w
50w-18.5 ≦ v ≦ 50w-16.25,
−12.5w + 38.75 ≦ v ≦ −62.5w + 86.125,
R-T-B system sintered magnet characterized by satisfying
It is.
The RTB-based sintered magnet of the present invention contains inevitable impurities. For example, the effect of the present invention can be achieved even if it contains inevitable impurities normally contained in didymium alloy (Nd—Pr), electrolytic iron, ferroboron, and the like. Inevitable impurities include, for example, trace amounts of La, Ce, Cr, Mn, Si and the like.
本発明は、R−T−B系焼結磁石を上記式で表される組成にすることにより、高いBrと高いHcJが得られるという効果を奏することができる。以下に詳述する。 The present invention can achieve the effect that by the R-T-B based sintered magnet composition represented by the above formula, a high B r and high H cJ are obtained. This will be described in detail below.
本発明のR−T−B系焼結磁石におけるRは、軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDyおよび/またはTbであり、RHはR−T−B系焼結磁石の5質量%以下である。本発明は重希土類元素を使用しなくても高いBrと高いHcJを得ることができるため、より高いHcJを求められる場合でもRHの添加量を削減できる。TはFeでありFeの10%以下をCoで置換できる。Bはボロンである。 R in the RTB-based sintered magnet of the present invention is composed of a light rare earth element RL and a heavy rare earth element RH, RL is Nd and / or Pr, RH is Dy and / or Tb, and RH is R- It is 5 mass% or less of a TB type sintered magnet. Because the present invention can obtain a high B r and high H cJ without using a heavy rare-earth element, it can be reduced the amount of RH even be asked a higher H cJ. T is Fe, and 10% or less of Fe can be substituted with Co. B is boron.
Inは、0.3質量%以上1.5質量%以下含有させることが好ましい。Inの含有量が0.3質量%未満であると、R−T−In相の生成量が少なすぎて、R2T17相を無くすことができず、R−T−B系焼結磁石全体において、二粒子粒界にR−In相およびR−In−Cu相が充分に生成されなくなるため、高いHcJを得ることができない。Inの含有量が1.5質量%を超えると、不要なInが存在することになり、主相の存在比率が低下してBrが低下する恐れがある。 In is preferably contained in an amount of 0.3% by mass to 1.5% by mass. If the content of In is less than 0.3% by mass, the amount of R-T-In phase produced is too small to eliminate the R2T17 phase, and in the entire R-T-B system sintered magnet, Since the R—In phase and the R—In—Cu phase are not sufficiently generated at the two grain boundaries, high HcJ cannot be obtained. When the content of In is more than 1.5 wt%, will be unnecessary In the presence, abundance ratio of the main phase may be decreased is B r drops.
Cuは、0.07質量%以上0.2質量%以下含有させることが好ましい。Cuの含有量が0.07質量%未満であると、二粒子粒界にR−In相およびR−In−Cu相が生成され難くなり、高いHcJが得られない恐れがある。また、0.2質量%を超えると、Cuの含有量が多すぎるため、焼結ができなくなる恐れがある。Cuの含有量は、0.08質量%以上0.15質量%以下がさらに好ましい。 It is preferable to contain Cu 0.07 mass% or more and 0.2 mass% or less. If the Cu content is less than 0.07% by mass, the R—In phase and the R—In—Cu phase are hardly generated at the two-grain grain boundaries, and high HcJ may not be obtained. Moreover, when it exceeds 0.2 mass%, since there is too much content of Cu, there exists a possibility that it becomes impossible to sinter. The Cu content is more preferably 0.08% by mass or more and 0.15% by mass or less.
更に、通常含有される程度のAl(0.05質量%以上0.5質量%以下)を含有する。Alを含有することにより、HcJを向上させることができる。Alは通常、製造工程で不可避的不純物として0.05質量%以上含有されるが、不可避的不純物で含有される量と意図的に添加した量の合計で0.5質量%以下含有してもよい。 Furthermore, Al (0.05 mass% or more and 0.5 mass% or less) of the grade normally contained is contained. By containing Al, HcJ can be improved. Al is usually contained in an amount of 0.05% by mass or more as an inevitable impurity in the production process, but it may be contained in an amount of 0.5% by mass or less in total of the amount contained by the inevitable impurity and the amount intentionally added. Good.
また、一般的に、R−T−B系焼結磁石において、Nbおよび/またはZrを含有することにより焼結時における結晶粒の異常粒成長が抑制されることが知られている。本発明においても、Nbおよび/またはZrを合計で0.1質量%以下含有してもよい。Nbおよび/またはZrの含有量が合計で0.1質量%を超えると不要なNbやZrが存在することにより、主相の体積比率が低下してBrが低下する恐れがある。 In general, it is known that an RTB-based sintered magnet contains Nb and / or Zr to suppress abnormal grain growth during sintering. Also in the present invention, Nb and / or Zr may be contained in a total amount of 0.1% by mass or less. By the content of Nb and / or Zr is present unwanted Nb and Zr exceeds 0.1 mass% in total, there is a possibility that the volume ratio of the main phase is lowered B r drops.
