JPH09318206A - Heat pump type air conditioner - Google Patents
Heat pump type air conditionerInfo
- Publication number
- JPH09318206A JPH09318206A JP13380696A JP13380696A JPH09318206A JP H09318206 A JPH09318206 A JP H09318206A JP 13380696 A JP13380696 A JP 13380696A JP 13380696 A JP13380696 A JP 13380696A JP H09318206 A JPH09318206 A JP H09318206A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- outdoor heat
- compressor
- way valve
- air conditioner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ヒートポンプ式空
気調和機に係わり、特に暖房運転時に蒸発器となる室外
熱交換器の除霜技術に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner, and more particularly, to a defrosting technique for an outdoor heat exchanger that serves as an evaporator during heating operation.
【0002】[0002]
【従来の技術】例えば、分離型のヒートポンプ式空気調
和機では、室内ユニットの室内熱交換器と室外ユニット
の室外熱交換器を冷媒配管で接続して冷媒を循環するよ
うになっている。このような熱交換器では、冷媒を通す
熱交換管が蛇行する如く配列されるとともに、これらの
熱交換管が貫通する熱交換用フィンを有して、伝熱面積
を大きくし熱交換効率を高めるように構成されている。2. Description of the Related Art For example, in a separation type heat pump type air conditioner, an indoor heat exchanger of an indoor unit and an outdoor heat exchanger of an outdoor unit are connected by a refrigerant pipe to circulate a refrigerant. In such a heat exchanger, the heat exchange tubes through which the refrigerant passes are arranged in a meandering manner and have heat exchange fins through which these heat exchange tubes penetrate to increase the heat transfer area and improve the heat exchange efficiency. Is configured to increase.
【0003】このようなヒートポンプ式空気調和機は、
周知のように、暖房運転時には、室外ユニットの熱交換
器が蒸発器となって、冷媒が室外空気の熱を奪って蒸発
し、この蒸発した冷媒ガスをコンプレッサで圧縮して室
内ユニットの熱交換器で放熱することにより、室内を暖
房することができる。また、冷房運転時には、上記の逆
サイクルとなって、室内ユニットの熱交換器が蒸発器と
なり、冷媒が室内空気の熱を奪って蒸発し、この蒸発し
た冷媒ガスをコンプレッサで圧縮して室外ユニットの熱
交換器で放熱することにより、室内を冷房することがで
きる。Such a heat pump type air conditioner is
As is well known, during heating operation, the heat exchanger of the outdoor unit acts as an evaporator, the refrigerant takes heat of the outdoor air to evaporate, and the evaporated refrigerant gas is compressed by the compressor to exchange heat with the indoor unit. The room can be heated by radiating heat with a container. Further, during the cooling operation, the above-mentioned reverse cycle is performed, and the heat exchanger of the indoor unit becomes an evaporator, the refrigerant takes heat of the indoor air to evaporate, and the evaporated refrigerant gas is compressed by the compressor to the outdoor unit. The interior of the room can be cooled by radiating heat with the heat exchanger.
【0004】ところで、このような空気調和機において
は、特に寒冷地での使用に際して、暖房運転時、蒸発器
として作用する室外熱交換器の熱交換管やフィンに霜が
付着し、付着した霜は徐々に成長して氷塊になる。この
ように室外熱交換器に霜や氷が付着すると、熱交換効率
が低下して、暖房能力も低下する。そこで、やむを得
ず、タイマ等により一時的に、前述した冷房運転時と同
様の逆サイクルに切り換えてコンプレッサからの吐出ガ
ス(ホットガスと呼ばれる)を室外熱交換器の熱交換管
に通して霜や氷を溶かす除霜運転が行われる。By the way, in such an air conditioner, especially when it is used in a cold region, frost adheres to the heat exchange pipes and fins of the outdoor heat exchanger which acts as an evaporator during heating operation, and the adhered frost. Gradually grows into ice blocks. When frost or ice adheres to the outdoor heat exchanger in this way, the heat exchange efficiency decreases and the heating capacity also decreases. Therefore, it is unavoidable that the discharge gas (called hot gas) from the compressor is temporarily switched to a reverse cycle similar to the one during the cooling operation described above by a timer or the like to pass frost or ice through the heat exchange pipe of the outdoor heat exchanger. A defrosting operation is performed to melt the.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、この除
霜運転時においては、暖房運転が停止することになる。
そればかりか、室内熱交換器が蒸発器として作用するの
で、室内の熱が奪われ、一時的にではあるが、室内の利
用者が寒さを感じるという不具合があった。However, the heating operation is stopped during the defrosting operation.
In addition, since the indoor heat exchanger acts as an evaporator, the heat in the room is taken away, but there is a problem that the user in the room feels cold for a while.
【0006】これに対して、特公昭59−26225号
公報には、暖房運転を行いながら除霜を行うことができ
るようにした「ヒートポンプ式空気調和機」が開示され
ている。このヒートポンプ式空気調和機は、複数の熱源
側熱交換器を備え、一方の熱源側熱交換器の側面には仕
切板が近接して他方の熱源側熱交換器の熱交換効率より
も一方の熱源側熱交換器の熱交換効率の方が劣るように
構成され、除霜時はこれら熱源側熱交換器を除霜用減圧
素子を介して直列に接続して複数の熱源側熱交換器を交
互に除霜するようにするとともに、暖房時の高圧液部に
連通される冷媒調節容器を熱交換効率の劣る一方の熱源
側熱交換器の除霜時の高温冷媒流入側部分と熱接触して
設けたものである。これにより、暖房をある程度継続し
ながら徐霜を行うことができるようにしている。On the other hand, Japanese Patent Publication No. 59-26225 discloses a "heat pump type air conditioner" capable of performing defrosting while performing heating operation. This heat pump type air conditioner is provided with a plurality of heat source side heat exchangers, a partition plate is close to the side surface of one heat source side heat exchanger, and the heat exchange efficiency of one side is higher than that of the other heat source side heat exchanger. It is configured so that the heat exchange efficiency of the heat source side heat exchanger is inferior, and at the time of defrosting, these heat source side heat exchangers are connected in series via the defrosting pressure reducing element to connect a plurality of heat source side heat exchangers. In addition to alternately defrosting, the refrigerant control container that communicates with the high pressure liquid part during heating is in thermal contact with the high temperature refrigerant inflow part during defrosting of the heat source side heat exchanger with poor heat exchange efficiency. It was provided by. As a result, it is possible to perform defrosting while continuing heating to some extent.
