JPH01303643A - Laser recording medium - Google Patents

Laser recording medium

Info

Publication number
JPH01303643A
JPH01303643A JP63132804A JP13280488A JPH01303643A JP H01303643 A JPH01303643 A JP H01303643A JP 63132804 A JP63132804 A JP 63132804A JP 13280488 A JP13280488 A JP 13280488A JP H01303643 A JPH01303643 A JP H01303643A
Authority
JP
Japan
Prior art keywords
recording
film
erasing
laser
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63132804A
Other languages
Japanese (ja)
Inventor
Susumu Fujimori
進 藤森
Hironori Yamazaki
裕基 山崎
Norihiro Funakoshi
宣博 舩越
Nobuo Nakamura
宣夫 中村
Koichi Oka
岡 公一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Nippon Telegraph and Telephone Corp
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Nippon Telegraph and Telephone Corp
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Nippon Telegraph and Telephone Corp, Sumitomo Chemical Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP63132804A priority Critical patent/JPH01303643A/en
Publication of JPH01303643A publication Critical patent/JPH01303643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain the rewriting type medium of high performance which satisfies long-term stability (stability in an amorphous state at room temp.) and high-speed erasing property by using a specific Sb-Te alloy film as a recording medium. CONSTITUTION:The alloy film consisting of the compsn. expressed by the formula (Sb1-xTex)1-yMy is used as the recording layer. In the formula, x is in a 0.1<=x<=0.3 range; y is in a 0<y<=0.2 range; M is at least one kind of the elements selected from the group consisting of Ag, Al, As, Au, Bi, Cu, Ga, Ge, In, Pb, Pd, Pt, Se, Si, Sn, and Zn. The rewriting type laser recording medium which allows the easy high-speed erasing, has the high stability of the recording state and allows many times of repetitive writing, reproducing and erasing is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、レーザー光等の光の熱作用、あるいはフォト
ン効果により情報を記録するレーザー記録媒体に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a laser recording medium that records information using the thermal effect of light such as a laser beam or the photon effect.

更に詳しくは、薄膜の非晶質化と結晶化を可逆的に生起
させることを利用して情報の記録と消去が可能で、かつ
記録・消去の感度と記録情報の長期保存性および記録・
消去の繰返し性に優れた書換型レーザー記録媒体および
、非晶質の結晶化または結晶の非晶質化を生起させるこ
とを利用して情報の記録が可能で、かつ記録感度と記録
情報の長期保存性に優れた、追記型レーザ記録媒体に関
する。
More specifically, it is possible to record and erase information by reversibly causing amorphization and crystallization of a thin film, and it also improves recording/erasing sensitivity, long-term storage of recorded information, and recording/erasing.
A rewritable laser recording medium with excellent erasing repeatability, and information recording using crystallization of an amorphous material or crystallization of a crystal, and a long-term recording sensitivity and long-term recording of recorded information. The present invention relates to a write-once laser recording medium with excellent storage stability.

〔従来の技術〕[Conventional technology]

最近、小型で高性能のレーザーの発展に伴って、レーザ
ー光を利用した技術、即ち、光通信、光記録等のいわゆ
る光関連技術の研究が急速に進展し、一部は実用化され
ている。中でも収束レーザー光を基板上のwI膜媒体に
照射して、その薄膜に穿孔もしくは非晶質−結晶質転移
のような構造変化を生ぜしめて、情報の記録を行う光記
録は、高密度・大容量の記録を可能ならしめる新技術と
して注目されている。
Recently, with the development of compact and high-performance lasers, research on technologies using laser light, that is, so-called optical-related technologies such as optical communication and optical recording, has progressed rapidly, and some of them have been put into practical use. . Among them, optical recording, in which information is recorded by irradiating a wI film medium on a substrate with a focused laser beam to cause structural changes such as perforation or amorphous-crystalline transition in the thin film, is a method of high-density and large-scale recording. It is attracting attention as a new technology that enables capacity recording.

ここで、薄膜に穿孔して記録を行う方式は、−旦情報を
書込んだ後は消去されることがなく、恒久的に情報を保
持できることを特徴とするため、追記型光記録媒体と呼
ばれている。一方、非晶質−結晶質転移に基づいて記録
を行う方式は、2つの状態間の遷移を可逆的になすこと
により多数回の書込と消去が可能であることから、書換
型光記録媒体と呼ばれている。異なった情報を何度でも
書換可能であるという汎用性の高さのため、書換型レー
ザー記録媒体は今後重要になると予想される。
The method of recording by perforating a thin film is called a write-once optical recording medium because it is characterized by the fact that once information is written, it is not erased and can permanently retain information. It is. On the other hand, the recording method based on the amorphous-crystalline transition is capable of writing and erasing multiple times by reversibly transitioning between two states, so it is possible to use rewritable optical recording media. It is called. Rewritable laser recording media are expected to become important in the future because of their high versatility in that different information can be rewritten any number of times.

この書換型レーザー記録媒体には、通常Te系カルコゲ
ナイドガラス、あるいはSe系カルコゲナイドガラス、
あるいはsb等の金属膜、あるいはこれらの合金膜が用
いられる。これらの書換型レーザー記録媒体は、レーザ
ー光により薄膜を融点以下に急熱、急冷することにより
非晶質化せしめて書込を行い、またレーザー光により結
晶化温度以上に加熱、徐冷することにより結晶化せしめ
て消去を行う。
This rewritable laser recording medium usually uses Te-based chalcogenide glass or Se-based chalcogenide glass.
Alternatively, a metal film such as sb or an alloy film thereof may be used. These rewritable laser recording media are written on by rapidly heating a thin film to below its melting point with a laser beam and rapidly cooling it to make it amorphous, and then heating it to a temperature above its crystallization temperature with a laser beam and slowly cooling it. to crystallize and erase.

このようなレーザ記録媒体は、初期状態を非晶質として
結晶化書きこみをおこない、または初期状態を結晶質と
して非晶質化書きこみをおこなうモードとすれば、別に
記録情報の消去をおこなわず、恒久的な情報の記録方法
として、穿孔記録と同じく、追記型レーザ記録媒体とし
てもちろん使用できる。
If such a laser recording medium is set to a mode in which the initial state is amorphous and crystallized writing is performed, or the initial state is crystalline and amorphous writing is performed, recorded information is not erased separately. As a permanent information recording method, it can of course be used as a write-once laser recording medium as well as perforation recording.

(発明が解決しようとする課題) こうした原理に基づく光記録方式を実用的な光ディスク
に用いる場合、次のような問題点がある。
(Problems to be Solved by the Invention) When an optical recording system based on such a principle is used in a practical optical disc, there are the following problems.

(a)書込・消去のレーザー光照射条件が厳しい。(a) Laser light irradiation conditions for writing and erasing are severe.

(b)、書込と消去の安定した繰返し性が得難い。(b) It is difficult to obtain stable repeatability of writing and erasing.

(C)、書込状態の長期安定性か得難い。(C) Long-term stability of the written state is difficult to obtain.

半導体レーザーやそれを組み込んだ光学ヘッドの発展が
目覚ましい現在、(a)のレーザー光照射条件に対する
制約は緩和されつつあるが、それでも光ディスクのよう
な高速記録に当たり、書込(非晶質化)の場合、レーサ
ー光出力20mW以下、パルス幅100nsec以下、
消去(結晶化)の場合、パルス幅1μsec以下程度の
条件を満たすことが要求される。更に、今後光関連技術
が進歩するに従い、光デイスク1枚が大容量であること
からも一層の高速化か望まれるようになることは必至で
あり、その際、消去速度は1oonsec以下を要求さ
れるようになる。
Nowadays, with the remarkable development of semiconductor lasers and optical heads incorporating them, the restrictions on the laser beam irradiation conditions in (a) are being eased, but it is still difficult to write (amorphous) when recording at high speeds such as on optical discs. In this case, the laser light output is 20mW or less, the pulse width is 100nsec or less,
In the case of erasing (crystallization), it is required to satisfy the condition that the pulse width is approximately 1 μsec or less. Furthermore, as optical-related technology progresses in the future, it is inevitable that even higher speeds will be desired due to the large capacity of a single optical disk, and in that case, the erasing speed will be required to be 1 oonsec or less. Become so.

また、長期安定性の問題は記録媒体の書込状態である非
晶質状態が室温付近で十分保持される必要があり、光記
録媒体として実用に供するための一つの基準として10
年以上の長期安定性か要求される。
In addition, regarding the issue of long-term stability, it is necessary to maintain the amorphous state that is the writing state of the recording medium sufficiently at around room temperature.
Long-term stability of more than 20 years is required.

更に、媒体の酸化劣化も、オーバーコート層やアンダー
コート層を含んだ媒体構成によっては長期安定性の面で
問題とされる場合があり、記録層自体の耐酸化性も十分
に優れていることが望ましい。即ち、常温常温の下での
記録媒体の反射率が10年以上にわたって酸化による変
化がなく、安定していることが要求される。
Furthermore, oxidative deterioration of the medium may be a problem in terms of long-term stability depending on the media structure that includes an overcoat layer and an undercoat layer, so it is important that the recording layer itself has sufficient oxidation resistance. is desirable. That is, it is required that the reflectance of the recording medium at room temperature remains stable for 10 years or more without any change due to oxidation.

更に、書込と消去の安定した繰返し性を得るには、媒体
は多数回のレーザー光加熱を受けることから、ヒートサ
イクルに対する媒体の変形や穿孔、合金膜中の相分陣等
の不可逆変化を抑制せねばならない。繰返し数の要求値
は光記録の用途によって変るが、103〜10’回の繰
返しが要求される場合が多い。
Furthermore, in order to obtain stable repeatability of writing and erasing, the medium is subjected to laser beam heating many times, so it is necessary to prevent irreversible changes such as deformation and perforation of the medium due to heat cycles, phase separation in the alloy film, etc. Must be suppressed. The required number of repetitions varies depending on the purpose of optical recording, but 103 to 10' repetitions are often required.

以上の種々の要求条件の中、達成が困難と考えられる問
題の1つは、高速消去(レーザーパルス幅1μsec以
下)と非晶質状態の長期安定性を同時に達成することで
ある。これらの2つの条件は前者が媒体をレーザー光加
熱した時に結晶化し易いこと、後者が媒体を室温で保持
した時に結晶化し難いことを要求するものであり、互い
に相反する条件となるからである。
Among the various requirements mentioned above, one problem that is considered difficult to achieve is to simultaneously achieve high-speed erasure (laser pulse width of 1 μsec or less) and long-term stability of the amorphous state. These two conditions are contradictory, as the former requires that the medium be easily crystallized when heated with laser light, and the latter that the medium is difficult to crystallize when kept at room temperature.

この問題をTe系合金膜を例にとって説明する。This problem will be explained by taking a Te-based alloy film as an example.

純TeのR膜は、短いパルスのレーザー光照射でTeの
融点(450℃)以上に加熱し、急冷することにより、
容易に非晶質となる。また、Te系合金膜では非晶質と
結晶との間で、屈折率および吸収率等の光学定数の差が
大ぎく、2つの状態間での反射率の差も大きいので、十
分なコントラストが得られる。しかし、純Teのガラス
転移温度は室温(〜20℃)程度と低く、レーザー光照
射により得られた非晶質部分は、数秒以下の短時間で再
び結晶化してしまい、長期安定性の面で全く用をなさな
い。
Pure Te R film is heated to above the melting point of Te (450°C) by short pulse laser light irradiation and then rapidly cooled.
Easily becomes amorphous. In addition, in Te-based alloy films, there is a large difference in optical constants such as refractive index and absorption coefficient between the amorphous and crystalline states, and the difference in reflectance between the two states is also large, so sufficient contrast cannot be obtained. can get. However, the glass transition temperature of pure Te is as low as room temperature (~20°C), and the amorphous portion obtained by laser beam irradiation crystallizes again in a short period of several seconds or less, resulting in poor long-term stability. It's completely useless.