また、本発明における酸素量(質量%)、窒素量(質量%)、炭素量(質量%)は、R−T−B系焼結磁石における含有量であり、酸素量は、ガス融解−赤外線吸収法、窒素量は、ガス融解−熱伝導法、炭素量は、燃焼−赤外線吸収法、によるガス分析装置を使用して測定することができる。本発明は、R量(u)から酸素、窒素、炭素と結合し消費された量を以下に説明する方法により差し引いた値(v)を使用する。これによりR2T17相やR−T−In相の生成量を調整することが可能となる。前記vは、酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしてR量(u)から6α+10β+8γを差し引くことにより求める。6αは、不純物として主にR2O3の酸化物が生成されるとして、酸素のおよそ6倍の質量のRが酸化物として消費されることから規定したものである。10βは、主にRNの窒化物が生成されるとして、窒素のおよそ10倍の質量のRが窒化物として消費されることから規定したものである。8γは、主にR2C3の炭化物が生成されるとして、炭素のおよそ8倍の質量のRが炭化物として消費されることから規定したものである。 Moreover, the oxygen content (mass%), the nitrogen content (mass%), and the carbon content (mass%) in the present invention are the contents in the RTB-based sintered magnet, and the oxygen content is gas melting-infrared radiation. The absorption method, the nitrogen amount can be measured by using a gas analyzer by a gas melting-heat conduction method, and the carbon amount can be measured by a combustion-infrared absorption method. The present invention uses a value (v) obtained by subtracting the amount consumed by combining with oxygen, nitrogen and carbon from the amount of R (u) by the method described below. This makes it possible to adjust the amount of R 2 T 17 phase and R-T-In phase generated. The v is determined by subtracting 6α + 10β + 8γ from the R amount (u), where α is the oxygen amount (% by mass), β is the nitrogen amount (% by mass), and γ is the carbon amount (% by mass). 6α is defined because R having a mass approximately six times that of oxygen is consumed as an oxide, assuming that an oxide of R 2 O 3 is mainly produced as an impurity. 10β is defined by the fact that R having a mass approximately 10 times that of nitrogen is consumed as nitride, assuming that RN nitride is mainly produced. 8γ is defined because R, which is approximately eight times the mass of carbon, is consumed as carbides, assuming that R 2 C 3 carbides are mainly produced.
R−T−B系焼結磁石の酸素量は、0.15質量%以下が好ましい。vは酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしてR量から6α+10β+8γを差し引いた値であるため、例えば、酸素量αが多い場合は、原料合金の段階におけるR量を多くしておく必要がある。特に、後述する図1における本発明の領域1と2のうち領域1は、領域2と比べて相対的にvが高いため、酸素量αが多い場合、原料合金の段階におけるR量が非常に多くなる恐れがある。これによって主相の存在比率が低くなりBrが低下する恐れがあるため、特に、図1の本発明の領域1においては、酸素量は0.15質量%以下が好ましい。
The amount of oxygen in the RTB-based sintered magnet is preferably 0.15% by mass or less. v is a value obtained by subtracting 6α + 10β + 8γ from the R amount, assuming that the oxygen amount (mass%) is α, the nitrogen amount (mass%) is β, and the carbon amount (mass%) is γ. It is necessary to increase the amount of R in the raw material alloy stage. In particular, among
更に、本発明はvとwを以下の関係とする。
50w−18.5≦v≦50w−14、
−12.5w+38.75≦v≦−62.5w+86.125、
図1に上記関係で含有させたvとwの本発明の範囲を示す。図1中のvは、R量(u)から酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとして6α+10β+8γを差し引いた値であり、wは、B量の値である。50w−18.5≦v≦50w−14は図1の点Aと点Bを含む直線と点Cと点Dを含む直線に挟まれた範囲であり、−12.5w+38.75≦v≦−62.5w+86.125は点Dと点Fと点Bと点Gを含む直線と点Cと点Eと点Aと点Gを含む直線に挟まれた範囲である。そしてこの両方を満たす領域1と2(点Aと点Bと点Dと点Cで囲まれる領域)が本発明の範囲である。vとwを領域1と2の範囲にすることにより、高いBrと高いHcJを得ることができる。領域1と2の範囲からはずれた領域10(点Dと点Fと点Bと点Gを含む直線から図中下の領域)は、wに対してvが少なすぎるためR−T−In相の生成量が少なくなり、R2T17相を無くすことができなかったり、R−In相およびR−In−Cu相の生成量が少なくなると考えられる。これにより、高いHcJが得られない。逆に、領域1と2の範囲から外れた領域20(点Cと点Eと点Aと点Gを含む直線から図中上の領域)は、wに対してvが多すぎるため、相対的にFe量が不足する。Fe量が不足するとRおよびBが余ることになり、その結果R−T−In相が生成されずにR1Fe4B4相が生成され易くなると考えられる。これによりR−In相およびR−In−Cu相の生成量も少なくなり、高いHcJが得られない。さらに、領域1と2の範囲からはずれた領域30(点Cと点Dを含む直線から図中上の領域)は、vが多すぎてwが少なすぎるため、R−T−In相やR−In相およびR−In−Cu相は生成されるが、主相の存在比率が低くなり、高いBrが得られない。さらに領域1と2の範囲からはずれた領域40(点Cと点Dと点Gで囲まれる領域から領域1と2を除いた領域)は、Rが少なくてBが多すぎるため、主相の存在比率は高いが、R−T−In相がほとんど生成されず、R−In相およびR−In−Cu相の生成量も少なくなるため高いHcJが得られない。
Further, in the present invention, v and w are related as follows.