【0007】しかし、この特公昭59−26225号公
報に記載のものは、冷媒調整容器の他にも、構造複雑な
冷媒流路補助切換用五方弁が必要となり、コスト高とな
る問題点があった。また、その構造上、熱源側熱交換器
(室外熱交換器)は2個が妥当なところであり、除霜時
には暖房能力が半減する。2個以上にする場合にも4、
6、・・・と2個ずつ増やしていかなければならず、こ
の種の空気調和機の設置条件に対して柔軟に対応するこ
とができなかった。However, the one described in Japanese Patent Publication No. 59-26225 has a problem that a five-way valve for auxiliary switching of the refrigerant flow passage having a complicated structure is required in addition to the refrigerant adjusting container, which causes a problem of high cost. there were. Further, because of its structure, two heat source side heat exchangers (outdoor heat exchangers) are appropriate, and the heating capacity is halved during defrosting. 4, even if more than two
It has been necessary to increase the number of each of the two by 6, ..., and it has not been possible to flexibly cope with the installation conditions of this type of air conditioner.
【0008】そこで、本発明はこのような問題点を解決
するためになされたものであり、暖房運転を継続しなが
ら徐霜を効率的に行うことができるとともに、簡単な構
造で、低コスト化が実現でき、また、空気調和機の設置
条件に対しても柔軟に対応することができるヒートポン
プ式空気調和機を提供することを目的とするものであ
る。Therefore, the present invention has been made in order to solve such a problem, and it is possible to efficiently perform slow frost while continuing the heating operation, and to reduce the cost with a simple structure. It is an object of the present invention to provide a heat pump type air conditioner that can realize the above, and can flexibly respond to the installation conditions of the air conditioner.
【0009】さらに、積極的に徐霜を行いながら、暖房
能力の低下を抑えることができるヒートポンプ式空気調
和機を提供することを目的とするものである。Another object of the present invention is to provide a heat pump type air conditioner capable of suppressing a decrease in heating capacity while positively defrosting.
【0010】[0010]
【課題を解決するための手段】このような目的を達成す
るために、本願の請求項1に記載の発明は、暖房運転時
には室外熱交換器が蒸発器となり、室内熱交換器が凝縮
器となって室内を暖房するヒートポンプ式空気調和機に
おいて、前記室外熱交換器を上下方向に複数に分割し、
分割された各室外熱交換器を室内熱交換器に並列に配管
接続するとともに、それぞれ二方弁を介してコンプレッ
サの吸入口側に配管接続し、かつ、コンプレッサの吐出
口側を分岐させて、各室外熱交換器にそれぞれ二方弁を
介して配管接続し、暖房運転時に除霜を行うときは、コ
ンプレッサからの吐出ガスの一部を前記分割された各室
外熱交換器に上部側から下部側に順次切り換えながら流
して暖房と徐霜を並行して行うようにしたものである。In order to achieve such an object, the invention according to claim 1 of the present application is such that, during heating operation, the outdoor heat exchanger serves as an evaporator and the indoor heat exchanger serves as a condenser. In a heat pump type air conditioner that heats the interior of the room, the outdoor heat exchanger is divided into a plurality of pieces in the vertical direction,
Each of the divided outdoor heat exchangers is connected in parallel to the indoor heat exchanger by piping, and each is connected to the suction port side of the compressor through a two-way valve, and the discharge port side of the compressor is branched. When piping is connected to each outdoor heat exchanger via a two-way valve, and when defrosting is performed during heating operation, part of the gas discharged from the compressor is transferred to the divided outdoor heat exchangers from the upper side to the lower side. It is designed such that heating and slow frost are performed in parallel by sequentially switching to the side and flowing.
【0011】さらに、請求項2に記載の発明は、同じ
く、暖房運転時には室外熱交換器が蒸発器となり、室内
熱交換器が凝縮器となって室内を暖房するヒートポンプ
式空気調和機において、前記室外熱交換器を複数に分割
し、分割された各室外熱交換器を室内熱交換器に並列に
配管接続するとともに、それぞれ二方弁を介してコンプ
レッサの吸入口側に配管接続し、かつ、コンプレッサの
吐出口側を分岐させて、各室外熱交換器にそれぞれ二方
弁を介して配管接続し、暖房運転時には、コンプレッサ
からの吐出ガスの一部を前記分割された各室外熱交換器
に順次切り換えながら流して暖房と徐霜を常時並行して
行うようにしたものである。Further, the invention according to claim 2 is the heat pump type air conditioner for heating the room, wherein the outdoor heat exchanger serves as an evaporator and the indoor heat exchanger serves as a condenser during heating operation. The outdoor heat exchanger is divided into a plurality, each divided outdoor heat exchanger is connected in parallel to the indoor heat exchanger by piping, and each is connected to the suction port side of the compressor through a two-way valve, and, The outlet side of the compressor is branched and connected to each outdoor heat exchanger via a two-way valve, and during heating operation, part of the gas discharged from the compressor is distributed to the divided outdoor heat exchangers. It is designed such that heating and slow frost are always performed in parallel by switching and flowing sequentially.
【0012】また、請求項3に記載の発明は、同様に、
暖房運転時には室外熱交換器が蒸発器となり、室内熱交
換器が凝縮器となって室内を暖房するヒートポンプ式空
気調和機において、前記室外熱交換器を複数に分割し、
分割された各室外熱交換器を室内熱交換器に並列に配管
接続するとともに、それぞれ二方弁を介してコンプレッ
サの吸入口側に配管接続し、かつ、コンプレッサの吐出
口側を分岐させて、各室外熱交換器にそれぞれ二方弁を
介して配管接続するとともに、コンプレッサの能力を可
変とし、暖房運転時に除霜を行うときは、通常の暖房運
転時のコンプレッサの余力を利用してコンプレッサから
の吐出ガスの一部を前記分割された各室外熱交換器に順
次切り換えながら流して暖房と徐霜を並行して行うよう
にしたものである。The invention described in claim 3 is likewise
In the heating operation, the outdoor heat exchanger serves as an evaporator, the indoor heat exchanger serves as a condenser, and in a heat pump type air conditioner that heats the room, the outdoor heat exchanger is divided into a plurality of parts.
Each of the divided outdoor heat exchangers is connected in parallel to the indoor heat exchanger by piping, and each is connected to the suction port side of the compressor through a two-way valve, and the discharge port side of the compressor is branched. When piping is connected to each outdoor heat exchanger via a two-way valve, the capacity of the compressor is made variable, and when defrosting is performed during heating operation, the remaining capacity of the compressor during normal heating operation is used to remove the compressor from the compressor. A part of the discharged gas of (1) is flown while being sequentially switched to each of the divided outdoor heat exchangers so that heating and slow frosting are performed in parallel.
