JPS6166696A - Laser recording medium - Google Patents

Laser recording medium

Info

Publication number
JPS6166696A
JPS6166696A JP59188920A JP18892084A JPS6166696A JP S6166696 A JPS6166696 A JP S6166696A JP 59188920 A JP59188920 A JP 59188920A JP 18892084 A JP18892084 A JP 18892084A JP S6166696 A JPS6166696 A JP S6166696A
Authority
JP
Japan
Prior art keywords
layer
recording medium
recording
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59188920A
Other languages
Japanese (ja)
Other versions
JPH0522592B2 (en
Inventor
Reiichi Chiba
玲一 千葉
Yoshihiro Asano
浅野 義昿
Susumu Fujimori
進 藤森
Hironori Yamazaki
裕基 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59188920A priority Critical patent/JPS6166696A/en
Publication of JPS6166696A publication Critical patent/JPS6166696A/en
Publication of JPH0522592B2 publication Critical patent/JPH0522592B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Duplication Or Marking (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a repeatedly recordable, erasable, highly sensitive laser recording medium with high contrast by providing dielectric layers and recording medium layers consisting of either Bi layer or Sb layer sandwiched between said dielectric layers on a substrate. CONSTITUTION:More than two dielectric layers (e.g. SiO2 film, etc.), recording medium layers consisting of either Bi layer or Sb layer 3, 5 sandwiched between said dielectric layers 2, 4, 6, are provided on a substrate 1 (e.g.: plastic sheet, etc.). Further preferably a light reflecting layer (e.g.: Al film, etc.) 7 is provided on the recording medium layer or the boundary between the substrate and the recording medium layer. Of a Bi alloy layer containing more than 90 atom o/o of bismuth is used in the Bi layer and a Sb alloy layer containing more than 90atom o/o of antimony in the Sb layer, it is possible to accelerate the recording and erasing speed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザー記録媒体に関する。更に詳しくいえば
、レーザービームを照射して、その照射部に光学的変化
を起こさせて情報を記録するに適したレーザー記録媒体
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to laser recording media. More specifically, the present invention relates to a laser recording medium suitable for recording information by irradiating a laser beam and causing an optical change in the irradiated area.

従来の技術 近年、レーザーに係る技術のめざましい進歩により、コ
ヒーレント光を用いた様々の応用の可能性の追求がなさ
れてきており、その結果、光通信、光記録・再生、光計
測、各種物品の加工への応用、医療への応用、化学反応
への応用等各種の広範な分野において有用な技術として
期待され、急速な開発・研究がなされ、一部では既に実
用化が図られている。
Conventional technology In recent years, with the remarkable progress in laser technology, the pursuit of various application possibilities using coherent light has resulted in improvements in optical communications, optical recording/reproduction, optical measurement, and the development of various products. It is expected to be a useful technology in a wide variety of fields, including processing, medical, and chemical reaction applications, and has been rapidly developed and researched, with some already putting it into practical use.

中でも、最近特にレーザー光の集束性の良さを利用する
光記録媒体、例えばレーザーディスク等が、高密度情報
記録用の媒体として注目されている。このような光記録
媒体は、大きく分けて同一媒体に何度でも異った情報を
書込むことのできる書換え可能な媒体と情報の書込みが
一度しかできない固定記録媒体とに分類され、夫々前者
では光磁気材料、ホトクロミック材料、非晶質材料、サ
ーモプラスチック材料、電気光学結晶等が、また後者で
はアブラティブ材料、ホトポリマー材料、銀塩材料、ホ
トレジスト材料等が知られている。
Among these, recently, optical recording media that utilize the good focusing properties of laser light, such as laser discs, have been attracting attention as media for high-density information recording. Such optical recording media can be broadly divided into rewritable media, which allows different information to be written on the same medium any number of times, and fixed recording media, in which information can only be written once. Magneto-optic materials, photochromic materials, amorphous materials, thermoplastic materials, electro-optic crystals, etc. are known, and among the latter, ablative materials, photopolymer materials, silver salt materials, photoresist materials, etc. are known.

従来、レーザービームを利用してこれら材料に情報を記
録する態様としては、金属膜、色素膜などに局部的に孔
または変形を起こさせて、情報を記録するものが知られ
ている。しかし、このような態様では、一旦記録した情
報の消去は不可能であり、いわゆる追記型光記録媒体と
して用いられている。
Conventionally, as a method of recording information on these materials using a laser beam, a method is known in which information is recorded by locally causing holes or deformation in a metal film, a pigment film, or the like. However, in such an embodiment, once recorded information cannot be erased, it is used as a so-called write-once optical recording medium.

一方、書換型光記録媒体としては、結晶−非晶質間の相
転移を利用するTeまたは、TeとBi、 Sb等との
合金を用いたもの、金属−半導体の相転移を利用する■
0□、SmS等が知られている。
On the other hand, rewritable optical recording media include those that use Te or alloys of Te and Bi, Sb, etc. that utilize a crystal-amorphous phase transition, and those that utilize a metal-semiconductor phase transition.
0□, SmS, etc. are known.

このうちTe系およびTeとB1、Sb等との合金を用
いた記録媒体では、繰返し記録・消去を行なうと、つま
り結晶−非晶質問相転移を繰返すと、相分離を起こし書
換性が損われることが知られている。
Among these, in recording media using Te-based materials and alloys of Te and B1, Sb, etc., repeated recording and erasing, that is, repeated crystal-amorphous interphase transitions, cause phase separation and impair rewritability. It is known.