このために、Teに対してGe、 Sb、 As%Bi
等を不純物として添加し、非晶質状態を安定させる試み
がなされてきた。これまでの研究では、不純物元素を1
0〜20at、%程度の量まで添加したTe合金膜にお
いて、ガラス転移温度は数十〜100℃以上まで上昇し
、従って非晶質寿命は室温で10年以上のものが得られ
ることが分かっている。
For this purpose, Ge, Sb, As%Bi
Attempts have been made to stabilize the amorphous state by adding such substances as impurities. In previous research, impurity elements were
It has been found that in Te alloy films added to an amount of 0 to 20 at.%, the glass transition temperature rises to several tens of degrees to over 100 degrees Celsius, and therefore an amorphous life of more than 10 years can be obtained at room temperature. There is.

しかしながら、非晶質状態を安定化せしめることは、反
面、非晶質部をレーザーパルス光の照射により結晶化す
ることを困難とすることに相当し、従って高速消去が困
難となることが予想される。実際、上記Te合金系で1
0年以上の長期安定性を有するものは、書込状態の消去
にあたり、lOμsec以上、通常10〜数100μs
ecのパルス幅を有するレーザーパルス光の照射を要す
ることが示されている。
However, stabilizing the amorphous state is equivalent to making it difficult to crystallize the amorphous part by irradiation with laser pulse light, and therefore it is expected that high-speed erasing will be difficult. Ru. In fact, in the above Te alloy system, 1
For those with long-term stability of 0 years or more, erasing the written state takes more than 10 μsec, usually 10 to several 100 μs.
It has been shown that irradiation with laser pulse light having a pulse width of ec is required.

このように、長期安定性と高速消去性を共に満足する材
料は、まだ十分なものが無く、現在、材料開発の研究の
焦点となっている。
As described above, there is still no material that satisfies both long-term stability and high-speed erasability, and this is currently the focus of research in material development.

上記の問題の他に、レーザー光加熱の繰返しによる合金
系の相分離の発生も、書込と消去の繰返し性を損なう重
要な課題である。これまで、種々様々の記録媒体が提案
され、検討されているが、前述した3点の要求条件をす
べて満たす材料の実現を目指して、即ち、非晶質−結晶
質転移を利用した書換型記録媒体の高性能化を目指して
、現在、内外の研究機関において、活発な研究が行われ
ている。
In addition to the above-mentioned problems, the occurrence of phase separation in the alloy system due to repeated laser beam heating is also an important problem that impairs the repeatability of writing and erasing. Until now, various recording media have been proposed and studied, but the aim is to realize a material that satisfies all the three requirements mentioned above. Aiming to improve the performance of media, active research is currently being carried out at research institutions in Japan and abroad.

従って、本発明の目的は、上記の従来技術の欠点を克服
し、情報の書込とその再生、消去、特に高速消去が容易
であると共に、記録状態の安定性が高く、しかも書込、
再生および消去が多数回繰返し可能な書換型レーザー記
録媒体を1是供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to overcome the above-mentioned drawbacks of the prior art, to facilitate writing, reproducing, and erasing information, especially high-speed erasing, and to provide high stability of the recording state.
An object of the present invention is to provide a rewritable laser recording medium that can be reproduced and erased many times.

また、これらの問題とは別に、レーザ記録媒体には、記
録状態と消去状態との反射率差か大きく、記録した時、
十分な信号がとれることが要求される。特に追記型媒体
として使用する場合、穿孔型記録と競合する立場にある
ため結晶−非晶質の相変化記録においても、2状態間で
、20%以上の反射率差のあることがのぞまれる。ディ
スク特性においても、18Gorpmの回転で、55d
i1以上のC/N比(Carrier−noise r
atio)が要求される。このような高速回転、即ち高
速記録は、光ディスクを用いた大容量記憶で高転送レー
トを実現するため是非、望まれることである。
Apart from these problems, laser recording media also have a large reflectance difference between the recorded state and the erased state.
It is required that a sufficient signal can be obtained. In particular, when used as a write-once medium, it is desired that there be a reflectance difference of 20% or more between the two states, even in crystal-amorphous phase change recording, since it is in a position to compete with perforated recording. In terms of disc characteristics, at 18 Gorpm rotation, 55d
C/N ratio of i1 or more (Carrier-noise r
atio) is required. Such high-speed rotation, ie, high-speed recording, is highly desirable in order to achieve high transfer rates in large-capacity storage using optical disks.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、従来の書換型または追記型レーザー記録
媒体における上述の現状に鑑み、レーザー記録媒体につ
いて鋭意研究を重ね、多f!多様な材料を検討した結果
、Te系合金膜において、添加元素の組合せと組成比を
慎重に選ぶことにより、前述の要求条件をすべて満たし
得る高性能レーザー記録媒体を実現することに成功した
In view of the above-mentioned current state of conventional rewritable or write-once laser recording media, the present inventors have conducted extensive research on laser recording media, and have conducted multi-f! After examining various materials, we succeeded in creating a high-performance laser recording medium that satisfies all of the above requirements by carefully selecting the combination of additive elements and composition ratio for the Te-based alloy film.

上記の目的を達成するために、本発明によるレーザ記録
媒体は、(Sb1−xTej r−yMVで表される組
成(ただしXは0.1≦X≦0.3の範囲、yは0くy
≦0.2の範囲であり、Mは八g5^1. As%Au
In order to achieve the above object, the laser recording medium according to the present invention has a composition represented by (Sb1-xTej r-yMV, where X is in the range of 0.1≦X≦0.3, and y is in the range of 0 and y
The range is ≦0.2, and M is 8g5^1. As%Au
.

Di、 Cu、 Ga、 Ge、In、 Pb、 Pd
、 Pt、 Se%Si、 SnおよびZnからなる群
から選ばれた少なくとも1種の元素)の合金膜を記録層
に有することを特徴とする。
Di, Cu, Ga, Ge, In, Pb, Pd
, Pt, Se%Si, Sn and Zn) in the recording layer.

更に本発明の好ましい態様に従うと、上記記録層の上面
および/または下面に保護膜として誘電体層が被着され
る。
Furthermore, according to a preferred embodiment of the present invention, a dielectric layer is deposited as a protective film on the upper surface and/or lower surface of the recording layer.

さらにまた、本発明の好ましい態様に従うと、レーザ記
録媒体は、上記の合金薄膜を2層以上設け、これら複数
の合金膜層のそれぞれを誘電体層ではさみこんだ構成と
し、かつ合金層のそれぞれの膜30nm以下である。
Furthermore, according to a preferred embodiment of the present invention, the laser recording medium has a structure in which two or more of the above alloy thin films are provided, each of the plurality of alloy film layers is sandwiched between dielectric layers, and each of the alloy layers is The film thickness is 30 nm or less.

ここで誘電体層は5in2、SiO、Al2O3、Y2
O3、WO3、Ta205、Cr2O3、CeO2、M
oO2、In2O3、Gem2、Tie、、ZrO2等
の無機酸化物材料、MgF2、CeF3等の金属フッ化
物、AIN 、 BN、 Si3N4等の無機窒化物、
ZnS等の金属硫化物、SiC等の無機炭化物、或いは
ポリフェニレンスルフィド、ポリテトラフルオロエチレ
ン、ポリイミド専の有機物、六フッ化プロピレン、ヘキ
サメチレンジシロキサン、テトラメチルスズ、ノルボル
ナジェン、アダマンタン等のプラズマ重合有機膜等から
なる群から選ばれた少なくとも一種であってもよい。
Here, the dielectric layer is 5in2, SiO, Al2O3, Y2
O3, WO3, Ta205, Cr2O3, CeO2, M
Inorganic oxide materials such as oO2, In2O3, Gem2, Tie, ZrO2, metal fluorides such as MgF2, CeF3, inorganic nitrides such as AIN, BN, Si3N4,
Metal sulfides such as ZnS, inorganic carbides such as SiC, or organic materials exclusively for polyphenylene sulfide, polytetrafluoroethylene, polyimide, plasma polymerized organic films such as propylene hexafluoride, hexamethylene disiloxane, tetramethyltin, norbornadiene, adamantane, etc. At least one type selected from the group consisting of the following may be used.

〔作 用〕[For production]

まず、はじめに、5b−Te合金膜の性質から説明する
。本発明者等は、光学記録媒体としてのTe系合金膜に
ついて詳細な解析をおこない、膜中のTeとsbの組成
比を変えて多数の試料を作製し、様々の媒体特性を評価
した。
First, the properties of the 5b-Te alloy film will be explained. The present inventors conducted a detailed analysis of a Te-based alloy film as an optical recording medium, prepared a large number of samples with different composition ratios of Te and sb in the film, and evaluated various media characteristics.

その結果、Teが10at、%から80at、%の範囲
で含有される時、非晶質寿命が長くなると共に、消去速
度も向上し、書換性にも優れるなど、高性能の光記録媒
体の得られることを先に見出だした。
As a result, when Te is contained in the range of 10at.% to 80at.%, high-performance optical recording media can be obtained, such as a long amorphous life, improved erasing speed, and excellent rewritability. I found out first that it can be done.

本発明者らは、その後、5b−Te合金膜について、さ
らに詳細に、鋭意検討を進め、上記組成範囲の中で、さ
らに特徴的な性質があられれ、媒体特性も向上する場合
のあることを明らかにしたものである。即ち、5b−T
e合金膜の組成範囲とじて、Teを10at、%から、
30at、%の範囲とした時、非晶質−結晶の2状態間
の光学反射率の差が著しく大きくなり、その結果記録信
号の値を十分大きくとれるという特徴を見出だした。非
晶質寿命、消去速度、繰返し性などの他の特性について
も、この組成範囲で特に低下することはない。
The present inventors then conducted a more detailed study of the 5b-Te alloy film, and found that within the above composition range, it may have even more characteristic properties and improve media characteristics. It has been made clear. That is, 5b-T
The composition range of the e-alloy film is as follows: Te: 10at% to
It has been found that when the range is 30 at.%, the difference in optical reflectance between the two states of amorphous and crystalline becomes significantly large, and as a result, the value of the recorded signal can be sufficiently large. Other properties such as amorphous life, erasing speed, and repeatability do not particularly deteriorate within this composition range.

Te:10〜30at、%の範囲でこのように性能が向
上する理由はまだ明らかでない。しかし、発明者らは、
X線回折法により膜構造を詳細に検詞し、この組成範囲
で、これまでの報告とは異なった構造があられれること
を見出たした。第1図にX線回折ピークの例を示す。第
1図における曲線Aは、δ相を示す5b−Te合金膜か
ら得られるX線回折ピークを示し、合金組成は、5b5
sTe4sに対するものである。いずれのピークも、δ
−5b2Te3の構造にあてはまり、組成的にもδ相の
組成領域に合致している。曲線Bは、本発明で見出ださ
れた、5b−Te系合金におけるTfl含有量10〜3
0at、%の組成範囲に特有のX線回折ピークを示す。
It is not yet clear why the performance improves in the range of Te: 10 to 30 at%. However, the inventors
We examined the film structure in detail using X-ray diffraction and found that within this composition range, a structure different from that reported so far was formed. FIG. 1 shows examples of X-ray diffraction peaks. Curve A in FIG. 1 shows an X-ray diffraction peak obtained from a 5b-Te alloy film exhibiting a δ phase, and the alloy composition is 5b5
This is for sTe4s. Both peaks are δ
This applies to the structure of -5b2Te3, and the composition also matches the composition region of the δ phase. Curve B shows the Tfl content of 10 to 3 in the 5b-Te alloy found in the present invention.
It shows a characteristic X-ray diffraction peak in the composition range of 0 at.%.