【0013】[0013]
【発明の実施の形態】以下、本願の各発明の実施形態を
図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0014】図1は第1の実施形態によるヒートポンプ
式空気調和機を示す全体構成図である。図において、1
は室外ユニット、2は室内ユニットである。上記室外ユ
ニット1内の3は、冷媒を圧縮して冷媒回路を循環させ
るコンプレッサ、4は上記コンプレッサ3の吐出口と吸
入口及び室内外ユニット1,2の冷媒配管に接続されて
冷房時と暖房時の冷媒の流路を切り換える冷暖流路切換
用四方弁である。FIG. 1 is an overall configuration diagram showing a heat pump type air conditioner according to a first embodiment. In the figure, 1
Is an outdoor unit, and 2 is an indoor unit. 3 in the outdoor unit 1 is a compressor for compressing a refrigerant to circulate a refrigerant circuit, and 4 is connected to a discharge port and a suction port of the compressor 3 and a refrigerant pipe of the indoor and outdoor units 1 and 2 for cooling and heating. It is a four-way valve for switching the cooling / heating flow path that switches the flow path of the refrigerant at the time.
【0015】一方、室内ユニット2内の5は、室外ユニ
ット1内の前記四方弁4に配管接続された室内熱交換器
であり、暖房時には凝縮器として作用し、冷房時には蒸
発器として作用する。また、6、7は室内ユニット2内
の送風ファンとそのファンモータである。On the other hand, 5 in the indoor unit 2 is an indoor heat exchanger pipe-connected to the four-way valve 4 in the outdoor unit 1, and functions as a condenser during heating and as an evaporator during cooling. Reference numerals 6 and 7 denote a blower fan and its fan motor in the indoor unit 2.
【0016】また、室外ユニット1内の8A,8B,8
Cは、従来のように一体的に構成された熱交換器の熱交
換管と熱交換用フィンを上下方向に3分割して成る室外
熱交換器であり、前記室内熱交換器5とはそれぞれ弁の
開度が調整可能な電動式の膨張弁9A,9B,9Cを介
して並列に配管接続されている。また、これらの各室外
熱交換器8A,8B,8Cの他方の冷媒口は、それぞれ
電磁弁からなる二方弁10A,10B,10Cを介して
四方弁4に配管接続されるとともに、上記二方弁10
A,10B,10Cと並列に設けられた二方弁11A,
11B,11Cを介して、コンプレッサ3の高圧吐出ガ
ス(ホットガス)が通る配管から分岐した除霜用のバイ
パス管路a(又はb)に接続されている。そして、これ
らの各室外熱交換器8A,8B,8Cに外気を送る送風
ファン12とファンモータ13が設けられている。Further, 8A, 8B, 8 in the outdoor unit 1
C is an outdoor heat exchanger formed by vertically dividing a heat exchange tube and a heat exchange fin of a heat exchanger integrally configured as in the conventional art into three parts, and the indoor heat exchanger 5 is respectively Pipes are connected in parallel via electric expansion valves 9A, 9B, 9C whose valve openings can be adjusted. The other refrigerant ports of each of the outdoor heat exchangers 8A, 8B, 8C are connected to the four-way valve 4 via two-way valves 10A, 10B, 10C each of which is an electromagnetic valve, and the two-way valve is connected to the two-way valve. Valve 10
Two-way valve 11A provided in parallel with A, 10B, 10C,
Via 11B and 11C, it is connected to the defrosting bypass pipeline a (or b) branched from the pipeline through which the high-pressure discharge gas (hot gas) of the compressor 3 passes. A blower fan 12 and a fan motor 13 for sending outside air are provided to each of the outdoor heat exchangers 8A, 8B, 8C.
【0017】なお、上記バイパス管路a(又はb)は、
本来の配管との接続点a1(又はb1)においてコンプ
レッサ3からのホットガスの例えば80%が暖房用とし
て室内ユニット2側に流れ、残りの20%がバイパス管
路a(又はb)側に流れるように設定されている。ま
た、コンプレッサ3、四方弁4、ファンモータ7,13
は従来同様、マイクロコンピュータ等から成る図示しな
い制御装置により制御されるとともに、新たに設けられ
た二方弁10A〜10C及び11A〜11Cも同じ制御
装置により開閉が制御されるものである。The bypass line a (or b) is
At the connection point a1 (or b1) with the original pipe, for example, 80% of the hot gas from the compressor 3 flows to the indoor unit 2 side for heating, and the remaining 20% flows to the bypass pipeline a (or b) side. Is set. Further, the compressor 3, the four-way valve 4, the fan motors 7, 13
As in the prior art, the control is performed by a control device (not shown) including a microcomputer and the opening and closing of newly provided two-way valves 10A to 10C and 11A to 11C are also controlled by the same control device.
【0018】次に、以上のように構成された本実施形態
の動作について説明する。Next, the operation of this embodiment configured as described above will be described.
【0019】冷房運転時には、四方弁4を破線状態に設
定し、かつ二方弁10A,10B,10Cは開放状態
に、徐霜用の二方弁11A,11B,11Cは閉鎖状態
に設定して(バイパス管路が破線で示すbの場合は開放
状態でよい)、コンプレッサ3を運転すると、冷媒は破
線矢印の如く流れる。すなわち、コンプレッサ3から吐
出された高温高圧の冷媒ガスは、四方弁4を介して配管
流路の点c,d,eからそれぞれ開放状態の二方弁10
A,10B,10Cを通り、各室外熱交換器8A,8
B,8Cに供給される。冷房運転時、各室外熱交換器8
A,8B,8Cは凝縮器として作用するので、供給され
た冷媒ガスは、ファン12からの送風による熱交換によ
って凝縮液化する。各室外熱交換器8A,8B,8Cで
凝縮液化された冷媒は、それぞれ開放状態の膨張弁9
A,9B,9Cを通り、蒸発しやすい圧力まで減圧され
た後、点f,g,hを経て合流する。合流した低圧冷媒
液は、室内ユニット2内の室内熱交換器5に供給され
る。冷房運転時、室内熱交換器5は蒸発器として作用
し、減圧されて供給される冷媒液を蒸発気化し、ファン
6から送られてくる空気から熱を奪って室内を冷房す
る。そして、蒸発気化された冷媒ガスは冷媒配管を通し
て室外ユニット1に送られ、四方弁4を介してコンプレ
ッサ3に吸入され、以上の冷媒サイクルが繰り返され
る。During the cooling operation, the four-way valve 4 is set to the broken line state, the two-way valves 10A, 10B and 10C are set to the open state, and the two-way valves 11A, 11B and 11C for defrosting are set to the closed state. When the bypass line is indicated by the broken line b, the open state may be used. When the compressor 3 is operated, the refrigerant flows as indicated by the broken line arrow. That is, the high-temperature and high-pressure refrigerant gas discharged from the compressor 3 passes through the four-way valve 4 from the points c, d, and e of the pipe flow path, and the two-way valve 10 is in an open state.