この相分離は、合金中のドープ量を減らし、Teまたは
、8i、 Sbの量を増加させることにより防ぐことが
できる。しかし、ドープ量を減らした場合には、非晶質
寿命が短くなり室温で短時間のうちに非晶質に転移して
しまうという問題が生ずる。
This phase separation can be prevented by reducing the amount of doping in the alloy and increasing the amount of Te, 8i, or Sb. However, when the amount of doping is reduced, a problem arises in that the amorphous lifetime is shortened and the material transitions to an amorphous state within a short period of time at room temperature.

他方、■0□、SmSを用いた媒体では、転移にともな
う体積変化が大きく、膜に変形、キ裂が生じやすいこと
、および記録・消去を繰返すには熱によるヒステリシス
効果を利用するため、媒体を室温以下に冷却するなどの
熱バイアスを加えねばならないという欠点を有している
On the other hand, in media using ■0□, SmS, there is a large volume change due to the transition, and the film is easily deformed and cracked, and the hysteresis effect due to heat is used for repeated recording and erasing. It has the disadvantage that a thermal bias must be applied, such as cooling it below room temperature.

発明が解決しようとする問題点 上記の如く、最近のレーザーに関するめざましい技術開
発に伴って、光記録媒体も新たな局面を向えつつある。
Problems to be Solved by the Invention As mentioned above, along with the recent remarkable technological developments regarding lasers, optical recording media are also facing a new phase.

しかしながら、従来の光記録媒体では一旦記録された情
報の消去が不可能(固定記録型材料)であったり、また
書換え可能な媒体であっても繰返し情報の記録・消去を
行なうと相分離を生じてしまったり、余分な操作(例え
ば冷却処理)が必要であるなど様々な改良すべき問題が
残されていた。
However, with conventional optical recording media, it is impossible to erase information once recorded (fixed recording type materials), and even with rewritable media, phase separation occurs when information is repeatedly recorded and erased. Various problems remain that need to be improved, including the fact that the process is difficult to maintain, and that extra operations (for example, cooling treatment) are required.

従って、これらの諸欠点を示さない新規な記録媒体を開
発することは、該記録媒体の信頼性を高め、需要の拡大
を図る上で極めて重要である。
Therefore, it is extremely important to develop a new recording medium that does not exhibit these drawbacks in order to increase the reliability of the recording medium and increase demand for it.

そこで、本発明の目的は上記の如き従来の光記録媒体の
有する欠点を示さない、繰返し記録・消去が可能な光記
録媒体を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an optical recording medium that does not exhibit the drawbacks of conventional optical recording media as described above and allows repeated recording and erasing.

澗1メを解決するための手段 本発明者等はレーザービーム記録媒体の上記のような現
状に鑑みて、従来製品の呈する各種欠点を示さず、繰返
し記録・消去が可能な光記録媒体を得るべく種々検討、
研究した結果、前記目的を達成するためには比較的薄い
Bi層またはSb層を2層以上設けることが極めて有利
であることを見出し、本発明を完成した。
Means for Solving the Problems In view of the above-mentioned current state of laser beam recording media, the present inventors have obtained an optical recording medium that does not exhibit the various drawbacks of conventional products and can be repeatedly recorded and erased. As much as possible, consider
As a result of research, it was found that it is extremely advantageous to provide two or more relatively thin Bi or Sb layers in order to achieve the above object, and the present invention was completed.

即ち、本発明のレーザービーム記録媒体は基板と、該基
板上に設けられた記録媒体層としての少なくとも2層の
誘電体層および少なくとも2層のBi層またはSb層と
を有し、該Bi層またはSb層の各々が該誘電体層では
さまれ、該基板上で該誘電体層と交互に配置された構成
を有することを特徴とする。
That is, the laser beam recording medium of the present invention has a substrate, at least two dielectric layers and at least two Bi layers or Sb layers as recording medium layers provided on the substrate, and the Bi layer Alternatively, each of the Sb layers is sandwiched between the dielectric layers and arranged alternately with the dielectric layers on the substrate.

Bi層はBiの他、Biを90原子%以上含有するBi
金合金使用することができ、またSb層はSbの他、S
bを90原子%以上含有するSb金合金使用することが
でき、同様な効果を期待することができる。これらは蒸
着あるいはスパッタ法等により形成することができる。
In addition to Bi, the Bi layer contains Bi containing 90 atomic percent or more of Bi.
A gold alloy can be used, and the Sb layer can be made of Sb as well as Sb.
An Sb gold alloy containing 90 atomic % or more of b can be used, and similar effects can be expected. These can be formed by vapor deposition, sputtering, or the like.

ここで、基板としては、ポリカーボネイトあるいはアク
リル樹脂などのプラスチック、AIなどの金属あるいは
ガラスが用いられる。
Here, as the substrate, plastics such as polycarbonate or acrylic resin, metals such as AI, or glass are used.