これは、合金組成Sb、、Te2゜の試料に対するもの
で、δ相とは異なる回折ピークがあられれる。X線回折
にあられれる回折ピークをみる限り、この組成において
、5b−Te膜は何らかの単相の結晶構造をとり、それ
は通例δ相とよばれる5b2Tesの構造とは異なって
いる。回折ピークのうちのいくつかは文献Abriko
sov et al、、 Ru5s、 J、 Inor
g、 (:hem、 4゜1153 (1959)に示
されるγ相のピークにあわせることができるが、すべて
のピークが一致するわけではない。しかも、文献に示さ
れる組成範囲からかなりずれている。しかし、発明者等
は、便宜上、この結晶相をγ相と呼ぶこととする。した
がって、このγ相の存在と、光記録媒体の高性能化とを
結びつければ、高性能化の原因を解明できるものと期待
される。さて、記録媒体材料の薄膜が、結晶構造的に単
相であれば、非晶質−結晶相変化にあたり、相分離の生
ずることがないため、媒体特性を向上せしめることがで
きる。消去速度、記録消去の繰り返し条件の再現性など
の点で複数の結晶相の混合物となる組成よりも、単相を
示す組成領域で、著しい向上がみられる。γ相の5b−
Te合金膜の記録媒体が、高性能となるのは、この面か
らも、妥当なことであろう。また、信号強度を大きくと
れることは、この組成領域において、非晶質状態と、γ
相としての結晶状態の間で光学定数の値が大きく異なり
、したがって反射率差が大きくなることによる。光ディ
スクとしての動特性の測定によれば、Teが10at、
%から30at、%の組成領域では、C/N比は、55
dB以上にのぼる。この値は、穿孔モードの追記型光記
録媒体と比べても遜色ないものであり、室温での非晶質
寿命が十分長いことを考慮すると、記録寿命の点でも問
題なく、書き換え型のみならず追記型としても使用でき
るものである。また、記録膜が膜形成のままの状態で非
晶質状態であること、モしてレーザ加熱した時の結晶化
速度が速いことを生かして、結晶化により記録をおこな
う追記型媒体としても使用できる。
This is for a sample with an alloy composition of Sb, Te, and a diffraction peak different from that of the δ phase. Looking at the diffraction peaks observed in X-ray diffraction, the 5b-Te film at this composition has some kind of single-phase crystal structure, which is different from the structure of 5b2Tes, which is usually called the δ phase. Some of the diffraction peaks are from the document Abriko
sov et al., Ru5s, J., Inor.
g, (:hem, 4°1153 (1959)), but not all peaks match.Moreover, the composition range deviates considerably from the composition range shown in the literature. However, for convenience, the inventors will refer to this crystalline phase as the γ phase. Therefore, by linking the existence of this γ phase to the high performance of optical recording media, we will be able to elucidate the cause of the high performance. Now, if the thin film of the recording medium material has a single-phase crystal structure, it will undergo an amorphous-crystalline phase change and no phase separation will occur, which will improve the characteristics of the medium. In terms of erasing speed and reproducibility of repeated conditions for recording and erasing, significant improvements are seen in compositions that exhibit a single phase than in compositions that are a mixture of multiple crystal phases.5b- of the γ phase.
From this point of view as well, it is reasonable that a recording medium made of a Te alloy film has high performance. Also, the fact that the signal strength can be increased is due to the amorphous state and γ
This is due to the fact that the values of optical constants differ greatly between the crystalline states as phases, resulting in a large difference in reflectance. According to the measurement of the dynamic characteristics of an optical disc, Te is 10at,
In the composition range from % to 30 at.%, the C/N ratio is 55
It reaches more than dB. This value is comparable to that of write-once optical recording media in perforation mode, and considering that the amorphous life at room temperature is sufficiently long, there is no problem in terms of recording life, and it is suitable for use not only in rewritable type but also in rewritable type. It can also be used as a write-once type. In addition, it can also be used as a write-once medium that performs recording by crystallization, taking advantage of the fact that the recording film is in an amorphous state as it is, and that the crystallization speed is fast when heated by laser. can.

ここで更に、本発明者らは、5b−Te合金γ相に対し
、sbとTe以外の第3元素を少量添加することにより
、次に列挙する如き光記録特性を、より一層改善するこ
とができることを発見した。
Furthermore, the present inventors have found that by adding a small amount of a third element other than sb and Te to the γ phase of the 5b-Te alloy, the optical recording characteristics as listed below can be further improved. I discovered that it is possible.

a)結晶化温度を更に上げ、非晶質状態を安定化するこ
と。
a) Further increase the crystallization temperature to stabilize the amorphous state.

b)レーザー光照射による結晶化を更に高速化し、高速
消去性を向上すること。
b) To further speed up crystallization by laser light irradiation and improve high-speed erasability.

ここで、第3元素の添加効果は、a)については、第3
元素がsbやTeと化学結合を持つことにより、原子間
結合を強め原子の移動や再配列を抑制することにより、
実効的に結晶化温度を高めるため、非晶質状態の安定性
が増すという点である。
Here, regarding a), the effect of adding the third element is
Because the element has chemical bonds with sb and Te, it strengthens the bonds between atoms and suppresses the movement and rearrangement of atoms.
Since the crystallization temperature is effectively raised, the stability of the amorphous state is increased.

b)については、第3元素がsbとTeのマトリックス
の中に異種原子として混入するため、レーザー光加熱し
た時、結晶化に対する結晶核として作用するという点で
ある。この場合、結晶核がミクロ的に均一に分散してい
れば、レーザー光加熱時に同時に多数の微結晶が発生す
るため、結晶化にあたりロングレンジの原子の拡散がな
くても良く、結晶化を高速化せしめる作用をなす。更に
また、個々の結晶粒が不必要に大きく成長することがな
いため、各結晶粒のドメインが十分に小さく、−様かつ
均質な結晶状態が得られる。このことは高速消去とは別
に、光記録における再生信号のノイズ成分を減らし、S
/N比を向上させる上でも有効である。
Regarding b), since the third element is mixed into the matrix of sb and Te as a different atom, it acts as a crystal nucleus for crystallization when heated with laser light. In this case, if the crystal nuclei are microscopically uniformly dispersed, many microcrystals will be generated at the same time during laser beam heating, so there is no need for long-range atomic diffusion during crystallization, and crystallization can be performed at high speed. It has the effect of transforming Furthermore, since individual crystal grains do not grow unnecessarily large, the domains of each crystal grain are sufficiently small, and a -like and homogeneous crystal state can be obtained. Apart from high-speed erasing, this also reduces the noise component of the reproduced signal in optical recording, and
This is also effective in improving the /N ratio.

以上の理由から、本発明者らは、5b−Teのγ相組成
の合金膜に様々な元素を添加して鋭意研究検討を行りた
結果、第3元素として、へg%Al、へ51Au%Bi
、 Cu、 Ga、 Ge、 In、 Pb、 Pd、
 Pt、 Se、 Si。
For the above reasons, the present inventors conducted intensive research and study by adding various elements to an alloy film having a γ phase composition of 5b-Te. %Bi
, Cu, Ga, Ge, In, Pb, Pd,
Pt, Se, Si.

SnおよびZnの中から選んだ少なくとも1種を添加す
ることにより、5b−Teのγ相単体よりも更に優れた
記録媒体が得られること見出した。
It has been found that by adding at least one selected from Sn and Zn, a recording medium that is even more excellent than the 5b-Te γ phase alone can be obtained.

ここで、第3元素添加の際に最も重要な条件は、第3元
素添加後も、結晶化の際5b−Teのγ相と第3元素の
相分翻【を起こすことなく、γ相単相であるということ
である。もし相分離を生じることがあれば、γ相の持つ
優れた書込−消去繰返し性が損なわれるのみでなく、高
速消去性能も低下し、第3元素の添加が逆効果となる。
Here, the most important condition when adding the third element is that even after the addition of the third element, the γ phase of 5b-Te and the third element do not undergo phase separation during crystallization. It means that it is a phase. If phase separation occurs, not only the excellent write-erase repeatability of the γ phase is impaired, but also the high-speed erase performance is degraded, and the addition of the third element becomes counterproductive.

以上の条件を満足する第3元素添加量の範囲は20at
、%以下であり、量産の際の組成ずれ等を考慮すると1
5at、%以下が好適な範囲となる。
The range of the amount of third element added that satisfies the above conditions is 20at
,% or less, and considering composition deviations during mass production, it is less than 1%.
A suitable range is 5 at.% or less.

また、前記の5b−Teのγ相の組成範囲についても、
γ相の出現する組成自体はTe : 10〜30at、
%にあるが、その境界であるTe1Oat、%の組成に
おいては、sb部分が混入し、sbと、γ相の混晶とな
り、またもう一つの境界であるTe30at、%の組成
においては、δ相部分が混入し、γ相とδ相の混晶とな
る可能性がある。このように相分離のおそれのある場合
は、レーザ記録媒体の高性能化の上でこのましくない。
Also, regarding the composition range of the γ phase of 5b-Te,
The composition itself where the γ phase appears is Te: 10-30at,
%, but in the composition of Te1Oat, % which is the boundary, the sb part is mixed and becomes a mixed crystal of sb and γ phase, and in the composition of Te30at, % which is the other boundary, the δ phase is mixed. There is a possibility that a mixed crystal of γ phase and δ phase may be formed. If there is a risk of phase separation as described above, this is not desirable in terms of improving the performance of the laser recording medium.

したがって、量産時の歩留まりを上げるためには、組成
範囲についても、Te:15〜25at、%程度にしぼ
ることが要求されよう。
Therefore, in order to increase the yield during mass production, it would be necessary to narrow down the composition range to about 15 to 25 at% Te.

もちろん、この15〜25at、%Teという範囲も、
製造上、十分に広いものであり、景産性、生産性の点で
、好都合である。
Of course, this range of 15 to 25 at and %Te is also
It is sufficiently spacious for manufacturing purposes, and is convenient in terms of economy and productivity.

以上説明した、5b−Te合金へ第3元素を添加した合
金膜を光デイスク用媒体に用いる場合、通例、アクリル
樹脂、ポリカーボネート樹脂等のプラスチック製の円板
を基板として真空蒸着やスパッタリング等の方法で薄膜
化する。この場合、合金膜をレーザー光加熱する時の薄
膜の穿孔や変形、或いは合金膜に接する部分のプラスチ
ック基板の変形等の不可逆変化を防ぐため、合金膜の上
下に耐熱性に優れたuE体層を設けることが好ましい。
When using the alloy film described above, which is a 5b-Te alloy to which a third element is added, as an optical disk medium, it is usually formed using a method such as vacuum evaporation or sputtering using a plastic disk such as acrylic resin or polycarbonate resin as a substrate. to make it a thin film. In this case, in order to prevent irreversible changes such as perforation or deformation of the thin film when the alloy film is heated with laser light, or deformation of the plastic substrate in contact with the alloy film, a uE body layer with excellent heat resistance is placed above and below the alloy film. It is preferable to provide

本発明の好ましい態様に従うと、合金膜のアンダーコー
ト、オーバーコート材料として、5in2、SiO、八
1203  、 Y2O3、WO3、Ta205  、
  Cr2O3、CeO,、TeO2、MoO3、In
2O3、GeO2、TiO2等の無機酸化物材料、Mg
F2、PbF2、CeF3等の金属フッ化物、^IN 
、 BN、 Si3N4等の無機窒化物、ZnS等の金
属硫化物、SiC等の無機炭化物、あるいはポリエチレ
ン、ポリフッ化ビニリデン、ポリフェニレンスルフィド
等の高分子蒸着膜、Cuフタロシアニン、フルオレセイ
ン等の低分子蒸着膜、また有機スパッタ膜としてポリテ
トラフルオロエチレン、ポリフッ化ビニリデン、ポリイ
ミド、ポリフェニレンスルフィド等のスパッタ膜を使用
することができる。
According to a preferred embodiment of the present invention, the undercoat and overcoat materials for the alloy film include 5in2, SiO, 81203, Y2O3, WO3, Ta205,
Cr2O3, CeO,, TeO2, MoO3, In
Inorganic oxide materials such as 2O3, GeO2, TiO2, Mg
Metal fluorides such as F2, PbF2, CeF3, ^IN
, BN, inorganic nitrides such as Si3N4, metal sulfides such as ZnS, inorganic carbides such as SiC, polymer deposited films such as polyethylene, polyvinylidene fluoride, polyphenylene sulfide, and low molecular deposited films such as Cu phthalocyanine and fluorescein. Further, sputtered films of polytetrafluoroethylene, polyvinylidene fluoride, polyimide, polyphenylene sulfide, etc. can be used as the organic sputtered film.