Passing through A, 10B, 10C, each outdoor heat exchanger 8A, 8
B, 8C. Each outdoor heat exchanger 8 during cooling operation
Since A, 8B, and 8C act as a condenser, the supplied refrigerant gas is condensed and liquefied by heat exchange by the air blown from the fan 12. The refrigerant condensed and liquefied in each of the outdoor heat exchangers 8A, 8B, and 8C is expanded valve 9 in an open state.
After passing through A, 9B, and 9C, the pressure is reduced to a pressure at which it is easy to evaporate, and then merges via points f, g, and h. The combined low-pressure refrigerant liquid is supplied to the indoor heat exchanger 5 in the indoor unit 2. During the cooling operation, the indoor heat exchanger 5 acts as an evaporator to evaporate the refrigerant liquid that is depressurized and supplied, and removes heat from the air sent from the fan 6 to cool the room. Then, the evaporated and vaporized refrigerant gas is sent to the outdoor unit 1 through the refrigerant pipe, sucked into the compressor 3 through the four-way valve 4, and the above refrigerant cycle is repeated.
【0020】一方、暖房運転時には、四方弁4を実線状
態に設定し、かつ二方弁10A〜10Cは先ず二方弁1
0Aのみを閉鎖状態に、徐霜用の二方弁11A〜11C
は先ず二方弁11Aのみを開放状態に設定してコンプレ
ッサ3を運転すると、冷媒は実線矢印及び一点鎖線矢印
の如く流れる。すなわち、コンプレッサ3から吐出され
た高温高圧の冷媒ガスは、四方弁4を介して、例えばそ
の80%が室内ユニット2側の室内熱交換器5に供給さ
れ、その他の20%が分岐点a1からバイパス管路a
(又は分岐点b1からバイパス管路b)を通してi点か
ら二方弁11Aを介して最上部の室外熱交換器8Aに供
給される。On the other hand, during the heating operation, the four-way valve 4 is set to the solid line state, and the two-way valves 10A to 10C are first set to the two-way valve 1.
2A valves 11A to 11C for slow frost with only 0A closed
First, when only the two-way valve 11A is set to the open state and the compressor 3 is operated, the refrigerant flows as shown by the solid line arrow and the one-dot chain line arrow. That is, 80% of the high-temperature high-pressure refrigerant gas discharged from the compressor 3 is supplied to the indoor heat exchanger 5 on the indoor unit 2 side via the four-way valve 4, and the other 20% is discharged from the branch point a1. Bypass line a
It is supplied to the uppermost outdoor heat exchanger 8A from point i through (or branch point b1 to bypass line b) via two-way valve 11A.
【0021】暖房運転時、室内熱交換器5は凝縮器とし
て作用するので、供給された高温高圧の冷媒ガスは凝縮
液化し、この時の放熱が送風ファン6により吹き出され
て室内が暖房される。そして、この凝縮液化された冷媒
は室外ユニット1に送られ、膨張弁9B,9Cを介して
蒸発しやすい圧力まで減圧された後、二方弁10B,1
0Cが開放状態の室外熱交換器8B,8Cに供給され
る。暖房運転時、これらの室外熱交換器8B,8Cは蒸
発器として作用し、供給された冷媒液がファン12から
送風される外気から熱を奪って蒸発気化する。During the heating operation, since the indoor heat exchanger 5 acts as a condenser, the supplied high-temperature and high-pressure refrigerant gas is condensed and liquefied, and the heat radiation at this time is blown out by the blower fan 6 to heat the room. . Then, the condensed and liquefied refrigerant is sent to the outdoor unit 1 and reduced in pressure to easily evaporate through the expansion valves 9B and 9C, and then the two-way valves 10B and 1C.
0C is supplied to the outdoor heat exchangers 8B and 8C in the open state. During the heating operation, these outdoor heat exchangers 8B and 8C act as evaporators, and the supplied refrigerant liquid takes heat from the outside air blown from the fan 12 and evaporates.
【0022】一方、最上部の室外熱交換器8Aには、上
述したように、コンプレッサ3からのホットガスの一部
が分岐点a1からバイパス管路a(又は分岐点b1から
バイパス管路b)を通してi点から二方弁11Aを介し
て供給されるので、凝縮器として作用し、供給された高
圧のホットガスが凝縮液化して放熱する。凝縮液化した
高圧の冷媒液は膨張弁9Aを通ってf点からg点方向に
送られる。g点からは室内ユニット2側からの冷媒液が
送られてくるが、g点で両方からの冷媒液が合流し、膨
張弁9Bを通って室外熱交換器8Bに供給される。この
ようにして、室外熱交換器8B,8Cで蒸発気化された
冷媒ガスは、それぞれ二方弁10C,10B及びe,d
点を介してc点方向に送られ、四方弁4を介してコンプ
レッサ3に吸入され、以上の冷媒サイクルが繰り返され
る。この冷媒サイクルにおいて、最上部の室外熱交換器
8Aは凝縮器として作用するので着霜は生ぜず、2番目
と3番目の室外熱交換器8B,8Cは蒸発器として作用
するので、徐々に着霜が生じてくる。On the other hand, in the uppermost outdoor heat exchanger 8A, as described above, part of the hot gas from the compressor 3 is from the branch point a1 to the bypass line a (or the branch point b1 to the bypass line b). Is supplied from the point i through the two-way valve 11A, it acts as a condenser, and the supplied high-pressure hot gas is condensed and liquefied to radiate heat. The condensed and liquefied high-pressure refrigerant liquid is sent from the point f to the point g through the expansion valve 9A. Although the refrigerant liquids from the indoor unit 2 side are sent from the point g, the refrigerant liquids from both sides join at the point g and are supplied to the outdoor heat exchanger 8B through the expansion valve 9B. In this way, the refrigerant gas evaporated and vaporized in the outdoor heat exchangers 8B and 8C are respectively two-way valves 10C and 10B and e and d.
