JPH11173711A - Dual refrigerator - Google Patents

Dual refrigerator

Info

Publication number
JPH11173711A
JPH11173711A JP34292297A JP34292297A JPH11173711A JP H11173711 A JPH11173711 A JP H11173711A JP 34292297 A JP34292297 A JP 34292297A JP 34292297 A JP34292297 A JP 34292297A JP H11173711 A JPH11173711 A JP H11173711A
Authority
JP
Japan
Prior art keywords
refrigerant
primary
evaporator
primary refrigerant
secondary refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34292297A
Other languages
Japanese (ja)
Inventor
Akitoshi Ueno
明敏 上野
Takemune Mesaki
丈統 目崎
Yuuji Fujimoto
遊二 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP34292297A priority Critical patent/JPH11173711A/en
Publication of JPH11173711A publication Critical patent/JPH11173711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To complete the defrosting at a high defrosting power of a coolant for a short time, without using electric heaters. SOLUTION: The refrigerator having a high- and low-temp. side refrigeration cycles A, B. The high-temp. side refrigeration unit A is constituted to be capable f a reverse cycle operation. A defrosting bypass circuit 18 is provided for bypassing a gas coolant x from a prim. refrigerator compressor 5 to the downstream of a prim. coolant pressure reducing mechanism 7 via a sec. refrigerant evaporator 12 in the reverse cycle operation. In the defrosting operation, the hot gas refrigerator x from the compressor 5 is fed to the evaporator 12 via are bypass circuit 18 to melt the frost on the evaporator 12, then evaporated by a sec. refrigerator condenser 6 acting as an evaporator and returned to the compressor 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、ショーケース用
冷凍装置等として利用される二元冷凍装置に関し、さら
に詳しくは二元冷凍装置における除霜機構に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a binary refrigeration system used as a refrigeration system for a showcase, and more particularly, to a defrosting mechanism in a binary refrigeration system.

【0002】[0002]

【従来の技術】例えば、ショーケース用冷凍装置とし
て、図5に示すように、一次冷媒xを圧縮する一次冷媒
用圧縮機5、一次冷媒xを凝縮液化する一次冷媒用凝縮
器6、一次冷媒xを減圧する一次冷媒用減圧機構7およ
び一次冷媒xを蒸発気化させる一次冷媒用蒸発器8を順
次冷媒配管を介して順次接続してなる高温側冷凍ユニッ
トと、二次冷媒yを圧縮する二次冷媒用圧縮機9、前記
一次冷媒用蒸発器8との熱交換により二次冷媒yを凝縮
液化する二次冷媒用凝縮器10、二次冷媒yを減圧する
二次冷媒用減圧機構11および二次冷媒yを蒸発気化さ
せる二次冷媒用蒸発器12を冷媒配管を介して順次接続
してなる低温側冷凍ユニットとを備えた二元冷凍装置が
用いられる場合がある。符号13は一次冷媒用凝縮器6
を冷却するための冷却ファンである。なお、前記一次冷
媒用圧縮機5および一次冷媒用凝縮器6は室外ユニット
1を構成し、前記一次冷媒用減圧機構7、一次冷媒用蒸
発器8、二次冷媒用圧縮機9および二次冷媒用凝縮器1
0はカスケードユニット2を構成し、二次冷媒用減圧機
構11および二次冷媒用蒸発器12はショーケース用冷
凍ユニット3を構成することとなっており、前記カスケ
ードユニット2およびショーケース用冷凍ユニット3は
ショーケース配置室4に設置される。
2. Description of the Prior Art For example, as a showcase refrigerating apparatus, as shown in FIG. 5, a primary refrigerant compressor 5 for compressing a primary refrigerant x, a primary refrigerant condenser 6 for condensing and liquefying the primary refrigerant x, a primary refrigerant a high-temperature side refrigeration unit in which a primary refrigerant decompression mechanism 7 for decompressing x and a primary refrigerant evaporator 8 for evaporating and evaporating the primary refrigerant x are sequentially connected via refrigerant pipes; A secondary refrigerant compressor 9, a secondary refrigerant condenser 10 for condensing and liquefying the secondary refrigerant y by heat exchange with the primary refrigerant evaporator 8, a secondary refrigerant decompression mechanism 11 for decompressing the secondary refrigerant y, and In some cases, a binary refrigeration apparatus including a low-temperature refrigeration unit in which a secondary refrigerant evaporator 12 for evaporating and evaporating the secondary refrigerant y is sequentially connected via a refrigerant pipe is used. Reference numeral 13 denotes a condenser 6 for a primary refrigerant.
Is a cooling fan for cooling. The primary refrigerant compressor 5 and the primary refrigerant condenser 6 constitute the outdoor unit 1, and the primary refrigerant decompression mechanism 7, the primary refrigerant evaporator 8, the secondary refrigerant compressor 9, and the secondary refrigerant Condenser 1
Numeral 0 constitutes the cascade unit 2, and the secondary refrigerant decompression mechanism 11 and the secondary refrigerant evaporator 12 constitute the showcase refrigeration unit 3, and the cascade unit 2 and the showcase refrigeration unit 3 is installed in the showcase arrangement room 4.

【0003】上記構成の二元冷凍装置において、冷凍運
転を継続していると、ショーケース用冷凍ユニット3に
おける二次冷媒用蒸発器12に着霜が進行し、冷凍能力
が低下してくるので、所定の時間間隔で、あるいは着霜
の進行度合いを検知して二次冷媒用蒸発器12の着霜を
融霜除去する除霜運転を行う必要がある。
In the binary refrigeration system having the above structure, if the refrigeration operation is continued, frost formation proceeds on the evaporator 12 for the secondary refrigerant in the refrigeration unit 3 for the showcase, and the refrigeration capacity decreases. It is necessary to perform a defrosting operation at a predetermined time interval or by detecting the degree of progress of frost formation to melt and remove frost formation on the secondary refrigerant evaporator 12.

【0004】従来の除霜運転は、図5に示すように、二
次冷媒用圧縮機9から吐出される高温の吐出ガス冷媒
(即ち、ホットガス)yを三方弁15を介して二次冷媒
用蒸発器12の入口側へバイパスさせるバイパス回路1
4を設け、前記三方弁15を二次冷媒用圧縮機9とバイ
パス回路14とを連通させるように切り換えることによ
り、該バイパス回路14を介してホットガスyを二次冷
媒用蒸発器12に供給し、該ホットガスyの保有する熱
により着霜を融霜除去するホットガスバイパス方式とさ
れていた。
In a conventional defrosting operation, as shown in FIG. 5, a high-temperature discharge gas refrigerant (ie, hot gas) y discharged from a secondary refrigerant compressor 9 is supplied to a secondary refrigerant through a three-way valve 15. Circuit 1 for bypassing to the inlet side of evaporator 12
The hot gas y is supplied to the secondary refrigerant evaporator 12 through the bypass circuit 14 by switching the three-way valve 15 so that the compressor 9 for the secondary refrigerant communicates with the bypass circuit 14. However, the hot gas bypass method is used to melt and remove frost by the heat of the hot gas y.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記したホ
ットガスバイパス方式の除霜運転では、除霜能力に限界
があるため、除霜時間が長くなるという不具合があっ
た。なお、通常の空気調和機用蒸発器のようにフィンピ
ッチが小さい熱交換器が使用されていると、高い除霜能
力で除霜すると、伝熱管周りだけが先に融霜してしま
い、着霜全体の融霜が進まない場合が生じるおそれがあ
るので、ホットガスバイパス方式のようにあまり高くな
い除霜能力でゆっくりと除霜するのが望ましいが、ショ
ーケース用蒸発器の場合、フィンピッチが比較的大きい
熱交換器が使用されているため、高い除霜能力で短時間
で除霜を行っても、伝熱管周りの融霜だけで着霜が落下
する。しかも、ショーケースの場合、食品等が陳列され
ているため、除霜時間は短い方が望ましいという要求も
ある。
However, in the above-described hot gas bypass type defrosting operation, there is a problem that the defrosting time becomes long because the defrosting ability is limited. If a heat exchanger with a small fin pitch is used, such as a normal air conditioner evaporator, if defrosting is performed with a high defrosting capacity, only the area around the heat transfer tubes will melt first, and the Since there is a possibility that the entire frost will not melt, it is desirable to defrost slowly with a not so high defrosting capacity as in the hot gas bypass method. Since a heat exchanger having a relatively large heat transfer rate is used, even if defrosting is performed in a short time with a high defrosting ability, frost formation is caused only by the frost around the heat transfer tube. In addition, in the case of a showcase, since foods and the like are displayed, there is a demand that a shorter defrosting time is desirable.

【0006】また、二次冷媒用蒸発器への着霜を電気ヒ
ータによる加熱で融霜除去する方法もあるが、電気ヒー
タは、電力消費が大きいためランニングコストが高くな
るとともに、定期的なメンテナンスが必要となるという
不具合がある。
There is also a method of removing frost on the secondary refrigerant evaporator by heating with an electric heater to remove the frost. However, the electric heater consumes a large amount of electric power, so that running costs are increased and periodic maintenance is performed. Is required.

【0007】本願発明は、上記の点に鑑みてなされたも
ので、電気ヒータを用いることなく、冷媒の保有する高
い除霜能力で短時間で除霜を完了し得るようにすること
を目的とするものである。
[0007] The present invention has been made in view of the above points, and an object of the present invention is to make it possible to complete defrosting in a short time with a high defrosting capacity of a refrigerant without using an electric heater. Is what you do.

【0008】[0008]

【課題を解決するための手段】本願発明の第1の基本構
成(請求項1の発明)では、上記課題を解決するための
手段として、一次冷媒xを圧縮する一次冷媒用圧縮機
5、一次冷媒xを凝縮液化する一次冷媒用凝縮器6、一
次冷媒xを減圧する一次冷媒用減圧機構7および一次冷
媒xを蒸発気化させる一次冷媒用蒸発器8を冷媒配管1
6を介して順次接続してなる高温側冷凍サイクルAと、
二次冷媒yを圧縮する二次冷媒用圧縮機9、前記一次冷
媒用蒸発器8との熱交換により二次冷媒yを凝縮液化す
る二次冷媒用凝縮器10、二次冷媒yを減圧する二次冷
媒用減圧機構11および二次冷媒yを蒸発気化させる二
次冷媒用蒸発器12を冷媒配管17を介して順次接続し
てなる低温側冷凍サイクルBとを備えた二元冷凍装置に
おいて、前記高温側冷凍ユニットAを逆サイクル運転が
可能に構成するとともに、前記高温側冷凍サイクルAの
逆サイクル運転時において前記一次冷媒用圧縮機5から
吐出されるガス冷媒xを前記二次冷媒用蒸発器12を経
て前記一次冷媒用減圧機構7の下流側へバイパスさせる
除霜用バイパス回路18を設けている。
According to a first basic configuration of the present invention (invention of claim 1), as means for solving the above-mentioned problems, a primary refrigerant compressor 5 for compressing a primary refrigerant x, a primary refrigerant The refrigerant pipe 1 includes a primary refrigerant condenser 6 for condensing and liquefying the refrigerant x, a primary refrigerant decompression mechanism 7 for decompressing the primary refrigerant x, and a primary refrigerant evaporator 8 for evaporating the primary refrigerant x.
6, a high-temperature refrigeration cycle A sequentially connected through
A secondary refrigerant compressor 9 for compressing the secondary refrigerant y, a secondary refrigerant condenser 10 for condensing and liquefying the secondary refrigerant y by heat exchange with the primary refrigerant evaporator 8, and depressurizing the secondary refrigerant y. In a binary refrigeration apparatus including a low-temperature side refrigeration cycle B in which a secondary refrigerant decompression mechanism 11 and a secondary refrigerant evaporator 12 for evaporating and evaporating the secondary refrigerant y are sequentially connected via a refrigerant pipe 17, The high-temperature side refrigeration unit A is configured to be capable of reverse cycle operation, and the gas refrigerant x discharged from the primary refrigerant compressor 5 during the reverse cycle operation of the high-temperature side refrigeration cycle A is vaporized for the secondary refrigerant. A defrost bypass circuit 18 is provided for bypassing to the downstream side of the primary refrigerant pressure reducing mechanism 7 through the device 12.