また、誘電体層としては、無機蒸着膜、無機スパッタ膜
、有機蒸着膜、有機スパッタ膜あるいは、プラズマ重合
膜を用いることができる。このうち、無機蒸着膜および
無機スパッタ膜としてはS 102.5iO1AI20
3、Y2O3、WO3、Ta205、Cr、03、Ce
O2、Tea、、M2O3、In2O3、GaO2、T
iO2などの酸化物膜、MgF2、PbFz、CeF3
などのフッ化物膜、AIN、 Si、N、などの窒化物
膜、ZnSなどの硫化物膜などを適用することができる
Further, as the dielectric layer, an inorganic vapor deposited film, an inorganic sputtered film, an organic vapor deposited film, an organic sputtered film, or a plasma polymerized film can be used. Among these, S 102.5iO1AI20 is used as an inorganic vapor deposited film and an inorganic sputtered film.
3, Y2O3, WO3, Ta205, Cr, 03, Ce
O2, Tea, , M2O3, In2O3, GaO2, T
Oxide films such as iO2, MgF2, PbFz, CeF3
A fluoride film such as AIN, a nitride film such as Si, N, or a sulfide film such as ZnS can be used.

有機蒸着膜としては、ポリエチレン、ポリフッ化ビニリ
デン、ポリフェニレンスルファイドなどの高分子Mtr
膜、Cuフタロシアニン、フルオレセインなどの低分子
蒸着膜を適用することができる。
As the organic vapor deposition film, polymer Mtr such as polyethylene, polyvinylidene fluoride, polyphenylene sulfide, etc.
A low molecular weight deposited film such as a film, Cu phthalocyanine, or fluorescein can be applied.

プラズマ重合膜としては、エチレンなどのオレフィン化
合物、スチレンなどの芳香族化合物、6フツ化プロピレ
ンなどの含フツ素化合物、アクリロニトリルなどの含窒
素化合物、ヘキサメチルジシロキサンなどの含Si化合
物、テトラメチルスズなどの有機金属化合物など各種有
機化合物から得れる重合膜を適用することができる。
As the plasma polymerized film, olefin compounds such as ethylene, aromatic compounds such as styrene, fluorine-containing compounds such as hexafluorinated propylene, nitrogen-containing compounds such as acrylonitrile, Si-containing compounds such as hexamethyldisiloxane, and tetramethyltin are used. Polymerized films obtained from various organic compounds such as organometallic compounds such as

本発明のレーザー記録媒体においては、また該記録媒体
層上に、あるいは基板と記録媒体層との界面に、即ち例
えば基板と誘電体層との間に光反射層を設けることもで
きる。
In the laser recording medium of the present invention, a light reflecting layer can also be provided on the recording medium layer or at the interface between the substrate and the recording medium layer, that is, for example, between the substrate and the dielectric layer.

本発明のレーザー記録媒体は例えば第1図および第2図
に示すような構成をとることができる。
The laser recording medium of the present invention can have a configuration as shown in FIGS. 1 and 2, for example.

例えば、第1図の媒体は、基板1と、その上に形成され
た誘電体層2と、該誘電体層上に設けられたB1または
Sb層もしくはBiまたはSbを90原子%以上含有す
る合金層3(以下簡単化のために記録層という)と、更
にこの上に誘電体層、記録層をこの順序で順次形成する
ことにより設けられた誘電体層4および6並びに記録層
5とから構成されている。−また、第2図の態様は記録
媒体上に光反射層7を設けた例である。この光反射層と
しては従来公知の材料並びに形成方法がそのまま利用で
き、特に制限されない。
For example, the medium in FIG. 1 includes a substrate 1, a dielectric layer 2 formed thereon, and a B1 or Sb layer provided on the dielectric layer, or an alloy containing 90 atomic percent or more of Bi or Sb. Consisting of layer 3 (hereinafter referred to as recording layer for simplicity), dielectric layers 4 and 6 and recording layer 5 provided by sequentially forming a dielectric layer and a recording layer thereon in this order. has been done. -Also, the embodiment shown in FIG. 2 is an example in which a light reflecting layer 7 is provided on the recording medium. For this light-reflecting layer, conventionally known materials and forming methods can be used as they are, and there are no particular limitations.

作用 本発明のレーザー記録媒体は、BiまたはBi金合金し
くはSbまたはSb金合金記録層を使用し、これと誘電
体層とを交互にサンドイッチ型で多層構造としたことを
特徴とするものであり、このような構成としたことによ
り、積層しない一層構造をもつ従来のものと比較して、
非晶質寿命が著しく延長されるので相分離を起こすこと
のない、かつ非晶質寿命の長い安定な記録媒体が提供さ
れることになる。
Function The laser recording medium of the present invention is characterized by using a Bi or Bi gold alloy, Sb or Sb gold alloy recording layer, and having a sandwich-type multilayer structure in which this and a dielectric layer are alternately arranged. By adopting this configuration, compared to the conventional one which has a single layer structure without lamination,
Since the amorphous lifetime is significantly extended, a stable recording medium that does not cause phase separation and has a long amorphous lifetime can be provided.

一般に、基板1と接する誘電体層2に、基板1への熱流
出を防ぐ断熱層としての機能を与えたい場合には、50
nm程度以上の膜厚とすることが望ましく、また最上層
の誘電体層は、媒体の変形を抑制するためには、やはり
50nm程度以上の膜厚にして用いることが好ましい。
Generally, when it is desired to give the dielectric layer 2 in contact with the substrate 1 a function as a heat insulating layer to prevent heat leakage to the substrate 1,
It is desirable to use a film thickness of about 50 nm or more, and the uppermost dielectric layer is preferably used with a film thickness of about 50 nm or more in order to suppress deformation of the medium.