It is sent to the point c via the point, is sucked into the compressor 3 via the four-way valve 4, and the above refrigerant cycle is repeated. In this refrigerant cycle, since the uppermost outdoor heat exchanger 8A acts as a condenser, no frost is formed, and the second and third outdoor heat exchangers 8B, 8C act as evaporators, so that they gradually become worn. Frost is coming.
【0023】ここで、蒸発器として作用する室外熱交換
器に着霜の生じる時間を基に、それ以下の範囲(2つあ
るので1/2)で、除霜を行う室外熱交換器の切り換え
時間を予め定めておく。これにより、前述した冷媒サイ
クルにおいて予め定められた切り換え時間に達すると、
図示しない制御装置は、今まで除霜を行っていた最上部
の室外熱交換器8Aの二方弁11Aを閉鎖状態に設定す
る一方、二方弁10Aは開放状態に設定する。また、こ
れとほぼ同時に、すぐ下側の室外熱交換器8Bの二方弁
10Bを閉鎖状態に設定する一方、二方弁11Bを開放
状態に設定する。Here, based on the time when frost is formed on the outdoor heat exchanger acting as an evaporator, the outdoor heat exchanger for defrosting is switched within a range below that (1/2 because there are two). Predetermine the time. As a result, when the predetermined switching time is reached in the above-mentioned refrigerant cycle,
The control device (not shown) sets the two-way valve 11A of the uppermost outdoor heat exchanger 8A, which has been defrosting up to now, to the closed state, while setting the two-way valve 10A to the open state. Almost at the same time, the two-way valve 10B of the outdoor heat exchanger 8B immediately below is set to the closed state, while the two-way valve 11B is set to the open state.
【0024】これにより、最上部の室外熱交換器8Aと
最下部の室外熱交換器8Cが蒸発器となり、2番目の室
外熱交換器8Bが凝縮器となって、上述した動作と同様
にして、暖房運転に並行して除霜が行われる。最下部の
室外熱交換器8Cを除霜する場合も同様である。この
間、暖房能力は全く低下することなく、また、各室外熱
交換器8A〜8Cに着霜が生じることはなく、熱交換効
率が低下することもない。As a result, the uppermost outdoor heat exchanger 8A and the lowermost outdoor heat exchanger 8C serve as evaporators, and the second outdoor heat exchanger 8B serves as a condenser, in the same manner as described above. , Defrosting is performed in parallel with the heating operation. The same applies when defrosting the lowermost outdoor heat exchanger 8C. During this period, the heating capacity does not decrease at all, the frost does not occur on each of the outdoor heat exchangers 8A to 8C, and the heat exchange efficiency does not decrease.
【0025】このように、本実施形態では、従来、暖房
運転時に室外熱交換器に着霜が生じると、やむを得ず徐
霜を行っていたのに対して、発想を転換して暖房運転時
には必要に応じて常時徐霜を行うようにして着霜が生じ
ないようにしたので、室外熱交換器の熱交換効率を常に
最高の状態に保ちながら、除霜のために、暖房が一時停
止したり、暖房能力が低下したりすることがなくなる。
また、例え着霜が生じても、除霜を上部側の室外熱交換
器から下部側の室外熱交換器に順番に切り換えながら行
うので、上部側の室外熱交換器の除霜によって溶けた水
が下側の熱交換器に流れても、その下側の熱交換器が次
に除霜されるため、効率よく除霜を行うことができる。
また、二方弁という簡単な機構により、分割した室外熱
交換器の切り換えを行うので、低コスト化が図れるとと
もに、分割数も自由に設定することができ、空気調和機
の設置条件に対しても柔軟に対応することができる。As described above, in the present embodiment, conventionally, when frost is formed on the outdoor heat exchanger during the heating operation, the frost is unavoidably unavoidable. On the other hand, the idea is changed to be necessary during the heating operation. In order to prevent defrosting by always performing slow defrosting accordingly, the heating is temporarily stopped or defrosted while keeping the heat exchange efficiency of the outdoor heat exchanger at the maximum state. The heating capacity will not decrease.
Further, even if frost is formed, defrosting is performed by sequentially switching from the upper outdoor heat exchanger to the lower outdoor heat exchanger, so that the water melted by the upper outdoor heat exchanger is defrosted. Even if flows into the lower heat exchanger, the lower heat exchanger is defrosted next time, so that defrosting can be performed efficiently.
In addition, since the split outdoor heat exchanger is switched by a simple mechanism called a two-way valve, cost can be reduced and the number of divisions can be set freely, and the installation condition of the air conditioner can be improved. Can respond flexibly.
【0026】図2は、第2の実施形態によるヒートポン
プ式空気調和機を示す全体構成図である。本実施形態の
前記実施形態との差異は、コンプレッサ3の回転数を可
変に制御するインバータ14を備えたものである。他は
前記実施形態と同様である。本実施形態は、このような
インバータ14を備えて、通常の暖房運転時には、コン
プレッサ3の最大能力の例えば80%の回転数で運転
し、除霜時には回転数を100%に上げて余力の20%
を除霜のために用いるようにしたものである。FIG. 2 is an overall configuration diagram showing a heat pump type air conditioner according to the second embodiment. The difference between the present embodiment and the above-described embodiment is that an inverter 14 that variably controls the rotation speed of the compressor 3 is provided. Others are the same as the above-mentioned embodiment. The present embodiment is provided with such an inverter 14, and operates at a rotation speed of, for example, 80% of the maximum capacity of the compressor 3 during normal heating operation, and increases the rotation speed to 100% during defrosting to provide a remaining power of 20%. %
Is used for defrosting.
【0027】これにより、通常の暖房運転時の暖房能力
を低下させることなく、除霜を並行して行うことができ
る。従って、暖房能力の低下を気にすることなく、積極
的に除霜を行うことができ、着霜を無くして、熱交換効
率を向上し、暖房能力も向上することができる。Thus, defrosting can be performed in parallel without reducing the heating capacity during normal heating operation. Therefore, the defrosting can be positively performed without worrying about the decrease in the heating capacity, the frost formation can be eliminated, the heat exchange efficiency can be improved, and the heating capacity can also be improved.
【0028】なお、上記各実施形態では、コンプレッサ
3の能力を可変にするためにインバータ14を用いた
が、例えば、コンプレッサの圧縮途中の冷媒を吸込側に
戻す、いわゆるパワーセーブ機能や、コンプレッサモー
タの極数を可変にする極数変換機能を用いてもよい。In each of the above embodiments, the inverter 14 is used in order to make the capacity of the compressor 3 variable. However, for example, a so-called power saving function of returning the refrigerant in the middle of compression of the compressor to the suction side, or a compressor motor You may use the pole number conversion function which makes the number of poles of.