50w-18.5 ≦ v ≦ 50w-14,
−12.5w + 38.75 ≦ v ≦ −62.5w + 86.125,
FIG. 1 shows the scope of the present invention of v and w contained in the above relationship. In FIG. 1, v is a value obtained by subtracting 6α + 10β + 8γ from the R amount (u), where the oxygen amount (% by mass) is α, the nitrogen amount (% by mass) is β, and the carbon amount (% by mass) is γ. , B value. 50w-18.5 ≦ v ≦ 50w-14 is a range between the straight line including point A and point B and the straight line including point C and point D in FIG. 1, and is −12.5w + 38.75 ≦ v ≦ −. 62.5w + 86.125 is a range sandwiched between a straight line including point D, point F, point B, and point G, and a straight line including point C, point E, point A, and
更に好ましくは、本発明は、vとwを以下の関係とする。
50w−18.5≦v≦50w−16.25、
−12.5w+38.75≦v≦−62.5w+86.125
図1に上記関係で含有させたvとwの本発明の範囲を示す。50w−18.5≦v≦50w−16.25は点Aと点Bを含む直線と点Eと点Fを含む直線に挟まれた範囲であり、−12.5w+38.75≦v≦−62.5w+86.125は点Dと点Fと点Bと点Gを含む直線と点Cと点Eと点Aと点Gを含む直線に挟まれた範囲である。そしてこの両方を満たす領域2(点Aと点Bと点Fと点Eで囲まれる領域)が本発明の範囲である。上記範囲とすることにより、R−T−In相の生成量を確保しつつ、vを低く、wを高くすることができるため、主相の存在比率が低くならず、より高いBrを得ることができる。
More preferably, in the present invention, v and w have the following relationship.
50w-18.5 ≦ v ≦ 50w-16.25,
−12.5w + 38.75 ≦ v ≦ −62.5w + 86.125
FIG. 1 shows the scope of the present invention of v and w contained in the above relationship. 50w-18.5 ≦ v ≦ 50w-16.25 is a range sandwiched between a straight line including point A and point B and a straight line including point E and point F, and −12.5w + 38.75 ≦ v ≦ −62. .5w + 86.125 is a range sandwiched between a straight line including point D, point F, point B, and point G, and a straight line including point C, point E, point A, and point G. And the area | region 2 (area | region enclosed by the point A, the point B, the point F, and the point E) which satisfy | fills both is the range of this invention. By setting the above range, v can be lowered and w can be increased while securing the amount of R—T—In phase generated, so that the main phase abundance ratio is not lowered and a higher Br is obtained. be able to.
本発明において、R−T−In相とは、R15質量%以上65質量%以下、T20質量%以上80質量%以下、In2質量%以上20質量%以下を含むものであって、例えばR6Fe13In1化合物が挙げられる。また、R−In相とは、R70質量%以上95質量%以下、In5質量%以上30質量%以下、T20質量%以下(0を含む)を含むものであって、例えばR3In1化合物が挙げられる。さらに、R−In−Cu相とは、前記R−In相のInの一部がCuで置換されたものであって、例えばR3(In,Cu)1化合物が挙げられる。
In the present invention, the R-T-In phase includes R 15 mass% to 65 mass%,
[R−T−B系焼結磁石の製造方法]
本発明のR−T−B系焼結磁石の製造方法の一例を説明する。R−T−B系焼結磁石の製造方法は、合金粉末を得る工程、成形工程、焼結工程、熱処理工程を有する。以下、各工程について説明する。
[Method for producing RTB-based sintered magnet]
An example of the manufacturing method of the RTB system sintered magnet of this invention is demonstrated. The manufacturing method of a RTB system sintered magnet has a process of obtaining alloy powder, a forming process, a sintering process, and a heat treatment process. Hereinafter, each step will be described.