これ以外の誘電体層は、記録層3.5を分離できればよ
く、従って5nm程度以上の膜厚であれば十分である。
The dielectric layer other than this only needs to be able to separate the recording layer 3.5, and therefore, a film thickness of about 5 nm or more is sufficient.

誘電体層は上記のBi層等の分離を達成する機能の他に
、これ等の変形を防止する機能をも併せ持ち、その結果
、記録・消去サイクルの多数回に亘る繰返し中に生じる
可能性のある、記録媒体粒子間の凝集・融合等を防止し
て、該粒子の粒径を微細な状態に維持する。
In addition to the function of achieving the separation of the Bi layer, etc. mentioned above, the dielectric layer also has the function of preventing these deformations, and as a result, the dielectric layer has the function of preventing these deformations, which may occur during many repetitions of recording/erasing cycles. Certain types of agglomeration and fusion between recording medium particles are prevented to maintain the particle size of the particles in a fine state.

一方、記録層3.5は蒸着あるいは、スパッタ法により
形成されるが、その膜厚は、10nm以下であることが
好ましい。このような比較的薄い膜厚とすることにより
81またはSbの非晶質寿命は室温で充分長くなること
を見出した。つまり結晶化温度1t、BiおよびSbの
膜厚を薄くするほど高くなる。
On the other hand, the recording layer 3.5 is formed by vapor deposition or sputtering, and its film thickness is preferably 10 nm or less. It has been found that by forming such a relatively thin film thickness, the amorphous life of 81 or Sb can be sufficiently long at room temperature. In other words, the crystallization temperature 1t increases as the film thickness of Bi and Sb becomes thinner.

従って、BiおよびSbの膜厚を薄くする程、室温にお
けるBiおよびSbの非晶質状態の室温での寿命は長く
なるが、結晶化による記録・消去の感度が低下するため
BiおよびSbの膜厚としては、3〜10nmが適して
いる。
Therefore, as the film thickness of Bi and Sb becomes thinner, the lifetime of the amorphous state of Bi and Sb at room temperature becomes longer, but since the sensitivity of recording and erasing due to crystallization decreases, the film thickness of Bi and Sb decreases. A suitable thickness is 3 to 10 nm.

一方、BiおよびSbの代わりにBi金合金るいはSb
金合金用いた場合には、もともと結晶化温度がBiおよ
びSb単体より高いため、30nm以下の膜厚にするこ
とにより充分長い非晶質寿命が得られ、また下限は上記
と同様な理由から5nm以上であることが必要とされる
ので膜厚としては、5〜30nmの範囲内とすることが
適している。
On the other hand, instead of Bi and Sb, Bi gold alloy or Sb
When a gold alloy is used, since the crystallization temperature is originally higher than that of Bi and Sb alone, a sufficiently long amorphous life can be obtained by making the film thickness 30 nm or less, and the lower limit is 5 nm for the same reason as above. Since the thickness is required to be above, it is suitable that the film thickness is within the range of 5 to 30 nm.

尚、この81およびSb化合物は、相分離を起こさない
ような組成、つまりBiおよびSb原子が90原子%以
上含まれ、Pb、 Sn、 In、 As、 5eSG
e、、Si、 S。
Note that this 81 and Sb compound has a composition that does not cause phase separation, that is, it contains 90 at% or more of Bi and Sb atoms, and contains Pb, Sn, In, As, 5eSG.
e,,Si,S.

Sb (Biをベースとする場合)からなる群から選ば
れる少なくとも1種の元素を10原子%以下ドープした
ものを例示できる。
Examples include those doped with 10 atomic % or less of at least one element selected from the group consisting of Sb (when based on Bi).

上記合金成分のいくつかの元素、例えばSnとGe。Some of the elements of the above alloying components, such as Sn and Ge.

InとSeなどを使用することにより、その他のものと
同様に、優れた記録・消去特性を示す他、消去速度の速
い記録媒体を得ることも可能である。従って、記録・消
去の高速化を図ることが可能となる。
By using In, Se, and the like, it is possible to obtain a recording medium that not only exhibits excellent recording and erasing characteristics but also has a high erasing speed like other materials. Therefore, it is possible to speed up recording and erasing.

第1図および第2図の例では、記録層を2層だけ設けた
記録媒体を示したが、記録層が1層でもレーザー記録媒
体を構成することは可能である。
Although the examples in FIGS. 1 and 2 show a recording medium having only two recording layers, it is possible to configure a laser recording medium with only one recording layer.

しかしながら、1層では、充分なコントラストを得るこ
とが困難であり、2層・以上の記録層を含むサンドイッ
チ型構造とすることが適している。
However, it is difficult to obtain sufficient contrast with one layer, and a sandwich type structure including two or more recording layers is suitable.

更に、第2図に示すように誘電体層6の上に光反射層7
を設け、また誘電体層の膜厚を制御し、記録波長での反
射強度を極小となるようにすることにより、記録レーザ
ー光の吸収率を高め、感度を向上させることができる。
Furthermore, as shown in FIG. 2, a light reflecting layer 7 is formed on the dielectric layer 6.
By providing a dielectric layer and controlling the thickness of the dielectric layer to minimize the reflection intensity at the recording wavelength, it is possible to increase the absorption rate of the recording laser beam and improve the sensitivity.