更にこの誘電体層としては、プラズマ重合膜を使用する
こともでき、エチレン等のオレフィン系化合物、スチレ
ン等の芳香族化合物、六フッ化プロピレン等の含フツ素
化合物、アクリロニトリル等の含窒素化合物、ヘキサメ
チルジシロキサン等のSi含有化合物、テトラメチルス
ズ等の有機金属化合物、更にノルボルナジェン、アダマ
ンタン等の各種有機化合物から得られる重合膜を使用で
きる。
Furthermore, as this dielectric layer, a plasma polymerized film can also be used, and may be made of an olefinic compound such as ethylene, an aromatic compound such as styrene, a fluorine-containing compound such as hexafluoropropylene, a nitrogen-containing compound such as acrylonitrile, Polymerized films obtained from Si-containing compounds such as hexamethyldisiloxane, organometallic compounds such as tetramethyltin, and various organic compounds such as norbornadiene and adamantane can be used.

また、これら媒体構成面から書換型光記録媒体の高性能
化を図る場合、特開昭61−44692号に記載のTe
系合金層の薄層積層化、即ち層厚30nm以下の合金層
を2層以上設け、各々を誘電体層で挟む構造とするもの
が有効である。このような積層構造は、Te合金部の誘
電体中への微粒子分散構造と等価と考えられ、その結果
Te合金部の非晶質状態の安定化、結晶化における結晶
粒の不可逆的な肥大化の抑制に基づく繰り返し性の改良
をもたらすのみならず、層厚の組み合わせを最適化する
ことにより、信号コントラストを向上させることもでき
る。
In addition, when trying to improve the performance of rewritable optical recording media from the viewpoint of these medium configurations, Te
It is effective to laminate thin alloy layers, that is, to provide two or more alloy layers with a thickness of 30 nm or less, each sandwiched between dielectric layers. Such a laminated structure is considered to be equivalent to a structure in which fine particles are dispersed in the dielectric of the Te alloy part, and as a result, the amorphous state of the Te alloy part is stabilized and the crystal grains become irreversibly enlarged during crystallization. In addition to improving repeatability based on the suppression of , it is also possible to improve signal contrast by optimizing the combination of layer thicknesses.

(実施例〕 以下に、実施例によって本発明の詳細な説明する。(Example〕 Hereinafter, the present invention will be explained in detail by way of examples.

実施例l 5b−Te合金をベースとして第3元素の添加を試みた
。電子線加熱蒸着により、先ず5b−Te−Ge合金膜
を作製した。基板はテストピース用に50×5011I
11角、厚さ1.2mmの耐熱ガラス板、またディスク
特性評価用に直径5インチ、厚さ1.2mmの溝付きポ
リカーボネート樹脂円板を用いた。蒸着時の真空度は1
 x 10−’Torrであり、3つの蒸発源にそれぞ
れsbとTeとGeを容れ、3元同時蒸着法で成膜した
。ここで、それぞれの蒸発源の電子線出力を変化させて
、組成の異なる5b−Te−Ge合金膜を作製した。膜
厚は1100nとした。X線光電子分光分析によれば、
作製した合金膜の組成は以下の通ってあった。即ち、 (Sbo、 90TeO−1o) 0.95GeO−0
8%(Sb0.907eO6I O)。90GeO−1
0%(Sbo9oTeo、to)。ao[ieo、2o
、(Sbo、 aoTeo−2o)。95Ge0.05
、(Sbo、 aoTeo、2o)。90GeO−10
、(Sl)o、 aoTeo、2o) 11. aoc
eo、20、(Sbo7oTeo・3o) O,11s
Geo−05%(sb。、 70TeO−30)。90
GeO、I 05(Sbo、 yoTeo−3o) 0
. aOGeo−20であった。また、これら9種類の
組成の試料を300℃で加熱して完全に結晶化させた後
、X線回折を用いて結晶状態を観察した結果、いずれの
組成でもGeの析出は認められず、5b−Teのγ相単
相であった。これらの合金膜の作製に先立って、各基板
上に電子線加熱蒸着により膜厚150nmの5in2膜
をアンダーコートし、かつ合金膜作製後に同じく膜厚1
50nmの5in2膜をオーバーコートしたものを記録
媒体として特性を評価した。
Example 1 An attempt was made to add a third element to a 5b-Te alloy as a base. First, a 5b-Te-Ge alloy film was produced by electron beam heating vapor deposition. The board is 50 x 5011I for the test piece.
A heat-resistant glass plate of 11 sides and a thickness of 1.2 mm was used, and a grooved polycarbonate resin disk of 5 inches in diameter and 1.2 mm in thickness was used for disk characteristic evaluation. The degree of vacuum during deposition is 1
x 10-'Torr, and sb, Te, and Ge were contained in three evaporation sources, respectively, and the film was formed by a three-component simultaneous evaporation method. Here, 5b-Te-Ge alloy films having different compositions were fabricated by changing the electron beam output of each evaporation source. The film thickness was 1100n. According to X-ray photoelectron spectroscopy,
The composition of the produced alloy film was as follows. That is, (Sbo, 90TeO-1o) 0.95GeO-0
8% (Sb0.907eO6IO). 90GeO-1
0% (Sbo9oTeo, to). ao [ieo, 2o
, (Sbo, aoTeo-2o). 95Ge0.05
, (Sbo, aoTeo, 2o). 90GeO-10
, (Sl)o, aoTeo, 2o) 11. aoc
eo, 20, (Sbo7oTeo・3o) O, 11s
Geo-05% (sb., 70TeO-30). 90
GeO, I 05 (Sbo, yoTeo-3o) 0
.. It was aOGeo-20. Furthermore, after completely crystallizing samples with these nine compositions by heating them at 300°C, we observed the crystalline state using X-ray diffraction. As a result, no Ge precipitation was observed in any of the compositions, and 5b -Te was a single γ phase. Prior to the fabrication of these alloy films, a 5in2 film with a thickness of 150 nm was undercoated on each substrate by electron beam heating vapor deposition, and after fabrication of the alloy film, a 5in2 film with a thickness of 150 nm was undercoated.
The characteristics were evaluated using a recording medium overcoated with a 50 nm 5in2 film.

レーザー光記録特性にあたり、レーザー光の光源として
、AlGaAsレーザーダイオード(発振波長λ= 8
30nm )を用い、直径1.4μmに収束したレーザ
ー光を記録媒体の基板側から照射して書込と消去を行っ
た。非晶質、結晶質の状態の変化は、媒体の記録部に再
生用レーザー光(連続発振、出力0.1mW )を照射
して反射光量を測定して判断した。5b−Te合金のの
みならず、一般に結晶状態の方が非晶質状態よりも反射
率が高い。また、作製した試料は一般に堆積のままの状
態で、非晶質と結晶の中間状態であるため、これに出力
6mW程度の連続発振のレーザー光を照射して、媒体を
結晶化温度以上に加熱した後、徐冷することにより完全
に結晶化させたものを初期状態とした。即ち、熱処理に
よる合金膜の初期結晶化をレーザー光で行った。ただし
、ここで作製した試料のような組成範囲では、堆積のま
まの状態は、中間状態にはあるが、少なくとも光学的に
みると、この状態は、非常に非晶質に近い状態であった
Regarding the laser light recording characteristics, an AlGaAs laser diode (oscillation wavelength λ = 8
Writing and erasing were performed by irradiating the recording medium with a laser beam converged to a diameter of 1.4 μm from the substrate side. Changes in the amorphous and crystalline states were determined by irradiating the recording portion of the medium with a reproducing laser beam (continuous wave, output 0.1 mW) and measuring the amount of reflected light. Not only the 5b-Te alloy, but generally the crystalline state has a higher reflectance than the amorphous state. In addition, since the prepared sample is generally in the as-deposited state and is in an intermediate state between amorphous and crystalline, it is irradiated with a continuous wave laser beam with an output of about 6 mW to heat the medium above the crystallization temperature. After that, it was slowly cooled to completely crystallize it, which was taken as the initial state. That is, initial crystallization of the alloy film by heat treatment was performed using laser light. However, in the composition range of the sample prepared here, the as-deposited state is in an intermediate state, but at least optically, this state is very close to amorphous. .

ここで述べた初期結晶化も非晶質から結晶への転移とほ
とんど同等の現象と考えられる。
The initial crystallization described here is also considered to be a phenomenon almost equivalent to the transition from amorphous to crystalline.

これらの試料に対してレーザパワーを15mW一定とし
て、パルス幅を変えて書きこみをおこない、反射率変化
を測定した。その結果、ここで検討した試料では、結晶
状態の反射率約60%以上となるのに対し非晶質状態の
反射率は約30%以下となり、その差△Rが著しく大き
くなることを見出だした。
Writing was performed on these samples with the laser power constant at 15 mW and the pulse width varied, and changes in reflectance were measured. As a result, it was found that in the samples examined here, the reflectance in the crystalline state is about 60% or more, while the reflectance in the amorphous state is about 30% or less, and the difference △R is significantly large. Ta.

第2図は、5b−Te−Ge合金膜を記録膜とした記録
媒体の記録・消去の繰り返し特性を、Geを添加しない
5b−Te合金膜と比較して示したものである。
FIG. 2 shows the recording/erasing repetition characteristics of a recording medium using a 5b-Te-Ge alloy film as a recording film in comparison with a 5b-Te alloy film to which no Ge is added.

各々、オーバーコート、アンダーコートは5in2スパ
ツタ膜であり基板は耐熱ガラス基板である。初期化後の
記録(非晶質化)、消去(結晶化)の繰り返しに対する
反射率変化の様子をみたものである。5baoTe2o
膜に対する記録条件は15mW、+50nsec 、消
去条件は15mW、300nsecであり、(Sbao
Te2o)9oGe+o膜に対する記録条件は15mW
、+50nsec 、消去条件は8mW 、 200n
secである。双方共に、繰り返しに対する反射率レベ
ルの変動が小さく、〜5 X 103回程度の繰返しま
で安定で相分離の影晋のないことがわかる。5 X 1
03回以上で、反射率レベルが低下するが、これは、消
去パルス幅を〜1μs程度に長くする等の操作で回復す
る。したがって、これは、ビーム照射位置のわずかな位
置づれなどの測定上の問題と考えられる。また、5b−
Te−Ge合金膜においては、非晶質状態の反射率レベ
ルが、5b−Te合金膜より10%はど小さく、△Rは
約30%にもおよぶことが示される。この大きな反射率
変化は、記録信号が大きくなり、C/N比の向上につな
がるものである。
In each case, the overcoat and undercoat are 5in2 sputtered films, and the substrate is a heat-resistant glass substrate. This figure shows how the reflectance changes with repeated recording (amorphization) and erasure (crystallization) after initialization. 5baoTe2o
The recording conditions for the film were 15 mW, +50 nsec, and the erasing conditions were 15 mW, 300 nsec.
The recording condition for the Te2o)9oGe+o film is 15 mW.
, +50nsec, erasure conditions are 8mW, 200n
sec. It can be seen that in both cases, the variation in the reflectance level with respect to repetition is small, and it is stable up to approximately 5 x 103 repetitions without any influence of phase separation. 5 x 1
After 03 times or more, the reflectance level decreases, but this can be recovered by increasing the erasing pulse width to about 1 μs or the like. Therefore, this is considered to be a measurement problem such as a slight positional shift in the beam irradiation position. Also, 5b-
In the Te-Ge alloy film, it is shown that the reflectance level in the amorphous state is 10% lower than that of the 5b-Te alloy film, and ΔR is as high as about 30%. This large change in reflectance increases the recording signal and leads to an improvement in the C/N ratio.

このような非晶質化をおこなうためのレーザ照射条件は
、試料によって異なるが、ポリカーボネート樹脂基板に
対して、パルス幅にして40〜80nsec、耐熱ガラ
ス基板に対してloo〜2oonsecの間となった。
The laser irradiation conditions for such amorphization differ depending on the sample, but for polycarbonate resin substrates, the pulse width was 40 to 80 nsec, and for heat-resistant glass substrates, it was between loo to 2 oon seconds. .