【0029】[0029]
【発明の効果】以上のように、本願の請求項1記載の発
明によれば、室外熱交換器を上下方向に複数に分割し、
分割された各室外熱交換器を室内熱交換器に並列に配管
接続するとともに、それぞれ二方弁を介してコンプレッ
サの吸入口側に配管接続し、かつ、コンプレッサの吐出
口側を分岐させて、各室外熱交換器にそれぞれ二方弁を
介して配管接続し、暖房運転時に除霜を行うときは、コ
ンプレッサからの吐出ガスの一部を前記分割された各室
外熱交換器に上部側から下部側に順次切り換えながら流
して暖房と徐霜を並行して行うようにしたので、暖房運
転を継続しながら徐霜を効率的に行うことができるとと
もに、簡単な構造で、低コスト化が実現でき、また、室
外熱交換器の分割数が比較的自由に設定できるため、空
気調和機の設置条件に対しても柔軟に対応することがで
きる効果がある。As described above, according to the invention of claim 1 of the present application, the outdoor heat exchanger is divided into a plurality of parts in the vertical direction,
Each of the divided outdoor heat exchangers is connected in parallel to the indoor heat exchanger by piping, and each is connected to the suction port side of the compressor through a two-way valve, and the discharge port side of the compressor is branched. When piping is connected to each outdoor heat exchanger via a two-way valve, and when defrosting is performed during heating operation, part of the gas discharged from the compressor is transferred to the divided outdoor heat exchangers from the upper side to the lower side. The heating and slow frost are performed in parallel by sequentially switching to the side, so that slow frost can be efficiently performed while continuing the heating operation, and a simple structure can reduce cost. Further, since the number of divisions of the outdoor heat exchanger can be set relatively freely, there is an effect that the installation conditions of the air conditioner can be flexibly dealt with.
【0030】さらに、請求項2記載の発明によれば、室
外熱交換器を複数に分割し、分割された各室外熱交換器
を室内熱交換器に並列に配管接続するとともに、それぞ
れ二方弁を介してコンプレッサの吸入口側に配管接続
し、かつ、コンプレッサの吐出口側を分岐させて、各室
外熱交換器にそれぞれ二方弁を介して配管接続し、暖房
運転時には、コンプレッサからの吐出ガスの一部を前記
分割された各室外熱交換器に順次切り換えながら流して
暖房と徐霜を常時並行して行うようにしたので、上記請
求項1と同様な効果が得られるとともに、積極的に徐霜
を行いながら、暖房能力の低下を抑えることができる効
果がある。Further, according to the second aspect of the invention, the outdoor heat exchanger is divided into a plurality of parts, each of the divided outdoor heat exchangers is connected in parallel to the indoor heat exchanger by pipes, and each two-way valve is connected. Piping to the suction port side of the compressor, and branching the discharge port side of the compressor to each outdoor heat exchanger via a two-way valve to discharge the compressor during heating operation. Since a part of the gas is made to flow while being sequentially switched to each of the divided outdoor heat exchangers to perform heating and slow frost in parallel at the same time, the same effect as in claim 1 can be obtained, and the positive effect can be obtained positively. It is possible to suppress the decrease in heating capacity while gradually defrosting.
【0031】また、請求項3記載の発明によれば、室外
熱交換器を複数に分割し、分割された各室外熱交換器を
室内熱交換器に並列に配管接続するとともに、それぞれ
二方弁を介してコンプレッサの吸入口側に配管接続し、
かつ、コンプレッサの吐出口側を分岐させて、各室外熱
交換器にそれぞれ二方弁を介して配管接続するととも
に、コンプレッサの能力を可変とし、暖房運転時に除霜
を行うときは、通常の暖房運転時のコンプレッサの余力
を利用してコンプレッサからの吐出ガスの一部を前記分
割された各室外熱交換器に順次切り換えながら流して暖
房と徐霜を並行して行うようにしたので、上記請求項1
と同様な効果が得られるとともに、積極的に徐霜を行う
ことができ、暖房能力の低下を抑えることができる効果
がある。According to the third aspect of the present invention, the outdoor heat exchanger is divided into a plurality of parts, each of the divided outdoor heat exchangers is connected in parallel to the indoor heat exchanger by piping, and each two-way valve is connected. Pipe connection to the intake side of the compressor via
In addition, the outlet side of the compressor is branched and connected to each outdoor heat exchanger through a two-way valve, and the capacity of the compressor is made variable, and when defrosting during heating operation, normal heating is performed. Since a part of the gas discharged from the compressor is sequentially switched to each of the divided outdoor heat exchangers by using the remaining capacity of the compressor during operation to perform heating and slow frost in parallel, the above claim Item 1
In addition to the effect similar to the above, there is an effect that the slow frost can be positively performed and a decrease in heating capacity can be suppressed.
【図1】第1の実施形態によるヒートポンプ式空気調和
機を示す全体構成図である。FIG. 1 is an overall configuration diagram showing a heat pump type air conditioner according to a first embodiment.
【図2】第2の実施形態によるヒートポンプ式空気調和
機を示す全体構成図である。FIG. 2 is an overall configuration diagram showing a heat pump type air conditioner according to a second embodiment.
1 室外ユニット 2 室内ユニット 3 コンプレッサ 4 四方弁 5 室内熱交換器 6、12 送風ファン 7、13 ファンモータ 8A〜8C 室外熱交換器 10A〜10C、11A〜11B 二方弁 14 インバータ 1 Outdoor unit 2 Indoor unit 3 Compressor 4 Four-way valve 5 Indoor heat exchanger 6, 12 Blower fan 7, 13 Fan motor 8A-8C Outdoor heat exchanger 10A-10C, 11A-11B Two-way valve 14 Inverter
Claims (3)
なり、室内熱交換器が凝縮器となって室内を暖房するヒ
ートポンプ式空気調和機において、 前記室外熱交換器を上下方向に複数に分割し、分割され
た各室外熱交換器を室内熱交換器に並列に配管接続する
とともに、それぞれ二方弁を介してコンプレッサの吸入
口側に配管接続し、かつ、コンプレッサの吐出口側を分
岐させて、各室外熱交換器にそれぞれ二方弁を介して配
管接続し、 暖房運転時に除霜を行うときは、コンプレッサからの吐
出ガスの一部を前記分割された各室外熱交換器に上部側
から下部側に順次切り換えながら流して暖房と徐霜を並
行して行うようにしたことを特徴とするヒートポンプ式
空気調和機。1. A heat pump type air conditioner in which an outdoor heat exchanger serves as an evaporator and an indoor heat exchanger serves as a condenser to heat a room during a heating operation, wherein the outdoor heat exchanger is vertically divided into a plurality of parts. Each of the divided outdoor heat exchangers is connected to the indoor heat exchanger in parallel by piping, and each is connected to the compressor suction port side via a two-way valve, and the compressor discharge port side is branched. Then, when connecting to each outdoor heat exchanger through a two-way valve for piping and performing defrosting during heating operation, part of the gas discharged from the compressor is connected to the above-mentioned divided outdoor heat exchangers on the upper side. The heat pump type air conditioner is characterized in that the heating and the slow frost are performed in parallel by sequentially switching from the lower side to the lower side.