【0009】上記のように構成したことにより、除霜運
転時においては、一次冷媒用圧縮機5から吐出される高
温のガス冷媒(即ち、ホットガス)xが、除霜用バイパ
ス回路18を介して二次冷媒用蒸発器12へ供給され、
二次冷媒用蒸発器12の着霜を融霜した後、蒸発器とし
て作用する一次冷媒用凝縮器6で蒸発気化された後に一
次冷媒用圧縮機5へ還流されることとなる。従って、除
霜用熱源としては、一次冷媒用圧縮機5の仕事量と、一
次冷媒用凝縮器6と熱交換する媒体(例えば、外気)の
保有する熱とが利用されることとなるため、除霜能力が
大きく向上することとなる。
With the above configuration, during the defrosting operation, the high-temperature gas refrigerant (ie, hot gas) x discharged from the primary refrigerant compressor 5 passes through the defrost bypass circuit 18. To the secondary refrigerant evaporator 12,
After the frost of the secondary refrigerant evaporator 12 is melted and frosted, it is vaporized and vaporized by the primary refrigerant condenser 6 acting as an evaporator, and then returned to the primary refrigerant compressor 5. Therefore, as the defrosting heat source, the work of the primary refrigerant compressor 5 and the heat held by the medium (for example, outside air) that exchanges heat with the primary refrigerant condenser 6 are used. The defrosting ability will be greatly improved.

【0010】本願発明の第2の基本構成(請求項2の発
明)では、上記課題を解決するための手段として、一次
冷媒xを圧縮する一次冷媒用圧縮機5、一次冷媒xを凝
縮液化する一次冷媒用凝縮器6、一次冷媒xを減圧する
一次冷媒用減圧機構7および一次冷媒xを蒸発気化させ
る一次冷媒用蒸発器8を冷媒配管16を介して順次接続
してなる高温側冷凍サイクルAと、二次冷媒yを圧縮す
る二次冷媒用圧縮機9、前記一次冷媒用蒸発器8との熱
交換により二次冷媒yを凝縮液化する二次冷媒用凝縮器
10、二次冷媒yを減圧する二次冷媒用減圧機構11お
よび二次冷媒yを蒸発気化させる二次冷媒用蒸発器12
を冷媒配管17を介して順次接続してなる低温側冷凍サ
イクルBとを備えた二元冷凍装置において、前記低温側
冷凍サイクルBを逆サイクル運転が可能に構成するとと
もに、前記低温側冷凍サイクルBの逆サイクル運転時に
前記二次冷媒用圧縮機9に還流する液冷媒yを蒸発気化
させる空冷熱交換器19を付設している。
In the second basic configuration of the present invention (the invention of claim 2), as means for solving the above problems, a primary refrigerant compressor 5 for compressing the primary refrigerant x, and condensing and liquefying the primary refrigerant x. A high-temperature side refrigeration cycle A in which a primary refrigerant condenser 6, a primary refrigerant decompression mechanism 7 for decompressing the primary refrigerant x, and a primary refrigerant evaporator 8 for evaporating and evaporating the primary refrigerant x are sequentially connected via a refrigerant pipe 16. And a secondary refrigerant compressor 9 for compressing the secondary refrigerant y, a secondary refrigerant condenser 10 for condensing and liquefying the secondary refrigerant y by heat exchange with the primary refrigerant evaporator 8, and a secondary refrigerant y. A decompression mechanism 11 for the secondary refrigerant for reducing the pressure and an evaporator 12 for the secondary refrigerant for evaporating the secondary refrigerant y
And a low-temperature side refrigeration cycle B sequentially connected through a refrigerant pipe 17, the low-temperature side refrigeration cycle B is configured to be capable of reverse cycle operation, An air-cooled heat exchanger 19 for evaporating and evaporating the liquid refrigerant y flowing back to the secondary refrigerant compressor 9 during the reverse cycle operation is provided.

【0011】上記のように構成したことにより、除霜運
転時においては、二次冷媒用圧縮機9から吐出された高
温のガス冷媒(即ち、ホットガス)yが、二次冷媒用蒸
発器12に供給され、二次冷媒用蒸発器12の着霜を融
霜した後、空冷熱交換器19で蒸発気化された後に二次
冷媒用圧縮機9へ還流されることとなる。従って、除霜
用熱源としては、二次冷媒用圧縮機9の仕事量と、空冷
熱交換器19と熱交換する媒体(例えば、室内空気)の
保有する熱とが利用されることとなるため、除霜能力が
大きく向上することとなる。
With the above configuration, during the defrosting operation, the high-temperature gas refrigerant (ie, hot gas) y discharged from the secondary refrigerant compressor 9 is supplied to the secondary refrigerant evaporator 12. After the frost of the secondary refrigerant evaporator 12 is melted and frosted, the air is evaporated and vaporized by the air-cooling heat exchanger 19 and then returned to the secondary refrigerant compressor 9. Therefore, as the heat source for defrosting, the work of the compressor 9 for the secondary refrigerant and the heat held by the medium (for example, indoor air) that exchanges heat with the air-cooling heat exchanger 19 are used. As a result, the defrosting ability is greatly improved.

【0012】請求項3の発明におけるように、前記空冷
熱交換器19を、前記高温側冷凍サイクルAにおける一
次冷媒用凝縮器6で兼用した場合、除霜運転時において
二次冷媒用凝縮器12で凝縮液化された二次冷媒yを一
次冷媒用凝縮器6で蒸発気化できることとなり、部品点
数の低減およびコスト低減に寄与できる。なお、この場
合、外気の保有するする熱が除霜用熱源として利用され
ることとなる。
When the air-cooling heat exchanger 19 is also used as the primary refrigerant condenser 6 in the high-temperature side refrigeration cycle A as in the third aspect of the present invention, the secondary refrigerant condenser 12 is used during the defrosting operation. Thus, the secondary refrigerant y condensed and liquefied can be evaporated and vaporized in the primary refrigerant condenser 6, which can contribute to a reduction in the number of parts and cost. In this case, the heat held by the outside air is used as a heat source for defrosting.

【0013】本願発明の第3の基本構成(請求項4の発
明)では、上記課題を解決するための手段として、一次
冷媒xを圧縮する一次冷媒用圧縮機5、一次冷媒xを凝
縮液化する一次冷媒用凝縮器6、一次冷媒xを減圧する
一次冷媒用減圧機構7および一次冷媒xを蒸発気化させ
る一次冷媒用蒸発器8を冷媒配管16を介して順次接続
してなる高温側冷凍サイクルAと、二次冷媒yを圧縮す
る二次冷媒用圧縮機9、前記一次冷媒用蒸発器8との熱
交換により二次冷媒yを凝縮液化する二次冷媒用凝縮器
10、二次冷媒yを減圧する二次冷媒用減圧機構11お
よび二次冷媒yを蒸発気化させる二次冷媒用蒸発器12
を冷媒配管17を介して順次接続してなる低温側冷凍サ
イクルBとを備えた二元冷凍装置において、前記高温側
冷凍サイクルAおよび低温側冷凍サイクルBを逆サイク
ル運転が可能に構成している。
In a third basic configuration of the present invention (invention of claim 4), as means for solving the above problems, a primary refrigerant compressor 5 for compressing the primary refrigerant x, and condensing and liquefying the primary refrigerant x. A high-temperature side refrigeration cycle A in which a primary refrigerant condenser 6, a primary refrigerant decompression mechanism 7 for decompressing the primary refrigerant x, and a primary refrigerant evaporator 8 for evaporating and evaporating the primary refrigerant x are sequentially connected via a refrigerant pipe 16. And a secondary refrigerant compressor 9 for compressing the secondary refrigerant y, a secondary refrigerant condenser 10 for condensing and liquefying the secondary refrigerant y by heat exchange with the primary refrigerant evaporator 8, and a secondary refrigerant y. A decompression mechanism 11 for the secondary refrigerant for reducing the pressure and an evaporator 12 for the secondary refrigerant for evaporating the secondary refrigerant y
And a low-temperature refrigeration cycle B, which is sequentially connected via a refrigerant pipe 17, wherein the high-temperature refrigeration cycle A and the low-temperature refrigeration cycle B can be operated in reverse cycle. .

【0014】上記のように構成したことにより、除霜運
転時においては、二次冷媒用圧縮機9から吐出される高
温のガス冷媒(即ち、ホットガス)yが、二次冷媒用蒸
発器12に供給され、二次冷媒用蒸発器12の着霜を融
霜した後、蒸発器として作用している二次冷媒用凝縮器
10で蒸発気化された後に二次冷媒用圧縮機9へ還流さ
れるとともに、一次冷媒用圧縮機5から吐出された高温
のガス冷媒(即ち、ホットガス)xが、一次冷媒用蒸発
器8に供給され、二次冷媒用凝縮器10での液冷媒yの
蒸発気化を助けて自身凝縮液化された後、蒸発器として
作用している一次冷媒用凝縮器6で蒸発気化されて一次
冷媒用圧縮機5へ還流される。従って、除霜用熱源とし
ては、一次冷媒用圧縮機5および二次冷媒用圧縮機9の
仕事量と、一次冷媒用凝縮器6と熱交換する媒体(例え
ば、外気)の保有する熱とが利用されることとなるた
め、除霜能力が大きく向上することとなる。
With the above configuration, during the defrosting operation, the high-temperature gas refrigerant (ie, hot gas) y discharged from the secondary refrigerant compressor 9 is supplied to the secondary refrigerant evaporator 12. Is supplied to the secondary refrigerant evaporator 12 to melt the frost, and after being evaporated and vaporized by the secondary refrigerant condenser 10 acting as an evaporator, is returned to the secondary refrigerant compressor 9. At the same time, the high-temperature gas refrigerant (that is, hot gas) x discharged from the primary refrigerant compressor 5 is supplied to the primary refrigerant evaporator 8, and the secondary refrigerant condenser 10 evaporates the liquid refrigerant y. After being condensed and liquefied by the aid of vaporization, it is evaporated and vaporized by the primary refrigerant condenser 6 acting as an evaporator and returned to the primary refrigerant compressor 5. Accordingly, as the defrosting heat source, the work of the primary refrigerant compressor 5 and the secondary refrigerant compressor 9 and the heat of the medium (for example, outside air) that exchanges heat with the primary refrigerant condenser 6 are provided. Since it is used, the defrosting ability is greatly improved.

【0015】[0015]

【発明の実施の形態】以下、添付の図面を参照して、本
願発明の幾つかの好適な実施の形態について詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Some preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0016】第1の実施の形態(請求項1に対応) 図1には、本願発明の第1の実施の形態にかかる二元冷
凍装置が示されている。
First Embodiment (corresponding to claim 1) FIG. 1 shows a binary refrigeration apparatus according to a first embodiment of the present invention.

【0017】この二元冷凍装置は、図1に示すように、
既に従来技術の項において説明したと同様な構成とされ
ている。
As shown in FIG. 1, this binary refrigeration system
The configuration is the same as that already described in the section of the prior art.