この書き込み状態に対して、引ぎ続ぎ消去条件の評価を
行った。ここでは、レーザパワーとパルス幅を変えて書
ぎ込み信号の消去に要するレーザパルスの中でパルス幅
の最短となるものをもって消去速度とした。
Erasing conditions were subsequently evaluated for this written state. Here, the laser power and pulse width were varied and the one with the shortest pulse width among the laser pulses required to erase the written signal was taken as the erasing speed.

次に、書き込み状態の寿命については、耐熱ガラス基板
上に作製したものについて検討した。
Next, regarding the lifespan in the written state, we examined a device fabricated on a heat-resistant glass substrate.

ここでは、書き込みを行った試料に室温から250℃ま
での温度で熱処理を加え、書き込み信号が100sec
で半減する時の温度をもって結晶化温度と定義して評価
した。
Here, the written sample was heat-treated at a temperature from room temperature to 250°C, and the write signal was
The crystallization temperature was defined as the temperature at which the crystallization temperature decreased by half.

その結果、ここで検討した組成の試料では、結晶化温度
は150℃以上であり、室温では非晶質として十分に安
定である。結晶化温度が100 ’Cを越える場合は、
通常、室温での寿命は10年以上と見積られる。また、
この組成範囲においては、消去速度、即ちレーザ照射時
の結晶化速度は、逆に非常に速いものとなり、パルス幅
100〜200nsecの短パルスで非晶質化スポット
のレーザ結晶化、即ち消去が達成できることを見出だし
た。従って、高速消去が可能でかつ結晶化温度も高く、
書き込み状態が長寿命となるという結果が得られ、この
媒体により書換型媒体の上記した最大の問題点が克服で
きることがわかった。
As a result, the sample having the composition studied here has a crystallization temperature of 150° C. or higher, and is sufficiently stable as an amorphous state at room temperature. If the crystallization temperature exceeds 100'C,
Normally, the lifespan at room temperature is estimated to be 10 years or more. Also,
In this composition range, the erasing rate, that is, the crystallization rate during laser irradiation, is on the contrary very fast, and laser crystallization, that is, erasing, of the amorphous spot is achieved with a short pulse with a pulse width of 100 to 200 ns. I found out what I can do. Therefore, high-speed erasing is possible and the crystallization temperature is high.
The result was that the written state had a long life, and it was found that this medium could overcome the above-mentioned biggest problem of rewritable media.

また、この組成領域では、書き込みと消去の繰り返し性
も比較的優れ、例えばTe : 20at、机Sb :
80at、!kかつGe: 10at、%i、即ち、(
SbaoTe2a) 90cal。
In addition, in this composition range, the repeatability of writing and erasing is also relatively excellent, for example, Te: 20at, desk Sb:
80at! k and Ge: 10at, %i, i.e. (
SbaoTe2a) 90cal.

の組成で耐熱ガラス基板の試料では、書と込み15mW
%150nsec 、消去8mW 、 200nsec
の各条件で、第2図に示すように再現性良< 103回
以上書き込み、消去の繰り返しが可能であることが確認
できた。ただし、繰り返し数が5 X 103回を越え
ると、200nsecの消去パルスでは完全消去ができ
なくなり、消し残りが見られるようになった。この場合
も消去パルス幅を〜1μsecに長くするか、あるいは
200nsecのままでも数回パルス照射することによ
り、消し残りがなくなり、完全に消去できることがわか
った。他の組成においても、15≦Te≦25at、%
の範囲では、同様に良好な繰り返し性を示すことを確認
した。ここで、Te含量IOおよび30at、%の試料
では、繰り返し数が、2×10’を越えると、完全消去
ができなくなり消し残りが見られるようになった。この
2つの組成は、γ相領域のほぼ境界となるため、Te1
Oat、%の場合、γ相の他にsbをわずかに含み、T
e 3Qat、%の場合、γ相の他にδ相をわずかに含
んでいるため、完全に単相になっていないと考えられる
。したがって記録消去の繰り返しにより徐々に相分前が
進行するため、記録状態、消去状態が一義的に定まらず
、そのため繰返し性が若干、低下すると推測できる。こ
の事情は5b−Te 2元の合金膜の場合と同様である
。ざらにGeの添加量が20at、%の試料に対しても
、記録・消去を5 X 10’回以上繰り返すと消し残
りが発生することがわかった。これも、Geの添加量を
多くしすぎると、それらが5b−Teベースの結晶中に
固溶せず、別の結晶相を形成し、相分離をおこすためと
推測できる。したがって、第3元素を20at、%以上
加えることは記録消去の繰返し性を保持する上で、好ま
しくない。第3元素(本実施の場合、Ge)添加量が、
20at、%より少ない場合は、記録消去の繰り返し特
性の低下は認められないことも、確認した。
For a sample of a heat-resistant glass substrate with a composition of
%150nsec, erase 8mW, 200nsec
Under each condition, as shown in FIG. 2, it was confirmed that writing and erasing could be repeated more than 103 times with good reproducibility. However, when the number of repetitions exceeds 5 x 103 times, complete erasing cannot be achieved with the erasing pulse of 200 nsec, and unerased areas become visible. In this case as well, it has been found that by increasing the erasing pulse width to ~1 μsec or by irradiating pulses several times even with the width of 200 nsec, there is no unerasable residue and complete erasure can be achieved. Also in other compositions, 15≦Te≦25at, %
It was confirmed that similarly good repeatability was exhibited within the range of . Here, in the samples with a Te content of IO and 30 at%, when the number of repetitions exceeded 2 x 10', complete erasure was no longer possible and unerased areas were observed. These two compositions are almost at the boundary of the γ phase region, so Te1
In the case of Oat, %, it contains a small amount of sb in addition to the γ phase, and T
In the case of e 3Qat,%, it is considered that it is not completely single phase because it contains a small amount of δ phase in addition to γ phase. Therefore, as the phase progresses gradually due to repeated recording and erasing, the recording state and the erasing state are not uniquely determined, and it can therefore be assumed that the repeatability is slightly reduced. This situation is similar to the case of the 5b-Te binary alloy film. It has been found that even for a sample in which the amount of Ge added is roughly 20 at. This is also presumed to be because if the amount of Ge added is too large, Ge will not be solidly dissolved in the 5b-Te-based crystal, but will form another crystal phase, causing phase separation. Therefore, it is not preferable to add more than 20 at% of the third element in order to maintain the repeatability of recording and erasing. The amount of the third element (Ge in this case) added is
It was also confirmed that when the amount was less than 20 at.%, no deterioration in the repeatability of recording and erasing was observed.

次に、直径5インチの溝付きポリカーボネート樹脂円板
上に作製した各組成の媒体に対して光ディスクとしての
回転系の評価を行い、特に、搬送波対雑音比(一般にC
/N比と呼ぶ)を測定した。
Next, we evaluated the rotation system as an optical disk for media of each composition fabricated on a grooved polycarbonate resin disk with a diameter of 5 inches, and in particular, we evaluated the carrier wave-to-noise ratio (generally C
/N ratio) was measured.

ディスク書込時のレーザー光出力は15mW、レーザー
パルス幅500nsec 、再生時のレーザー光出力は
1.2mVf 、ディスク回転数は1800rpmで記
録・再生の実験を行ったところ、いずれの組成のディス
クもC/N比は57dB以上であり、第3元素添加前よ
りむしろ高い特性を示した。引き続きディスクの情報書
込部を出カフmWのレーザー光で走査したところ、いず
れの組成のディスクでも書込んだ情報を完全に消去する
ことができ、書込−消去の繰返しは、10’回まで実験
を行ったが、C/N比の減少は見られず、また消し残り
もなく完全消去が可能であった。
Recording and playback experiments were conducted with a laser light output of 15 mW during disk writing, a laser pulse width of 500 nsec, a laser light output of 1.2 mVf during playback, and a disk rotation speed of 1800 rpm. /N ratio was 57 dB or more, which showed rather higher characteristics than before addition of the third element. Subsequently, when the information writing area of the disk was scanned with a laser beam of output mW, it was possible to completely erase the written information on disks of any composition, and writing and erasing could be repeated up to 10' times. An experiment was conducted, and no decrease in the C/N ratio was observed, and complete erasure was possible with no unerasable residue.

次に堆積のままの状態の媒体に対し、レーザ結晶化によ
り記録をおこなうモードで回転系の評価をおこなった。
Next, we evaluated the rotation system in a recording mode using laser crystallization on the medium in the as-deposited state.

回転数1800rpmで、書ぎこみ(この場合、レーザ
結晶化)時のレーザ先出カフmW、再生時の出力1.2
mWで記録再生の実験をおこなったところ、59dBと
いう高いC/N比を得た。これは、穿孔モードの追記型
媒体の性能としても優れた値である。
At a rotational speed of 1800 rpm, the laser first output cuff mW during writing (in this case, laser crystallization) and the output during playback 1.2
When recording and reproducing experiments were conducted at mW, a high C/N ratio of 59 dB was obtained. This is an excellent value for the performance of a write-once medium in perforation mode.

次に、第3元素としてGeに代えて、A3%AI、As
、^u、 Bi%(:u%Ga%In、 Pb%Pd、
 Pt、 Se、 Si、SnおよびZnのそれぞれを
選び、同様の媒体作製を行い評価を行った。
Next, in place of Ge as the third element, A3%AI, As
, ^u, Bi%(:u%Ga%In, Pb%Pd,
Pt, Se, Si, Sn, and Zn were selected, and similar media were prepared and evaluated.

その結果、第3元素の作用としては、いずれも似通って
いるが、レーザー記録特性に基づき、添加元素の種類に
応じて相対的な差を分類すると、Ag%AI、 Au、
 Bi%Cu、 Ga、 In、 Pb%Pd、 Pt
%Sn。
As a result, the effects of the third element are similar, but based on the laser recording characteristics, the relative differences are classified according to the type of added element: Ag%AI, Au,
Bi%Cu, Ga, In, Pb%Pd, Pt
%Sn.

Znは高速消去性の向上に特に有効であり、またAs、
 Se、 Siは書込状態の安定化、即ち、結晶化温度
を高めることによる非晶質状態の安定化に特に有効であ
った。
Zn is particularly effective in improving high-speed erasing properties, and As,
Se and Si were particularly effective in stabilizing the written state, that is, in stabilizing the amorphous state by increasing the crystallization temperature.

実施例2 実施例1で作製した媒体と同一組成の媒体を、RFスパ
ッタリングにより作製した。また、オーバーコート、ア
ンダーコートに関しても実施例1と同じである。スパッ
タリングガスは、ガス圧5X 10””TorrのAr
を用い、RF比出力100Wとした。ここで、異なる組
成の膜は、ターゲットの5b−Te−Ge合金のの組成
を変えてスパッタリングすることにより作製した。また
、オーバーコートおよびアンダーコートの5in2膜も
同様にRFスパッタリングにより成膜した。
Example 2 A medium having the same composition as the medium manufactured in Example 1 was manufactured by RF sputtering. Further, the overcoat and undercoat are also the same as in Example 1. The sputtering gas is Ar with a gas pressure of 5×10” Torr.
The RF specific output was set to 100W. Here, films with different compositions were produced by sputtering with different compositions of the 5b-Te-Ge alloy of the target. Further, the 5in2 films of the overcoat and undercoat were similarly formed by RF sputtering.

未実施例に示すスパッタリングにより作製した媒体の特
性評価結果と、実施例1で示した電子線加熱蒸着により
作製した媒体の結果との間に差は認められず、優れた書
込−消去の繰返し性を保持したまま、長期安定性および
高速消去性の点で実施例1と同様に良好な特性を示すこ
とが分かった。
No difference was observed between the characteristic evaluation results of the medium fabricated by sputtering shown in the unexamined examples and the results of the medium fabricated by electron beam heating evaporation shown in Example 1, indicating excellent write-erase repeatability. It was found that the composition exhibited good properties similar to those of Example 1 in terms of long-term stability and high-speed erasability while maintaining its properties.