なり、室内熱交換器が凝縮器となって室内を暖房するヒ
ートポンプ式空気調和機において、 前記室外熱交換器を複数に分割し、分割された各室外熱
交換器を室内熱交換器に並列に配管接続するとともに、
それぞれ二方弁を介してコンプレッサの吸入口側に配管
接続し、かつ、コンプレッサの吐出口側を分岐させて、
各室外熱交換器にそれぞれ二方弁を介して配管接続し、 暖房運転時には、コンプレッサからの吐出ガスの一部を
前記分割された各室外熱交換器に順次切り換えながら流
して暖房と徐霜を常時並行して行うようにしたことを特
徴とするヒートポンプ式空気調和機。2. In a heat pump type air conditioner for heating an indoor room, the outdoor heat exchanger serves as an evaporator and the indoor heat exchanger serves as a condenser during heating operation, and the outdoor heat exchanger is divided into a plurality of parts. While connecting each outdoor heat exchanger to the indoor heat exchanger in parallel,
Each is connected to the suction port side of the compressor via a two-way valve, and the discharge port side of the compressor is branched,
A pipe is connected to each outdoor heat exchanger via a two-way valve, and during heating operation, a portion of the gas discharged from the compressor is sequentially switched to each of the divided outdoor heat exchangers to flow heating and slow frost. A heat pump type air conditioner characterized by being operated in parallel at all times.
なり、室内熱交換器が凝縮器となって室内を暖房するヒ
ートポンプ式空気調和機において、 前記室外熱交換器を複数に分割し、分割された各室外熱
交換器を室内熱交換器に並列に配管接続するとともに、
それぞれ二方弁を介してコンプレッサの吸入口側に配管
接続し、かつ、コンプレッサの吐出口側を分岐させて、
各室外熱交換器にそれぞれ二方弁を介して配管接続する
とともに、コンプレッサの能力を可変とし、 暖房運転時に除霜を行うときは、通常の暖房運転時のコ
ンプレッサの余力を利用してコンプレッサからの吐出ガ
スの一部を前記分割された各室外熱交換器に順次切り換
えながら流して暖房と徐霜を並行して行うようにしたこ
とを特徴とするヒートポンプ式空気調和機。3. A heat pump type air conditioner in which the outdoor heat exchanger serves as an evaporator and the indoor heat exchanger serves as a condenser during heating operation to heat the room, wherein the outdoor heat exchanger is divided into a plurality of parts. While connecting each outdoor heat exchanger to the indoor heat exchanger in parallel,
Each is connected to the suction port side of the compressor via a two-way valve, and the discharge port side of the compressor is branched,
When piping is connected to each outdoor heat exchanger via a two-way valve, the capacity of the compressor is variable, and when defrosting is performed during heating operation, the remaining capacity of the compressor during normal heating operation is used to remove the compressor from the compressor. A heat pump type air conditioner characterized in that a part of the discharge gas is discharged to each of the divided outdoor heat exchangers while being sequentially switched to perform heating and defrosting in parallel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13380696A JPH09318206A (en) | 1996-05-28 | 1996-05-28 | Heat pump type air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13380696A JPH09318206A (en) | 1996-05-28 | 1996-05-28 | Heat pump type air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09318206A true JPH09318206A (en) | 1997-12-12 |
Family
ID=15113479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13380696A Pending JPH09318206A (en) | 1996-05-28 | 1996-05-28 | Heat pump type air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09318206A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008157558A (en) * | 2006-12-25 | 2008-07-10 | Daikin Ind Ltd | Air-conditioning system |
JP2008249236A (en) * | 2007-03-30 | 2008-10-16 | Mitsubishi Electric Corp | Air conditioner |
JP2009156472A (en) * | 2007-12-25 | 2009-07-16 | Mitsubishi Electric Corp | Air conditioner |
KR20100052349A (en) * | 2008-11-10 | 2010-05-19 | 엘지전자 주식회사 | Air conditioning system |
JP2010249335A (en) * | 2009-04-10 | 2010-11-04 | Mitsubishi Electric Corp | Air conditioner |
CN102748808A (en) * | 2011-04-22 | 2012-10-24 | Lg电子株式会社 | Multi-type air conditioner and method of controlling the same |
JP2014020568A (en) * | 2012-07-12 | 2014-02-03 | Hitachi Appliances Inc | Air conditioner |
KR101401909B1 (en) * | 2012-03-07 | 2014-05-29 | 선문대학교 산학협력단 | Heat pump chiller system by non-frosting continuous operating the heat exchanger and Defrost method |
CN104089427A (en) * | 2014-06-24 | 2014-10-08 | 珠海格力电器股份有限公司 | Air conditioning system and control method thereof |
CN104813123A (en) * | 2012-11-29 | 2015-07-29 | 三菱电机株式会社 | Air-conditioning device |
WO2015151289A1 (en) * | 2014-04-04 | 2015-10-08 | 三菱電機株式会社 | Air-conditioning device |
US20160229542A1 (en) * | 2015-02-11 | 2016-08-11 | Hamilton Sundstrand Corporation | Environmental control system utilizing parallel ram heat exchangers |
KR101720495B1 (en) | 2016-03-15 | 2017-04-10 | 엘지전자 주식회사 | Air conditioner |
KR20180014570A (en) * | 2016-08-01 | 2018-02-09 | 윤명진 | Alternate heat exchanger type heat pump system |
US9889938B2 (en) | 2015-06-05 | 2018-02-13 | Hamilton Sundstrand Corporation | Recirculation system for parallel ram heat exchangers |
KR101867858B1 (en) * | 2016-12-21 | 2018-06-15 | 엘지전자 주식회사 | Air conditioner |
CN108224678A (en) * | 2017-12-28 | 2018-06-29 | 青岛海尔空调电子有限公司 | A kind of air-conditioning and defrosting control method |
CN109539477A (en) * | 2018-10-31 | 2019-03-29 | 青岛海尔空调电子有限公司 | Multi-online air-conditioning system and its defrosting control method |