(1)合金粉末を得る工程
所定の組成となるようにそれぞれの元素の金属または合金を準備し、これらをストリップキャスティング法等を用いてフレーク状の合金を製造する。得られたフレーク状の原料合金を水素粉砕し、粗粉砕粉のサイズを例えば1.0mm以下とする。次に、粗粉砕粉をジェットミル等により微粉砕することで、例えば粒径D50(気流分散法によるレーザー回折法で得られた体積基準メジアン径)が3〜7μmの微粉砕粉(合金粉末)を得る。なお、ジェットミル粉砕前の粗粉砕粉、ジェットミル粉砕中およびジェットミル粉砕後の合金粉末に助剤として公知の潤滑剤を使用してもよい。
(1) Step of obtaining alloy powder A metal or alloy of each element is prepared so as to have a predetermined composition, and a flaky alloy is manufactured using the strip casting method or the like. The obtained flaky raw material alloy is hydrogen pulverized so that the size of the coarsely pulverized powder is 1.0 mm or less, for example. Next, the coarsely pulverized powder is finely pulverized by a jet mill or the like, for example, finely pulverized powder (alloy powder) having a particle diameter D50 (volume-based median diameter obtained by a laser diffraction method by an air flow dispersion method) of 3 to 7 μm. Get. A known lubricant may be used as an auxiliary agent for the coarsely pulverized powder before jet mill pulverization and the alloy powder during and after jet mill pulverization.
(2)成形工程
得られた合金粉末を用いて磁界中成形を行い、成形体を得る。磁界中成形は、金型のキャビティー内に乾燥した合金粉末を挿入し、磁界を印加しながら成形する乾式成形法、金型のキャビティー内にスラリーを注入し、スラリーの分散媒を排出しながら成形する湿式成形法を含む既知の任意の磁界中成形方法を用いてよい。
(2) Forming step Using the obtained alloy powder, forming in a magnetic field is performed to obtain a formed body. Molding in a magnetic field is a dry molding method in which a dry alloy powder is inserted into a mold cavity and molding is performed while a magnetic field is applied. The slurry is injected into the mold cavity and the slurry dispersion medium is discharged. Any known forming method in a magnetic field may be used, including a wet forming method.
(3)焼結工程
成形体を焼結することにより焼結磁石を得る。成形体の焼結は公知の方法を用いることができる。なお、焼結時の雰囲気による酸化を防止するために、焼結は真空雰囲気中または雰囲気ガス中で行うことが好ましい。雰囲気ガスは、ヘリウム、アルゴンなどの不活性ガスを用いることが好ましい。
(3) Sintering process A sintered magnet is obtained by sintering a molded object. A well-known method can be used for sintering of a molded object. In addition, in order to prevent the oxidation by the atmosphere at the time of sintering, it is preferable to perform sintering in a vacuum atmosphere or atmospheric gas. The atmosphere gas is preferably an inert gas such as helium or argon.
(4)熱処理工程
得られた焼結磁石に対し、磁気特性を向上させることを目的とした熱処理を行うことが好ましい。熱処理温度、熱処理時間などは公知の条件を採用することができる。得られた焼結磁石に磁石寸法の調整のため、研削などの機械加工を施してもよい。その場合、熱処理は機械加工前でも機械加工後でもよい。さらに、得られた焼結磁石に、表面処理を施してもよい。表面処理は、公知の表面処理で良く、例えばAl蒸着や電気Niめっきや樹脂塗装などの表面処理を行うことができる。
(4) Heat treatment process It is preferable to perform the heat processing for the purpose of improving a magnetic characteristic with respect to the obtained sintered magnet. Known conditions can be adopted for the heat treatment temperature, the heat treatment time, and the like. The obtained sintered magnet may be subjected to machining such as grinding in order to adjust the magnet dimensions. In that case, the heat treatment may be performed before or after machining. Furthermore, you may surface-treat to the obtained sintered magnet. The surface treatment may be a known surface treatment, and for example, a surface treatment such as Al vapor deposition, electric Ni plating, or resin coating can be performed.
本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
Ndメタル、Prメタル、Dyメタル、Tbメタル、フェロボロン合金、電解Co、Alメタル、Cuメタル、Inメタル、フェロニオブ合金、フェロジルコニウム合金および電解鉄を用いて(メタルはいずれも純度99%以上)、所定の組成となるように配合し、それらの原料を溶解してストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金に水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粉砕時に窒素ガスに大気を混合することにより粉砕時の窒素ガス中の酸素濃度を調節した。大気を混合しない場合の粉砕時の窒素ガス中の酸素濃度は50ppm以下であり、大気を混合することで窒素ガス中の酸素濃度を最大4100ppmまで増加させ、様々な酸素量の微粉砕粉を作製した。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積基準メジアン径である。また、表1におけるO(酸素量)はガス融解−赤外線吸収法、N(窒素量)はガス融解−熱伝導法、C(炭素量)は燃焼−赤外線吸収法、によるガス分析装置を使用して測定した。 Using Nd metal, Pr metal, Dy metal, Tb metal, ferroboron alloy, electrolytic Co, Al metal, Cu metal, In metal, ferroniobium alloy, ferrozirconium alloy and electrolytic iron (all metals have a purity of 99% or more) It mix | blended so that it might become a predetermined | prescribed composition, those raw materials were melt | dissolved, and it casted by the strip cast method, and obtained the flaky raw material alloy of thickness 0.2-0.4mm. The obtained flaky raw material alloy was hydrogen embrittled in a hydrogen-pressurized atmosphere, and then subjected to a dehydrogenation treatment in which it was heated and cooled in vacuum to 550 ° C. to obtain coarsely pulverized powder. Next, after adding and mixing 0.04% by mass of zinc stearate as a lubricant with respect to 100% by mass of the coarsely pulverized powder, the resulting coarsely pulverized powder was mixed with an airflow pulverizer (jet mill device). Then, dry pulverization was performed in a nitrogen stream to obtain finely pulverized powder (alloy powder) having a particle diameter D50 of 4 μm. Note that the oxygen concentration in the nitrogen gas during pulverization was adjusted by mixing the atmosphere with nitrogen gas during pulverization. When the atmosphere is not mixed, the oxygen concentration in the nitrogen gas during pulverization is 50 ppm or less, and by mixing the air, the oxygen concentration in the nitrogen gas is increased to a maximum of 4100 ppm to produce finely pulverized powders with various oxygen amounts. did. The particle diameter D50 is a volume-based median diameter obtained by a laser diffraction method using an airflow dispersion method. In Table 1, O (oxygen amount) is a gas melting-infrared absorption method, N (nitrogen amount) is a gas melting-heat conduction method, and C (carbon amount) is a combustion-infrared absorption method. Measured.