この場合の光反射層としては、AI、Au、 Agなど
の金属膜のはかBiあるいはSb膜膜体体光反射層とし
て用いることもできる。
In this case, the light reflecting layer may be a metal film such as Al, Au, or Ag, or a Bi or Sb film.

次に、このような本発明の記録媒体に、レーザービーム
を照射することにより情報を記録・消去する方法につい
て述べる。
Next, a method of recording and erasing information by irradiating the recording medium of the present invention with a laser beam will be described.

まず、81またはSb層は、付着後は、結晶状態である
ので、パルス巾の短かい強いレーザー光を照射して、B
iあるいはSbの融点以上に加熱、急冷することにより
、B1あるいはSbを結晶質から非晶質に相転移させ、
この非晶質化により情報が記録される。
First, since the 81 or Sb layer is in a crystalline state after being deposited, it is irradiated with a strong laser beam with a short pulse width.
By heating above the melting point of i or Sb and rapidly cooling it, B1 or Sb undergoes a phase transition from crystalline to amorphous,
Information is recorded by this amorphization.

一方、非晶質化および結晶化を起こさないほどに弱いレ
ーザー光を照射し、その反射強度あるいは、透過強度を
検出することにより上記の如くして記録した情報を再生
することができる。
On the other hand, the information recorded as described above can be reproduced by irradiating a laser beam weak enough not to cause amorphization or crystallization and detecting its reflected intensity or transmitted intensity.

また、この非晶化した部分に記録に用いたレーザー光よ
り弱く、かつ再生光よりは強いパワーのレーザー光を比
較的長時間照射することにより非晶質から結晶質に相転
移を起こさせ、情報の消去を行なうことができる。
In addition, by irradiating this amorphous part with a laser beam that is weaker than the laser beam used for recording but stronger than the reproduction beam for a relatively long period of time, a phase transition from amorphous to crystalline is caused. Information can be deleted.

Bi系合金または、Sbb合金層を用いた場合は、付着
後は非晶質状態である。従って、結晶化によって記録し
、非晶質化によって消去するか、あるいはあらかじめ熱
処理などにより結晶化させておき、非晶質化によって記
録し、結晶化によって消去することもできる。
When a Bi-based alloy or Sbb alloy layer is used, the layer is in an amorphous state after being deposited. Therefore, it is also possible to record by crystallization and erase by amorphization, or to crystallize in advance by heat treatment, record by amorphization, and erase by crystallization.

また、一般に以上述べた例では記録は基板側からのレー
ザー照射により行われるが、基板1と誘電体層2との間
に光反射層を設けて、記録媒体側からレーザ光の照射を
行なうようにすることもできる。
Furthermore, in the examples described above, recording is generally performed by laser irradiation from the substrate side, but it is also possible to provide a light reflective layer between the substrate 1 and the dielectric layer 2 and irradiate the laser beam from the recording medium side. It can also be done.

実施例 次に、本発明の記録媒体を実施例1どよって更に具体的
にのべる。
EXAMPLE Next, the recording medium of the present invention will be described in more detail with Example 1.

実施例1 基板としてポリメチルメタクリレートを用い、この上に
SiC2を電子ビーム蒸着法により厚さ20nmで堆積
し、B1を抵抗加熱蒸着法で厚さ5層mに堆積するとい
ったように順次積層し、B1層を4層設けた本発明の記
録媒体を作製した。ただし、最上層の8102誘電体層
の膜厚は1100nとした。この記録媒体に対して、波
長850nmの半導体レーザーを用いて、記録・消去実
験を行った。レーザービーム径1,6μmで基板をとお
してレーザー照射を行ない、記録媒体上でのレーザーパ
ワー5mW、パルス巾80nsで非晶質化が生じ、レー
ザーパワー4mW。
Example 1 Using polymethyl methacrylate as a substrate, SiC2 was deposited on it to a thickness of 20 nm by electron beam evaporation, B1 was deposited to a thickness of 5 m by a resistance heating evaporation method, and so on. A recording medium of the present invention having four B1 layers was produced. However, the film thickness of the uppermost 8102 dielectric layer was 1100 nm. Recording and erasing experiments were conducted on this recording medium using a semiconductor laser with a wavelength of 850 nm. Laser irradiation was performed through the substrate with a laser beam diameter of 1.6 μm, and amorphization occurred at a laser power of 5 mW and a pulse width of 80 ns on the recording medium, and the laser power was 4 mW.

パルス巾400nsで結晶化が生じた。再生は、レーザ
ーパワー1m□、パルス巾500nsで行なったところ
記録媒体に変化はみられなかった。しかも、104回以
上の記録・再生実験後も初期値と同じ信号出力を維持し
ていることが確認された。また、非晶質化したBiは4
0℃で1力月以上保存しても結晶化がみられず安定であ
ることがわかった。
Crystallization occurred with a pulse width of 400 ns. When reproduction was performed with a laser power of 1 m□ and a pulse width of 500 ns, no change was observed in the recording medium. Moreover, it was confirmed that the same signal output as the initial value was maintained even after 104 or more recording/reproducing experiments. In addition, the amorphous Bi is 4
It was found that the product is stable, with no crystallization observed even when stored at 0°C for more than 1 month.