【0018】即ち、この二元冷凍装置は、ショーケース
用冷凍装置として用いられるものであり、一次冷媒xを
圧縮する一次冷媒用圧縮機5、一次冷媒xを凝縮液化す
る一次冷媒用凝縮器6、一次冷媒xを減圧する一次冷媒
用減圧機構7および一次冷媒xを蒸発気化させる一次冷
媒用蒸発器8を冷媒配管16を介して順次接続してなる
高温側冷凍サイクルAと、二次冷媒yを圧縮する二次冷
媒用圧縮機9、前記一次冷媒用蒸発器8との熱交換によ
り二次冷媒yを凝縮液化する二次冷媒用凝縮器10、二
次冷媒yを減圧する二次冷媒用減圧機構11および二次
冷媒yを蒸発気化させる二次冷媒用蒸発器12を冷媒配
管17を介して順次接続してなる低温側冷凍サイクルB
とを備えて構成されている。符号13は一次冷媒用凝縮
器6を冷却するための冷却ファンである。
That is, this binary refrigerating apparatus is used as a showcase refrigerating apparatus, and comprises a primary refrigerant compressor 5 for compressing a primary refrigerant x, and a primary refrigerant condenser 6 for condensing and liquefying the primary refrigerant x. A high-temperature side refrigeration cycle A in which a primary refrigerant decompression mechanism 7 for decompressing the primary refrigerant x and a primary refrigerant evaporator 8 for evaporating and evaporating the primary refrigerant x are sequentially connected through a refrigerant pipe 16; , A secondary refrigerant condenser 10 for condensing and liquefying the secondary refrigerant y by heat exchange with the primary refrigerant evaporator 8, and a secondary refrigerant for decompressing the secondary refrigerant y. A low-temperature refrigeration cycle B in which a pressure reducing mechanism 11 and a secondary refrigerant evaporator 12 for evaporating and evaporating the secondary refrigerant y are sequentially connected via a refrigerant pipe 17.
It is comprised including. Reference numeral 13 denotes a cooling fan for cooling the condenser 6 for the primary refrigerant.

【0019】なお、前記一次冷媒用圧縮機5および一次
冷媒用凝縮器6は室外ユニット1を構成し、前記一次冷
媒用減圧機構7、一次冷媒用蒸発器8、二次冷媒用圧縮
機9および二次冷媒用凝縮器10はカスケードユニット
2を構成し、二次冷媒用減圧機構11および二次冷媒用
蒸発器12はショーケース用冷凍ユニット3を構成する
こととなっており、前記カスケードユニット2およびシ
ョーケース用冷凍ユニット3はショーケース配置室4に
設置される。
The compressor 5 for the primary refrigerant and the condenser 6 for the primary refrigerant constitute the outdoor unit 1. The decompression mechanism 7 for the primary refrigerant, the evaporator 8 for the primary refrigerant, the compressor 9 for the secondary refrigerant and The condenser 10 for the secondary refrigerant constitutes the cascade unit 2, and the decompression mechanism 11 for the secondary refrigerant and the evaporator 12 for the secondary refrigerant constitute the refrigeration unit 3 for the showcase. The showcase refrigeration unit 3 is installed in the showcase arrangement room 4.

【0020】そして、この二元冷凍装置においては、前
記高温側冷凍サイクルAにおける一次冷媒用圧縮機5の
吐出側に四路切換弁20を設けて、該高温側冷凍サイク
ルAの逆サイクル運転が可能なように構成されており、
前記高温側冷凍サイクルAの逆サイクル運転時において
前記一次冷媒用圧縮機5から吐出されるガス冷媒xを前
記二次冷媒用蒸発器12を経て前記一次冷媒用減圧機構
7の下流側へバイパスさせる除霜用バイパス回路18が
設けられている。該除霜用バイパス回路18の途中に
は、前記二次冷媒用蒸発器12と熱交換可能に構成され
た加熱用熱交換器21が設けられている。符号22は一
次冷媒用凝縮器6から一次冷媒用減圧機構7への冷媒流
通のみを許容する逆止弁、23は該逆止弁22と並列に
接続された減圧機構であり、冷却運転時には一次冷媒x
は逆止弁22を介して流通し、除霜運転時には一次冷媒
xは減圧機構23を介して流通することとなっている。
符号24は前記除霜用バイパス回路18の入口側に介設
された除霜運転時にのみ開弁する開閉弁、25は前記除
霜用バイパス回路18の出口側に介設された除霜運転時
にのみ冷媒流通を許容する逆止弁である。なお、前記開
閉弁24および逆止弁25に代えて、高温用冷凍サイク
ルAと除霜用バイパス回路18との分岐点に三方弁を介
設してもよい。
In this two-way refrigeration system, a four-way switching valve 20 is provided on the discharge side of the primary refrigerant compressor 5 in the high-temperature side refrigeration cycle A, so that the reverse cycle operation of the high-temperature side refrigeration cycle A is performed. Is configured as possible,
During the reverse cycle operation of the high-temperature side refrigeration cycle A, the gas refrigerant x discharged from the primary refrigerant compressor 5 is bypassed to the downstream side of the primary refrigerant pressure reducing mechanism 7 via the secondary refrigerant evaporator 12. A defrost bypass circuit 18 is provided. A heating heat exchanger 21 configured to be able to exchange heat with the secondary refrigerant evaporator 12 is provided in the middle of the defrost bypass circuit 18. Reference numeral 22 denotes a check valve that permits only the flow of the refrigerant from the primary refrigerant condenser 6 to the primary refrigerant pressure reducing mechanism 7, and 23 denotes a pressure reducing mechanism connected in parallel with the check valve 22, and the primary pressure during cooling operation. Refrigerant x
Flows through the check valve 22, and the primary refrigerant x flows through the pressure reducing mechanism 23 during the defrosting operation.
Reference numeral 24 denotes an open / close valve provided only at the time of defrosting operation provided on the inlet side of the bypass circuit 18 for defrosting, and reference numeral 25 designates an open / close valve provided at the outlet side of the bypass circuit 18 for defrosting. This is a check valve that allows only refrigerant flow. Instead of the on-off valve 24 and the check valve 25, a three-way valve may be provided at a branch point between the high-temperature refrigeration cycle A and the defrost bypass circuit 18.

【0021】上記のように構成された二元冷凍装置は、
次のように作用する。
The binary refrigeration system configured as described above has
It works as follows.

【0022】(I) 冷却運転時 この時、四路切換弁20は正サイクル側に切り換えら
れ、開閉弁24は閉弁され、一次冷媒用圧縮機5、二次
冷媒用圧縮機9および冷却ファン13は運転されてい
る。
(I) At the time of cooling operation At this time, the four-way switching valve 20 is switched to the forward cycle side, the on-off valve 24 is closed, the primary refrigerant compressor 5, the secondary refrigerant compressor 9, and the cooling fan 13 is operating.

【0023】一次冷媒用圧縮機5から圧送された一次冷
媒xは、図1に実線矢印で示すように、四路切換弁20
を経て一次冷媒用凝縮器6に供給され、そこで凝縮液化
された後、逆止弁22を経た後一次冷媒用減圧機構7で
減圧され、その後一次冷媒用蒸発器8で蒸発気化され、
四路切換弁20を経て一次冷媒用圧縮機5へ還流され
る。
The primary refrigerant x sent from the primary refrigerant compressor 5 under pressure is supplied to the four-way switching valve 20 as shown by the solid arrows in FIG.
Is supplied to the condenser 6 for the primary refrigerant, and is condensed and liquefied there. After passing through the check valve 22, the pressure is reduced by the pressure reducing mechanism 7 for the primary refrigerant, and thereafter, it is evaporated and vaporized by the evaporator 8 for the primary refrigerant.
The refrigerant is returned to the primary refrigerant compressor 5 through the four-way switching valve 20.

【0024】一方、二次冷媒用圧縮機9から圧送された
二次冷媒yは、図1に実線矢印で示すように、二次冷媒
用凝縮器10において前記一次冷媒用蒸発器8との熱交
換により凝縮液化された後、二次冷媒用減圧機構11で
減圧され、その後二次冷媒用蒸発器12で蒸発気化さ
れ、二次冷媒用圧縮機9へ還流される。従って、一次冷
媒用蒸発器8との熱交換により低温化された二次冷媒y
が二次冷媒用蒸発器12において蒸発気化することによ
り、二次冷媒用蒸発器12による冷却作用が大きく向上
することとなる。
On the other hand, as shown by a solid line arrow in FIG. 1, the secondary refrigerant y pressure-fed from the secondary refrigerant compressor 9 is transferred to the primary refrigerant evaporator 8 in the secondary refrigerant condenser 10 by heat. After being condensed and liquefied by the exchange, the pressure is reduced by the secondary refrigerant decompression mechanism 11, then evaporated and vaporized by the secondary refrigerant evaporator 12, and returned to the secondary refrigerant compressor 9. Therefore, the secondary refrigerant y which has been cooled down by heat exchange with the primary refrigerant evaporator 8
Is evaporated and vaporized in the secondary refrigerant evaporator 12, so that the cooling effect of the secondary refrigerant evaporator 12 is greatly improved.

【0025】(II) 除霜運転時 この時、四路切換弁20は逆サイクル側に切り換えら
れ、開閉弁24は開弁され、一次冷媒用圧縮機5および
冷却ファン13は運転され、二次冷媒用圧縮機9は運転
停止されている。
(II) During defrosting operation At this time, the four-way switching valve 20 is switched to the reverse cycle side, the on-off valve 24 is opened, the primary refrigerant compressor 5 and the cooling fan 13 are operated, and the secondary The operation of the refrigerant compressor 9 is stopped.

【0026】一次冷媒用圧縮機5から吐出される高温の
ガス冷媒(即ち、ホットガス)xは、図1に点線で示す
ように、四路切換弁20を経た後除霜用バイパス回路1
8を介して二次冷媒用蒸発器12へ供給され、二次冷媒
用蒸発器12の着霜を融霜した後、減圧機構23を経て
蒸発器として作用する一次冷媒用凝縮器6に供給され、
そこで蒸発気化された後に四路切換弁20を経て一次冷
媒用圧縮機5へ還流されることとなる。従って、除霜用
熱源としては、一次冷媒用圧縮機5の仕事量と、一次冷
媒用凝縮器6と熱交換する媒体である外気の保有する熱
とが利用されることとなるため、除霜能力が大きく向上
することとなる。
The high-temperature gas refrigerant (ie, hot gas) x discharged from the primary refrigerant compressor 5 passes through the four-way switching valve 20 and then passes through the defrost bypass circuit 1 as shown by the dotted line in FIG.
8, is supplied to the secondary refrigerant evaporator 12, melts frost on the secondary refrigerant evaporator 12, and is then supplied to the primary refrigerant condenser 6 acting as an evaporator via the pressure reducing mechanism 23. ,
Then, after being vaporized and vaporized, the refrigerant is returned to the primary refrigerant compressor 5 via the four-way switching valve 20. Therefore, as the heat source for defrosting, the work of the compressor 5 for the primary refrigerant and the heat held by the outside air, which is a medium for exchanging heat with the condenser 6 for the primary refrigerant, are used. The ability will be greatly improved.

【0027】なお、ショーケース用冷凍装置における蒸
発器の場合、フィンピッチが比較的大きい熱交換器が使
用されているため、本実施の形態におけるように、高い
除霜能力で短時間で除霜を行っても、伝熱管周りの融霜
だけで着霜が落下するので、着霜が残るということはな
い。しかも、ショーケースの場合、食品等が陳列されて
いるため、除霜時間は短い方が望ましいという要求も満
たすことができる。
In the case of the evaporator in the showcase refrigeration system, since a heat exchanger having a relatively large fin pitch is used, the defrosting is performed in a short time with a high defrosting ability as in the present embodiment. However, since frost drops only due to the frost around the heat transfer tubes, frost does not remain. In addition, in the case of a showcase, since food and the like are displayed, it is possible to satisfy the requirement that a shorter defrosting time is desirable.

【0028】また、電気ヒータを用いる除霜方法ではな
く、冷媒により搬送される熱により除霜を行うこととな
っているため、ランニングコストが高くなることもな
く、定期的なメンテナンスも不必要となる。
In addition, since the defrosting is performed not by the defrosting method using the electric heater but by the heat carried by the refrigerant, the running cost is not increased and the periodic maintenance is unnecessary. Become.