前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100質量%に対して0.05質量%添加、混合した後、磁界中で成形し、成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。 To the finely pulverized powder, 0.05% by mass of zinc stearate as a lubricant was added to and mixed with 100% by mass of the finely pulverized powder, and then molded in a magnetic field to obtain a molded body. In addition, what was called a right-angle magnetic field shaping | molding apparatus (transverse magnetic field shaping | molding apparatus) in which the magnetic field application direction and the pressurization direction orthogonally crossed was used for the shaping | molding apparatus.
得られた成形体を、真空中、1020℃で4時間焼結した後急冷し、R−T−B系焼結磁石を得た。焼結磁石の密度は7.5Mg/m3以上であった。得られた焼結磁石の成分、ガス分析結果を表1に示す。得られた焼結体に、800℃で2時間保持した後室温まで冷却し、次いで500℃で2時間保持した後室温まで冷却する熱処理を施した。熱処理後の焼結磁石に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、B−Hトレーサによって各試料のBr及びHcJを測定した。測定結果を表2に示す。 The obtained compact was sintered in vacuum at 1020 ° C. for 4 hours and then rapidly cooled to obtain an RTB-based sintered magnet. The density of the sintered magnet was 7.5 Mg / m 3 or more. Table 1 shows the components and gas analysis results of the obtained sintered magnet. The obtained sintered body was held at 800 ° C. for 2 hours and then cooled to room temperature, and then held at 500 ° C. for 2 hours and then cooled to room temperature. By machining the sintered magnet after the heat treatment, vertical 7 mm, transverse 7 mm, to prepare a sample having a thickness of 7 mm, were measured B r and H cJ of the sample by B-H tracer. The measurement results are shown in Table 2.
表2におけるuは、表1におけるNd、Pr、Dy、Tbの量(質量%)を合計した値であり、vは、表1における酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき6α+10β+8γをuから差し引いた値である。wは、表1のB量をそのまま転記した。また、表2における領域は、vとwの割合が図1中のどの位置にあるか示したものであり、図1中の1の領域にある場合は1と、図1中の2の領域にある場合は2と記載した。さらに、図1中の1、2の領域以外にある場合はその位置に応じて10、20、30、40のいずれかを記載した。例えばNo.1は、vが28.3質量%であり、wが0.91質量%であるため図1中の2の領域である。そのため2と記載した。また、No.10は、vが29.4質量%であり、wが0.88質量%であるため図1中の1の領域である。そのため1と記載した。さらに、No.11は、vが29.9質量%であり、wが0.91質量%であるため図1中の20の領域である。よって20と記載した。
In Table 2, u is a value obtained by summing the amounts (mass%) of Nd, Pr, Dy, and Tb in Table 1, and v is the oxygen content (mass%) in Table 1 and the nitrogen content (mass%). Is the value obtained by subtracting 6α + 10β + 8γ from u, where β is β and the carbon content (% by mass) is γ. For w, the amount of B in Table 1 is directly transferred. The area in Table 2 indicates where the ratio of v and w is in FIG. 1. In the case of 1 area in FIG. 1, 1 and 2 area in FIG. In the case of 2. Furthermore, when it exists in the area | region other than 1 and 2 area | region in FIG. 1, any one of 10, 20, 30, 40 was described according to the position. For example, no. 1 is the
上述したように、本発明は、vとwを以下の割合で含有させる。
50w−18.5≦v≦50w−14、
−12.5w+38.75≦v≦−62.5w+86.125、
好ましくは、
50w−18.5≦v≦50w−16.25
−12.5w+38.75≦v≦−62.5w+86.125
当該割合で含有させた場合の前記vとwの範囲が図1中の1と2または2の領域に相当する。
As described above, the present invention contains v and w in the following proportions.