実施例3 実施例1および2においては、合金膜のオーバーコート
、アンダーコート層として、5i02膜を用いたが、本
実hζ例では、各種の無機話電材料膜や有機材料を用い
て記録媒体を作製し、その特性を評価した。なお記録層
には、実施例1および2に示した、5b−Teのγ相単
相領域にGeを添加した合金膜(膜厚1100n )を
用い、この記録層の上下に、以下に示すオーバーコート
、アンダーコート材料を膜厚150nmの厚さで被着せ
しめた。
Example 3 In Examples 1 and 2, the 5i02 film was used as the overcoat and undercoat layer of the alloy film, but in this practical example, various inorganic phone material films and organic materials were used to form the recording medium. were fabricated and their properties were evaluated. The recording layer used was an alloy film (thickness: 1100 nm) in which Ge was added to the γ-phase single-phase region of 5b-Te shown in Examples 1 and 2. Above and below this recording layer, the following overcoat was used. A coat and undercoat material was applied to a thickness of 150 nm.

オーバーコート、アンダーコート材料として試作した薄
膜は、無機材料では、5in2以外に、SiO、八12
03  、  Y2O3、WO3、Ta205  、 
Cr2O3、CeO2、MoO2、in、03、Gem
、、Tie、、ZrO2、ZnO等の酸化物、にF 2
、CeF3等のフッ化物、AIN 、 BN、Si3N
4等の窒化物、ZnS等の硫化物、SiC等の炭化物等
の無機物質である。
The thin films prototyped as overcoat and undercoat materials include inorganic materials other than 5in2, SiO, 812
03, Y2O3, WO3, Ta205,
Cr2O3, CeO2, MoO2, in, 03, Gem
,, Tie, oxides such as ZrO2 and ZnO, and F2
, fluorides such as CeF3, AIN, BN, Si3N
These are inorganic substances such as nitrides such as No. 4, sulfides such as ZnS, and carbides such as SiC.

これらの材料の内、SiO、PbF2、TaO2等の比
較的低融点のものは抵抗加熱蒸着、Al2O3、ZrO
2等の高融点のものは電子ビーム加熱蒸着またはRFス
パッタリングにより薄膜化し、5b−Te−Ge膜の上
下に膜厚〜150nmの厚さで被着せしめた。
Among these materials, those with relatively low melting points such as SiO, PbF2, and TaO2 are processed by resistance heating vapor deposition, Al2O3, and ZrO.
A film having a high melting point such as No. 2 was formed into a thin film by electron beam heating evaporation or RF sputtering, and was deposited on the top and bottom of the 5b-Te-Ge film to a thickness of 150 nm.

更に、有機物質については真空蒸着により、ポリエチレ
ン、ポリフッ化ビニリデン、ポリフェニレンスルフィド
等の高分子材料、Cuフタロシアニン、フルオレセイン
等の低分子材料を薄膜化し、またRFスパッタリングに
より、ポリテトラフルオロエチレン、ポリフッ化ビニリ
デン、ポリイミド、ポリフェニレンスルフィド等を薄膜
化して、5b−Te−Ge膜のオーバーコート、アンダ
ーコート材料として使用した。また、プラズマ重合法に
より作製できるエチレン等のオレフィン系化合物、スチ
レン等の芳香族化合物、六フッ化プロピレン等の含フツ
化化合物、アクリロニトリル等の含窒素化合物、ヘキサ
メチルジシロキサン等のSi含有化合物、テトラメチル
スズ等の有機金属化合物、更にノルボルナジェン、アダ
マンタン等の各種有機化合物から得られる重合膜をもオ
ーバーコート、アンダーコート材料としてその適性を比
較検討した。
Furthermore, regarding organic substances, vacuum evaporation is used to make thin films of polymeric materials such as polyethylene, polyvinylidene fluoride, and polyphenylene sulfide, and low-molecular materials such as Cu phthalocyanine and fluorescein, and polytetrafluoroethylene and polyvinylidene fluoride are made into thin films by RF sputtering. , polyimide, polyphenylene sulfide, etc., were made into thin films and used as overcoat and undercoat materials for the 5b-Te-Ge film. In addition, olefinic compounds such as ethylene, aromatic compounds such as styrene, fluorinated compounds such as hexafluorinated propylene, nitrogen-containing compounds such as acrylonitrile, Si-containing compounds such as hexamethyldisiloxane, which can be produced by plasma polymerization, The suitability of polymer films obtained from organometallic compounds such as tetramethyltin and various organic compounds such as norbornadiene and adamantane as overcoat and undercoat materials was also investigated.

その結果、これらの材料はいずれも5b−Te−Ge膜
のオーバーコート、アンダーコート材に使用できること
を確認した。ただし、レーザ記録特性を比較すると、書
込み、消去条件や繰り返し性は材料によってかなり優劣
のあることが分かった。
As a result, it was confirmed that all of these materials can be used as overcoat and undercoat materials for 5b-Te-Ge films. However, when comparing the laser recording characteristics, it was found that writing and erasing conditions and repeatability were considerably superior and inferior depending on the material.

即ち、一般に有機系薄膜は耐熱性に劣るため、書込み、
消去を繰り返すと、sb−丁e−Ge膜に接する部分で
不可逆な変形を生じ易く、極端な場合にはオーバーコー
トを施した媒体でも穿孔されてしまうことがある。無機
系の薄膜の場合でも、5b4e−Ge膜の非晶質化にあ
たり、5b−Te−Geの融点以上に高温にカロ熱する
ことが必要となるため、PbF、(融点855℃) 、
TaO2(融点733℃)等の比較的低融点のものは、
不可逆的な変形の発生のため、繰り返し性に問題の生じ
ることのあることがわかった。これは、レーザ・ビーム
がガウシアン形のプロファイルを持つことから、ビーム
中央部で媒体面が保護膜材料の融点以上に達する可能性
のあるためと考えられる。
In other words, since organic thin films generally have poor heat resistance, they cannot be used for writing or writing.
Repeated erasing tends to cause irreversible deformation at the portion in contact with the sb-D-Ge film, and in extreme cases, even an overcoated medium may become perforated. Even in the case of inorganic thin films, it is necessary to heat the 5b4e-Ge film to a high temperature higher than the melting point of 5b-Te-Ge to make it amorphous, so PbF (melting point 855°C),
Those with relatively low melting points such as TaO2 (melting point 733°C) are
It has been found that problems with repeatability may occur due to the occurrence of irreversible deformation. This is thought to be because the laser beam has a Gaussian profile, so the medium surface may reach a temperature higher than the melting point of the protective film material at the center of the beam.

これに対して、5in2、Al2O3、Cr2O3、T
iO2、MgF2等の高融点無機薄膜をオーバーコート
、アンダーコート材料に用いた媒体は、極めて繰り返し
性に優れ、実施例!および2のいずれの5b−Te−G
e膜に対しても103回以上の書込み、消去が再現性良
く達成できた。
On the other hand, 5in2, Al2O3, Cr2O3, T
A medium using a high-melting point inorganic thin film such as iO2 or MgF2 as an overcoat or undercoat material has excellent repeatability, and Examples! and any 5b-Te-G of 2
Writing and erasing of 103 times or more was also achieved on the e-film with good reproducibility.

なお、有機系薄膜をオーバーコート、アンダーコートす
るときも、ポリテトラフルオロエチレン、ポリイミド、
ポリフェニレンスルフィドおよびテトラメチルスズのプ
ラズマ重合膜等の比較的耐熱性に優れた材料については
、記録、消去条件を慎重に選ぶことにより、不可逆的な
変形を抑制し103回以上の書込み、消去の繰り返しを
達成することに成功した。
In addition, when overcoating or undercoating an organic thin film, polytetrafluoroethylene, polyimide,
For materials with relatively excellent heat resistance, such as polyphenylene sulfide and tetramethyltin plasma polymerized films, by carefully selecting recording and erasing conditions, irreversible deformation can be suppressed and writing and erasing can be repeated more than 103 times. succeeded in achieving.

更に、有機系膜をオーバーコート、アンダーコートに用
いた媒体のメリットとして、熱伝導率h)SiO7等の
無機材料よりもはるかに小さいため、レーザ書込み時の
エネルギーが小さくて済むという点がある。即ち、レー
ザ加熱により5b−Te−Ge層の融点以上に温度を上
げる時、上面、下面を包むオーバーコート、アンダーコ
ート層の熱伝導率が小さいため、熱放散によるレーザエ
ネルギーの損失を防ぐことができる。
Furthermore, an advantage of a medium using an organic film as an overcoat or an undercoat is that the thermal conductivity (h) is much lower than that of inorganic materials such as SiO7, so that less energy is required during laser writing. That is, when the temperature is raised above the melting point of the 5b-Te-Ge layer by laser heating, it is difficult to prevent loss of laser energy due to heat dissipation because the overcoat and undercoat layers that cover the top and bottom surfaces have low thermal conductivity. can.

例えば、(SbaoTe2o) 9oに1.+oを記録
膜に使用した場合、15mWのレーザパワーでレーザ書
込みを行うと、5i02をオーバーコート、アンダーコ
ートした媒体では、30nsec以上のパルス幅を要す
るが、ポリイミドのスパッタ膜をオーバーコート、アン
ダーコートした媒体では、20〜25nsecのパルス
幅で十分であることが判明した。
For example, (SbaoTe2o) 9o and 1. +o is used for the recording film, and when laser writing is performed with a laser power of 15 mW, a pulse width of 30 nsec or more is required for a medium overcoated or undercoated with 5i02, but it is possible to overcoat or undercoat a polyimide sputtered film. It has been found that a pulse width of 20-25 nsec is sufficient for such media.

以上、オーバーコート、アンダーコート材料に関する検
討を述べたが、光記録媒体の用途や構成次第では、オー
バーコートのみ、或いはアンダーコートのみを5b−T
e−Ge膜に被着せしめれば十分である。即ち、基板と
してポリイミドのように耐熱性に優れたプラスチックや
耐熱ガラスを用いれば、レーザ加熱時の基板の変形を防
ぐためのアンダーコートは不要となり、オーバーコート
のみで良い。また、レーザエネルギー(パワーとパルス
幅)を精密に制御すれば、オーバーコート無しでも、T
eJ−合金膜に不可逆な変形や穿孔を生じることなく、
非晶質化や結晶化を誘起するが可能であり、この場合、
オーバーコートは不要となり、プラスチック基板とTe
系合金膜との間にアンダーコートを被着せしめるだけで
良い。
Although we have discussed the overcoat and undercoat materials above, depending on the use and configuration of the optical recording medium, only the overcoat or only the undercoat can be used with 5b-T.
It is sufficient to deposit it on the e-Ge film. That is, if a plastic with excellent heat resistance such as polyimide or heat-resistant glass is used as the substrate, there is no need for an undercoat to prevent the substrate from deforming during laser heating, and only an overcoat is required. In addition, if the laser energy (power and pulse width) is precisely controlled, T
without causing irreversible deformation or perforation of the eJ-alloy membrane.
It is possible to induce amorphization or crystallization; in this case,
No overcoat is required, and the plastic substrate and Te
It is sufficient to simply apply an undercoat between the alloy film and the alloy film.

以上述べたように、本発明の組成範囲の5b−Teをベ
ースに第3元素を添加した合金膜を記録層とする場合も
、上述した各誘電体層によるオーバーコート、アンダー
コートは記録層保護の役割を果たし、かつそれら材料特
性によってレーザ記録特性に差異を生ずることを確認し
た。
As described above, even when the recording layer is an alloy film based on 5b-Te in the composition range of the present invention with the addition of a third element, the overcoat and undercoat of the above-mentioned dielectric layers protect the recording layer. It was confirmed that the laser recording characteristics differ depending on the material properties.

実施例4 実施例1の記録媒体の内、合金膜の組成が、(Sbao
Te2o)9oGe+oのものについて、5in2膜と
の積層膜を作製した。基板−スパッタ条件については実
施例2と同様で、5in2膜のスパッタリングはマグネ
トロン・スパッタリングにより作製した。
Example 4 In the recording medium of Example 1, the composition of the alloy film was (Sbao
For Te2o)9oGe+o, a laminated film with a 5in2 film was produced. The substrate-sputtering conditions were the same as in Example 2, and the 5in2 film was sputtered by magnetron sputtering.