【0029】第2の実施の形態(請求項2に対応) 図2には、本願発明の第2の実施の形態にかかる二元冷
凍装置が示されている。
Second Embodiment (Corresponding to Claim 2) FIG. 2 shows a binary refrigeration apparatus according to a second embodiment of the present invention.

【0030】この場合、高温側冷凍サイクルAは、一次
冷媒xを圧縮する一次冷媒用圧縮機5、一次冷媒xを凝
縮液化する一次冷媒用凝縮器6、一次冷媒xを減圧する
一次冷媒用減圧機構7および一次冷媒xを蒸発気化させ
る一次冷媒用蒸発器8を冷媒配管16を介して順次接続
して構成されている。
In this case, the high-temperature side refrigeration cycle A includes a primary refrigerant compressor 5 for compressing the primary refrigerant x, a primary refrigerant condenser 6 for condensing and liquefying the primary refrigerant x, and a primary refrigerant decompression for reducing the primary refrigerant x. A mechanism 7 and a primary refrigerant evaporator 8 for evaporating and evaporating the primary refrigerant x are sequentially connected via a refrigerant pipe 16.

【0031】一方低温側冷凍サイクルBにおける二次冷
媒用圧縮機9の吐出側に四路切換弁26を設けて、逆サ
イクル運転が可能に構成されており、該低温側冷凍サイ
クルBの逆サイクル運転時に前記二次冷媒用圧縮機9に
還流する液冷媒yを蒸発気化させる空冷熱交換器19が
付設されている。なお、第1の実施の形態における除霜
用バイパス回路18は省略される。符号27は空冷熱交
換器19の冷却ファン、28は二次冷媒用減圧機構11
と並列に接続された除霜運転時にのみ冷媒流通を許容す
る逆止弁、29は二次冷媒用凝縮器10から二次冷媒用
減圧機構11への冷媒流通のみを許容する逆止弁、30
は該逆止弁29と並列に接続された減圧機構であり、冷
却運転時には二次冷媒yは逆止弁29を介して流通し、
除霜運転時には二次冷媒yは減圧機構30を介して流通
することとなっている。その他の構成は、第1の実施の
形態におけると同様なので説明を省略する。
On the other hand, a four-way switching valve 26 is provided on the discharge side of the secondary refrigerant compressor 9 in the low-temperature side refrigeration cycle B to enable reverse cycle operation. An air-cooled heat exchanger 19 for evaporating and evaporating the liquid refrigerant y flowing back to the secondary refrigerant compressor 9 during operation is provided. Note that the defrost bypass circuit 18 in the first embodiment is omitted. Reference numeral 27 denotes a cooling fan of the air-cooled heat exchanger 19, and reference numeral 28 denotes a secondary refrigerant pressure reducing mechanism 11.
A check valve 29 connected in parallel to allow the refrigerant to flow only during the defrosting operation; 29 is a check valve that allows only the refrigerant to flow from the secondary refrigerant condenser 10 to the secondary refrigerant pressure reducing mechanism 11;
Is a pressure reducing mechanism connected in parallel with the check valve 29. During the cooling operation, the secondary refrigerant y flows through the check valve 29,
During the defrosting operation, the secondary refrigerant y flows through the pressure reducing mechanism 30. Other configurations are the same as those in the first embodiment, and a description thereof will be omitted.

【0032】上記のように構成された二元冷凍装置は、
次のように作用する。
The binary refrigeration system configured as described above has
It works as follows.

【0033】(I) 冷却運転時 この時、四路切換弁26は正サイクル側に切り換えら
れ、一次冷媒用圧縮機5、二次冷媒用圧縮機9および冷
却ファン13,27は運転されている。
(I) Cooling operation At this time, the four-way switching valve 26 is switched to the forward cycle side, and the primary refrigerant compressor 5, the secondary refrigerant compressor 9, and the cooling fans 13, 27 are operated. .

【0034】一次冷媒用圧縮機5から圧送された一次冷
媒xは、図2に実線矢印で示すように、一次冷媒用凝縮
器6に供給され、そこで凝縮液化された後、一次冷媒用
減圧機構7で減圧され、その後一次冷媒用蒸発器8で蒸
発気化され、一次冷媒用圧縮機5へ還流される。
The primary refrigerant x fed from the primary refrigerant compressor 5 is supplied to the primary refrigerant condenser 6 where it is condensed and liquefied, as shown by the solid arrow in FIG. The pressure is reduced at 7, then evaporated and vaporized at the primary refrigerant evaporator 8 and returned to the primary refrigerant compressor 5.

【0035】一方、二次冷媒用圧縮機9から圧送された
二次冷媒yは、図2に実線矢印で示すように、四路切換
弁26を経た後空冷熱交換器19で冷却ファン27から
の冷却風により冷却され、さらに二次冷媒用凝縮器10
において前記一次冷媒用蒸発器8との熱交換により凝縮
液化され、逆止弁29を経た後二次冷媒用減圧機構11
で減圧され、その後二次冷媒用蒸発器12で蒸発気化さ
れ、四路切換弁26を経て二次冷媒用圧縮機9へ還流さ
れる。従って、一次冷媒用蒸発器8との熱交換により低
温化された二次冷媒yが二次冷媒用蒸発器12において
蒸発気化することにより、二次冷媒用蒸発器12による
冷却作用が大きく向上することとなる。なお、この場
合、空冷熱交換器19は二次冷媒用凝縮器10へ供給さ
れる冷媒を予冷することとなる。
On the other hand, the secondary refrigerant y pressure-fed from the secondary refrigerant compressor 9 passes through the four-way switching valve 26 and then from the cooling fan 27 in the air-cooled heat exchanger 19 as shown by the solid arrow in FIG. Is cooled by the cooling air of the
Is condensed and liquefied by heat exchange with the primary refrigerant evaporator 8, passes through the check valve 29, and then the secondary refrigerant pressure reducing mechanism 11
After that, the refrigerant is evaporated and vaporized by the secondary refrigerant evaporator 12 and returned to the secondary refrigerant compressor 9 via the four-way switching valve 26. Therefore, the secondary refrigerant y whose temperature has been lowered by heat exchange with the primary refrigerant evaporator 8 is evaporated and vaporized in the secondary refrigerant evaporator 12, so that the cooling effect of the secondary refrigerant evaporator 12 is greatly improved. It will be. In this case, the air-cooled heat exchanger 19 pre-cools the refrigerant supplied to the secondary refrigerant condenser 10.

【0036】(II) 除霜運転時 この時、四路切換弁20は逆サイクル側に切り換えら
れ、一次冷媒用圧縮機5および冷却ファン13は運転停
止され、二次冷媒用圧縮機9および冷却ファン27は運
転されている。
(II) Defrosting Operation At this time, the four-way switching valve 20 is switched to the reverse cycle side, the operation of the primary refrigerant compressor 5 and the cooling fan 13 is stopped, and the operation of the secondary refrigerant compressor 9 and the cooling The fan 27 is operating.

【0037】二次冷媒用圧縮機9から吐出される高温の
ガス冷媒(即ち、ホットガス)xは、図2に点線で示す
ように、四路切換弁26を経て二次冷媒用蒸発器12へ
供給され、二次冷媒用蒸発器12の着霜を融霜した後、
逆止弁28および減圧機構30を経て蒸発器として作用
している空冷熱交換器19に供給され、そこで蒸発気化
された後に四路切換弁26を経て二次冷媒用圧縮機9へ
還流されることとなる。従って、除霜用熱源としては、
二次冷媒用圧縮機9の仕事量と、空冷熱交換器19と熱
交換する媒体である室内空気の保有する熱とが利用され
ることとなるため、除霜能力が大きく向上することとな
る。
The high-temperature gas refrigerant (ie, hot gas) x discharged from the secondary refrigerant compressor 9 passes through a four-way switching valve 26 as shown by a dotted line in FIG. Is supplied to the secondary refrigerant evaporator 12 to melt the frost,
It is supplied to the air-cooled heat exchanger 19 acting as an evaporator via the check valve 28 and the pressure reducing mechanism 30, where it is evaporated and vaporized and then returned to the secondary refrigerant compressor 9 via the four-way switching valve 26. It will be. Therefore, as a defrost heat source,
Since the work of the compressor 9 for the secondary refrigerant and the heat held by the indoor air, which is a medium that exchanges heat with the air-cooled heat exchanger 19, are used, the defrosting ability is greatly improved. .

【0038】なお、ショーケース用冷凍装置における蒸
発器の場合、フィンピッチが比較的大きい熱交換器が使
用されているため、本実施の形態におけるように、高い
除霜能力で短時間で除霜を行っても、伝熱管周りの融霜
だけで着霜が落下するので、着霜が残るということはな
い。しかも、ショーケースの場合、食品等が陳列されて
いるため、除霜時間は短い方が望ましいという要求も満
たすことができる。
In the case of an evaporator in a refrigeration system for a showcase, a heat exchanger having a relatively large fin pitch is used. However, since frost drops only due to the frost around the heat transfer tubes, frost does not remain. In addition, in the case of a showcase, since food and the like are displayed, it is possible to satisfy the requirement that a shorter defrosting time is desirable.

【0039】また、電気ヒータを用いる除霜方法ではな
く、冷媒により搬送される熱により除霜を行うこととな
っているため、ランニングコストが高くなることもな
く、定期的なメンテナンスも不必要となる。
Further, since the defrosting is performed not by the defrosting method using the electric heater but by the heat carried by the refrigerant, the running cost is not increased and the periodic maintenance is unnecessary. Become.

【0040】第3の実施の形態(請求項3に対応) 図3には、本願発明の第3の実施の形態にかかる二元冷
凍装置が示されている。
Third Embodiment (corresponding to claim 3) FIG. 3 shows a binary refrigeration apparatus according to a third embodiment of the present invention.

【0041】この場合、カスケードユニット2が室外ユ
ニット1内に配置されており、低温側冷凍サイクルBに
おいて除霜運転時に減圧機構30の出口側となる位置か
ら三方弁31を介して分岐し、高温側冷凍サイクルAに
おいて除霜運転時に一次冷媒用凝縮器6の入口側となる
位置に至る第1除霜運転用回路32と、高温側冷凍サイ
クルAにおいて除霜運転用に一次冷媒用凝縮器6の出口
側となる位置から三方弁33を介して分岐し、低温側冷
凍サイクルBにおいて除霜運転時に二次冷媒用凝縮器1
0の出口側となる位置に至る第2除霜運転用回路34と
が付設されている。そして、除霜運転時に二次冷媒yが
減圧機構30、第1除霜運転用回路32、一次冷媒用凝
縮器6および第2除霜運転用回路34を介して二次冷媒
用凝縮器10の出口側へ流通することとなっている。第
2の実施の形態における空冷熱交換器19および冷却フ
ァン27は省略される。つまり、第2の実施の形態にお
ける空冷熱交換器19を一次冷媒用凝縮器6で兼用する
ように構成されているのである。その他の構成は、第1
および第2の実施の形態におけると同様なので説明を省
略する。
In this case, the cascade unit 2 is disposed in the outdoor unit 1 and branches off from the position on the outlet side of the pressure reducing mechanism 30 during the defrosting operation in the low-temperature side refrigeration cycle B via the three-way valve 31, and the high-temperature The first defrosting operation circuit 32 reaches a position on the inlet side of the primary refrigerant condenser 6 during the defrosting operation in the side refrigeration cycle A, and the primary refrigerant condenser 6 for the defrosting operation in the high temperature side refrigeration cycle A. Of the secondary refrigerant condenser 1 during the defrosting operation in the low-temperature side refrigeration cycle B from the position on the outlet side of the
A second defrosting operation circuit 34 that reaches a position on the exit side of 0 is additionally provided. During the defrosting operation, the secondary refrigerant y is supplied to the secondary refrigerant condenser 10 via the pressure reducing mechanism 30, the first defrosting operation circuit 32, the primary refrigerant condenser 6, and the second defrosting operation circuit. It will be distributed to the exit side. The air-cooled heat exchanger 19 and the cooling fan 27 in the second embodiment are omitted. That is, the air-cooled heat exchanger 19 in the second embodiment is configured to be also used as the primary refrigerant condenser 6. Other configurations are the first
The description is omitted because it is the same as in the second embodiment.