50w-18.5 ≦ v ≦ 50w-14,
−12.5w + 38.75 ≦ v ≦ −62.5w + 86.125,
Preferably,
50w-18.5 ≦ v ≦ 50w-16.25
−12.5w + 38.75 ≦ v ≦ −62.5w + 86.125
The range of v and w when contained in the proportion corresponds to the
表2に示す様に、原料合金にDy、Tbを含有していない場合、vとwの関係が本発明の領域(図1中の1と2の領域)に位置し、かつ、0.3≦In≦1.5、0.07≦Cu≦0.2、0.05≦Al≦0.5、0≦M(Nbおよび/またはZr)≦0.1である本発明(試料No.12、13以外の本発明)は、いずれもBr≧1.37T、かつ、HcJ≧1450kA/mの高い磁気特性を有している。これに対し、In、Cu、Alの量が本発明の範囲内であっても、vとwが本発明の範囲外(図1中の1または2以外の領域)となっている比較例(試料No.7、8、9、11)や、vとwが本発明の範囲内(図1中の1または2の領域)であってもIn、Cuの量が本発明の範囲外である比較例(試料No.4〜6)は、Br≧1.37T、かつ、HcJ≧1450kA/mの高い磁気特性が得られていない。
As shown in Table 2, when the raw material alloy does not contain Dy and Tb, the relationship between v and w is located in the region of the present invention (
原料合金にDy、Tbを含有する場合はDy、Tbの含有量に応じてBrが低下して、HcJが向上する。この場合、BrはDyやTbを1質量%含有すると0.024T程度減少する。HcJはDyが1質量%含有されると160kA/m程度、Tbが1質量%含有されると240kA/m程度上昇する。
そのため、本発明は、上述したように原料合金にDy、Tbを含有しない場合はBr≧1.37T、かつ、HcJ≧1450kA/mの磁気特性を有しているので、Dy、Tbの含有量に応じてBr(T)≧1.37−0.024Dy(質量%)−0.024Tb(質量%)、かつ、HcJ(kA/m)≧1450+160Dy(質量%)+240Tb(質量%)の磁気特性を有することになる。
Dy in the raw material alloy, if containing Tb is Dy, and B r decreases in accordance with the content of Tb, H cJ can be increased. In this case, B r decreases approximately 0.024T when containing 1 mass% of Dy and Tb. HcJ increases by about 160 kA / m when 1% by mass of Dy is contained, and increases by about 240 kA / m when 1% by mass of Tb is contained.
Therefore, the present invention has magnetic properties of B r ≧ 1.37T and H cJ ≧ 1450 kA / m when the raw material alloy does not contain Dy and Tb as described above. Depending on the content, B r (T) ≧ 1.37−0.024 Dy (mass%) − 0.024 Tb (mass%) and H cJ (kA / m) ≧ 1450 + 160 Dy (mass%) + 240 Tb (mass%) ) Magnetic properties.
表2に示すように、原料合金にDy、Tbを含有する本発明(試料No.12、13)は、いずれもBr(T)≧1.37−0.024Dy(質量%)−0.024Tb(質量%)、かつ、HcJ(kA/m)≧1450+160Dy(質量%)+240Tb(質量%)の高い磁気特性を有している。これに対し、比較例(試料No.14、15)は、いずれもBr(T)≧1.37−0.024Dy(質量%)−0.024Tb(質量%)、かつ、HcJ(kA/m)≧1450+160Dy(質量%)+240Tb(質量%)の高い磁気特性を有していない。 As shown in Table 2, in the present invention (sample Nos. 12 and 13) containing Dy and Tb in the raw material alloy, B r (T) ≧ 1.37−0.024 Dy (mass%)-0. It has high magnetic properties of 024 Tb (mass%) and H cJ (kA / m) ≧ 1450 + 160 Dy (mass%) + 240 Tb (mass%). In contrast, Comparative Example (Sample Nanba14,15) are both B r (T) ≧ 1.37-0.024Dy (wt%) - 0.024Tb (wt%), and, H cJ (kA / M) ≧ 1450 + 160 Dy (mass%) + 240 Tb (mass%).
さらに、表2に示すように、本発明において領域の1(図1中の1の領域)よりも領域の2(図1中の2の領域)の方が更に高いBr(原料合金にDy、Tbを含有しない場合Br≧1.38T、Dy、Tbを含有する場合、Br≧1.38T−0.024[Dy]−0.024[Tb])を得ることができる。なお、[Dy][Tb]は、それぞれDy、Tbの含有量(質量%)を示す。 Furthermore, as shown in Table 2, the 1 2 (1 region in FIG. 1) region than towards the (second region in FIG. 1) is higher B r (material alloy regions in the present invention Dy When Tb is not contained, B r ≧ 1.38T, and when Dy and Tb are contained, B r ≧ 1.38T−0.024 [Dy] −0.024 [Tb]) can be obtained. [Dy] [Tb] indicates the content (% by mass) of Dy and Tb, respectively.
本発明によるR−T−B系焼結磁石は、ハイブリッド自動車用や電気自動車用モータに好適に利用することができる。 The RTB-based sintered magnet according to the present invention can be suitably used for a hybrid vehicle motor or an electric vehicle motor.