実施例2 実施例1の操作を繰返し、B1膜のかわりにSbb着膜
を用いて同様な記録媒体を作製したところ、このものは
レーザ°−パワー15mW、パルス巾100nsで非晶
質化を生じ、レーザーパワー[3mW、パルス巾500
nsで結晶化を生じた。再生を、レーザーパワー1mW
、パルス巾500nsで行なったところ、記録状態に変
化はみられなかった。しかも104回以上の記録・再生
実験後も初期値と同じ信号出力を維持していることが確
認された。
Example 2 A similar recording medium was produced by repeating the operations in Example 1 and using an Sbb deposited film instead of the B1 film. This medium became amorphous at a laser power of 15 mW and a pulse width of 100 ns. , laser power [3 mW, pulse width 500
Crystallization occurred in ns. Playback with laser power of 1mW
When the recording was performed with a pulse width of 500 ns, no change was observed in the recording state. Moreover, it was confirmed that the same signal output as the initial value was maintained even after more than 104 recording/reproducing experiments.

実施例3 実施例1の操作を繰返し、B1のかわりにB15aSn
sGes、B15oln5Ses、81 gaPbsA
ssを夫々用いた本発明の記録媒体を作製した。このも
のの記録・消去特性は、実施例1の記録媒体とほぼ同様
であったが、消去において、レーザーパワー4mW、パ
ルス巾300nsで結晶化が生ずるなど、消去速度の速
まる傾向がみられた。また、安定性についても40℃で
2力月以上保存しても結晶化がみられず、実施例1のも
のよりも更に一層安定であることがわかった。
Example 3 Repeat the operation of Example 1 and use B15aSn instead of B1.
sGes, B15oln5Ses, 81 gaPbsA
Recording media of the present invention using each of ss were produced. The recording/erasing characteristics of this medium were almost the same as those of the recording medium of Example 1, but there was a tendency for the erasing speed to become faster, with crystallization occurring at a laser power of 4 mW and a pulse width of 300 ns. In addition, regarding stability, no crystallization was observed even after storage at 40° C. for more than 2 months, indicating that the product was even more stable than that of Example 1.

実施例4 実施例2の操作を繰返して同様な構成の記録媒体を得た
。ただし、Sbのかわりに5bsoSnsGes、5b
sornsSes、5klsoPbsASsを用いたも
のを作製した。
Example 4 The operation of Example 2 was repeated to obtain a recording medium having a similar configuration. However, instead of Sb, 5bsoSnsGes, 5b
One using sonsSes, 5klsoPbsASs was produced.

このものの記録・消去特性は、実施例2の製品とほぼ同
様であったが、レーザーパワー5mW、パルス巾400
nsで結晶化が生ずるなど、消去速度の速まる傾向がみ
られた。また、非晶質状態で40℃で2力月保存しても
結晶化がみられず、従って、常温では、非晶質として極
めて安定であることが確認された。
The recording/erasing characteristics of this product were almost the same as those of the product of Example 2, but the laser power was 5 mW and the pulse width was 400.
There was a tendency for the erasing speed to become faster, such as crystallization occurring at ns. Moreover, no crystallization was observed even when the amorphous state was stored at 40° C. for 2 months, and therefore, it was confirmed that it is extremely stable as an amorphous state at room temperature.

実施例5 実施例1の操作を繰返した。ただし、SiC2の代わり
にY2O3、TazOs、Al2O3、S10、CeF
3およびCr2O3の電子ビーム蒸着膜を誘電体層とし
て用いた記録媒体を作製したところ、この製品は記録・
消去特性としては実施例1のものと同様の値を示した。
Example 5 The procedure of Example 1 was repeated. However, instead of SiC2, Y2O3, TazOs, Al2O3, S10, CeF
When we produced a recording medium using an electron beam evaporated film of Cr2O3 and Cr2O3 as a dielectric layer, this product was able to perform recording and recording.
The erasing characteristics showed values similar to those of Example 1.

また、SiC2の代わりにPbF2、GeO□、MOO
3、MgF2およびTeO□の蒸着膜を誘電体層として
用いた場合にも同様であった。
Also, instead of SiC2, PbF2, GeO□, MOO
3. The same result was obtained when a vapor deposited film of MgF2 and TeO□ was used as a dielectric layer.

実施例6 誘電体膜としてのSiC2のかわりにテトラメチルスズ
のプラズマ重合膜を用いた他は実施例1と同様に操作し
て本発明の記録媒体を作製した。この場合、最上層の重
合膜厚は200nmとした。この記録媒体では、レーザ
ーパワー5mLパルス巾60nsで非晶質化が生じレー
ザーパワー3mW、パルス巾400nsで結晶化が生じ
た。再生はレーザーパワー1mW、パルス巾500ns
で行なったが記録状態に変化はみられなかった。尚、こ
のものは104回以上の記録・再生実験後も初期値と同
じ信号出力を維持していることが確認された。
Example 6 A recording medium of the present invention was produced in the same manner as in Example 1, except that a plasma polymerized film of tetramethyltin was used instead of SiC2 as the dielectric film. In this case, the polymer film thickness of the top layer was 200 nm. In this recording medium, amorphization occurred at a laser power of 5 mL and a pulse width of 60 ns, and crystallization occurred at a laser power of 3 mW and a pulse width of 400 ns. Reproduction is performed using a laser power of 1 mW and a pulse width of 500 ns.
However, there was no change in the recording status. It was confirmed that this device maintained the same signal output as the initial value even after 104 or more recording/reproducing experiments.