【0042】上記のように構成された二元冷凍装置は、
次のように作用する。
The binary refrigeration system configured as described above has:
It works as follows.

【0043】(I) 冷却運転時 この時、四路切換弁26は正サイクル側に切り換えら
れ、三方弁31,33は低温側冷凍サイクルB側および
高温側冷凍サイクルA側に切り換えられ、一次冷媒用圧
縮機5、二次冷媒用圧縮機9および冷却ファン13は運
転されている。
(I) At the time of cooling operation At this time, the four-way switching valve 26 is switched to the normal cycle side, and the three-way valves 31 and 33 are switched to the low-temperature side refrigeration cycle B side and the high-temperature side refrigeration cycle A side. Compressor 5, secondary refrigerant compressor 9, and cooling fan 13 are operating.

【0044】一次冷媒用圧縮機5から圧送された一次冷
媒xは、図3に実線矢印で示すように、一次冷媒用凝縮
器6に供給され、そこで凝縮液化された後、一次冷媒用
減圧機構7で減圧され、その後一次冷媒用蒸発器8で蒸
発気化され、一次冷媒用圧縮機5へ還流される。
The primary refrigerant x fed from the primary refrigerant compressor 5 is supplied to a primary refrigerant condenser 6 where it is condensed and liquefied as shown by a solid line arrow in FIG. The pressure is reduced at 7, then evaporated and vaporized at the primary refrigerant evaporator 8 and returned to the primary refrigerant compressor 5.

【0045】一方、二次冷媒用圧縮機9から圧送された
二次冷媒yは、図3に実線矢印で示すように、四路切換
弁26を経て二次冷媒用凝縮器10に供給され、そこで
前記一次冷媒用蒸発器8との熱交換により凝縮液化さ
れ、逆止弁29を経た後二次冷媒用減圧機構11で減圧
され、その後二次冷媒用蒸発器12で蒸発気化され、四
路切換弁26を経て二次冷媒用圧縮機9へ還流される。
従って、一次冷媒用蒸発器8との熱交換により低温化さ
れた二次冷媒yが二次冷媒用蒸発器12において蒸発気
化することにより、二次冷媒用蒸発器12による冷却作
用が大きく向上することとなる。
On the other hand, the secondary refrigerant y pressure-fed from the secondary refrigerant compressor 9 is supplied to the secondary refrigerant condenser 10 through the four-way switching valve 26 as shown by the solid arrow in FIG. Then, it is condensed and liquefied by heat exchange with the primary refrigerant evaporator 8, passes through a check valve 29, is decompressed by the secondary refrigerant depressurizing mechanism 11, and is then evaporated and vaporized by the secondary refrigerant evaporator 12, and is subjected to four-way The refrigerant is returned to the secondary refrigerant compressor 9 via the switching valve 26.
Therefore, the secondary refrigerant y whose temperature has been lowered by heat exchange with the primary refrigerant evaporator 8 is evaporated and vaporized in the secondary refrigerant evaporator 12, so that the cooling effect of the secondary refrigerant evaporator 12 is greatly improved. It will be.

【0046】(II) 除霜運転時 この時、四路切換弁20は逆サイクル側に切り換えら
れ、三方弁31,33は第1および第2除霜運転用回路
32,34側に切り換えられ、一次冷媒用圧縮機5は運
転停止され、二次冷媒用圧縮機9および冷却ファン13
は運転されている。
(II) During defrosting operation At this time, the four-way switching valve 20 is switched to the reverse cycle side, and the three-way valves 31, 33 are switched to the first and second defrosting operation circuits 32, 34. The operation of the primary refrigerant compressor 5 is stopped, and the operation of the secondary refrigerant compressor 9 and the cooling fan 13
Is driving.

【0047】二次冷媒用圧縮機9から吐出される高温の
ガス冷媒(即ち、ホットガス)xは、図3に点線で示す
ように、四路切換弁26を経て二次冷媒用蒸発器12へ
供給され、二次冷媒用蒸発器12の着霜を融霜した後、
逆止弁28、減圧機構30および第1除霜運転用回路3
2を経て蒸発器として作用している一次冷媒用凝縮器6
に供給され、そこで蒸発気化された後に第2除霜運転用
回路34および四路切換弁26を経て二次冷媒用圧縮機
9へ還流されることとなる。従って、除霜用熱源として
は、二次冷媒用圧縮機9の仕事量と、一次冷媒用凝縮器
6と熱交換する媒体である外気の保有する熱とが利用さ
れることとなるため、除霜能力が大きく向上することと
なる。
The high-temperature gas refrigerant (that is, hot gas) x discharged from the secondary refrigerant compressor 9 passes through a four-way switching valve 26 as shown by a dotted line in FIG. Is supplied to the secondary refrigerant evaporator 12 to melt the frost,
Check valve 28, pressure reducing mechanism 30, and first defrosting operation circuit 3
And a condenser 6 for the primary refrigerant acting as an evaporator
After being evaporated and vaporized there, it is returned to the secondary refrigerant compressor 9 via the second defrosting operation circuit 34 and the four-way switching valve 26. Therefore, as the heat source for defrosting, the work of the compressor 9 for the secondary refrigerant and the heat held by the outside air, which is a medium that exchanges heat with the condenser 6 for the primary refrigerant, are used. The frost capacity will be greatly improved.

【0048】なお、ショーケース用冷凍装置における蒸
発器の場合、フィンピッチが比較的大きい熱交換器が使
用されているため、本実施の形態におけるように、高い
除霜能力で短時間で除霜を行っても、伝熱管周りの融霜
だけで着霜が落下するので、着霜が残るということはな
い。しかも、ショーケースの場合、食品等が陳列されて
いるため、除霜時間は短い方が望ましいという要求も満
たすことができる。
In the case of the evaporator in the showcase refrigeration system, since a heat exchanger having a relatively large fin pitch is used, as in the present embodiment, defrosting is performed in a short time with a high defrosting ability. However, since frost drops only due to the frost around the heat transfer tubes, frost does not remain. In addition, in the case of a showcase, since food and the like are displayed, it is possible to satisfy the requirement that a shorter defrosting time is desirable.

【0049】また、電気ヒータを用いる除霜方法ではな
く、冷媒により搬送される熱により除霜を行うこととな
っているため、ランニングコストが高くなることもな
く、定期的なメンテナンスも不必要となる。
Further, since the defrosting is performed not by the defrosting method using the electric heater but by the heat carried by the refrigerant, the running cost is not increased and the periodic maintenance is unnecessary. Become.

【0050】第4の実施の形態(請求項4に対応) 図4には、本願発明の第4の実施の形態にかかる二元冷
凍装置が示されている。
Fourth Embodiment (corresponding to claim 4) FIG. 4 shows a binary refrigeration apparatus according to a fourth embodiment of the present invention.

【0051】この場合、高温側冷凍サイクルAおよび低
温側冷凍サイクルBにおける一次冷媒用圧縮機5および
二次冷媒用圧縮機9の吐出側に四路切換弁20,26を
それぞれ設けて、両サイクルA,Bともに逆サイクル運
転が可能に構成されている。符号28は二次冷媒用減圧
機構11と並列に接続された除霜運転時にのみ冷媒流通
を許容する逆止弁、29は二次冷媒用凝縮器10から二
次冷媒用減圧機構11への冷媒流通のみを許容する逆止
弁、30は該逆止弁29と並列に接続された減圧機構、
35は一次冷媒用減圧機構7と並列に接続された逆止弁
である。その他の構成は、第1の実施の形態におけると
同様なので説明を省略する。
In this case, four-way switching valves 20 and 26 are provided on the discharge side of the primary refrigerant compressor 5 and the secondary refrigerant compressor 9 in the high-temperature refrigeration cycle A and the low-temperature refrigeration cycle B, respectively. Both A and B are configured to enable reverse cycle operation. Reference numeral 28 denotes a check valve connected in parallel with the secondary refrigerant pressure reducing mechanism 11 and allowing the refrigerant to flow only during the defrosting operation. Reference numeral 29 denotes a refrigerant from the secondary refrigerant condenser 10 to the secondary refrigerant pressure reducing mechanism 11. A check valve allowing only circulation, 30 is a pressure reducing mechanism connected in parallel with the check valve 29,
A check valve 35 is connected in parallel with the primary refrigerant pressure reducing mechanism 7. Other configurations are the same as those in the first embodiment, and a description thereof will be omitted.

【0052】上記のように構成された二元冷凍装置は、
次のように作用する。
The binary refrigeration system configured as described above has
It works as follows.

【0053】(I) 冷却運転時 この時、四路切換弁20,26は正サイクル側に切り換
えられ、一次冷媒用圧縮機5、二次冷媒用圧縮機9およ
び冷却ファン13は運転されている。
(I) Cooling operation At this time, the four-way switching valves 20 and 26 are switched to the normal cycle side, and the primary refrigerant compressor 5, the secondary refrigerant compressor 9 and the cooling fan 13 are operated. .

【0054】一次冷媒用圧縮機5から圧送された一次冷
媒xは、図4に実線矢印で示すように、四路切換弁20
を経て一次冷媒用凝縮器6に供給され、そこで凝縮液化
された後、逆止弁22を経て一次冷媒用減圧機構7で減
圧され、その後一次冷媒用蒸発器8で蒸発気化され、四
路切換弁20を経て一次冷媒用圧縮機5へ還流される。
The primary refrigerant x pressure-fed from the primary refrigerant compressor 5 is supplied to the four-way switching valve 20 as shown by a solid line arrow in FIG.
Is supplied to the primary refrigerant condenser 6, where it is condensed and liquefied. Then, it is depressurized by the primary refrigerant decompression mechanism 7 through the check valve 22, then is vaporized and vaporized by the primary refrigerant evaporator 8, and is switched in four ways. The refrigerant is returned to the primary refrigerant compressor 5 through the valve 20.

【0055】一方、二次冷媒用圧縮機9から圧送された
二次冷媒yは、図4に実線矢印で示すように、四路切換
弁26を経て二次冷媒用凝縮器10に供給され、そこで
前記一次冷媒用蒸発器8との熱交換により凝縮液化さ
れ、逆止弁29を経た後二次冷媒用減圧機構11で減圧
され、その後二次冷媒用蒸発器12で蒸発気化され、四
路切換弁26を経て二次冷媒用圧縮機9へ還流される。
従って、一次冷媒用蒸発器8との熱交換により低温化さ
れた二次冷媒yが二次冷媒用蒸発器12において蒸発気
化することにより、二次冷媒用蒸発器12による冷却作
用が大きく向上することとなる。
On the other hand, the secondary refrigerant y pressure-fed from the secondary refrigerant compressor 9 is supplied to the secondary refrigerant condenser 10 through the four-way switching valve 26 as shown by the solid arrow in FIG. Then, it is condensed and liquefied by heat exchange with the primary refrigerant evaporator 8, passes through a check valve 29, is decompressed by the secondary refrigerant depressurizing mechanism 11, and is then evaporated and vaporized by the secondary refrigerant evaporator 12, and is subjected to four-way The refrigerant is returned to the secondary refrigerant compressor 9 via the switching valve 26.
Therefore, the secondary refrigerant y whose temperature has been lowered by heat exchange with the primary refrigerant evaporator 8 is evaporated and vaporized in the secondary refrigerant evaporator 12, so that the cooling effect of the secondary refrigerant evaporator 12 is greatly improved. It will be.