積層媒体の構成は、5b−Te−Ge合金層は膜厚2゜
nm、層数は5であり、各層の中間に5in2層を層厚
20nmで被着せしめた構造をとった。即ち、スパッタ
リングにおいて、Te−5b−Ge合金ターゲットと、
5in2(マグネトロン)ターゲットの夫々について、
交互にスパッタして耐熱ガラス基板に、まずSiOアン
ダーコート層を150r+mの層厚で、次いで夫々20
nmのTe−5b−Ge合金層および5i02中間層を
交互に積層させ、更に150nmの層厚のSiO□オー
バーコート層を積層させることによっている。このよう
に記録膜を薄層化して誘電体層ではさんで積層した媒体
は、非晶質として安定となることが検証されている(特
開昭61−44692号)。ただし積層された各記録膜
の厚さか30nmをこえると非晶質としての安定性が損
なわれるので、膜厚は30nm以下がよい。
The structure of the laminated medium was such that the 5b-Te-Ge alloy layer had a thickness of 2 nm, the number of layers was 5, and two 5-inch layers were deposited in the middle of each layer with a thickness of 20 nm. That is, in sputtering, a Te-5b-Ge alloy target,
Regarding each of the 5in2 (magnetron) targets,
A SiO undercoat layer was applied to a heat-resistant glass substrate by alternating sputtering, first with a layer thickness of 150 r+m, then with a layer thickness of 20 r+m, respectively.
This is done by alternately laminating Te-5b-Ge alloy layers and 5i02 intermediate layers of 150 nm thick, and further laminating a SiO□ overcoat layer of 150 nm thick. It has been verified that a medium in which the recording film is thinned and laminated with dielectric layers sandwiched therebetween is stable as amorphous (Japanese Patent Application Laid-open No. 44692/1982). However, if the thickness of each stacked recording film exceeds 30 nm, the stability as an amorphous state will be impaired, so the film thickness is preferably 30 nm or less.

木実り仮例で作製した媒体について実施例1と同じ特性
評価を行った。この結果、書込み消去条件は、はぼ同じ
(但し、消去パルス幅は若干長くなる傾向が見られた)
となる一方で、結晶化温度が200℃と上昇し、繰り返
し性も良好であった。
The same characteristics evaluation as in Example 1 was performed on the medium prepared using the tree-like sample. As a result, the write/erase conditions were almost the same (however, the erase pulse width tended to be slightly longer)
On the other hand, the crystallization temperature rose to 200° C., and the repeatability was also good.

例えば、耐熱ガラス基板の場合、書込み15mW、15
0nsec 、消去8mW 、 200nsecの条件
で105回以上書込み、消去のサイクルが再現性良く達
成できた。
For example, in the case of a heat-resistant glass substrate, the writing power is 15 mW, 15
At least 105 write and erase cycles were achieved with good reproducibility under the conditions of 0 nsec, 8 mW, and 200 nsec.

また、本実施例で、5b−Te−Ge層の層厚10nm
、層数10とした媒体についても検討した。この積層膜
では、結晶化温度が220℃となり、より上昇する傾向
がみられた。
In addition, in this example, the layer thickness of the 5b-Te-Ge layer was 10 nm.
, a medium with 10 layers was also studied. In this laminated film, the crystallization temperature was 220° C., which showed a tendency to increase further.

更に、合金層の中間層としての誘電体薄膜は、5i02
ばかりでなく、実施例3で述べた各種の材料、即ち、A
l2O3、ZrO2等の無機膜、ポリイミド、テトラフ
ルオロエチレン等の有機膜、テトラメチルスズ等のプラ
ズマ重合膜を用いても、積層媒体の効果としては同等で
あり、いずれの材料をも用いることができる。
Furthermore, the dielectric thin film as an intermediate layer of the alloy layer is 5i02
In addition, various materials mentioned in Example 3, namely A
Even if an inorganic film such as l2O3 or ZrO2, an organic film such as polyimide or tetrafluoroethylene, or a plasma polymerized film such as tetramethyltin is used, the effect of the laminated medium is equivalent, and any material can be used. .

ただし、有機系材料が耐熱性の問題のため、繰り返し性
に劣る点は、実施例3で述べた事情と同様である。
However, the repeatability is poor due to the problem of heat resistance of organic materials, which is the same as the situation described in Example 3.

木実施例中では、媒体書込み、消去条件は、耐熱ガラス
基板上に作製したものについて詳述したが、実施例中で
も述べたように、光ディスクで通常用いるアクリル樹脂
やポリカーボネート樹脂を基板に用いれば、記録条件、
特に書込み閾値、消去閾値は大幅に向上する。
In the examples, the conditions for writing and erasing the medium were described in detail for media fabricated on a heat-resistant glass substrate, but as mentioned in the examples, if acrylic resin or polycarbonate resin, which is commonly used in optical disks, is used for the substrate, recording conditions,
In particular, the write threshold and erase threshold are significantly improved.

(発明の効果) 以上、説明したように、本発明の光学記録媒体は、信号
強度が大きく、長期安定性(室温での非晶質状態での安
定性)と高速消去性を共に満たす高性能の書換形媒体で
あり、書込み、消去の繰り返し性も十分に優れている二
合金膜の酸化劣化による記録媒体の劣化の問題は、オー
バーコート、アンダーコートに、5i02膜のように水
分を遮断する襲を設けることにより、はぼ解決し、長期
安定性に何ら障害をもたらすことはない。
(Effects of the Invention) As explained above, the optical recording medium of the present invention has high signal strength, high performance that satisfies both long-term stability (stability in an amorphous state at room temperature) and high-speed erasability. This is a rewritable medium with excellent repeatability of writing and erasing.The problem with the deterioration of the recording medium due to oxidation deterioration of the di-alloy film is that the overcoat and undercoat are coated with water to block moisture, such as the 5i02 film. The provision of a countermeasure will resolve the issue and will not pose any problem to long-term stability.

また、一般に合金膜は組成ずれのため、レーザ記録、消
去特性の再現性に欠けるという短所を持っているが、本
発明の媒体は、相分離を生じないγ相11相として結晶
化する5b−Teのγ相をベースとした組成領域を取り
上げているため、記録、消去を繰り返しも特性のずれを
生じないという長所を持っている。特に、この合金膜の
ベースである5b−Te単相(γ相)を示す組成領域は
、lO〜30at、%と広(、一定の書きこみ、消去条
件を満たすための組成に余裕があり、そのため製造マー
ジンが大きく量産性や生産性に優れているという特徴が
ある。前述したように、Teが10at、%付近、およ
び30at、%付近のγ相領域の境界では相分離のため
、記録、消去の繰返し性が若干低下する場合がある。こ
れを防ぐには組成範囲をしぼりこんで、必ずγ相単相の
得られる領域として、Te含量が、15at、%から2
5at、%の間をとればよい。この15−25at、%
の範囲の組成マージンも、製造上、十分に大きく、量産
性の優位を損うことはない。また、第3元素の添加につ
いても、約20at、%以下(確実には15at、%以
下)であれば相分離のおそれはなく、しかも、この程度
の添加量で、媒体特性には十分なる効果を与える。生産
性、製造性の点でも有利であり、何ら問題はない。
In addition, alloy films generally have the disadvantage of lacking reproducibility in laser recording and erasing characteristics due to compositional deviation, but the medium of the present invention crystallizes as a γ phase 11 phase that does not cause phase separation. Since the composition range is based on the γ phase of Te, it has the advantage that no deviation in characteristics occurs even after repeated recording and erasing. In particular, the composition range showing the 5b-Te single phase (γ phase), which is the base of this alloy film, is as wide as 1O~30at% (there is ample room in the composition to satisfy certain writing and erasing conditions. Therefore, it is characterized by a large manufacturing margin and excellent mass production and productivity.As mentioned above, due to phase separation at the boundaries of the γ phase region where Te is around 10 at.% and around 30 at.%, recording, The repeatability of erasing may be slightly reduced.To prevent this, the composition range must be narrowed down to ensure that a single γ phase is obtained, with a Te content ranging from 15at% to 2%.
It is sufficient to take a value between 5at and %. This 15-25at,%
The composition margin in the range of is also sufficiently large for manufacturing purposes and does not impair the advantage of mass production. Also, regarding the addition of a third element, if it is approximately 20 at.% or less (certainly 15 at.% or less), there is no risk of phase separation, and this amount of addition is sufficient to improve the media properties. give. It is also advantageous in terms of productivity and manufacturability, and there are no problems.

さらに、本発明の組成範囲の合金膜を記録材料とする記
録媒体は、信号強度が非常に大きく、ディスク評価にお
いて、C/N比は最大59dBにものぼり、穿孔モード
の追記型媒体と比較して遜色ない。即ち、追記型の相変
化光学記録媒体としても通している。
Furthermore, a recording medium using an alloy film in the composition range of the present invention as a recording material has a very high signal strength, and in disk evaluation, the C/N ratio is as high as 59 dB, compared to a perforation mode write-once medium. It's comparable. That is, it is also used as a write-once type phase change optical recording medium.

従って、大容量、高密度記録の担体としての光ディスク
或いはクレジット時代の中で成長の期待される光カード
等の記録媒体として、しかも高性能の書換性を有する媒
体として、本発明の書換形レーザ記録媒体は最適の性能
を備えており、光エレクトロニクス産業に及ぼす影舌は
極めて大きい。
Therefore, the rewritable laser recording medium of the present invention can be used as a recording medium such as an optical disk as a carrier for high-capacity, high-density recording or an optical card, which is expected to grow in the credit era, and as a medium with high performance rewritability. The medium has optimal performance, and its impact on the optoelectronics industry is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、5b−Te系合金のX線回折図形であり、曲
線Aは5b55Te4sの1曲uABは5b8oTe2
oのX線回折図形、 第2図は、5b−Te−Ge合金膜を記録膜とした記録
媒体の記録・消去の繰り返し特性を、Geを添加しない
5b−Te合金膜と比較して示した特性図である。
Figure 1 shows the X-ray diffraction pattern of a 5b-Te alloy, where curve A is 5b55Te4s and uAB is 5b8oTe2.
Figure 2 shows the recording/erasing repetition characteristics of a recording medium using a 5b-Te-Ge alloy film in comparison with a 5b-Te alloy film without Ge added. It is a characteristic diagram.