WO2019151815A1 (en) * | 2018-02-05 | 2019-08-08 | 엘지전자 주식회사 | Air conditioner |
CN114061031A (en) * | 2021-10-28 | 2022-02-18 | 青岛海尔空调器有限总公司 | Air conditioner defrosting control method and device and air conditioner |
-
1996
- 1996-05-28 JP JP13380696A patent/JPH09318206A/en active Pending
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008157558A (en) * | 2006-12-25 | 2008-07-10 | Daikin Ind Ltd | Air-conditioning system |
JP2008249236A (en) * | 2007-03-30 | 2008-10-16 | Mitsubishi Electric Corp | Air conditioner |
JP2009156472A (en) * | 2007-12-25 | 2009-07-16 | Mitsubishi Electric Corp | Air conditioner |
KR20100052349A (en) * | 2008-11-10 | 2010-05-19 | 엘지전자 주식회사 | Air conditioning system |
JP2010249335A (en) * | 2009-04-10 | 2010-11-04 | Mitsubishi Electric Corp | Air conditioner |
CN102748808A (en) * | 2011-04-22 | 2012-10-24 | Lg电子株式会社 | Multi-type air conditioner and method of controlling the same |
KR101401909B1 (en) * | 2012-03-07 | 2014-05-29 | 선문대학교 산학협력단 | Heat pump chiller system by non-frosting continuous operating the heat exchanger and Defrost method |
JP2014020568A (en) * | 2012-07-12 | 2014-02-03 | Hitachi Appliances Inc | Air conditioner |
CN104813123B (en) * | 2012-11-29 | 2017-09-12 | 三菱电机株式会社 | Conditioner |
CN104813123A (en) * | 2012-11-29 | 2015-07-29 | 三菱电机株式会社 | Air-conditioning device |
US10161652B2 (en) | 2014-04-04 | 2018-12-25 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
WO2015151289A1 (en) * | 2014-04-04 | 2015-10-08 | 三菱電機株式会社 | Air-conditioning device |
CN104089427A (en) * | 2014-06-24 | 2014-10-08 | 珠海格力电器股份有限公司 | Air conditioning system and control method thereof |
CN104089427B (en) * | 2014-06-24 | 2017-01-18 | 珠海格力电器股份有限公司 | Air conditioning system and control method thereof |
CN105857618A (en) * | 2015-02-11 | 2016-08-17 | 哈米尔顿森德斯特兰德公司 | Environmental control system utilizing parallel ram heat exchangers |
US9994322B2 (en) * | 2015-02-11 | 2018-06-12 | Hamilton Sundstrand Corporation | Environmental control system utilizing parallel ram heat exchangers |
US20160229542A1 (en) * | 2015-02-11 | 2016-08-11 | Hamilton Sundstrand Corporation | Environmental control system utilizing parallel ram heat exchangers |
CN105857618B (en) * | 2015-02-11 | 2021-05-11 | 哈米尔顿森德斯特兰德公司 | Environmental control system utilizing parallel stamped heat exchangers |
US9889938B2 (en) | 2015-06-05 | 2018-02-13 | Hamilton Sundstrand Corporation | Recirculation system for parallel ram heat exchangers |
KR101720495B1 (en) | 2016-03-15 | 2017-04-10 | 엘지전자 주식회사 | Air conditioner |
KR20180014570A (en) * | 2016-08-01 | 2018-02-09 | 윤명진 | Alternate heat exchanger type heat pump system |
KR101867858B1 (en) * | 2016-12-21 | 2018-06-15 | 엘지전자 주식회사 | Air conditioner |
WO2019128356A1 (en) * | 2017-12-28 | 2019-07-04 | 青岛海尔空调电子有限公司 | Air conditioner and defrosting control method therefor |
CN108224678A (en) * | 2017-12-28 | 2018-06-29 | 青岛海尔空调电子有限公司 | A kind of air-conditioning and defrosting control method |
WO2019151815A1 (en) * | 2018-02-05 | 2019-08-08 | 엘지전자 주식회사 | Air conditioner |
US11009258B2 (en) | 2018-02-05 | 2021-05-18 | Lg Electronics Inc. | Air conditioner |
CN109539477A (en) * | 2018-10-31 | 2019-03-29 | 青岛海尔空调电子有限公司 | Multi-online air-conditioning system and its defrosting control method |
CN114061031A (en) * | 2021-10-28 | 2022-02-18 | 青岛海尔空调器有限总公司 | Air conditioner defrosting control method and device and air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09318206A (en) | Heat pump type air conditioner | |
US10001318B2 (en) | Heat pump device that draws heat from both the atmosphere and another heat source | |
CN109328287B (en) | Refrigeration cycle device | |
JPH07234038A (en) | Multiroom type cooling-heating equipment and operating method thereof | |
WO2014067129A1 (en) | Multi-coupled heat pump air-conditioning system and method of controlling multi-coupled heat pump air-conditioning system | |
JPH05264133A (en) | Air conditioner | |
WO2018051408A1 (en) | Air conditioner | |
CN102466374A (en) | Heat pump type water heating apparatus | |
US4441335A (en) | Heat pump | |
JP2002372320A (en) | Refrigerating device | |
CN206637885U (en) | Air conditioning system | |
JPH11173711A (en) | Dual refrigerator | |
CN108826724A (en) | Refrigerating unit, refrigerating equipment and refrigerating unit control method | |
US20210048216A1 (en) | Air-conditioning apparatus | |
JP4622901B2 (en) | Air conditioner | |
JP2001296068A (en) | Regenerative refrigerating device | |
US11408627B2 (en) | Air-conditioning apparatus | |
JPH0894205A (en) | Air conditioner | |
JP2962311B1 (en) | Binary refrigeration equipment | |
JPH10325641A (en) | Refrigerating device | |
CN113218102B (en) | Heat pump system based on three devices and defrosting method thereof | |
CN106907839B (en) | The progress control method of air-conditioning refrigerator all-in-one machine | |
JPH04136669A (en) | Multi-room air conditioner | |
JPH08121893A (en) | Heat pump | |
JP3253276B2 (en) | Thermal storage type air conditioner and operation method thereof |