【0056】(II) 除霜運転時 この時、四路切換弁20,26は逆サイクル側に切り換
えられ、一次冷媒用圧縮機5、二次冷媒用圧縮機9およ
び冷却ファン13は運転されている。
(II) At the time of defrosting operation At this time, the four-way switching valves 20 and 26 are switched to the reverse cycle side, and the primary refrigerant compressor 5, the secondary refrigerant compressor 9 and the cooling fan 13 are operated. I have.

【0057】一次冷媒用圧縮機5から吐出される高温の
ガス冷媒(即ち、ホットガス)xは、図4に点線で示す
ように、四路切換弁20を経て一次冷媒用蒸発器8に供
給され、逆止弁35および減圧機構23を経て蒸発器と
して作用している一次冷媒用凝縮器6へ供給され、そこ
で蒸発気化された後に四路切換弁20を経て一次冷媒用
圧縮機5へ還流されることとなる。
The high-temperature gas refrigerant (ie, hot gas) x discharged from the primary refrigerant compressor 5 is supplied to the primary refrigerant evaporator 8 through the four-way switching valve 20, as shown by the dotted line in FIG. The refrigerant is supplied to the primary refrigerant condenser 6 acting as an evaporator via the check valve 35 and the pressure reducing mechanism 23, and is evaporated and vaporized there, and then returned to the primary refrigerant compressor 5 via the four-way switching valve 20. Will be done.

【0058】一方、二次冷媒用圧縮機9から吐出される
高温のガス冷媒(即ち、ホットガス)xは、図4に点線
で示すように、四路切換弁26を経て二次冷媒用蒸発器
12へ供給され、二次冷媒用蒸発器12の着霜を融霜し
た後、逆止弁28および減圧機構30を経て蒸発器とし
て作用している二次冷媒用凝縮器10に供給され、そこ
で一次冷媒用蒸発器8に供給されるホットガスxと熱交
換して蒸発気化された後に四路切換弁26を経て二次冷
媒用圧縮機9へ還流されることとなる。従って、除霜用
熱源としては、一次冷媒用圧縮機5および二次冷媒用圧
縮機9の仕事量と、一次冷媒用凝縮器6と熱交換する媒
体である外気の保有する熱とが利用されることとなるた
め、除霜能力が大きく向上することとなる。
On the other hand, the high-temperature gas refrigerant (ie, hot gas) x discharged from the secondary refrigerant compressor 9 passes through the four-way switching valve 26 as shown by the dotted line in FIG. After being supplied to the evaporator 12 and thawing the frost on the secondary refrigerant evaporator 12, the secondary refrigerant is supplied to the secondary refrigerant condenser 10 acting as an evaporator via the check valve 28 and the pressure reducing mechanism 30, Then, the heat is exchanged with the hot gas x supplied to the primary refrigerant evaporator 8 to evaporate and then return to the secondary refrigerant compressor 9 via the four-way switching valve 26. Therefore, as the defrosting heat source, the work of the primary refrigerant compressor 5 and the secondary refrigerant compressor 9 and the heat held by the outside air, which is a medium that exchanges heat with the primary refrigerant condenser 6, are used. Therefore, the defrosting ability is greatly improved.

【0059】なお、ショーケース用冷凍装置における蒸
発器の場合、フィンピッチが比較的大きい熱交換器が使
用されているため、本実施の形態におけるように、高い
除霜能力で短時間で除霜を行っても、伝熱管周りの融霜
だけで着霜が落下するので、着霜が残るということはな
い。しかも、ショーケースの場合、食品等が陳列されて
いるため、除霜時間は短い方が望ましいという要求も満
たすことができる。
In the case of the evaporator in the showcase refrigeration system, a heat exchanger having a relatively large fin pitch is used. However, since frost drops only due to the frost around the heat transfer tubes, frost does not remain. In addition, in the case of a showcase, since food and the like are displayed, it is possible to satisfy the requirement that a shorter defrosting time is desirable.

【0060】また、電気ヒータを用いる除霜方法ではな
く、冷媒により搬送される熱により除霜を行うこととな
っているため、ランニングコストが高くなることもな
く、定期的なメンテナンスも不必要となる。
In addition, since the defrosting is performed not by the defrosting method using the electric heater but by the heat carried by the refrigerant, the running cost is not increased and the periodic maintenance is unnecessary. Become.

【0061】上記実施の形態においては、二元冷凍装置
をショーケース用冷凍装置として使用した場合について
説明したが、本願発明の二元冷凍装置は、その他の用と
にも用いることができる。
In the above embodiment, the case where the dual refrigerating apparatus is used as a showcase refrigerating apparatus has been described, but the dual refrigerating apparatus of the present invention can be used for other purposes.

【0062】[0062]

【発明の効果】本願発明の第1の基本構成(請求項1の
発明)によれば、一次冷媒xを圧縮する一次冷媒用圧縮
機5、一次冷媒xを凝縮液化する一次冷媒用凝縮器6、
一次冷媒xを減圧する一次冷媒用減圧機構7および一次
冷媒xを蒸発気化させる一次冷媒用蒸発器8を冷媒配管
16を介して順次接続してなる高温側冷凍サイクルA
と、二次冷媒yを圧縮する二次冷媒用圧縮機9、前記一
次冷媒用蒸発器8との熱交換により二次冷媒yを凝縮液
化する二次冷媒用凝縮器10、二次冷媒yを減圧する二
次冷媒用減圧機構11および二次冷媒yを蒸発気化させ
る二次冷媒用蒸発器12を冷媒配管17を介して順次接
続してなる低温側冷凍サイクルBとを備えた二元冷凍装
置において、前記高温側冷凍ユニットAを逆サイクル運
転が可能に構成するとともに、前記高温側冷凍サイクル
Aの逆サイクル運転時において前記一次冷媒用圧縮機5
から吐出されるガス冷媒xを前記二次冷媒用蒸発器12
を経て前記一次冷媒用減圧機構7の下流側へバイパスさ
せる除霜用バイパス回路18を設けて、除霜運転時にお
いては、一次冷媒用圧縮機5から吐出される高温のガス
冷媒(即ち、ホットガス)xが、除霜用バイパス回路1
8を介して二次冷媒用蒸発器12へ供給され、二次冷媒
用蒸発器12の着霜を融霜した後、蒸発器として作用す
る一次冷媒用凝縮器6で蒸発気化された後に一次冷媒用
圧縮機5へ還流されるようにしたので、除霜用熱源とし
て、一次冷媒用圧縮機5の仕事量と、一次冷媒用凝縮器
6と熱交換する媒体(例えば、外気)の保有する熱とを
利用できることとなり、除霜能力が大きく向上し、除霜
時間を短縮することができるという優れた効果がある。
しかも、電気ヒータを用いる除霜方法ではなく、冷媒に
より搬送される熱により除霜を行うこととなっているた
め、ランニングコストが高くなることもなく、定期的な
メンテナンスも不必要となるという効果もある。
According to the first basic configuration of the present invention (the invention of claim 1), the primary refrigerant compressor 5 for compressing the primary refrigerant x, and the primary refrigerant condenser 6 for condensing and liquefying the primary refrigerant x. ,
A high temperature side refrigeration cycle A in which a primary refrigerant decompression mechanism 7 for decompressing the primary refrigerant x and a primary refrigerant evaporator 8 for evaporating and evaporating the primary refrigerant x are sequentially connected via a refrigerant pipe 16.
And a secondary refrigerant compressor 9 for compressing the secondary refrigerant y, a secondary refrigerant condenser 10 for condensing and liquefying the secondary refrigerant y by heat exchange with the primary refrigerant evaporator 8, and a secondary refrigerant y. A binary refrigeration system including a low-temperature side refrigeration cycle B in which a secondary refrigerant decompression mechanism 11 for reducing pressure and a secondary refrigerant evaporator 12 for evaporating and evaporating the secondary refrigerant y are sequentially connected via a refrigerant pipe 17. , The high-temperature side refrigeration unit A is configured to be capable of reverse cycle operation, and the primary refrigerant compressor 5
The refrigerant gas x discharged from the secondary refrigerant evaporator 12
And a bypass circuit 18 for defrosting is provided for bypassing to the downstream side of the primary refrigerant decompression mechanism 7 through the above. In the defrosting operation, a high-temperature gas refrigerant discharged from the primary refrigerant compressor 5 (that is, hot gas refrigerant) Gas) x is the defrost bypass circuit 1
After being supplied to the secondary refrigerant evaporator 12 through the secondary evaporator 8 and thawing the frost of the secondary refrigerant evaporator 12, the primary refrigerant is evaporated and vaporized by the primary refrigerant condenser 6 acting as an evaporator. As a heat source for defrosting, the work amount of the primary refrigerant compressor 5 and the heat retained in a medium (for example, outside air) that exchanges heat with the primary refrigerant condenser 6 are used as heat sources for defrosting. Can be used, and there is an excellent effect that the defrosting ability is greatly improved and the defrosting time can be shortened.
Moreover, since the defrosting is performed by the heat carried by the refrigerant instead of the defrosting method using the electric heater, the running cost is not increased, and the periodic maintenance is unnecessary. There is also.

【0063】本願発明の第2の基本構成(請求項2の発
明)によれば、一次冷媒xを圧縮する一次冷媒用圧縮機
5、一次冷媒xを凝縮液化する一次冷媒用凝縮器6、一
次冷媒xを減圧する一次冷媒用減圧機構7および一次冷
媒xを蒸発気化させる一次冷媒用蒸発器8を冷媒配管1
6を介して順次接続してなる高温側冷凍サイクルAと、
二次冷媒yを圧縮する二次冷媒用圧縮機9、前記一次冷
媒用蒸発器8との熱交換により二次冷媒yを凝縮液化す
る二次冷媒用凝縮器10、二次冷媒yを減圧する二次冷
媒用減圧機構11および二次冷媒yを蒸発気化させる二
次冷媒用蒸発器12を冷媒配管17を介して順次接続し
てなる低温側冷凍サイクルBとを備えた二元冷凍装置に
おいて、前記低温側冷凍サイクルBを逆サイクル運転が
可能に構成するとともに、前記低温側冷凍サイクルBの
逆サイクル運転時に前記二次冷媒用圧縮機9に還流する
液冷媒yを蒸発気化させる空冷熱交換器19を付設し
て、除霜運転時においては、二次冷媒用圧縮機9から吐
出された高温のガス冷媒(即ち、ホットガス)yが、二
次冷媒用蒸発器12に供給され、二次冷媒用蒸発器12
の着霜を融霜した後、空冷熱交換器19で蒸発気化され
た後に二次冷媒用圧縮機9へ還流されるようにしたの
で、除霜用熱源として、二次冷媒用圧縮機9の仕事量
と、空冷熱交換器19と熱交換する媒体(例えば、室内
空気)の保有する熱とを利用できることとなり、除霜能
力が大きく向上し、除霜時間を短縮することができると
いう優れた効果がある。しかも、電気ヒータを用いる除
霜方法ではなく、冷媒により搬送される熱により除霜を
行うこととなっているため、ランニングコストが高くな
ることもなく、定期的なメンテナンスも不必要となると
いう効果もある。
According to the second basic configuration of the present invention (the invention of claim 2), the primary refrigerant compressor 5 for compressing the primary refrigerant x, the primary refrigerant condenser 6 for condensing and liquefying the primary refrigerant x, the primary refrigerant The refrigerant pipe 1 includes a primary refrigerant decompression mechanism 7 for decompressing the refrigerant x and a primary refrigerant evaporator 8 for evaporating the primary refrigerant x.
6, a high-temperature refrigeration cycle A sequentially connected through
A secondary refrigerant compressor 9 for compressing the secondary refrigerant y, a secondary refrigerant condenser 10 for condensing and liquefying the secondary refrigerant y by heat exchange with the primary refrigerant evaporator 8, and depressurizing the secondary refrigerant y. In a binary refrigeration apparatus including a low-temperature side refrigeration cycle B in which a secondary refrigerant decompression mechanism 11 and a secondary refrigerant evaporator 12 for evaporating and evaporating the secondary refrigerant y are sequentially connected via a refrigerant pipe 17, An air-cooled heat exchanger configured to enable the low-temperature side refrigeration cycle B to perform a reverse cycle operation and evaporate and evaporate the liquid refrigerant y flowing back to the secondary refrigerant compressor 9 during the reverse cycle operation of the low-temperature side refrigeration cycle B. At the time of the defrosting operation, a high-temperature gas refrigerant (that is, hot gas) y discharged from the secondary refrigerant compressor 9 is supplied to the secondary refrigerant evaporator 12 and the secondary refrigerant evaporator 12 is attached thereto. Evaporator for refrigerant 12
After the frost is melted, the refrigerant is evaporated and vaporized in the air-cooled heat exchanger 19 and then returned to the secondary refrigerant compressor 9, so that the secondary refrigerant compressor 9 is used as a defrosting heat source. The work amount and the heat held by the medium (for example, indoor air) that exchanges heat with the air-cooling heat exchanger 19 can be used, and the defrosting ability is greatly improved and the defrosting time can be shortened. effective. Moreover, since the defrosting is performed by the heat carried by the refrigerant instead of the defrosting method using the electric heater, the running cost is not increased, and the periodic maintenance is unnecessary. There is also.

【0064】請求項3の発明におけるように、前記空冷
熱交換器19を、前記高温側冷凍サイクルAにおける一
次冷媒用凝縮器6で兼用した場合、除霜運転時において
二次冷媒用凝縮器12で凝縮液化された二次冷媒yを一
次冷媒用凝縮器6で蒸発気化できることとなり、部品点
数の低減およびコスト低減に寄与できる。なお、この場
合、外気の保有するする熱が除霜用熱源として利用され
ることとなる。
When the air-cooling heat exchanger 19 is also used as the primary refrigerant condenser 6 in the high-temperature side refrigeration cycle A as in the third aspect of the present invention, the secondary refrigerant condenser 12 is used during the defrosting operation. Thus, the secondary refrigerant y condensed and liquefied can be evaporated and vaporized in the primary refrigerant condenser 6, which can contribute to a reduction in the number of parts and cost. In this case, the heat held by the outside air is used as a heat source for defrosting.

【0065】本願発明の第3の基本構成(請求項4の発
明)によれば、一次冷媒xを圧縮する一次冷媒用圧縮機
5、一次冷媒xを凝縮液化する一次冷媒用凝縮器6、一
次冷媒xを減圧する一次冷媒用減圧機構7および一次冷
媒xを蒸発気化させる一次冷媒用蒸発器8を冷媒配管1
6を介して順次接続してなる高温側冷凍サイクルAと、
二次冷媒yを圧縮する二次冷媒用圧縮機9、前記一次冷
媒用蒸発器8との熱交換により二次冷媒yを凝縮液化す
る二次冷媒用凝縮器10、二次冷媒yを減圧する二次冷
媒用減圧機構11および二次冷媒yを蒸発気化させる二
次冷媒用蒸発器12を冷媒配管17を介して順次接続し
てなる低温側冷凍サイクルBとを備えた二元冷凍装置に
おいて、前記高温側冷凍サイクルAおよび低温側冷凍サ
イクルBを逆サイクル運転が可能に構成して、除霜運転
時においては、二次冷媒用圧縮機9から吐出される高温
のガス冷媒(即ち、ホットガス)yが、二次冷媒用蒸発
器12に供給され、二次冷媒用蒸発器12の着霜を融霜
した後、蒸発器として作用している二次冷媒用凝縮器1
0で蒸発気化された後に二次冷媒用圧縮機9へ還流され
るとともに、一次冷媒用圧縮機5から吐出された高温の
ガス冷媒(即ち、ホットガス)xが、一次冷媒用蒸発器
8に供給され、二次冷媒用凝縮器10での液冷媒yの蒸
発気化を助けて自身凝縮液化された後、蒸発器として作
用している一次冷媒用凝縮器6で蒸発気化された後に一
次冷媒用圧縮機5へ還流されるようにしたので、除霜用
熱源として、一次冷媒用圧縮機5および二次冷媒用圧縮
機9の仕事量と、一次冷媒用凝縮器6と熱交換する媒体
(例えば、外気)の保有する熱とを利用できることとな
り、除霜能力が大きく向上し、除霜時間を短縮すること
ができるという優れた効果がある。しかも、電気ヒータ
を用いる除霜方法ではなく、冷媒により搬送される熱に
より除霜を行うこととなっているため、ランニングコス
トが高くなることもなく、定期的なメンテナンスも不必
要となるという効果もある。
According to the third basic configuration of the present invention (the invention of claim 4), the primary refrigerant compressor 5 for compressing the primary refrigerant x, the primary refrigerant condenser 6 for condensing and liquefying the primary refrigerant x, the primary refrigerant The refrigerant pipe 1 includes a primary refrigerant decompression mechanism 7 for decompressing the refrigerant x and a primary refrigerant evaporator 8 for evaporating the primary refrigerant x.
6, a high-temperature refrigeration cycle A sequentially connected through
A secondary refrigerant compressor 9 for compressing the secondary refrigerant y, a secondary refrigerant condenser 10 for condensing and liquefying the secondary refrigerant y by heat exchange with the primary refrigerant evaporator 8, and depressurizing the secondary refrigerant y. In a binary refrigeration apparatus including a low-temperature side refrigeration cycle B in which a secondary refrigerant decompression mechanism 11 and a secondary refrigerant evaporator 12 for evaporating and evaporating the secondary refrigerant y are sequentially connected via a refrigerant pipe 17, The high-temperature side refrigeration cycle A and the low-temperature side refrigeration cycle B are configured to be capable of performing a reverse cycle operation. During the defrosting operation, a high-temperature gas refrigerant (that is, hot gas) discharged from the secondary refrigerant compressor 9 is used. ) Y is supplied to the secondary refrigerant evaporator 12, and after melting the frost of the secondary refrigerant evaporator 12, the secondary refrigerant condenser 1 acting as an evaporator
After being vaporized and vaporized at 0, the refrigerant is returned to the secondary refrigerant compressor 9 and the high-temperature gas refrigerant (that is, hot gas) x discharged from the primary refrigerant compressor 5 is supplied to the primary refrigerant evaporator 8. After being supplied and condensed and liquefied by assisting the evaporation and vaporization of the liquid refrigerant y in the secondary refrigerant condenser 10, the liquid refrigerant y is evaporated and vaporized in the primary refrigerant condenser 6 acting as an evaporator, and then used for the primary refrigerant. Since the refrigerant is returned to the compressor 5, as a defrosting heat source, the work amounts of the primary refrigerant compressor 5 and the secondary refrigerant compressor 9 and a medium that exchanges heat with the primary refrigerant condenser 6 (for example, , Outside air) can be used, and there is an excellent effect that the defrosting ability is greatly improved and the defrosting time can be shortened. Moreover, since the defrosting is performed by the heat carried by the refrigerant instead of the defrosting method using the electric heater, the running cost is not increased, and the periodic maintenance is unnecessary. There is also.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の第1の実施の形態にかかる二元冷凍
装置の冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of a binary refrigeration apparatus according to a first embodiment of the present invention.

【図2】本願発明の第2の実施の形態にかかる二元冷凍
装置の冷媒回路図である。
FIG. 2 is a refrigerant circuit diagram of a binary refrigeration apparatus according to a second embodiment of the present invention.

【図3】本願発明の第3の実施の形態にかかる二元冷凍
装置の冷媒回路図である。
FIG. 3 is a refrigerant circuit diagram of a binary refrigeration apparatus according to a third embodiment of the present invention.

【図4】本願発明の第4の実施の形態にかかる二元冷凍
装置の冷媒回路図である。
FIG. 4 is a refrigerant circuit diagram of a binary refrigeration apparatus according to a fourth embodiment of the present invention.

【図5】従来の二元冷凍装置の冷媒回路図である。FIG. 5 is a refrigerant circuit diagram of a conventional binary refrigeration apparatus.

【符号の説明】[Explanation of symbols]