Claims (1)

【特許請求の範囲】 1)一般式:(Sb_1_−_xTe_x)_1_−_
yM_yで表わされる組成(ただし、xは、0.1≦x
≦0.3の範囲、yは0<y≦0.2の範囲であり、M
はAg、Al、As、Au、Bi、Cu、Ga、Ge、
In、Pb、Pd、Pt、Se、Si、SnおよびZn
からなる群から選ばれた少なくとも1種の元素)の合金
膜を記録層に有することを特徴とするレーザ記録媒体。 2)前記記録層の上面および/または下面に保護膜とし
て誘電体層を被着せしめたことを特徴とする請求項1に
記載のレーザ記録媒体。 3)前記合金膜を2層以上設け、該複数の合金膜層のそ
れぞれを誘電体層で挟み込んだ構成とし、かつ合金層の
それぞれの膜厚が30nm以下であることを特徴とする
請求項1に記載のレーザ記録媒体。
[Claims] 1) General formula: (Sb_1_-_xTe_x)_1_-_
Composition expressed as yM_y (where x is 0.1≦x
≦0.3, y is 0<y≦0.2, and M
is Ag, Al, As, Au, Bi, Cu, Ga, Ge,
In, Pb, Pd, Pt, Se, Si, Sn and Zn
1. A laser recording medium comprising, in a recording layer, an alloy film of at least one element selected from the group consisting of: 2) The laser recording medium according to claim 1, characterized in that a dielectric layer is deposited as a protective film on the upper surface and/or lower surface of the recording layer. 3) Claim 1 characterized in that two or more layers of the alloy film are provided, each of the plurality of alloy film layers is sandwiched between dielectric layers, and each of the alloy layers has a thickness of 30 nm or less. The laser recording medium described in .
JP63132804A 1988-06-01 1988-06-01 Laser recording medium Pending JPH01303643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63132804A JPH01303643A (en) 1988-06-01 1988-06-01 Laser recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63132804A JPH01303643A (en) 1988-06-01 1988-06-01 Laser recording medium

Publications (1)

Publication Number Publication Date
JPH01303643A true JPH01303643A (en) 1989-12-07

Family

ID=15089964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63132804A Pending JPH01303643A (en) 1988-06-01 1988-06-01 Laser recording medium

Country Status (1)

Country Link
JP (1) JPH01303643A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288288A (en) * 1988-08-09 1990-03-28 Eastman Kodak Co Optical recording material composed of antimony-tin alloy containing third element
JPH02151481A (en) * 1988-12-05 1990-06-11 Hitachi Ltd Membrane for recording data and method for recording and reproducing data
JPH02249686A (en) * 1989-03-23 1990-10-05 Toray Ind Inc Data recording medium for optical card
EP0594277A1 (en) * 1992-10-21 1994-04-27 Toray Industries, Inc. Optical recording medium
US6022605A (en) * 1997-02-28 2000-02-08 Kao Corporation Optical recording medium and recording/erasing method therefor
WO2000014735A1 (en) * 1998-09-09 2000-03-16 Mitsubishi Chemical Corporation Optical information recording medium and optical recording method
US6143468A (en) * 1996-10-04 2000-11-07 Mitsubishi Chemical Corporation Optical information recording medium and optical recording method
EP1054393A2 (en) * 1999-05-18 2000-11-22 Eastman Kodak Company Phase-change recording medium for write once applications
EP1182649A1 (en) * 1999-05-19 2002-02-27 Mitsubishi Chemical Corporation Optical recording method and optical recording medium
EP1143432A3 (en) * 1997-03-27 2002-04-24 Mitsubishi Chemical Corporation Optical information recording medium
US6770346B2 (en) 2001-05-21 2004-08-03 Ricoh Company, Ltd. Optical recording medium and recording method
US6937555B2 (en) 1999-04-28 2005-08-30 Victor Company Of Japan, Ltd. Information recording medium and reproducing apparatus therefor
EP1646043A1 (en) * 1999-05-19 2006-04-12 Mitsubishi Chemical Corporation Rewritable optical recording medium and methods of recording EFM-modulated information on the recording medium
JP2006140395A (en) * 2004-11-15 2006-06-01 Renesas Technology Corp Semiconductor memory and method for manufacturing the same
US7096479B2 (en) 2003-03-27 2006-08-22 Victor Company Of Japan, Ltd. Optical information recording medium
US7313070B2 (en) 2002-02-13 2007-12-25 Mitsubishi Kagaku Media Co., Ltd. Rewritable optical recording medium and optical recording method
US7507523B2 (en) 2000-09-28 2009-03-24 Ricoh Company, Ltd Optical information recording medium, method of manufacturing the optical information recording medium, and method of and apparatus for recording/reproducing optical information
US8173239B2 (en) 2007-06-11 2012-05-08 Panasonic Corporation Information recording medium, method for producing the same, and sputtering target
US8268433B2 (en) 2008-11-07 2012-09-18 Panasonic Corporation Information recording medium and method for producing same, and sputtering target
US8323763B2 (en) 2009-08-31 2012-12-04 Panasonic Corporation Information recording medium and method for producing the same
US8580368B2 (en) 2011-03-08 2013-11-12 Panasonic Corporation Information recording medium and method for manufacturing the same
US8685518B2 (en) 2011-03-08 2014-04-01 Panasonic Corporation Information recording medium and method for producing same

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288288A (en) * 1988-08-09 1990-03-28 Eastman Kodak Co Optical recording material composed of antimony-tin alloy containing third element
JPH02151481A (en) * 1988-12-05 1990-06-11 Hitachi Ltd Membrane for recording data and method for recording and reproducing data
JPH02249686A (en) * 1989-03-23 1990-10-05 Toray Ind Inc Data recording medium for optical card
EP0594277A1 (en) * 1992-10-21 1994-04-27 Toray Industries, Inc. Optical recording medium
US6143468A (en) * 1996-10-04 2000-11-07 Mitsubishi Chemical Corporation Optical information recording medium and optical recording method
US6811949B2 (en) 1996-10-04 2004-11-02 Mitsubishi Chemical Corporation Optical information recording medium and optical recording method
US6294310B1 (en) 1996-10-04 2001-09-25 Mitsubishi Chemical Corporation Optical information recording medium and optical recording method
US6022605A (en) * 1997-02-28 2000-02-08 Kao Corporation Optical recording medium and recording/erasing method therefor
EP1396851A2 (en) * 1997-03-27 2004-03-10 Mitsubishi Chemical Corporation Optical information recording medium
EP1396851A3 (en) * 1997-03-27 2004-03-17 Mitsubishi Chemical Corporation Optical information recording medium
EP1143432A3 (en) * 1997-03-27 2002-04-24 Mitsubishi Chemical Corporation Optical information recording medium
EP1146509A3 (en) * 1997-03-27 2002-05-02 Mitsubishi Chemical Corporation Optical information recording medium
US7539110B2 (en) 1998-09-09 2009-05-26 Mitsubishi Kagaku Media Co., Ltd. Optical information recording medium and optical recording method
EP2178086A2 (en) 1998-09-09 2010-04-21 Mitsubishi Kagaku Media Co., Ltd. Optical recording method
US6996052B1 (en) 1998-09-09 2006-02-07 Mitsubishi Chemical Corporation Optical information recording medium and optical recording method
WO2000014735A1 (en) * 1998-09-09 2000-03-16 Mitsubishi Chemical Corporation Optical information recording medium and optical recording method
US7447141B2 (en) 1999-04-28 2008-11-04 Victor Company Of Japan, Limited Information recording medium and reproducing apparatus therefor
US7839757B2 (en) 1999-04-28 2010-11-23 Victor Company Of Japan, Limited Information recording medium and reproducing apparatus therefor
US6937555B2 (en) 1999-04-28 2005-08-30 Victor Company Of Japan, Ltd. Information recording medium and reproducing apparatus therefor
US7477583B2 (en) 1999-04-28 2009-01-13 Victor Company Of Japan, Limited Information recording medium and reproducing apparatus therefor
US8264943B2 (en) 1999-04-28 2012-09-11 JVC Kenwood Corporation Information recording medium and reproducing apparatus therefor
US7864655B2 (en) 1999-04-28 2011-01-04 Victor Company Of Japan, Limited Information recording medium and reproducing apparatus therefor
US7193958B2 (en) 1999-04-28 2007-03-20 Victor Company Of Japan, Limited Information recording medium and reproducing apparatus therefor
EP1054393A3 (en) * 1999-05-18 2004-03-10 Eastman Kodak Company Phase-change recording medium for write once applications
EP1054393A2 (en) * 1999-05-18 2000-11-22 Eastman Kodak Company Phase-change recording medium for write once applications
EP1182649A1 (en) * 1999-05-19 2002-02-27 Mitsubishi Chemical Corporation Optical recording method and optical recording medium
US7345977B2 (en) 1999-05-19 2008-03-18 Mitsubishi Kagaku Media Co., Ltd Recording and retrieving method on rewritable optical recording medium
EP1936612A1 (en) 1999-05-19 2008-06-25 Mitsubishi Kagaku Media Co., Ltd. Recording at constant angular velocity
US7408852B2 (en) 1999-05-19 2008-08-05 Mitsubishi Kagaku Media Co., Ltd. Rewritable optical recording medium, recording method on the same, and optical disc recording/retrieving apparatus
US7333414B2 (en) 1999-05-19 2008-02-19 Mitsubishi Kagaku Media Co., Ltd. Rewritable optical recording medium, recording method on the same, and optical disc recording/retrieving apparatus
US7452582B1 (en) 1999-05-19 2008-11-18 Mitsubishi Kagaku Media Co., Ltd. Rewritable optical recording medium recording method on the same and optical disc recording/retrieving apparatus
EP1646043A1 (en) * 1999-05-19 2006-04-12 Mitsubishi Chemical Corporation Rewritable optical recording medium and methods of recording EFM-modulated information on the recording medium
EP1182649A4 (en) * 1999-05-19 2003-01-22 Mitsubishi Chem Corp Optical recording method and optical recording medium
US7561502B2 (en) 1999-05-19 2009-07-14 Mitsubishi Kagaku Media Co., Ltd. Rewritable optical recording medium, recording method on the same, and optical disc recording/retrieving apparatus
US7507523B2 (en) 2000-09-28 2009-03-24 Ricoh Company, Ltd Optical information recording medium, method of manufacturing the optical information recording medium, and method of and apparatus for recording/reproducing optical information
US6770346B2 (en) 2001-05-21 2004-08-03 Ricoh Company, Ltd. Optical recording medium and recording method
US7313070B2 (en) 2002-02-13 2007-12-25 Mitsubishi Kagaku Media Co., Ltd. Rewritable optical recording medium and optical recording method
US7609603B2 (en) 2002-02-13 2009-10-27 Mitsubishi Kagaku Media Co., Ltd. Rewritable optical recording medium and optical recording method
JP4521054B2 (en) * 2002-02-13 2010-08-11 三菱化学メディア株式会社 Rewritable optical recording medium
JP2009083501A (en) * 2002-02-13 2009-04-23 Mitsubishi Kagaku Media Co Ltd Erasable photorecording medium
US7858167B2 (en) 2002-02-13 2010-12-28 Mitsubishi Kagaku Media Co., Ltd. Rewritable optical recording medium and optical recording method
US7096479B2 (en) 2003-03-27 2006-08-22 Victor Company Of Japan, Ltd. Optical information recording medium
JP2006140395A (en) * 2004-11-15 2006-06-01 Renesas Technology Corp Semiconductor memory and method for manufacturing the same
US8173239B2 (en) 2007-06-11 2012-05-08 Panasonic Corporation Information recording medium, method for producing the same, and sputtering target
US8268433B2 (en) 2008-11-07 2012-09-18 Panasonic Corporation Information recording medium and method for producing same, and sputtering target
US8323763B2 (en) 2009-08-31 2012-12-04 Panasonic Corporation Information recording medium and method for producing the same
US8580368B2 (en) 2011-03-08 2013-11-12 Panasonic Corporation Information recording medium and method for manufacturing the same
US8685518B2 (en) 2011-03-08 2014-04-01 Panasonic Corporation Information recording medium and method for producing same

Similar Documents

Publication Publication Date Title
JPH01303643A (en) Laser recording medium
US7611762B2 (en) Optical recording medium
JP3566743B2 (en) Optical recording medium
KR20000062984A (en) Information recording medium, manufacturing method of the medium and recording method of the medium
US5523140A (en) Optical recording method and medium
EP1349160B1 (en) Optical information recording medium and method for manufacturing the same
US5637371A (en) Phase change optical recording medium and activation energy determining method
EP1310953B1 (en) Phase-change recording element for write-once applications
JPS62222442A (en) Rewriting type optical recording medium
JPS62183042A (en) Information recording and reproducing method
JPH01277338A (en) Optical recording medium
EP1283522B1 (en) Phase-change recording element for write once applications
JPS6166696A (en) Laser recording medium
KR19990083107A (en) Optical recording medium
JP2000228032A (en) Optical information medium
US5055331A (en) Phase-change optical recording media
JP3927410B2 (en) Optical recording medium
JP5437793B2 (en) Information recording medium and manufacturing method thereof
WO2005015555A1 (en) Optical information recording medium and manufacturing method thereof
JPH0264931A (en) Information recording medium
JPH01303644A (en) Optical recording medium
JPS62222443A (en) Rewriting type optical recording medium
US20020168495A1 (en) Phase-change optical recording media
JP4086689B2 (en) Optical information recording medium and manufacturing method thereof
JP3444037B2 (en) Optical information recording medium