実施例7 実施例6において、誘電体層としてのテトラメチルスズ
・プラズマ重合膜の代わりにポリイミドスパッタ膜およ
びCuフタロシアニン蒸着膜を用いた他は同様に操作し
て2種の記録媒体を夫々作製した。これらは記録・消去
特性については、実施例3と同様の結果を与えたが、1
03回の記録・消去実験後において、これらの媒体には
不可逆的変化が生じた。
Example 7 Two types of recording media were manufactured in the same manner as in Example 6, except that a polyimide sputtered film and a Cu phthalocyanine vapor-deposited film were used instead of the tetramethyltin plasma polymerized film as the dielectric layer. . These gave the same results as Example 3 in terms of recording/erasing characteristics, but
After 03 recording/erasing experiments, irreversible changes occurred in these media.

実施例8 実施例1においてBi層を2層設け、また最上層のSi
O2膜厚を150nmとし、この上に光反射膜としマ厚
さ50nmのA、1蒸着膜を設けた記録媒体を作製シフ
こ。この媒体ではレーザーパワー6mW、パルス巾70
nsで非晶質化が生じ、レーザーパワー3m1ll。
Example 8 Two Bi layers were provided in Example 1, and the top layer of Si
A recording medium was prepared in which the O2 film thickness was 150 nm, and a 50 nm thick A1 vapor deposited film was provided thereon as a light reflecting film. In this medium, the laser power was 6 mW and the pulse width was 70 mW.
Amorphization occurred in ns, and the laser power was 3ml.

パルス巾400nsで結晶化が生じた。Crystallization occurred with a pulse width of 400 ns.

発明の効果 以上詳しく説明したように、本発明の積層構造のレーザ
ービーム記録媒体では、B1またはSbもしくは81合
金またはSb合金層の膜厚を制御することにより媒体の
特性を制御することができ、媒体特性の再現性が良いと
いう利点を有している。更にB1、Sbあるいは、B1
またはSbを90原子%以上含む、81合金またはSb
金合金用いているため感度が高くコントラストも優れた
媒体を与える。また本発明の記録媒体は、相分離を起こ
さず、非晶質状態の寿命が長いことと、誘電体層が媒体
の変形を防止し、またB15SbSBi化合物、Sb化
合物の粒径を微細のまま変化しないように保つため、繰
返し記録・消去が可能なレーザー記録媒体として利用す
ることができる。
Effects of the Invention As explained in detail above, in the laser beam recording medium of the laminated structure of the present invention, the characteristics of the medium can be controlled by controlling the thickness of the B1 or Sb or 81 alloy or Sb alloy layer. It has the advantage of good reproducibility of media characteristics. Furthermore, B1, Sb or B1
or 81 alloy containing 90 atomic% or more of Sb or Sb
Since it uses a gold alloy, it provides a medium with high sensitivity and excellent contrast. In addition, the recording medium of the present invention does not cause phase separation and has a long life in an amorphous state, the dielectric layer prevents deformation of the medium, and the particle size of the B15SbSBi compound and Sb compound can be changed while remaining fine. It can be used as a laser recording medium that can be repeatedly recorded and erased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の記録媒体の構造を示す模式的断面図
であり、 第2図は、本発明の別の態様に係る記録媒体の構造を示
す模式的断面図である。 (主な参照番号) 1 基板、  2.4.6 誘電体層、3.5 B1ま
たはSb層あるいはBlまたはSbを90原子%以上含
む8i合金またはSb合金層、7 光反射層 特許出願人   日本電信電話公社 代 理 人   弁理士 新居正彦 第1図
FIG. 1 is a schematic cross-sectional view showing the structure of a recording medium according to the present invention, and FIG. 2 is a schematic cross-sectional view showing the structure of a recording medium according to another aspect of the present invention. (Main reference numbers) 1 Substrate, 2.4.6 Dielectric layer, 3.5 B1 or Sb layer or 8i alloy or Sb alloy layer containing 90 atomic % or more of Bl or Sb, 7 Light reflective layer Patent applicant Japan Telegraph and Telephone Public Corporation Representative Patent Attorney Masahiko Arai Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)基板と、該基板上に設けられた記録媒体層として
の少なくとも2層の誘電体層と少なくとも2層のBi層
またはSb層とを有し、該Bi層またはSb層の各々が
該誘電体層にはさまれ、該基板上で該誘電体層と交互に
設けられた構成とされていることを特徴とするレーザー
記録媒体。
(1) It has a substrate, at least two dielectric layers as recording medium layers provided on the substrate, and at least two Bi layers or Sb layers, each of the Bi layers or Sb layers being 1. A laser recording medium characterized in that the medium is sandwiched between dielectric layers and alternately provided with the dielectric layers on the substrate.
(2)前記Bi層のかわりにBiを90原子%以上含有
するBi合金層を用いるか、あるいは前記Sb層のかわ
りにSbを90原子%以上含有するSb合金層を用いる
ことを特徴とする特許請求の範囲第1項記載のレーザー
記録媒体。
(2) A patent characterized in that a Bi alloy layer containing 90 atomic % or more of Bi is used instead of the Bi layer, or an Sb alloy layer containing 90 atomic % or more of Sb is used instead of the Sb layer. A laser recording medium according to claim 1.
(3)前記記録媒体層上あるいは基板と記録媒体層との
界面に光反射層を設けることを特徴とする特許請求の範
囲第1項または第2項に記載のレーザー記録媒体。
(3) The laser recording medium according to claim 1 or 2, characterized in that a light reflective layer is provided on the recording medium layer or at the interface between the substrate and the recording medium layer.
JP59188920A 1984-09-11 1984-09-11 Laser recording medium Granted JPS6166696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59188920A JPS6166696A (en) 1984-09-11 1984-09-11 Laser recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59188920A JPS6166696A (en) 1984-09-11 1984-09-11 Laser recording medium