5は一次冷媒用圧縮機、6は一次冷媒用凝縮器、7は一
次冷媒用減圧機構、8は一次冷媒用蒸発器、9は二次冷
媒用圧縮機、10は二次冷媒用凝縮器、11は二次冷媒
用減圧機構、12は二次冷媒用蒸発器、16,17は冷
媒配管、18は除霜用バイパス回路、19は空冷熱交換
器、20,26は四路切換弁、Aは高温側冷凍サイク
ル、Bは低温側冷凍サイクル、xは一次冷媒、yは二次
冷媒。
5 is a primary refrigerant compressor, 6 is a primary refrigerant condenser, 7 is a primary refrigerant decompression mechanism, 8 is a primary refrigerant evaporator, 9 is a secondary refrigerant compressor, 10 is a secondary refrigerant condenser, 11 is a pressure reducing mechanism for a secondary refrigerant, 12 is an evaporator for a secondary refrigerant, 16 and 17 are refrigerant pipes, 18 is a defrost bypass circuit, 19 is an air-cooled heat exchanger, 20 and 26 are four-way switching valves, and A Is a high-temperature side refrigeration cycle, B is a low-temperature side refrigeration cycle, x is a primary refrigerant, and y is a secondary refrigerant.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一次冷媒(x)を圧縮する一次冷媒用圧
縮機(5)、一次冷媒(x)を凝縮液化する一次冷媒用
凝縮器(6)、一次冷媒(x)を減圧する一次冷媒用減
圧機構(7)および一次冷媒(x)を蒸発気化させる一
次冷媒用蒸発器(8)を冷媒配管(16)を介して順次
接続してなる高温側冷凍サイクル(A)と、二次冷媒
(y)を圧縮する二次冷媒用圧縮機(9)、前記一次冷
媒用蒸発器(8)との熱交換により二次冷媒(y)を凝
縮液化する二次冷媒用凝縮器(10)、二次冷媒(y)
を減圧する二次冷媒用減圧機構(11)および二次冷媒
(y)を蒸発気化させる二次冷媒用蒸発器(12)を冷
媒配管(17)を介して順次接続してなる低温側冷凍サ
イクル(B)とを備えた二元冷凍装置であって、前記高
温側冷凍ユニット(A)を逆サイクル運転が可能に構成
するとともに、前記高温側冷凍サイクル(A)の逆サイ
クル運転時において前記一次冷媒用圧縮機(5)から吐
出されるガス冷媒(x)を前記二次冷媒用蒸発器(1
0)を経て前記一次冷媒用減圧機構(7)の下流側へバ
イパスさせる除霜用バイパス回路(18)を設けたこと
を特徴とする二元冷凍装置。
1. A primary refrigerant compressor (5) for compressing a primary refrigerant (x), a primary refrigerant condenser (6) for condensing and liquefying the primary refrigerant (x), and a primary refrigerant for decompressing the primary refrigerant (x). High-temperature refrigeration cycle (A) in which a pressure reducing mechanism (7) for use and a primary refrigerant evaporator (8) for evaporating and evaporating the primary refrigerant (x) are sequentially connected via a refrigerant pipe (16); A secondary refrigerant compressor (9) for compressing (y), a secondary refrigerant condenser (10) for condensing and liquefying the secondary refrigerant (y) by heat exchange with the primary refrigerant evaporator (8), Secondary refrigerant (y)
Low-temperature refrigeration cycle comprising a secondary refrigerant evaporator (12) for evaporating and evaporating the secondary refrigerant (y) and a secondary refrigerant evaporator (12) sequentially connected via a refrigerant pipe (17). (B), wherein the high-temperature refrigeration unit (A) is configured to be capable of reverse cycle operation, and the primary refrigeration unit (A) is configured to perform the primary cycle during reverse cycle operation of the high-temperature refrigeration cycle (A). The gas refrigerant (x) discharged from the refrigerant compressor (5) is supplied to the secondary refrigerant evaporator (1).
A binary refrigeration system comprising a defrosting bypass circuit (18) that bypasses the downstream side of the primary refrigerant pressure reducing mechanism (7) via 0).
【請求項2】 一次冷媒(x)を圧縮する一次冷媒用圧
縮機(5)、一次冷媒(x)を凝縮液化する一次冷媒用
凝縮器(6)、一次冷媒(x)を減圧する一次冷媒用減
圧機構(7)および一次冷媒(x)を蒸発気化させる一
次冷媒用蒸発器(8)を冷媒配管(16)を介して順次
接続してなる高温側冷凍サイクル(A)と、二次冷媒
(y)を圧縮する二次冷媒用圧縮機(9)、前記一次冷
媒用蒸発器(8)との熱交換により二次冷媒(y)を凝
縮液化する二次冷媒用凝縮器(10)、二次冷媒(y)
を減圧する二次冷媒用減圧機構(11)および二次冷媒
(y)を蒸発気化させる二次冷媒用蒸発器(12)を冷
媒配管(17)を介して順次接続してなる低温側冷凍サ
イクル(B)とを備えた二元冷凍装置であって、前記低
温側冷凍サイクル(B)を逆サイクル運転が可能に構成
するとともに、前記低温側冷凍サイクル(B)の逆サイ
クル運転時に前記二次冷媒用圧縮機(9)に還流する液
冷媒(y)を蒸発気化させる空冷熱交換器(19)を付
設したことを特徴とする二元冷凍装置。
2. A primary refrigerant compressor (5) for compressing a primary refrigerant (x), a primary refrigerant condenser (6) for condensing and liquefying the primary refrigerant (x), and a primary refrigerant for decompressing the primary refrigerant (x). High-temperature refrigeration cycle (A) in which a pressure reducing mechanism (7) for use and a primary refrigerant evaporator (8) for evaporating and evaporating the primary refrigerant (x) are sequentially connected via a refrigerant pipe (16); A secondary refrigerant compressor (9) for compressing (y), a secondary refrigerant condenser (10) for condensing and liquefying the secondary refrigerant (y) by heat exchange with the primary refrigerant evaporator (8), Secondary refrigerant (y)
Low-temperature refrigeration cycle comprising a secondary refrigerant evaporator (12) for evaporating and evaporating the secondary refrigerant (y) and a secondary refrigerant evaporator (12) sequentially connected via a refrigerant pipe (17). (B), wherein the low-temperature refrigeration cycle (B) is configured to be capable of performing a reverse cycle operation, and the secondary refrigeration cycle (B) is configured to perform the reverse cycle operation during the reverse cycle operation of the low-temperature refrigeration cycle (B). A binary refrigeration system comprising an air-cooled heat exchanger (19) for evaporating and evaporating a liquid refrigerant (y) flowing back to a refrigerant compressor (9).
【請求項3】 前記空冷熱交換器(19)を、前記高温
側冷凍サイクル(A)における一次冷媒用凝縮器(6)
で兼用したことを特徴とする前記請求項2記載の二元冷
凍装置。
3. A condenser (6) for a primary refrigerant in the high-temperature side refrigeration cycle (A), wherein the air-cooled heat exchanger (19) is provided.
3. The dual refrigeration apparatus according to claim 2, wherein the dual refrigeration apparatus is also used.
【請求項4】 一次冷媒(x)を圧縮する一次冷媒用圧
縮機(5)、一次冷媒(x)を凝縮液化する一次冷媒用
凝縮器(6)、一次冷媒(x)を減圧する一次冷媒用減
圧機構(7)および一次冷媒(x)を蒸発気化させる一
次冷媒用蒸発器(8)を冷媒配管(16)を介して順次
接続してなる高温側冷凍サイクル(A)と、二次冷媒
(y)を圧縮する二次冷媒用圧縮機(9)、前記一次冷
媒用蒸発器(8)との熱交換により二次冷媒(y)を凝
縮液化する二次冷媒用凝縮器(10)、二次冷媒(y)
を減圧する二次冷媒用減圧機構(11)および二次冷媒
(y)を蒸発気化させる二次冷媒用蒸発器(12)を冷
媒配管(17)を介して順次接続してなる低温側冷凍サ
イクル(B)とを備えた二元冷凍装置であって、前記高
温側冷凍サイクル(A)および低温側冷凍サイクル
(B)を逆サイクル運転が可能に構成したことを特徴と
する二元冷凍装置。
4. A primary refrigerant compressor (5) for compressing a primary refrigerant (x), a primary refrigerant condenser (6) for condensing and liquefying the primary refrigerant (x), a primary refrigerant for decompressing the primary refrigerant (x). High-temperature refrigeration cycle (A) in which a pressure reducing mechanism (7) for use and a primary refrigerant evaporator (8) for evaporating and evaporating the primary refrigerant (x) are sequentially connected via a refrigerant pipe (16); A secondary refrigerant compressor (9) for compressing (y), a secondary refrigerant condenser (10) for condensing and liquefying the secondary refrigerant (y) by heat exchange with the primary refrigerant evaporator (8), Secondary refrigerant (y)
Low-temperature refrigeration cycle comprising a secondary refrigerant evaporator (12) for evaporating and evaporating the secondary refrigerant (y) and a secondary refrigerant evaporator (12) sequentially connected via a refrigerant pipe (17). (B), wherein the high-temperature side refrigeration cycle (A) and the low-temperature side refrigeration cycle (B) are configured to be capable of reverse cycle operation.
JP34292297A 1997-12-12 1997-12-12 Dual refrigerator Pending JPH11173711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34292297A JPH11173711A (en) 1997-12-12 1997-12-12 Dual refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34292297A JPH11173711A (en) 1997-12-12 1997-12-12 Dual refrigerator

Publications (1)

Publication Number Publication Date
JPH11173711A true JPH11173711A (en) 1999-07-02

Family

ID=18357564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34292297A Pending JPH11173711A (en) 1997-12-12 1997-12-12 Dual refrigerator

Country Status (1)

Country Link
JP (1) JPH11173711A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100385432B1 (en) * 2000-09-19 2003-05-27 주식회사 케이씨텍 Surface cleaning aerosol production system
US7000414B2 (en) 2002-08-06 2006-02-21 Samsung Electronics Co., Ltd. Defrost and refrigerator employing the same
WO2007054095A1 (en) * 2005-11-11 2007-05-18 Johnson Controls Denmark Aps Defrost system
WO2007083559A1 (en) * 2006-01-17 2007-07-26 Daikin Industries, Ltd. Refrigeration system
KR100796452B1 (en) 2007-06-20 2008-01-22 김진수 Heat pump and demist method
WO2010098073A1 (en) * 2009-02-24 2010-09-02 ダイキン工業株式会社 Heat pump system
JP2011127878A (en) * 2009-12-21 2011-06-30 Mitsubishi Electric Corp Hot water heat source machine
JP2012112622A (en) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp Binary refrigeration device
JP2014098551A (en) * 2014-02-28 2014-05-29 Daikin Ind Ltd Heat pump system
JP2015102541A (en) * 2013-11-28 2015-06-04 エスペック株式会社 Environmental test device and cooling system
CN106979638A (en) * 2017-04-28 2017-07-25 上海理工大学 Automobile air-conditioning evaporator defroster
CN107062688A (en) * 2017-01-20 2017-08-18 合肥天鹅制冷科技有限公司 The cold liquid machine of wide temperature air cooling island
CN110030677A (en) * 2019-04-28 2019-07-19 广东美的暖通设备有限公司 Air conditioning control method, device and computer readable storage medium
JP2020201012A (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 air conditioner
CN114234465A (en) * 2021-12-27 2022-03-25 上海理工大学 High-low temperature environment test box refrigerating system adopting multi-channel evaporator

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100385432B1 (en) * 2000-09-19 2003-05-27 주식회사 케이씨텍 Surface cleaning aerosol production system
US7000414B2 (en) 2002-08-06 2006-02-21 Samsung Electronics Co., Ltd. Defrost and refrigerator employing the same
WO2007054095A1 (en) * 2005-11-11 2007-05-18 Johnson Controls Denmark Aps Defrost system
WO2007083559A1 (en) * 2006-01-17 2007-07-26 Daikin Industries, Ltd. Refrigeration system
JP2007192430A (en) * 2006-01-17 2007-08-02 Daikin Ind Ltd Refrigerating device
KR100796452B1 (en) 2007-06-20 2008-01-22 김진수 Heat pump and demist method
US8984901B2 (en) 2009-02-24 2015-03-24 Daikin Industries, Ltd. Heat pump system
WO2010098073A1 (en) * 2009-02-24 2010-09-02 ダイキン工業株式会社 Heat pump system
JP2010196951A (en) * 2009-02-24 2010-09-09 Daikin Ind Ltd Heat pump system
CN102326037A (en) * 2009-02-24 2012-01-18 大金工业株式会社 Heat pump
AU2010219037B2 (en) * 2009-02-24 2013-07-11 Daikin Europe N.V. Heat pump system
JP2011127878A (en) * 2009-12-21 2011-06-30 Mitsubishi Electric Corp Hot water heat source machine
JP2012112622A (en) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp Binary refrigeration device
JP2015102541A (en) * 2013-11-28 2015-06-04 エスペック株式会社 Environmental test device and cooling system
JP2014098551A (en) * 2014-02-28 2014-05-29 Daikin Ind Ltd Heat pump system
CN107062688A (en) * 2017-01-20 2017-08-18 合肥天鹅制冷科技有限公司 The cold liquid machine of wide temperature air cooling island
CN107062688B (en) * 2017-01-20 2023-08-11 合肥天鹅制冷科技有限公司 Wide Wen Kongleng island type liquid cooler
CN106979638A (en) * 2017-04-28 2017-07-25 上海理工大学 Automobile air-conditioning evaporator defroster
CN110030677A (en) * 2019-04-28 2019-07-19 广东美的暖通设备有限公司 Air conditioning control method, device and computer readable storage medium
JP2020201012A (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 air conditioner
CN114234465A (en) * 2021-12-27 2022-03-25 上海理工大学 High-low temperature environment test box refrigerating system adopting multi-channel evaporator
CN114234465B (en) * 2021-12-27 2023-08-29 上海理工大学 High-low temperature environment test box refrigerating system adopting multichannel evaporator

Similar Documents

Publication Publication Date Title
US4565070A (en) Apparatus and method for defrosting a heat exchanger in a refrigeration circuit
US6094925A (en) Crossover warm liquid defrost refrigeration system
JPH11173711A (en) Dual refrigerator
KR19980017695A (en) Dropping prevention device of heat pump
WO1999039138A1 (en) Refrigerating plant
KR100381634B1 (en) Refrigerator
JPH09318206A (en) Heat pump type air conditioner
JP2013137123A (en) Refrigerating apparatus
JPH03117866A (en) Heat pump type refrigerating cycle
JP4622901B2 (en) Air conditioner
KR100333814B1 (en) Dual unit type air conditioner for heating and cooling and defrosting method thereof
JP2002188873A (en) Refrigerating equipment of air conditioner
JP3254178B2 (en) Refrigeration circuit with auxiliary evaporator for defrost
JP2962311B1 (en) Binary refrigeration equipment
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP2003004346A (en) Cooling equipment
JP2646709B2 (en) Air conditioner
JP3304866B2 (en) Thermal storage type air conditioner
JPH035680A (en) Air conditioner
JPH10325641A (en) Refrigerating device
JP2924460B2 (en) Air conditioner
JP2524382B2 (en) Air conditioner
JP3008925B2 (en) Refrigeration equipment
JP2001033126A (en) Air conditioner
JPH09217972A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040824

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Effective date: 20050524

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051018