Claims (3)
前記RHはR−T−B系焼結磁石の5質量%以下であり、
0.3≦x≦1.5、
0.07≦y≦0.2、
0.05≦z≦0.5、
0≦q≦0.1であり、
R−T−B系焼結磁石の酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u−(6α+10β+8γ)であって、v、wが、
50w−18.5≦v≦50w−14、
−12.5w+38.75≦v≦−62.5w+86.125、
を満足することを特徴とするR−T−B系焼結磁石。 Formula uRwBxInyCuzAlqM (100-u-w-xy-z-q) T (R is composed of light rare earth element RL and heavy rare earth element RH, RL is Nd and / or Pr, RH is Dy and / or Tb , T is Fe and up to 10% of Fe can be replaced by Co, M is Nb and / or Zr, u, w, x, y, z, q and 100-u-wxyz -Q represents mass% and includes inevitable impurities)
The RH is 5% by mass or less of the R-T-B system sintered magnet,
0.3 ≦ x ≦ 1.5,
0.07 ≦ y ≦ 0.2,
0.05 ≦ z ≦ 0.5,
0 ≦ q ≦ 0.1,
When the oxygen content (mass%) of the RTB-based sintered magnet is α, the nitrogen content (mass%) is β, and the carbon content (mass%) is γ, v = u− (6α + 10β + 8γ) , V, w
50w-18.5 ≦ v ≦ 50w-14,
−12.5w + 38.75 ≦ v ≦ −62.5w + 86.125,
R-T-B system sintered magnet characterized by satisfying
前記RHはR−T−B系焼結磁石の5質量%以下であり、
0.3≦x≦1.5、
0.07≦y≦0.2、
0.05≦z≦0.5、
0≦q≦0.1であり、
R−T−B系焼結磁石の酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u−(6α+10β+8γ)であって、v、wが、
50w−18.5≦v≦50w−16.25、
−12.5w+38.75≦v≦−62.5w+86.125、
を満足することを特徴とするR−T−B系焼結磁石。 Formula uRwBxInyCuzAlqM (100-u-w-xy-z-q) T (R is composed of light rare earth element RL and heavy rare earth element RH, RL is Nd and / or Pr, RH is Dy and / or Tb , T is Fe and up to 10% of Fe can be replaced by Co, M is Nb and / or Zr, u, w, x, y, z, q and 100-u-wxyz -Q represents mass% and includes inevitable impurities)
The RH is 5% by mass or less of the R-T-B system sintered magnet,
0.3 ≦ x ≦ 1.5,
0.07 ≦ y ≦ 0.2,
0.05 ≦ z ≦ 0.5,
0 ≦ q ≦ 0.1,
When the oxygen content (mass%) of the RTB-based sintered magnet is α, the nitrogen content (mass%) is β, and the carbon content (mass%) is γ, v = u− (6α + 10β + 8γ) , V, w
50w-18.5 ≦ v ≦ 50w-16.25,
−12.5w + 38.75 ≦ v ≦ −62.5w + 86.125,
R-T-B system sintered magnet characterized by satisfying
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013243498A JP6229938B2 (en) | 2013-11-26 | 2013-11-26 | R-T-B sintered magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013243498A JP6229938B2 (en) | 2013-11-26 | 2013-11-26 | R-T-B sintered magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015103681A true JP2015103681A (en) | 2015-06-04 |
JP6229938B2 JP6229938B2 (en) | 2017-11-15 |
Family
ID=53379156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013243498A Active JP6229938B2 (en) | 2013-11-26 | 2013-11-26 | R-T-B sintered magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6229938B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107134337A (en) * | 2017-04-05 | 2017-09-05 | 东莞市嘉达磁电制品有限公司 | A kind of plus Tb does N45H NdFeB material formula |
WO2021244312A1 (en) * | 2020-06-01 | 2021-12-09 | 厦门钨业股份有限公司 | Neodymium-iron-boron magnet material, raw material composition, and preparation method and application of neodymium-iron-boron magnet material |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07240308A (en) * | 1995-01-27 | 1995-09-12 | Toshiba Corp | Rare-earth-fe permanent magnet |
JPH10199717A (en) * | 1996-12-27 | 1998-07-31 | Daido Steel Co Ltd | Anisotropic magnet and its manufacturing method |
JP2003510467A (en) * | 1999-09-24 | 2003-03-18 | バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Nd-Fe-B alloy containing less boron and method for producing permanent magnet made of the alloy |
WO2005015580A1 (en) * | 2003-08-12 | 2005-02-17 | Neomax Co., Ltd. | R-t-b sintered magnet and rare earth alloy |
JP2008264875A (en) * | 2007-04-16 | 2008-11-06 | Grirem Advanced Materials Co Ltd | Rare earth alloy cast sheet and method for producing the same |
WO2009122709A1 (en) * | 2008-03-31 | 2009-10-08 | 日立金属株式会社 | R-t-b-type sintered magnet and method for production thereof |
WO2009150843A1 (en) * | 2008-06-13 | 2009-12-17 | 日立金属株式会社 | R-t-cu-mn-b type sintered magnet |
WO2013008756A1 (en) * | 2011-07-08 | 2013-01-17 | 昭和電工株式会社 | Alloy for r-t-b-based rare earth sintered magnet, process for producing alloy for r-t-b-based rare earth sintered magnet, alloy material for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet, process for producing r-t-b-based rare earth sintered magnet, and motor |