Publications (2)

Publication Number Publication Date
JPS6166696A true JPS6166696A (en) 1986-04-05
JPH0522592B2 JPH0522592B2 (en) 1993-03-30

Family

ID=16232194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59188920A Granted JPS6166696A (en) 1984-09-11 1984-09-11 Laser recording medium

Country Status (1)

Country Link
JP (1) JPS6166696A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225934A (en) * 1986-09-22 1988-09-20 Matsushita Electric Ind Co Ltd Optical information recording medium
JPH01277336A (en) * 1988-04-28 1989-11-07 Matsushita Electric Ind Co Ltd Optical information recording, reproducing and erasing member and optical disk
JPH025237A (en) * 1988-06-22 1990-01-10 Matsushita Electric Ind Co Ltd Optical information recording/reproducing/erasing member and optical disk
JPH0376684A (en) * 1989-08-21 1991-04-02 Hisankabutsu Glass Kenkyu Kaihatsu Kk Rewriting type optical data recording medium
JPH03259437A (en) * 1990-03-08 1991-11-19 Matsushita Electric Ind Co Ltd Optical information recording component
JPH03295040A (en) * 1990-04-12 1991-12-26 Matsushita Electric Ind Co Ltd Optical information recording medium
JPH04134642A (en) * 1990-09-25 1992-05-08 Matsushita Electric Ind Co Ltd Optical information recording medium
JPH04134644A (en) * 1990-09-25 1992-05-08 Matsushita Electric Ind Co Ltd Optical information recording member
JPH04134645A (en) * 1990-09-25 1992-05-08 Matsushita Electric Ind Co Ltd Optical information recording member
JPH04146188A (en) * 1990-10-09 1992-05-20 Matsushita Electric Ind Co Ltd Optical information recording medium and manufacture thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225934A (en) * 1986-09-22 1988-09-20 Matsushita Electric Ind Co Ltd Optical information recording medium
JPH0845074A (en) * 1986-09-22 1996-02-16 Matsushita Electric Ind Co Ltd Optical reversible recording method
JPH01277336A (en) * 1988-04-28 1989-11-07 Matsushita Electric Ind Co Ltd Optical information recording, reproducing and erasing member and optical disk
JPH025237A (en) * 1988-06-22 1990-01-10 Matsushita Electric Ind Co Ltd Optical information recording/reproducing/erasing member and optical disk
JPH0376684A (en) * 1989-08-21 1991-04-02 Hisankabutsu Glass Kenkyu Kaihatsu Kk Rewriting type optical data recording medium
JPH03259437A (en) * 1990-03-08 1991-11-19 Matsushita Electric Ind Co Ltd Optical information recording component
JPH03295040A (en) * 1990-04-12 1991-12-26 Matsushita Electric Ind Co Ltd Optical information recording medium
JPH04134642A (en) * 1990-09-25 1992-05-08 Matsushita Electric Ind Co Ltd Optical information recording medium
JPH04134644A (en) * 1990-09-25 1992-05-08 Matsushita Electric Ind Co Ltd Optical information recording member
JPH04134645A (en) * 1990-09-25 1992-05-08 Matsushita Electric Ind Co Ltd Optical information recording member
JPH04146188A (en) * 1990-10-09 1992-05-20 Matsushita Electric Ind Co Ltd Optical information recording medium and manufacture thereof

Also Published As

Publication number Publication date
JPH0522592B2 (en) 1993-03-30

Similar Documents

Publication Publication Date Title
US5346740A (en) Optical information recording medium
JP2512087B2 (en) Optical recording medium and optical recording method
TWI221281B (en) Optical recording medium and optical recording method therefor
JPH01303643A (en) Laser recording medium
US6660451B1 (en) Optical information recording medium
JPS6166696A (en) Laser recording medium
JP2003182237A (en) Phase-change recording element for write-once application
JPH01277338A (en) Optical recording medium
JPS62222442A (en) Rewriting type optical recording medium
JP2003051137A (en) Information recording medium
JP2834131B2 (en) Thin film for information recording
US5389417A (en) Optical recording medium
JP2553736B2 (en) Optical recording medium and method of manufacturing optical recording medium
JPS6144692A (en) Laser beam recording member
JP2000190637A (en) Optical information recording medium
WO2005015555A1 (en) Optical information recording medium and manufacturing method thereof
JP3151848B2 (en) Optical information recording medium
JPH04232780A (en) Phase change optical recording medium
KR20050094279A (en) Optical data storage medium with super-resolution layer
JP2002117577A (en) Optical recording medium and optical information recording method
JP2962050B2 (en) Optical information recording medium
JPS62102438A (en) Member for optical recording
JP2991725B2 (en) Optical information recording medium
JP2766276B2 (en) Rewritable phase-change optical memory medium
JPS6144693A (en) Rewriting type photo-recording medium