WO2015022946A1 (en) * | 2013-08-12 | 2015-02-19 | 日立金属株式会社 | R-t-b sintered magnet and method for producing r-t-b sintered magnet |
-
2013
- 2013-11-26 JP JP2013243498A patent/JP6229938B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07240308A (en) * | 1995-01-27 | 1995-09-12 | Toshiba Corp | Rare-earth-fe permanent magnet |
JPH10199717A (en) * | 1996-12-27 | 1998-07-31 | Daido Steel Co Ltd | Anisotropic magnet and its manufacturing method |
JP2003510467A (en) * | 1999-09-24 | 2003-03-18 | バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Nd-Fe-B alloy containing less boron and method for producing permanent magnet made of the alloy |
WO2005015580A1 (en) * | 2003-08-12 | 2005-02-17 | Neomax Co., Ltd. | R-t-b sintered magnet and rare earth alloy |
JP2008264875A (en) * | 2007-04-16 | 2008-11-06 | Grirem Advanced Materials Co Ltd | Rare earth alloy cast sheet and method for producing the same |
WO2009122709A1 (en) * | 2008-03-31 | 2009-10-08 | 日立金属株式会社 | R-t-b-type sintered magnet and method for production thereof |
WO2009150843A1 (en) * | 2008-06-13 | 2009-12-17 | 日立金属株式会社 | R-t-cu-mn-b type sintered magnet |
WO2013008756A1 (en) * | 2011-07-08 | 2013-01-17 | 昭和電工株式会社 | Alloy for r-t-b-based rare earth sintered magnet, process for producing alloy for r-t-b-based rare earth sintered magnet, alloy material for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet, process for producing r-t-b-based rare earth sintered magnet, and motor |
WO2015022946A1 (en) * | 2013-08-12 | 2015-02-19 | 日立金属株式会社 | R-t-b sintered magnet and method for producing r-t-b sintered magnet |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107134337A (en) * | 2017-04-05 | 2017-09-05 | 东莞市嘉达磁电制品有限公司 | A kind of plus Tb does N45H NdFeB material formula |
WO2021244312A1 (en) * | 2020-06-01 | 2021-12-09 | 厦门钨业股份有限公司 | Neodymium-iron-boron magnet material, raw material composition, and preparation method and application of neodymium-iron-boron magnet material |
Also Published As
Publication number | Publication date |
---|---|
JP6229938B2 (en) | 2017-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6406255B2 (en) | R-T-B system sintered magnet and method for manufacturing R-T-B system sintered magnet | |
JP6288076B2 (en) | R-T-B sintered magnet | |
JP6361813B2 (en) | Method for producing RTB-based sintered magnet | |
JP6288095B2 (en) | Method for producing RTB-based sintered magnet | |
WO2014157448A1 (en) | R-t-b-based sintered magnet | |
JP6090550B1 (en) | R-T-B system sintered magnet and manufacturing method thereof | |
JP6489201B2 (en) | Method for producing RTB-based sintered magnet | |
WO2016133067A1 (en) | Method for manufacturing r-t-b sintered magnet | |
WO2017159576A1 (en) | Method for manufacturing r-t-b based sintered magnet | |
WO2018180891A1 (en) | Method for manufacturing r-t-b-based sintered magnet | |
JP2019169542A (en) | Method for manufacturing r-t-b based sintered magnet | |
JP6541038B2 (en) | RTB based sintered magnet | |
JP2016184689A (en) | Method for producing r-t-b-based sintered magnet | |
JP6624455B2 (en) | Method for producing RTB based sintered magnet | |
JP6474043B2 (en) | R-T-B sintered magnet | |
JP6229938B2 (en) | R-T-B sintered magnet | |
JP2018174311A (en) | Method for manufacturing r-t-b based sintered magnet | |
JP2018125445A (en) | R-T-B based sintered magnet | |
JP6623998B2 (en) | Method for producing RTB based sintered magnet | |
JP6610957B2 (en) | Method for producing RTB-based sintered magnet | |
JP2019169697A (en) | Method for manufacturing r-t-b based sintered magnet | |
JP2018060997A (en) | Method for manufacturing r-t-b based sintered magnet | |
JP2021153109A (en) | Method for manufacturing r-t-b based sintered magnet | |
JP2019169560A (en) | Manufacturing method of r-t-b-based sintered magnet | |
JP7315889B2 (en) | Alloy for RTB Permanent Magnet and Method for Producing RTB Permanent Magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170922 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171005 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6229938 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |