JPH02151481A - Membrane for recording data and method for recording and reproducing data - Google Patents

Membrane for recording data and method for recording and reproducing data

Info

Publication number
JPH02151481A
JPH02151481A JP63306052A JP30605288A JPH02151481A JP H02151481 A JPH02151481 A JP H02151481A JP 63306052 A JP63306052 A JP 63306052A JP 30605288 A JP30605288 A JP 30605288A JP H02151481 A JPH02151481 A JP H02151481A
Authority
JP
Japan
Prior art keywords
recording
film
layer
elements
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63306052A
Other languages
Japanese (ja)
Other versions
JP2776847B2 (en
Inventor
Norikimi Tamura
礼仁 田村
Motoyasu Terao
元康 寺尾
Yasushi Miyauchi
靖 宮内
Keikichi Ando
安藤 圭吉
Tetsuya Nishida
哲也 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP63306052A priority Critical patent/JP2776847B2/en
Priority to DE68925331T priority patent/DE68925331T2/en
Priority to EP89118519A priority patent/EP0362852B1/en
Publication of JPH02151481A publication Critical patent/JPH02151481A/en
Application granted granted Critical
Publication of JP2776847B2 publication Critical patent/JP2776847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0055Erasing
    • G11B7/00557Erasing involving phase-change media
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a data recording membrane having good recording/ reproduction characteristics, high sensitivity and good stability by setting the average composition of the data recording membrane in the membrane thickness direction thereof to a composition represented by a specific formula. CONSTITUTION:The data recording membrane represented by the formula SbxTeyAzBalphaCbetaDgamma (wherein x, y, z, alpha, beta and gamma have values of 5<=x<=70, 10<=y<=85, 3<=z<=50, 0<=alpha<=20, 0<=beta<=30 and 0<=gamma<=30 in atomic %, A is at least one element selected from Sn, Bi, Pb, Ga, Au and In, B is at least one element selected from Tl,a halogen element and alkali metal, C is at least one element selected from Ag, Cu, Pd, Ta, W, Ir, Sc, Y, Ti, Zr, V, Nb, Cr, Mo, Mn, Fe, Ru, Co, Rh and Ni and D is Sb, Te or an element other than the elements represented by A, B and D) formed to a substrate directly or through a protective layer is irradiated with recording beam to change the atom arrangement of the irradiated part. This membrane is irradiated with reproducing beam to read a change of atomic arrangement to record and reproduce data.

Description

【発明の詳細な説明】 【産業上の利用分野] 本発明はレーザ光、電子線等の記録用ビームによって、
たとえば映像や音声などのアナログ信号をFM変調した
ものや、たとえば電子計算機のデータや、ファクシミリ
信号やディジタルオーディオ信号などのディジタル情報
を、リアルタイムで記録することが可能な情報の記録用
薄膜に関するものである。 【従来の技術ル レーザ光によって薄膜に記録を行う記録原理は種々ある
が、膜材料の相転移(相変化とも呼ばれる)、フォトダ
ークニングなどの原子配列変化による記録は、膜の変形
をほとんど伴わないので、2枚のディスクを直接貼り合
わせた両面ディスクができるという長所を持っている。 また、組成を適当に選べば記録の書き換えを行うことも
できる。 この種の記録に関する発明は多数出願されており、最も
早いものは特公昭47−26897号公報に開示されて
いる。ここではTe−Ge系、As−Te−Ge系、T
e−0系など多くの薄膜について述べられている。また
、特開昭54−41902号公報にもGe、。’r Q
、5bsS870など種々の組成が述べられている。ま
た、特開昭57−24039には、S bziT 8z
z*g S e62aS。 Cd、4Tai4Se、、、B i、Se、、5b2S
e、、I n、、Te、。S esll、B i、、T
 e、、、、 S e、、、、。 Cu5e、及びT e33S e、、の薄膜が述べられ
ている。 【発明が解決しようとする課題】 上記従来技術の薄膜はいずれも一回書き込み可能あるい
は書き換え可能な相転移記録膜として用いる場合に結晶
化の速度が遅い、半導体レーザ光の吸収が少なく感度が
悪い、再生信号強度が充分でない、再生波形の歪みが大
きい、あるいは非晶質状態の安定性が悪い、耐酸化性が
不充分である、消え残りが大きいなどの欠点があり、実
用化が困難である。 したがって本発明の目的は上記した従来技術の欠点を無
くし、記録・再生特性が良好で感度が高く、安定性の良
い情報記録用薄膜を提供することに有る。 【課題を解決するための手段1 上記の目的を達成するために本発明の情報の記録用薄膜
においては、情報記録用薄膜の膜厚方向の平均組成を一
般式SbxTeyAzBαCβDγで表されるものとす
る。 ただし、x、y、z、α、β、γはそれぞれ原子パーセ
ントで5≦x≦70.10≦y≦85゜3≦2≦50,
0≦α≦20,0≦β≦30,0≦γ≦30の範囲の値
であり、AはSn、Bi。 Pb、Ga、Au及びInのうちの少なくとも一元素、
BはTl、Iなどのハロゲン元素及びNaなどのアルカ
リ金属のうちの少なくとも一元素である。これらの元素
は、TeやSeを含む材料中でTeやSeの鎖状原子配
列を切断し、結晶化速度を速くする効果を持つ、ただし
、結晶化温度の低下を伴うので、結晶化温度の高い材料
に添加しないと非晶質の安定性を損なうことになる。C
はAg、Cu、Pd、Ta、W、I r、Sc、Y。 Ti、Zr、Vs Nb、Cr、Mo、Mn、Fe。 Ru、Co、Rh及びNiのうち少なくとも一元素、D
はSb、Te、Ay B、Cで表される元素以外の元素
、たとえばHg、Se、S、As。 AQ、B、C,Si、No P、O,ランタニド元素、
アクチニド元素、アルカリ土類金属元素、不活性ガス元
素などのうちの少なくとも一元素である。ただし、A、
B及びCで表される元素のうちの一元素または複数元素
も、各群の別の元素が既に使われている場合、D群の元
素と考えることができる。たとえば5b−Te−3n−
Co系に対してNiを、30原子%未満でNi含有量と
C。 含有量の和がC群元素含有量の上限30原子%以下とな
る範囲で添加する場合が考えられる。これらのうちAQ
、Hg、アルカリ土類金属元素、不活性ガス元素は含有
量を10原子%未満とする方が好ましい。 本発明の記
録用薄膜は膜厚方向の平均組成が上記の範囲内に有れば
膜厚方向に組成が変化していてもよい。ただし、組成の
変化は不連続的でないほうがより好ましい。 記録は原子配列変化(たとえば1つの相から他の相への
変化)を起こさせることができ、かつ記録膜に大きな変
形を生じさせることのない照射時間及びパワーのエネル
ギービームで行う。 [作用] 上記の各群元素の役割は下記のとおりである。 Sb、Te及びBで表されるSnなどの元素とは、適当
な比率で共存することによって非晶質状態を安定に保持
し、かつ記録・消去時の結晶化を高速で行うことができ
るようにする。Cで表されるCOなどの元素は、半導体
レーザ光などの長波長光の吸収を容易にして記録感度を
高める効果を持ち、また、高速結晶化を可能にするもの
である。 Bで表されるTQなとの元素は、結晶化速度を向上させ
、かつ、非晶質状態の安定性も向上させる効果を持つ。 B群元素とC群元素が共存すれば、高速結晶化が可能で
、かつ非晶質状態の安定性が高く、記録感度も高くなる
。B群元素とC群元素のいずれか一方を添加する場合、
B群元素を添加した方が、膜形成の容易さの面で好まし
いが、耐酸化性は低下する。Dで表されるArなどの元
素は、添加によって特に顕著な効果はないが、添加量が
少なければ大きな悪影響は無いものである。 なお、これらのうち希土類元素などは、1〜20%添加
すると再生信号強度を大きくする、結晶化温度を高める
などの役割を果たさせ得る。また、Se及びSは他の元
素の比率を一定に保って1〜20%添加することによっ
て耐酸化性向上効果がある。ただし、耐熱性はやや低下
する。消去特性の点でもSe含有量1〜3%が好ましい
。 上記の組成範囲にある本発明の情報記録用薄膜は優れた
記録・再生特性を持ち、記録及び消去に用いるレーザ光
のパワーが低くてよい。また、安定性も優れている。 X+ y+Z+ α、β及びγのより好ましい範囲は下
記のとおりである。 10≦x≦45 35≦y≦80 5≦2・≦30   0≦α≦15 0≦β≦20  0≦γ≦20 の範囲。 x、y、z、α、β及びγの特に好ましい範囲は下記の
とおりである。 13≦x≦40 47≦y≦70 7≦2≦23  0≦α≦10 0≦β≦10   0≦γ≦10 の範囲。ただし、Aで表される元素がAuである場合、
Te含有量が少ないと記録感度が低いので、60≦y≦
70とするのが特に好ましい。 上記の各範囲において、γ弁Oであれば膜作製が容易で
ある。1≦α+β≦20であればさらに消え残りが小さ
くなり、記録保持時間が長くなる。 1≦α≦10かつ1≦β≦10であれば、さらに信号変
調度が大きくなる。 Bで表される元素のうち特に好ましいのはTQ。 ついで好ましいのは工、ついでCQなとの他のハロゲン
元素が好ましい。Dで表される元素のうちでは希土類元
素が好ましい。Bで表される元素のうちPb、Ga及び
Inは耐酸化性をやや低下させる。ただしInは記録・
消去特性が優れる。 Auは記録感度を低下させるが耐酸化性は向上させる。 各元素の含有量の膜厚方向の変化は通常は小さいが、任
意のパターンの変化が存在しても差し支えない。Sb、
Se及びSについては、記録用薄膜のいずれか一方の界
面付近(他の層との界面である場合も有る)において、
その内側よりも多いのがよい。 本発明の記録膜の少なくとも一方の面は他の物質で密着
して保護されているのが好ましい。両側が保護されてい
ればさらに好ましい。これらの保護層は、たとえばアク
リル樹脂、ポリカーボネート、ポリオレフィン、エポキ
シ樹脂、ポリイミド、ポリアミド、ポリスチレン、ポリ
エチレン、ポリエチレンテレフタレート、ポリ4フツ化
エチレン(テフロン)などのフッ素樹脂、などの有機物
より形成されていてもよく、これらは基板であってもよ
い。また、紫外線硬化法で形成されていてもよい。酸化
物、弗化物、窒化物、硫化物、セレン化物、炭化物、ホ
ウ化物、ホウ素、炭素、あるいは金属などを主成分とす
る無機物より形成されていてもよい。また、これらの複
合材料でもよい。 ガラス、石英、サファイア、鉄、チタン、あるいはアル
ミニウムを主成分とする基板も一方の無機物保護層とし
て働き得る。有機物、無機物のうちでは無機物と密着し
ている方が耐熱性の面で好ましい。しかし無機物層(基
板の場合を除く)を厚くするのは、クラック発生、透過
率低下、感度低下のうちの少なくとも1つを起こしやす
いので上記無機物層は薄くシ、無機物層の記録膜と反対
の側には、機械的強度を増すために厚い有機物層が密着
している方が好ましい。この有機物層は基板であっても
よい。これによって変形も起こりにくくなる。有機物と
しては、例えば、ポリスチレン、ポリ4フツ化エチレン
(テフロン)、ポリイミド、アクリル樹脂、ポリオレフ
ィン、ポリエチレンテレフタレート、ポリカーボネート
、エポキシ樹脂。 ホットメルト接着剤として知られているエチレン−酢酸
ビニル共重合体など、および粘着剤などが用いられる。 紫外線硬化樹脂でもよい。無機物よりなる保護層の場合
は、そのままの形で電子ビーム蒸着、スパッタリング等
で形成してもよいが、反応性スパッタリングや、金属、
半金属、半導体の少なくとも一元素よりなる膜を形成し
たのち、酸素、硫黄、窒素のうちの少なくとも一者と反
応させるようにすると製造が容易である。無機物保護層
の例を挙げると、Ce e L a y S x p 
 I n rAM、Ge、Pb、Sn、Bi、Te、T
a、Sc、Y、Ti、Zr、V、Nb、Cr及びWより
なる群より選ばれた少なくとも一元素の酸化物、Cd、
Zn、Ga、In、Sb、Ge、Sn、Pbよりなる群
より選ばれた少なくとも一元素の硫化物、またはセレン
化物1Mg、Ce、Caなとの弗化物、Sx、AQ、T
a、Bなどの窒化物、ホウ素、炭素より成るものであっ
て、たとえば主成分がCeO2,La、○、、Sin、
5io2゜In203t Aff20.、Gem、Ce
O2,pb○。 S no、5no2.B i20.、TaO2,WO2
゜W○、、Ta2O,、Sc、O,、Y、○、、Tie
2゜ZrO,、CdS、ZnS、CdSe、Zn5e。 I n2 S3# I n2 S e3t S J S
xp S bz S e3*Ga、Sl、Ga2Se、
、MgF、、CeF。 CaF、、GeS、GeSe、GeSe2.SnS。 S n S、、 S n S e 、 S n S e
2. P b S 、 P b Se、Bi、Se、、
Bi、S、、TaN、Si、N4゜AQN、Si、Ti
B、、B4C,SiC,B、Cのうちの一者に近い組成
をもったもの及びこれらの混合物である。これらのうち
、硫化物ではZnSに近いものが、屈折率が適当な大き
さで膜が安定である点で好ましい。窒化物では表面反射
率があまり高くなく、膜が安定であり1強固である点で
、TaN、Si、N4またはAQN (窒化アルミニウ
ム)に近い組成のものが好ましい。酸化物で好ましいの
はY、O,、Sc、O,、CeO,。 Tie、、ZrO,、Sin、Ta、○5tInzo3
*AQ、O,,SnO2またはS i O,に近い組成
のものである。Siの水素を含む非晶質も好ましい。 保護膜を多層にすればさらに保護効果が高まる。 例えば厚さ100〜500nmのSiC2に近い組成の
膜を記録膜から遠い側に形成し、厚さ80〜130nm
のZnSに近い組成の膜を記録膜に近い側に形成すると
、記録・消去特性、多数回書き換え特性ともに良好であ
る。 上記のような保護膜の形成によって記録書き換え時の記
録膜の変形によるノイズ増加を防止することができる。 相転移(変化)によって記録を行う場合、記録膜の全面
をあらかじめ結晶化させておくのが好ましいが、基板に
有機物を用いている場合には基板を高温にすることがで
きないので、他の方法で結晶化させる必要がある。その
場合、スポット径2μm以下まで集光したレーザ光の照
射、キセノンランプ、水銀ランプなどの紫外線照射と加
熱、フラッシュランプよりの光の照射、高出力ガスレー
ザからの大きな光スポットによる光の照射、あるいは加
熱とレーザ光照射との組み合わせなどを行うのが好まし
い。ガスレーザからの光の照射の場合、光スポツト径(
半値帽)5μm以上5mm以下とすると能率がよい。結
晶化は記録トラック上のみで起こらせ、トラック間は非
晶質のままとしてもよい。記録トラック間のみ結晶化さ
せる方法も有る。一方たとえばSn、Sb及びTeを主
成分とする薄膜を、複数の蒸発源からの回転蒸着によっ
て形成した場合、蒸着直後にはSn、Sb及びTeがほ
とんど結合していない場合が多い。また、スパッタリン
グによって形成した場合も原子配列が極めて乱れた状態
になる。このような場合は、まず、高いパワー密度のレ
ーザ光を記録トラック上に照射して、場合によっては膜
を融解させるのがよい。さらに記録トラック上に低いパ
ワー密度のレーザ光を照射し、結晶化させるのとトラッ
ク−周にわたっての反射率が均一になりやすい。 結晶化するパワーレベルと非晶質に近い状態にするパワ
ーレベルとの間でパワー変調したレーザ光で記録するこ
とはL記のような初期化後の状態がどのような状態であ
っても可能である。 一般に薄膜に光を照射すると、その反射光は薄膜表面か
らの反射光と薄膜裏面からの反射光との重ね合わせにな
るため干渉をおこす。反射率の変化で信号を読みとる場
合には、記録膜に近接して光反射(吸収)層を設けるこ
とにより、干渉の効果を大きくし、読みだし信号を大き
くできる。干渉の効果をより大きくするためには記録膜
と反射(吸収)層の間に中間層を設けるのが好ましい。 中間層は記録書き換え時に記録膜と反射層との相互拡散
が起こるのを防止する効果も有する。しかし中間層の材
質の選び方によっては、例えば中間層をセレン化物とす
ると、記録膜の少なくとも一部の元素を中間層中へ拡散
させる、あるいは中間層の少なくとも一部の元素を記録
膜または反射層中へ拡散させることにより記録の少なく
とも一部を担わせることもできる。上記中間層の膜厚は
Snm以上、600nm以下で、かつ、記録状態または
消去状態において読み出し光の波長付近で記録用部材の
反射率が極小値に近くなる膜厚とするのが好ましい。反
射層は記録膜と基板との間、及びその反対側のうちのい
ずれの側に形成してもよい。中間層の特に好ましい膜厚
範囲は中間層の屈折率をNとしたとき60 / N n
 m以上160/Nnm以下及び470 / N n 
m以上570 / N n m以下の範囲である。反射
層の中間層の反対の側にも上記の無機物よりなる保護層
を形成するのが好ましい。これら3層(中間層、反射層
、保護層)は全体として単層の保護層より強固な保護層
となる。 反射層としては、金属、半金属及び半導体が使用可能で
あるが、Au、Ag、Cu、Ni、Fe。 AQ、Co、Cr、Tie Pd、Pt、W。 Ta、Moあるいはこれら同志の合金の層、これらと酸
化物などの他の物質との複合層などが好ましい。反射層
としてAuなどの、熱伝導率が2、OW/cm−deg
以上の高熱伝導率材料を生成分とするものを用いると、
熱伝導率を高め、高速結晶化する記録膜を用いても高パ
ワーレーザ光を照射したときには確実に非晶質化するよ
うにする効果ももつ。この場合は中間層にも熱伝導率の
高いA Q、O,、A Q N、 S i、N4. Z
 n Sなどに近い組成の材料を用いるか、Sin、な
どの熱伝導率が中程度(0,02W/cm−deg以上
0.lW/cl−68g以下)の材料を用い、中間層を
薄くするのが特に好ましい。 本発明の記録膜は、共蒸着や共スパッタリングなどによ
って、保護膜として使用可能と述べた酸化物、弗化物、
窒化物、有機物など、あるいは炭素または炭化物の中に
分散させた形態としてもよい。そうすることによって光
吸収係数を調節し、再生信号強度を大きくすることがで
きる場合が有る。混合化率は、酸素、弗素、窒素、炭素
が膜全体で占める割合が40%以下が好ましい。このよ
うな複合膜化を行うことにより、結晶化の速度が低下し
、感度が低下するのが普通である。ただし有機物との複
合膜化では感度が向上する。 各部分の膜厚の好ましい範囲は下記のとおりである。 記録膜 反射層を用いない場合 15nm以上500nm以下 25nm以上300nm以下 の範囲が再生信号強度及び記 緑感度の点で特に好ましい。 反射層との2/!以上の構造の場合 15nm以上150nm以下 無機物保護層  5nm以上500nm以下ただし無機
物基板自体で保護 する時は、0.1〜20mm 有機物保護層  500nm以上10 m m以下中間
/IF      3 n m以上600nm以下光反
射層    5nm以上300nm以下光反射層に隣接
した無機物保護層 50nm以上500nm以下 上記のような記録膜以外の各層の材質や膜厚は本発明の
記録膜に限らず他の相変化記録膜、光磁気記録膜、相互
拡散型記録膜などにも有効である。 以上の各層の形成方法は、真空蒸着、ガス中蒸着、スパ
ッタリング、イオンビーム蒸着、イオンブレーティング
、電子ビーム蒸着、射出成形、キャスティング、回転塗
布、プラズマ重合などのうちのいずれかを適宜選ぶもの
である。保護層、記録膜、中間層、反射層、及び反射層
に隣接した保護層は、すべてスパッタリングにより形成
するのが最も好ましい。 本発明の記録膜は必ずしも非晶質状態と結晶状態の間の
変化を記録に利用する必要は無く、膜の形状変化をほと
んど伴わないなんらかの原子配列変化によって光学的性
質の変化を起こさせればよい。たとえば結晶粒径や結晶
形の変化、結晶と準安定状態(π、γなど)との間の変
化などでもよい。非晶質状態と結晶状態の変化でも、非
晶質は完全な非晶質でなく、結晶部分が混在していても
よい。また、記録層と保護層、中間層のうちの少なくと
も一部との間で、これらの層を構成する原子のうちの一
部が移動(拡散、化学反応などによる)することにより
、あるいは移動と相変化の両方により記録されてもよい
。 本発明の記録用部材は、ディスク状としてばかりではな
く、テープ状、カード状などの他の形態でも使用可能で
ある。 [実施例] 以下に本発明を実施例によって詳細に説明する。 直径13cm、厚さ1.2mmのディスク状化学強化ガ
ラス板の表面に紫外線硬化樹脂によって保護層を兼ねる
トラッキング用の溝のレプリカを形成し、−周を32セ
クターに分割し、各セクターの始まりで、溝と溝の中間
の山の部分に凹凸ピットの形でトラックアドレスやセク
ターアドレスなどを入れた(この部分をヘッダ一部と呼
ぶ)基板1上にマグネトロンスパッタリングによってま
ず保護層である厚さ約300nmのS i O2暦2を
形成した。このS i o、iは基板との屈折率差が小
さいので、膜厚に多少ムラやバラツキがあってもよい。 次に、このディスクを複数のターゲットをもち、順次積
層膜を形成でき、また、膜厚の均一性、再現性のよいス
パッタリング装置に移し、ZnSを約110nmの厚さ
にスパッタしてN3とした。次にZn8層3上に同一ス
パッタ装置でS n14*) S b、、、、’r e
ste、の組成の記録膜4を約30nmの膜厚に形成し
た。続いて同一スパッタ装置内でZnSの保護層5を約
50nmの膜厚に形成した。さらに、この上に同一スパ
ッタリング装置内でAuの反射層6を約50nmの膜厚
に形成し、次にZnS保護層7を150nm形成した。 同様にしてもう一枚の同様な基板1′上にS 1o2J
12’、Zn8層3 ’ Is nL413s b2.
.6’r eS71、の組成の記録膜4’、ZnS層5
’Au反射層6 ’ ZnS層7′を順次形成した。こ
のようにして得た2枚のディスクをN7及び7′側を内
側にして接着剤層8によって貼り合わせを行った。この
時、全面を接着すれば書き換え可能回数を多くでき、記
録領域には接着剤を着けなければ少し記録感度が高くな
った。 上記のように作製したディスクには次のようにして記録
・再生・消去を行った。ディスクを180Orpmで回
転させ、半導体レーザ(波長830nm)の光を記録が
行われないレベルに保って、記録ヘッド中のレンズで集
光して基板を通して一方の記録膜に照射し1反射光を検
出することによって、トラッキング用の溝と溝の中間に
光スポットの中心が常に一致するようにヘッドを駆動し
た。溝と溝の中間を記録トラックとすることによって溝
から発生するノイズの影響を避けることができる。この
ようにトラッキングを行いながら、さらに記録膜上に焦
点が来るように自動焦点合わせを行い、まず、パワー密
度の高いレーザ光を連続的に照射することによって記録
トラック上の記録膜を加熱し、各元素を反応、結晶化さ
せた。 非晶質化するのに適当なレーザパワーの範囲は、結晶化
するパワーより高く、強い変形を生じたり穴があくより
も低い範囲である。結晶化するのに適当なレーザパワー
の範囲は、結晶化が起こる程度に高く、非晶質化が起こ
るより低い範囲である。 光デイスクドライブ(記録・再生装置)における記録は
次のようにして行った。ディスクを180Orpmで回
転させ、半導体レーザ(波長830nm)の光を記録が
行われないレベル(約imW’)に保って、記録ヘッド
中のレンズで集光して基板を通して一方の記録膜に照射
し、反射光を検出することによって、トラッキング用の
溝と溝の中間に光スポットの中心が常に一致するように
ヘッドを駆動した。こうすることによって溝から発生す
るノイズの影響を避けることができる。 このようにトラッキングを行いながら、さらに記録膜上
に焦点が来るように自動焦点合わせを行い。 記録を行う部分では、レーザパワーを中間パワーレベル
1.1mWと高いパワーレベル18mWとの間で第2図
に示したように変化させることにより記録を行った。高
いパワーレベルと中間パワーレベルとのパワーの比は1
 : 0.4〜1 : 0.8の範囲が特に好ましい。 また、この他に短時間ずつ他のパワーレベルにしてもよ
い。記録された部分の非晶質に近い部分を記録点と考え
る。記録を行う部分を通り過ぎれば、レーザパワーを1
mWに下げてトラッキング及び自動焦点合わせを続けた
。 なお、記録中もトラッキング及び自動焦点合わせは継続
される。このような記録方法は、既に記録されている部
分に対して行っても記録されていた情報が新たに記録し
た情報に書き換えられる。すなわち東−の円形光スポッ
トによるオーバーライドが可能である。このようにオー
バーライドができるのが5本実施例で述べる本発明の記
録膜材料の特長である。しかし、記録書き換え時の最初
の1一回転または複数回転で、上記のレーザパワー変調
の高い方のパワーである18mWに近いパワーたとえば
1.6mWの連続光を照射して一旦消去した後、次の1
回転で11mWと18mWの間で情報信号に従ってパワ
ー変調したレーザ光を照射して記録すれば、前に書かれ
ていた情報の消え残りが少なく、高い搬送波対雑音比が
得られる。この場合に最初に照射する連続光のパワーは
、上記の高いパワーレベルを1としたとき0.8〜1.
1の範囲で良好な書き換えが行えた。この方法は本発明
の記録膜ばかりでなく他の記録膜にも有効である。 記録・消去は10’回以上繰返し可能であった。 記録膜の上下に形成するZnS層を省略した場合は、数
回の記録・消去で多少の雑音増加が起こった。 読み出しは次のようにして行った。ディスクをt800
rpmで回転させ、記録時と同じようにトラッキングと
自動焦点合わせを行いながら、記録及び消去が行われな
い低パワーの半導体レーザ光で反射光の強弱を検出し、
情報を再生した。 本実施例では約100mVの信号出力が得られた。 本実施例の記録膜は耐酸化性が優れており、ZnS保護
膜を形成しないものを60℃相対湿度95%の条件下に
置いてもほとんど酸化されなかった・ 上記の5n−3b−Te系記録膜において、他の元素の
相対的比率を一定に保って、Te含有辰を変化させたと
き、消去の必要照射時間は次のように変化した。 消去の必要照射時間 Sn、、5bs2Te、     5.0μ5ecSn
、。5bGoTe11.  1.0μ5ecS n21
.7s b、3.、’r +3S  0.5 it s
 e cS nxt−7s bzs、yT m47 0
 、1 μs e cSntoSt)zoTevo  
  o、lμ5ecSns、tSbx3.3Te、、 
 0.5μ5ecSnsSb1oTess     1
.Oμs ecSn4Sb、Te8s    5.0μ
sec他の元素の相対的比率を一定に保って、sb含有
量を変化させたとき、消去の必要照射時間は次のように
変化した。 消去の必要照射時間 n1g*4s b、’r e7?+@  5 a Op
 S e Qn、、S b、Te、sl、 0 p s
 e cnl、S b、。’re、、    o、 5
 μS e Cn17*4s l)t3T81g、4 
0 、1 p s e cnlts t)4BIT 8
41   0 、1 μs e cS n11S b4
5Te、4   0.5 Ps e cSn、Sb、。 Te、、      1.Qμ5 ecS n5S b
75T m20     5−  Op s e c他
の元素の相対的比率を一定に保って、Sn含有量を変化
させたとき、記録に必要なレーザ光のパワー及び消去の
必要照射時間は次のように変化した。 記録レーザパワ S niS b23T e、。 Sn3 S b 32 e3 T e G4 m73 
n、 S b31@t’r e、、。 Sn、Sb、、Te、。 S n 23 S b 25 m7 T e st +
3S n30 S b、、、、’r 8BBS n G
6 S b 1g 、7 T e 33 +3S ns
g S b、、T a、。 6mW 6mW 6mW 6mW 6mW 8mW 0mW 記録できず 消去の必要照射時間 5n1SbxzTess     2.Oμ5ecS 
n、s 1)32+3Te64.7  1e Oμ”A
 e QSn、Sb、、tTeaz、30.5μ5ec
S n、S b、、Te、□0.1 μs e cS 
nz3S bzg*1Te51−3 0+ 1 μS 
e QS n:lo S b23.、”r e4’GH
70,5μ5ecS ns、、S bls−7T 83
3.30 、5 μS e QSn、、Sb□、Te、
。   Q、5μ5ecSn−3b−Tea元相同相図
 b、T e、と5nTeを結ぶ直線上で組成を変化さ
せたとき、消去の必要照射時間及び一定速度で昇温した
場合の結晶化温度は次のように変化した。 Sn xz S bzz IIG T 1B 55 +
4S n、、Sbi、Te54 S n 43 a@ S b 5 T e G1 ++
2Sn、、5b4Te、1 結晶化部 S l’l 2 S b 3@ e5 T e sg 
+6S n3 S b a7*6 T e gg +4
S n5 S b3sT esg S n 7 S b 34 n4 T e 5B +l
iS n23 S b、L、、’r ass。 S n3.S bl、T e、。 S n43−as bsT es□、zSn45Sb4
Te、工 1μs 1μs 1μs 1μS  C C Q (3Q 度 220℃ 220℃ 200℃ 180’C 180℃ 160℃ 140℃ 120’C 消去の必要照射時間 S n2 S b3g、sT ass、s   2 、
O/A SS nx S bsl、sT ass、4 
1 、 O/A SSSn5S))xsTe5    
o、5μsS n7 S b34−4T e5B−s 
  0 、1 /! S C C C C 他の元素の相対的比率を一定に保って、TQ含有量を変
化させたとき、消去の必要照射時間は次のように変化し
た。 消去の必要照射時間 a=  0     0.1μ5ec a=  1     0.05μ5eca=10   
  0.05μsec α=15     0.05μ5ec TQが上記含有量より多いと、60℃95%中における
透過率20%上昇までの時間が短い。 他の元素の相対的比率を一定に保って、CO含有量を変
化させたとき、一定速度で昇温した場合の結晶化温度及
び記録に必要なレーザ光のパワーは次のように変化した
。 結晶化 β=0 β=1 β=10 β=20 β=30 β=35 温度 180℃ 280℃ 300℃ 300℃ 300℃ 300℃ 記録レーザパワー β=  0     16mW β”1     16mW β=10     16mW β=20     18mW β= 30     20 m W β=35     記録できず 他の元素の相対的比率を一定に保って、TO及びCoを
同時に添加することによって信号変調度が大きくなる効
果が有る。 この他、他の元素の相対的比率を一定に保ったGdなど
の希土類元素の30%以下の添加によって結晶化温度が
上昇する効果が有る。20%以下が好ましい。10%以
下が特に好ましい。 Dで表される他の元素も添加によって若干の感度向上、
耐酸化性向上などの効果が有る。 中間層の膜厚は中間層の屈折率をNとしたときに60 
/ N n m以上L 60 / N n m以下の範
囲が消去比が大きいという点で好ましい。膜厚は薄い領
域の方がレーザ照射後の冷却速度が大きく、非晶質化が
確実に行える。ただし、3nm以上600 n、 m以
下の範囲でも、記録・再生は可能である。 Snの一部または全部を置換してBi、、Pb。 Ga、Au及びInのうち少なくとも一元素を添加して
もよく似た特性かえられる。このうち。 SnをAuで置換したA u z 4 、3 S b 
2 B 、 6 T e57 、、について、他の元素
の比率を一定に保って、Te含有量を変化させたとき、
記録に必要なレーザパワーは次の采に変化した。 記録レーザパワー y=47     20mW y=55     18mW y=60     16mW y”70     16mW Snの一部または全部をBiで置換し、ZnSのWjを
すべてS b2S e、暦にすると、Biの、隣接する
層中への拡散が起こって、高い記録感度と、記録パワ一
対再生信号強度曲線の鋭い立ち上がり特性が得られたが
、書き換えの繰り返しによる特性変化は大きくなった。 TQの一部または全部を置換してハロゲン元素、アルカ
リ金属元素のうちの少なくとも一元素を添加してもよく
似た特性かえられる。TQについで好ましいハロゲン元
素F、CI2.Br、Iのうちでは、■が特に好ましく
、ついでCQが好ましい。 アルカリ金属元素、Li、Na、に、Rb、Csのうち
ではNaが特に好ましく、ついでKが好ましい。 Coの一部または全部を置換してCu、Ag+Sc、Y
、Zr、V、Nb、Cr、Mo、Mn。 Fe、Ru、Ti、Rh、Ta、W、 丁r及びNiの
うちの少なくとも一元素を添加してもよく似た特性が得
られる。これらのうち、Tj、V。 Cr、Mn、Zr及びN1のうちの少なくとも一元素は
、蒸着が容易であるという点で好ましい。 保護膜、中間層のうちの少なくとも一部に用いているZ
nSの代わりにSin□、S io、Y2O3やTaN
、Al2N、Si、N4などの酸化物や窒化物、5b2
83などの硫化物、5nSe2,5bSe。 などのセレン化物、CeF、などの弗化物、または非晶
質Si、TiB2.B4C,BCなど、あるいは上記の
すべての材料のそれぞれに近い組成のものを用いてもよ
い。これらの積層膜(2層以上)も保護強度を上げるの
に有効である。例えば記録膜から遠い側に厚さ300n
mのSiO□層、記録膜に近い側に厚さ110nmのZ
nS層を配置した2層構造は書き換えによる特性変化が
少なく。 良好であった。 反射層として、Auの一部または全部を置換してAg、
Cu、Ni、F−e、An、Co、Cr。 Ti、Pd、Pt、We Ta、Moなどを用いてもよ
く似た特性が得られた。 基板として、紫外線硬化樹脂層層を表面に形成した化学
強化ガラスの代わりに、表面に直接トラッキングガイド
などの凹凸を形成したポリカーボネート、ポリオレフィ
ン、エポキシ、アクリル樹脂などを用いてもよい。 【発明の効果1 以上説明したように、本発明によれば、記録・再生特性
がよく、かつ長期間安定な情報の記録用部材を得ること
ができる。記録の書き換えも多数回可能である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for recording data using a recording beam such as a laser beam or an electron beam.
For example, it relates to an information recording thin film that can record in real time FM modulated analog signals such as video and audio, computer data, facsimile signals, digital audio signals, and other digital information. be. [Conventional technology] There are various recording principles for recording on thin films using laser light, but recording based on atomic arrangement changes such as phase transition (also called phase change) of the film material and photodarkening does not involve almost any deformation of the film. Therefore, it has the advantage of being able to create a double-sided disc by directly pasting two discs together. Furthermore, if the composition is appropriately selected, it is also possible to rewrite records. Many inventions relating to this type of recording have been filed, the earliest being disclosed in Japanese Patent Publication No. 47-26897. Here, Te-Ge system, As-Te-Ge system, T
Many thin films such as e-0 series are described. Furthermore, Ge is also disclosed in Japanese Patent Application Laid-Open No. 54-41902. 'r Q
, 5bsS870 and other various compositions have been described. Also, in JP-A-57-24039, S bziT 8z
z*g S e62aS. Cd,4Tai4Se,,,B i,Se,,5b2S
e,,I n,,Te,. S esll, B i,,T
e,,,, S e,,,,. Thin films of Cu5e, and T e33S e, are described. [Problems to be Solved by the Invention] When used as a one-time writeable or rewritable phase change recording film, the above-mentioned conventional thin films have a slow crystallization speed, low absorption of semiconductor laser light, and poor sensitivity. However, it has drawbacks such as insufficient reproduction signal strength, large distortion of the reproduced waveform, poor stability of the amorphous state, insufficient oxidation resistance, and large residual amount, making it difficult to put it into practical use. be. Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a thin film for information recording that has good recording/reproducing characteristics, high sensitivity, and good stability. [Means for Solving the Problems 1] In order to achieve the above object, in the information recording thin film of the present invention, the average composition in the film thickness direction of the information recording thin film is expressed by the general formula SbxTeyAzBαCβDγ. . However, x, y, z, α, β, and γ are each expressed in atomic percent as 5≦x≦70.10≦y≦85゜3≦2≦50,
The values are in the range of 0≦α≦20, 0≦β≦30, 0≦γ≦30, and A is Sn and Bi. At least one element of Pb, Ga, Au and In,
B is at least one element selected from halogen elements such as Tl and I, and alkali metals such as Na. These elements have the effect of cutting the chain-like atomic arrangement of Te and Se in materials containing Te and Se and increasing the crystallization rate. However, since they are accompanied by a decrease in the crystallization temperature, If it is not added to high-quality materials, it will impair the stability of the amorphous state. C
are Ag, Cu, Pd, Ta, W, Ir, Sc, and Y. Ti, Zr, Vs Nb, Cr, Mo, Mn, Fe. At least one element among Ru, Co, Rh and Ni, D
is an element other than the elements represented by Sb, Te, Ay, B, and C, such as Hg, Se, S, and As. AQ, B, C, Si, No P, O, lanthanide elements,
At least one element selected from actinide elements, alkaline earth metal elements, inert gas elements, and the like. However, A,
One or more of the elements represented by B and C can also be considered as elements of group D if another element of each group is already used. For example, 5b-Te-3n-
Ni with respect to Co system, Ni content and C with less than 30 atomic %. It is conceivable that the elements are added in such a range that the sum of the contents is 30 atomic % or less, which is the upper limit of the content of group C elements. Among these, AQ
, Hg, alkaline earth metal elements, and inert gas elements are preferably contained in a content of less than 10 atomic %. The composition of the recording thin film of the present invention may vary in the thickness direction as long as the average composition in the thickness direction is within the above range. However, it is more preferable that the composition change is not discontinuous. Recording is performed with an energy beam of irradiation time and power that is capable of causing a change in atomic arrangement (for example, from one phase to another) and that does not cause significant deformation of the recording film. [Function] The roles of each of the above-mentioned group elements are as follows. By coexisting with elements such as Sn represented by Sb, Te, and B in an appropriate ratio, the amorphous state can be stably maintained and crystallization can be performed at high speed during recording and erasing. Make it. An element such as CO represented by C has the effect of increasing recording sensitivity by facilitating the absorption of long wavelength light such as semiconductor laser light, and also enables high-speed crystallization. The element represented by B, such as TQ, has the effect of improving the crystallization rate and also improving the stability of the amorphous state. If group B elements and group C elements coexist, high-speed crystallization is possible, the stability of the amorphous state is high, and the recording sensitivity is also high. When adding either the B group element or the C group element,
Addition of group B elements is preferable in terms of ease of film formation, but oxidation resistance decreases. Addition of an element such as Ar represented by D does not have a particularly significant effect, but if the amount added is small, there will be no major adverse effect. Note that among these elements, rare earth elements and the like can play roles such as increasing the reproduction signal intensity and increasing the crystallization temperature when added in an amount of 1 to 20%. In addition, Se and S have the effect of improving oxidation resistance by adding 1 to 20% while keeping the ratio of other elements constant. However, heat resistance is slightly reduced. Also in terms of erasing properties, the Se content is preferably 1 to 3%. The information recording thin film of the present invention having the above-mentioned composition range has excellent recording and reproducing properties, and requires low power of laser light used for recording and erasing. It also has excellent stability. X+ y+Z+ More preferable ranges of α, β and γ are as follows. The range is 10≦x≦45 35≦y≦80 5≦2・≦30 0≦α≦15 0≦β≦20 0≦γ≦20. Particularly preferred ranges of x, y, z, α, β and γ are as follows. 13≦x≦40 47≦y≦70 7≦2≦23 0≦α≦10 0≦β≦10 0≦γ≦10. However, if the element represented by A is Au,
If the Te content is low, the recording sensitivity is low, so 60≦y≦
A value of 70 is particularly preferred. In each of the above ranges, if the γ valve is O, the membrane can be easily produced. If 1≦α+β≦20, the amount of unerased data becomes smaller and the recording retention time becomes longer. If 1≦α≦10 and 1≦β≦10, the degree of signal modulation becomes even larger. Among the elements represented by B, TQ is particularly preferred. Next preferred are halogen elements, followed by other halogen elements such as CQ. Among the elements represented by D, rare earth elements are preferred. Among the elements represented by B, Pb, Ga, and In slightly lower the oxidation resistance. However, In is recorded/
Excellent erasing properties. Au reduces recording sensitivity but improves oxidation resistance. Although the change in the content of each element in the film thickness direction is usually small, there may be any pattern of change. Sb,
Regarding Se and S, near the interface of either one of the recording thin films (sometimes at the interface with another layer),
It is better to have more than inside. It is preferable that at least one surface of the recording film of the present invention is closely protected by another substance. It is even better if both sides are protected. These protective layers may be formed of organic materials such as acrylic resin, polycarbonate, polyolefin, epoxy resin, polyimide, polyamide, polystyrene, polyethylene, polyethylene terephthalate, fluororesin such as polytetrafluoroethylene (Teflon), etc. Often these may be substrates. Alternatively, it may be formed by an ultraviolet curing method. It may be formed from an inorganic material whose main component is oxide, fluoride, nitride, sulfide, selenide, carbide, boride, boron, carbon, or metal. Alternatively, a composite material of these may be used. Substrates based on glass, quartz, sapphire, iron, titanium, or aluminum can also serve as one inorganic protective layer. Among organic substances and inorganic substances, those in close contact with inorganic substances are preferable in terms of heat resistance. However, increasing the thickness of the inorganic layer (except for the substrate) tends to cause at least one of cracking, decreased transmittance, and decreased sensitivity. It is preferable that a thick organic layer be closely attached to the side to increase mechanical strength. This organic layer may be a substrate. This also makes deformation less likely to occur. Examples of organic substances include polystyrene, polytetrafluoroethylene (Teflon), polyimide, acrylic resin, polyolefin, polyethylene terephthalate, polycarbonate, and epoxy resin. Ethylene-vinyl acetate copolymer, which is known as a hot melt adhesive, and adhesives are used. It may also be an ultraviolet curing resin. In the case of a protective layer made of an inorganic material, it may be formed as is by electron beam evaporation, sputtering, etc., but it may be formed by reactive sputtering, metal,
Manufacturing is facilitated by forming a film made of at least one element of semimetals and semiconductors and then reacting it with at least one of oxygen, sulfur, and nitrogen. Examples of inorganic protective layers include Ce e La y S x p.
I n rAM, Ge, Pb, Sn, Bi, Te, T
an oxide of at least one element selected from the group consisting of a, Sc, Y, Ti, Zr, V, Nb, Cr and W; Cd;
Sulfide or selenide of at least one element selected from the group consisting of Zn, Ga, In, Sb, Ge, Sn, Pb, fluoride of Mg, Ce, Ca, Sx, AQ, T
It is made of nitrides such as a, B, boron, and carbon, and the main components are, for example, CeO2, La, ○, Sin,
5io2゜In203t Aff20. , Gem, Ce
O2, pb○. S no, 5no2. B i20. , TaO2, WO2
゜W○,,Ta2O,,Sc,O,,Y,○,,Tie
2゜ZrO,, CdS, ZnS, CdSe, Zn5e. I n2 S3# I n2 S e3t S J S
xp S bz S e3*Ga, Sl, Ga2Se,
, MgF, , CeF. CaF, , GeS, GeSe, GeSe2. SnS. S n S,, S n S e, S n S e
2. PbS, PbSe, Bi, Se,,
Bi, S, TaN, Si, N4゜AQN, Si, Ti
These are those having a composition close to one of B, B4C, SiC, B, and C, and mixtures thereof. Among these, sulfides close to ZnS are preferred because they have an appropriate refractive index and a stable film. Nitride having a composition close to TaN, Si, N4, or AQN (aluminum nitride) is preferable because the surface reflectance is not very high and the film is stable and strong. Preferred oxides are Y, O, Sc, O, CeO. Tie,,ZrO,,Sin,Ta,○5tInzo3
*It has a composition close to AQ, O,, SnO2 or SiO. Amorphous Si containing hydrogen is also preferred. If the protective film is made of multiple layers, the protective effect will be further enhanced. For example, a film with a composition similar to SiC2 with a thickness of 100 to 500 nm is formed on the side far from the recording film, and a film with a thickness of 80 to 130 nm is formed on the side far from the recording film.
When a film having a composition similar to that of ZnS is formed on the side closer to the recording film, both recording/erasing characteristics and multiple rewriting characteristics are good. By forming the protective film as described above, it is possible to prevent an increase in noise due to deformation of the recording film during recording and rewriting. When recording by phase transition (change), it is preferable to crystallize the entire surface of the recording film in advance, but if the substrate is made of an organic substance, it is not possible to heat the substrate to a high temperature, so other methods are recommended. It is necessary to crystallize it. In that case, irradiation with laser light focused to a spot diameter of 2 μm or less, irradiation with ultraviolet rays and heating using a xenon lamp, mercury lamp, etc., irradiation with light from a flash lamp, irradiation with a large light spot from a high-power gas laser, or It is preferable to use a combination of heating and laser light irradiation. In the case of light irradiation from a gas laser, the light spot diameter (
(Half value cap) Efficiency is good if the thickness is 5 μm or more and 5 mm or less. Crystallization may occur only on recording tracks, and the space between tracks may remain amorphous. There is also a method of crystallizing only between recording tracks. On the other hand, for example, when a thin film containing Sn, Sb, and Te as main components is formed by rotary evaporation from a plurality of evaporation sources, Sn, Sb, and Te are often hardly bonded together immediately after evaporation. Furthermore, when formed by sputtering, the atomic arrangement becomes extremely disordered. In such a case, it is best to first irradiate the recording track with a laser beam of high power density to melt the film as the case may be. Furthermore, by irradiating a recording track with a laser beam of low power density to cause crystallization, it is easy to make the reflectance uniform over the circumference of the track. It is possible to record with a laser beam whose power is modulated between the power level that produces crystallization and the power level that produces a state close to amorphous, regardless of the state after initialization as shown in L. It is. Generally, when a thin film is irradiated with light, the reflected light becomes a superposition of the reflected light from the surface of the thin film and the reflected light from the back surface of the thin film, causing interference. When reading signals based on changes in reflectance, by providing a light reflecting (absorbing) layer close to the recording film, the interference effect can be increased and the readout signal can be increased. In order to further enhance the interference effect, it is preferable to provide an intermediate layer between the recording film and the reflective (absorbing) layer. The intermediate layer also has the effect of preventing mutual diffusion between the recording film and the reflective layer during recording and rewriting. However, depending on how the material of the intermediate layer is selected, for example, if the intermediate layer is made of selenide, at least some of the elements of the recording film may be diffused into the intermediate layer, or at least some of the elements of the intermediate layer may be diffused into the recording film or the reflective layer. At least a portion of the recording can also be performed by diffusing it inside. The thickness of the intermediate layer is preferably S nm or more and 600 nm or less, and is preferably such that the reflectance of the recording member approaches a minimum value near the wavelength of the readout light in the recording state or erasing state. The reflective layer may be formed either between the recording film and the substrate or on the opposite side. A particularly preferable thickness range of the intermediate layer is 60/N n when the refractive index of the intermediate layer is N.
m or more and 160/Nnm or less and 470/Nn
The range is from m to 570/N nm. It is preferable to form a protective layer made of the above-mentioned inorganic material also on the side opposite to the intermediate layer of the reflective layer. These three layers (intermediate layer, reflective layer, and protective layer) collectively form a stronger protective layer than a single protective layer. As the reflective layer, metals, semimetals and semiconductors can be used, including Au, Ag, Cu, Ni and Fe. AQ, Co, Cr, Tie Pd, Pt, W. A layer of Ta, Mo or an alloy of these, a composite layer of these and other substances such as oxides, etc. are preferable. The reflective layer is made of Au or other material with a thermal conductivity of 2, OW/cm-deg.
When using the above-mentioned material with high thermal conductivity as a generating component,
It also has the effect of increasing thermal conductivity and ensuring that even if a recording film that crystallizes at high speed is used, it becomes amorphous when irradiated with high-power laser light. In this case, the intermediate layer also has high thermal conductivity A Q, O,, A Q N, Si, N4. Z
Use a material with a composition close to nS, etc., or use a material with medium thermal conductivity (0.02W/cm-deg or more and 0.1W/cl-68g or less) such as Sin, to make the intermediate layer thinner. is particularly preferred. The recording film of the present invention can be produced by co-deposition, co-sputtering, etc. using oxides, fluorides,
It may also be in the form of a nitride, an organic substance, etc., or dispersed in carbon or carbide. By doing so, it may be possible to adjust the optical absorption coefficient and increase the reproduced signal strength. The mixing ratio is preferably such that oxygen, fluorine, nitrogen, and carbon account for 40% or less in the entire film. By forming such a composite film, the speed of crystallization generally decreases, and the sensitivity decreases. However, forming a composite film with an organic material improves sensitivity. The preferred range of film thickness for each portion is as follows. Recording film When a reflective layer is not used, a range of 15 nm or more and 500 nm or less and 25 nm or more and 300 nm or less is particularly preferable in terms of reproduction signal strength and green recording sensitivity. 2/ with reflective layer! In the case of the above structure, 15 nm or more and 150 nm or less Inorganic protective layer 5 nm or more and 500 nm or less However, when protecting with the inorganic substrate itself, 0.1 to 20 mm Organic protective layer 500 nm or more and 10 mm or less Intermediate/IF 3 nm or more and 600 nm or less Light Reflective layer: 5 nm or more and 300 nm or less Inorganic protective layer adjacent to the light reflective layer 50 nm or more and 500 nm or less The materials and film thicknesses of each layer other than the recording film as described above are not limited to the recording film of the present invention, but may include other phase change recording films, optical It is also effective for magnetic recording films, interdiffusion type recording films, etc. The method for forming each of the above layers may be selected from among vacuum evaporation, gas evaporation, sputtering, ion beam evaporation, ion blating, electron beam evaporation, injection molding, casting, spin coating, plasma polymerization, etc. be. Most preferably, the protective layer, the recording film, the intermediate layer, the reflective layer, and the protective layer adjacent to the reflective layer are all formed by sputtering. The recording film of the present invention does not necessarily need to utilize a change between an amorphous state and a crystalline state for recording, but it is sufficient to cause a change in optical properties by some kind of atomic arrangement change that hardly involves a change in the shape of the film. . For example, it may be a change in crystal grain size or crystal shape, or a change between a crystal and a metastable state (π, γ, etc.). Even when changing between an amorphous state and a crystalline state, the amorphous state is not completely amorphous, and crystalline portions may be mixed. In addition, some of the atoms constituting these layers may migrate (due to diffusion, chemical reaction, etc.) between the recording layer, the protective layer, and at least part of the intermediate layer, or due to migration. Both phase changes may be recorded. The recording member of the present invention can be used not only in the form of a disk but also in other forms such as a tape or a card. [Examples] The present invention will be explained in detail below using Examples. A replica of a tracking groove that also serves as a protective layer is formed on the surface of a disk-shaped chemically strengthened glass plate with a diameter of 13 cm and a thickness of 1.2 mm using an ultraviolet curing resin, and the circumference is divided into 32 sectors, and at the beginning of each sector. First, by magnetron sputtering, a protective layer with a thickness of approx. A 300 nm SiO2 layer 2 was formed. Since this S io,i has a small refractive index difference with the substrate, there may be some unevenness or variation in the film thickness. Next, this disk was transferred to a sputtering device that has multiple targets and is capable of sequentially forming laminated films with good film thickness uniformity and reproducibility, and ZnS was sputtered to a thickness of approximately 110 nm to form N3. . Next, on the Zn8 layer 3, S n14 *) S b, ,,'re
A recording film 4 having a composition of ste, was formed to a thickness of about 30 nm. Subsequently, a protective layer 5 of ZnS was formed to a thickness of about 50 nm in the same sputtering apparatus. Further, an Au reflective layer 6 was formed thereon to a thickness of about 50 nm in the same sputtering apparatus, and then a ZnS protective layer 7 was formed to a thickness of 150 nm. Similarly, on another similar board 1', S 1o2J
12', Zn8 layer 3' Is nL413s b2.
.. 6'r eS71, recording film 4', ZnS layer 5
'Au reflective layer 6' and ZnS layer 7' were successively formed. The two disks thus obtained were bonded together with the adhesive layer 8 with the N7 and 7' sides facing inside. At this time, if the entire surface was glued, the number of rewrites could be increased, and if no adhesive was applied to the recording area, the recording sensitivity would be slightly higher. Recording, playback, and erasing were performed on the disc manufactured as described above in the following manner. The disk is rotated at 180 rpm, and the light from the semiconductor laser (wavelength 830 nm) is kept at a level that does not allow recording.The lens in the recording head focuses the light and irradiates it through the substrate onto one recording film, and detects one reflected light. By doing this, the head was driven so that the center of the optical spot was always aligned between the tracking grooves. By setting the recording track between the grooves, the influence of noise generated from the grooves can be avoided. While tracking in this way, automatic focusing is performed so that the focus is on the recording film, and first, the recording film on the recording track is heated by continuously irradiating a laser beam with high power density. Each element was reacted and crystallized. The range of laser power suitable for amorphization is higher than the power for crystallization and lower than the power that causes strong deformation or formation of holes. The range of laser power suitable for crystallization is high enough to cause crystallization and low enough to cause amorphization. Recording on an optical disk drive (recording/reproducing device) was performed as follows. The disk is rotated at 180 rpm, and the light from the semiconductor laser (wavelength: 830 nm) is kept at a level (approximately imW') that does not allow recording, and the lens in the recording head focuses the light and irradiates it through the substrate onto one recording film. By detecting the reflected light, the head was driven so that the center of the light spot was always aligned between the tracking grooves. By doing this, the influence of noise generated from the groove can be avoided. While tracking in this way, automatic focusing is performed to bring the focus onto the recording film. In the recording section, recording was performed by changing the laser power between an intermediate power level of 1.1 mW and a high power level of 18 mW as shown in FIG. The power ratio between the high power level and the intermediate power level is 1
The range of : 0.4 to 1 : 0.8 is particularly preferable. In addition, other power levels may be set for short periods of time. The recorded portion that is close to amorphous is considered to be the recording point. Once you pass the recording area, reduce the laser power to 1
mW and continued tracking and autofocusing. Note that tracking and automatic focusing continue even during recording. In such a recording method, even if it is performed on a portion that has already been recorded, the previously recorded information is rewritten with newly recorded information. That is, overriding by the eastern circular light spot is possible. The ability to override in this way is a feature of the recording film material of the present invention, which will be described in the fifth embodiment. However, during the first 11 revolutions or multiple revolutions during recording/rewriting, continuous light with a power close to 18 mW, for example 1.6 mW, which is the higher power of the above laser power modulation, is irradiated and erased, and then the next 1
By irradiating and recording with a laser beam whose power is modulated according to the information signal between 11 mW and 18 mW by rotation, there is little remaining information written previously and a high carrier-to-noise ratio can be obtained. In this case, the power of the continuous light that is first irradiated is 0.8 to 1.0 when the above-mentioned high power level is 1.
Good rewriting was possible within the range of 1. This method is effective not only for the recording film of the present invention but also for other recording films. Recording and erasing could be repeated 10' times or more. When the ZnS layers formed above and below the recording film were omitted, a slight increase in noise occurred after several times of recording and erasing. Reading was performed as follows. disk to t800
rpm, and while tracking and automatic focusing are performed in the same way as during recording, the strength of the reflected light is detected using a low-power semiconductor laser beam that does not perform recording or erasing.
Replayed information. In this example, a signal output of about 100 mV was obtained. The recording film of this example had excellent oxidation resistance, and was hardly oxidized even when it was placed at 60°C and 95% relative humidity without forming a ZnS protective film. In the recording film, when the relative proportions of other elements were kept constant and the Te content was changed, the required irradiation time for erasing changed as follows. Required irradiation time for erasing Sn, 5bs2Te, 5.0μ5ecSn
,. 5bGoTe11. 1.0μ5ecS n21
.. 7s b, 3. ,'r +3S 0.5 it s
e cS nxt-7s bzs,yT m47 0
, 1 μs e cSntoSt)zoTevo
o, lμ5ecSns, tSbx3.3Te,,
0.5μ5ecSnsSb1oTess 1
.. Oμs ecSn4Sb, Te8s 5.0μ
sec When the relative proportions of other elements were kept constant and the sb content was varied, the required irradiation time for erasing changed as follows. Required irradiation time for erasing n1g*4s b,'r e7? +@5 a Op
S e Qn,, S b, Te, sl, 0 p s
e cnl, S b,. 're,, o, 5
μS e Cn17*4s l)t3T81g, 4
0, 1 pse cnlts t) 4BIT 8
41 0, 1 μs e cS n11S b4
5Te, 4 0.5 Ps e cSn, Sb. Te,, 1. Qμ5 ecS n5S b
75T m20 5- Op sec When the relative proportions of other elements are kept constant and the Sn content is changed, the power of the laser light required for recording and the irradiation time required for erasing change as follows. did. Recording laser power S niS b23T e,. Sn3 S b 32 e3 T e G4 m73
n, S b31@t're,,. Sn, Sb, Te. S n 23 S b 25 m7 T e st +
3S n30 S b,,,'r 8BBS n G
6 S b 1g, 7 T e 33 +3S ns
g S b,, T a,. 6mW 6mW 6mW 6mW 6mW 8mW 0mW Required irradiation time for erasing when recording is not possible 5n1SbxzTess 2. Oμ5ecS
n, s 1) 32+3Te64.7 1e Oμ”A
e QSn, Sb, tTeaz, 30.5μ5ec
S n, S b,, Te, □0.1 μs e cS
nz3S bzg*1Te51-3 0+ 1 μS
e QS n:lo S b23. ,”r e4'GH
70,5μ5ecS ns,,S bls-7T 83
3.30 , 5 μS e QSn, , Sb□, Te,
. Q, 5μ5ecSn-3b-Tea element homology diagram b, When the composition is changed on the straight line connecting Te and 5nTe, the required irradiation time for erasure and the crystallization temperature when the temperature is raised at a constant rate are as follows. It changed like this. Sn xz S bzz IIG T 1B 55 +
4S n,, Sbi, Te54 S n 43 a@S b 5 T e G1 ++
2Sn,,5b4Te,1 Crystallized part S l'l 2 S b 3@ e5 T e sg
+6S n3 S b a7 *6 T e gg +4
S n5 S b3sT esg S n 7 S b 34 n4 T e 5B +l
iS n23 S b, L,,'r ass. S n3. S bl, T e,. S n43-as bsT es□, zSn45Sb4
Te, engineering 1μs 1μs 1μs 1μS C C Q (3Q degree 220℃ 220℃ 200℃ 180'C 180℃ 160℃ 140℃ 120'C Required irradiation time for erasing S n2 S b3g, sT ass, s 2,
O/A SS nx S bsl, sT ass, 4
1, O/A SSSn5S))xsTe5
o, 5 μs S n7 S b34-4T e5B-s
0, 1 /! S C C C C When the TQ content was varied while keeping the relative proportions of other elements constant, the required irradiation time for erasing changed as follows. Required irradiation time for erasing a= 0 0.1μ5ec a= 1 0.05μ5eca=10
0.05 μsec α=15 0.05 μ5 ec If TQ is greater than the above content, the time until the transmittance increases by 20% at 60° C. and 95% is short. When the relative proportions of other elements were kept constant and the CO content was varied, the crystallization temperature and the power of the laser beam required for recording changed as follows when the temperature was raised at a constant rate. Crystallization β=0 β=1 β=10 β=20 β=30 β=35 Temperature 180°C 280°C 300°C 300°C 300°C 300°C Recording laser power β=0 16mW β”1 16mW β=10 16mW β= 20 18 mW β= 30 20 m W β=35 It is possible to increase the degree of signal modulation by simultaneously adding TO and Co while keeping the relative proportions of other elements constant, which cannot be recorded. The addition of 30% or less of a rare earth element such as Gd while keeping the relative proportion of the elements constant has the effect of increasing the crystallization temperature. 20% or less is preferable. 10% or less is particularly preferable. Represented by D Addition of other elements improves sensitivity slightly.
It has effects such as improving oxidation resistance. The thickness of the intermediate layer is 60 when the refractive index of the intermediate layer is N.
/N nm or more and L 60 /N nm or less is preferable in that the erasure ratio is large. The thinner the film thickness, the faster the cooling rate after laser irradiation, and the more amorphous formation can be ensured. However, recording and reproduction is possible even in the range of 3 nm or more and 600 nm or less. Bi, Pb by replacing part or all of Sn. Similar characteristics can be obtained by adding at least one element among Ga, Au, and In. this house. A u z 4 , 3 S b in which Sn is replaced with Au
2B, 6Te57,, when the Te content is changed while keeping the ratio of other elements constant,
The laser power required for recording changed to the following: Recording laser power y=47 20mW y=55 18mW y=60 16mW y"70 16mW If part or all of Sn is replaced with Bi and all Wj of ZnS is S b2S e, the adjacent layer of Bi As a result, high recording sensitivity and a sharp rise characteristic of the recording power vs. reproduction signal strength curve were obtained, but the characteristic changes due to repeated rewriting became large. Very similar characteristics can be obtained by adding at least one element among halogen elements and alkali metal elements.Among the halogen elements F, CI2, Br, and I, which are preferred next to TQ, ■ is particularly preferred, followed by CQ. Preferred. Among the alkali metal elements Li, Na, Rb, and Cs, Na is particularly preferred, followed by K. Part or all of Co is replaced with Cu, Ag+Sc, Y
, Zr, V, Nb, Cr, Mo, Mn. Very similar characteristics can be obtained by adding at least one element among Fe, Ru, Ti, Rh, Ta, W, copper, and Ni. Among these, Tj, V. At least one element among Cr, Mn, Zr, and N1 is preferable because it can be easily vapor-deposited. Z used in at least part of the protective film and intermediate layer
Sin□, S io, Y2O3 or TaN instead of nS
, oxides and nitrides such as Al2N, Si, N4, 5b2
Sulfides such as 83, 5nSe2, 5bSe. Selenide such as CeF, fluoride such as amorphous Si, TiB2. B4C, BC, etc., or materials having compositions close to each of all of the above materials may be used. These laminated films (two or more layers) are also effective in increasing the protection strength. For example, the thickness is 300n on the side far from the recording film.
m SiO□ layer, 110 nm thick Z layer on the side near the recording film
The two-layer structure with the nS layer has little change in characteristics due to rewriting. It was good. As a reflective layer, some or all of Au is replaced with Ag,
Cu, Ni, Fe, An, Co, Cr. Similar characteristics were obtained using Ti, Pd, Pt, We Ta, Mo, and the like. Instead of chemically strengthened glass with an ultraviolet curable resin layer formed on its surface, polycarbonate, polyolefin, epoxy, acrylic resin, etc., with projections and depressions such as tracking guides formed directly on the surface may be used as the substrate. Effects of the Invention 1 As explained above, according to the present invention, it is possible to obtain an information recording member that has good recording/reproducing characteristics and is stable for a long period of time. It is also possible to rewrite the record many times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はそれぞれ本発明の実施例における記録用部材の
構造を示す断面図、第2図は本発明の実施例におけるオ
ーバーライド用記録レーザ波形を示す図である。 1.1′・・・基板、2,2′・・・SiO□層、3.
3’−ZnS層、4.4’−・・記録膜、5.5’−Z
nS層、6.6’−Au反射層、7.7′・・・ZnS
層、8.・・・有機接着剤層。
FIG. 1 is a sectional view showing the structure of a recording member in an embodiment of the present invention, and FIG. 2 is a diagram showing an override recording laser waveform in an embodiment of the present invention. 1.1'...Substrate, 2,2'...SiO□ layer, 3.
3'-ZnS layer, 4.4'--recording film, 5.5'-Z
nS layer, 6.6'-Au reflective layer, 7.7'...ZnS
layer, 8. ...Organic adhesive layer.

Claims (1)

【特許請求の範囲】 1、基板上に直接もしくは無機物及び有機物のうち少な
くとも一者からなる保護層を介して形成された記録用ビ
ームの照射を受けて原子配列変化を生ずる情報記録用薄
膜において、上記情報記録用薄膜はその膜厚方向の平均
組成が一般式SbxTeyAzBαaCβDγ(ただし
、x、y、z、α、β及びγは原子パーセントでそれぞ
れ5≦x≦70、10≦y≦85、3≦z≦50、0≦
α≦20、0≦β≦30、0≦γ≦30の範囲の値であ
り、AはSn、Bi、Pb、Ga、Au及びInのうち
の少なくとも一元素、BはTl、ハロゲン元素及びアル
カリ金属のうちの少なくとも一元素、C、はAg、Cu
、Pd、Ta、W、Ir、Sc、Y、Ti、Zr、V、
Nb、Cr、Mo、Mn、Fe、Ru、Co、Rh及び
Niのうち少なくとも一元素、DはSb、Te、A、B
、Cで表される元素以外の元素)で表されることを特徴
とする情報記録用薄膜。 2、基板上に直接もしくは無機物及び有機物のうち少な
くとも一者からなる保護層を介して形成された一般式S
bxTeyAzBαCβDγ(ただし、x、y、z、α
、β及びγは原子パーセントでそれぞれ5≦x≦70、
10≦y≦85、3≦z≦50、0≦α≦20、0≦β
≦30、0≦γ≦30の範囲の値であり、AはSn、B
i、Pb、Ga、Au及びInのうちの少なくとも一元
素、BはTl、ハロゲン元素及びアルカリ金属のうちの
少なくとも一元素、CはAg、Cu、Pd、Ta、W、
Ir、Sc、Y、Ti、Zr、V、Nb、Cr、Mo、
Mn、Fe、Ru、Co、Rh及びNiのうち少なくと
も一元素、DはSb、Te、A、B、Cで表される元素
以外の元素)で表される情報記録用薄膜に記録用ビーム
を照射し、該薄膜の照射部の原子配列を変化させる工程
及び上記薄膜に再生用ビームを照射し、上記原子配列の
変化を読み出す工程よりなることを特徴とする情報の記
録再生方法。 3、上記記録用ビームがレーザービームである特許請求
の範囲第2項記載の情報の記録再生方法。
[Claims] 1. In a thin film for information recording that undergoes atomic arrangement changes when irradiated with a recording beam formed directly on a substrate or through a protective layer made of at least one of an inorganic substance and an organic substance, The above information recording thin film has an average composition in the thickness direction of the general formula SbxTeyAzBαaCβDγ (where x, y, z, α, β, and γ are atomic percent, respectively, 5≦x≦70, 10≦y≦85, 3≦ z≦50, 0≦
The value is in the range of α≦20, 0≦β≦30, 0≦γ≦30, A is at least one element among Sn, Bi, Pb, Ga, Au, and In, and B is Tl, a halogen element, and an alkali. At least one element of metal, C, is Ag, Cu
, Pd, Ta, W, Ir, Sc, Y, Ti, Zr, V,
At least one element among Nb, Cr, Mo, Mn, Fe, Ru, Co, Rh and Ni, D is Sb, Te, A, B
, an element other than the element represented by C). 2. General formula S formed directly on the substrate or via a protective layer consisting of at least one of an inorganic substance and an organic substance
bxTeyAzBαCβDγ (where x, y, z, α
, β and γ are each 5≦x≦70 in atomic percent,
10≦y≦85, 3≦z≦50, 0≦α≦20, 0≦β
≦30, 0≦γ≦30, A is Sn, B
i, at least one element among Pb, Ga, Au and In, B is at least one element among Tl, a halogen element and an alkali metal, C is Ag, Cu, Pd, Ta, W,
Ir, Sc, Y, Ti, Zr, V, Nb, Cr, Mo,
A recording beam is applied to an information recording thin film represented by at least one element among Mn, Fe, Ru, Co, Rh, and Ni (D is an element other than Sb, Te, A, B, and C). 1. A method for recording and reproducing information, comprising the steps of: irradiating the thin film to change the atomic arrangement of the irradiated portion of the thin film; and irradiating the thin film with a reproducing beam and reading out the change in the atomic arrangement. 3. The method for recording and reproducing information according to claim 2, wherein the recording beam is a laser beam.
JP63306052A 1988-10-05 1988-12-05 Information recording thin film and information recording / reproducing method Expired - Fee Related JP2776847B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63306052A JP2776847B2 (en) 1988-12-05 1988-12-05 Information recording thin film and information recording / reproducing method
DE68925331T DE68925331T2 (en) 1988-10-05 1989-10-05 Information recording thin film and method for recording and reproducing information
EP89118519A EP0362852B1 (en) 1988-10-05 1989-10-05 Information-recording thin film and method for recording and reproducing information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63306052A JP2776847B2 (en) 1988-12-05 1988-12-05 Information recording thin film and information recording / reproducing method

Publications (2)

Publication Number Publication Date
JPH02151481A true JPH02151481A (en) 1990-06-11
JP2776847B2 JP2776847B2 (en) 1998-07-16

Family

ID=17952472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63306052A Expired - Fee Related JP2776847B2 (en) 1988-10-05 1988-12-05 Information recording thin film and information recording / reproducing method

Country Status (1)

Country Link
JP (1) JP2776847B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167783A (en) * 1988-12-22 1990-06-28 Toshiba Corp Information recording medium
JPH07232478A (en) * 1993-12-27 1995-09-05 Nec Corp Information recording medium
US6605328B2 (en) 2000-06-23 2003-08-12 Tdk Corporation Optical recording medium

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208441A (en) * 1986-03-07 1987-09-12 Nippon Telegr & Teleph Corp <Ntt> Recording medium for rewriting type optical disk
JPS62208442A (en) * 1986-03-07 1987-09-12 Nippon Telegr & Teleph Corp <Ntt> Rewriting type optical recording medium
JPS6376120A (en) * 1986-09-19 1988-04-06 Nippon Telegr & Teleph Corp <Ntt> Erasable type optical recording medium
JPS63187430A (en) * 1987-01-30 1988-08-03 Toshiba Corp Information recording medium
JPS63237990A (en) * 1987-03-27 1988-10-04 Toray Ind Inc Optical recording medium
JPS63251290A (en) * 1987-04-08 1988-10-18 Hitachi Ltd Optical recording medium, method for regeneration and application thereof
JPS63261552A (en) * 1987-04-18 1988-10-28 Fujitsu Ltd Production of optical information recording medium
JPS63263643A (en) * 1987-04-22 1988-10-31 Hoya Corp Recording film material for reloadable phase change type optical memory
JPH01100748A (en) * 1987-10-13 1989-04-19 Toshiba Corp Information recording medium
JPH01220147A (en) * 1988-02-26 1989-09-01 Nippon Telegr & Teleph Corp <Ntt> Information recording medium
JPH01277338A (en) * 1988-04-28 1989-11-07 Nippon Telegr & Teleph Corp <Ntt> Optical recording medium
JPH01287834A (en) * 1988-05-14 1989-11-20 Hoya Corp Rewritable phase change type optical memory medium
JPH01303643A (en) * 1988-06-01 1989-12-07 Nippon Telegr & Teleph Corp <Ntt> Laser recording medium

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208441A (en) * 1986-03-07 1987-09-12 Nippon Telegr & Teleph Corp <Ntt> Recording medium for rewriting type optical disk
JPS62208442A (en) * 1986-03-07 1987-09-12 Nippon Telegr & Teleph Corp <Ntt> Rewriting type optical recording medium
JPS6376120A (en) * 1986-09-19 1988-04-06 Nippon Telegr & Teleph Corp <Ntt> Erasable type optical recording medium
JPS63187430A (en) * 1987-01-30 1988-08-03 Toshiba Corp Information recording medium
JPS63237990A (en) * 1987-03-27 1988-10-04 Toray Ind Inc Optical recording medium
JPS63251290A (en) * 1987-04-08 1988-10-18 Hitachi Ltd Optical recording medium, method for regeneration and application thereof
JPS63261552A (en) * 1987-04-18 1988-10-28 Fujitsu Ltd Production of optical information recording medium
JPS63263643A (en) * 1987-04-22 1988-10-31 Hoya Corp Recording film material for reloadable phase change type optical memory
JPH01100748A (en) * 1987-10-13 1989-04-19 Toshiba Corp Information recording medium
JPH01220147A (en) * 1988-02-26 1989-09-01 Nippon Telegr & Teleph Corp <Ntt> Information recording medium
JPH01277338A (en) * 1988-04-28 1989-11-07 Nippon Telegr & Teleph Corp <Ntt> Optical recording medium
JPH01287834A (en) * 1988-05-14 1989-11-20 Hoya Corp Rewritable phase change type optical memory medium
JPH01303643A (en) * 1988-06-01 1989-12-07 Nippon Telegr & Teleph Corp <Ntt> Laser recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167783A (en) * 1988-12-22 1990-06-28 Toshiba Corp Information recording medium
JPH07232478A (en) * 1993-12-27 1995-09-05 Nec Corp Information recording medium
US6605328B2 (en) 2000-06-23 2003-08-12 Tdk Corporation Optical recording medium

Also Published As

Publication number Publication date
JP2776847B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
KR0153033B1 (en) Information recording thin film and information recordng medium
JPS62152786A (en) Information-recording thin film
JPH08258418A (en) Information recording medium
JPH0461791B2 (en)
JPH0671828B2 (en) Information recording thin film
US5314734A (en) Information-recording medium
JP2834131B2 (en) Thin film for information recording
JP2679995B2 (en) Thin film for information recording
JPH02151481A (en) Membrane for recording data and method for recording and reproducing data
EP0362852B1 (en) Information-recording thin film and method for recording and reproducing information
JPH04281219A (en) Method for initializing recording medium
JPH0363178A (en) Data recording membrane and data recording and reproducing method
JPH08329521A (en) Optical recording medium
JPS6247839A (en) Thin film for information recording
JP2664207B2 (en) Thin film for information recording
JP2713908B2 (en) Information storage medium
JPH0235636A (en) Thin film for information recording and information recording and reproducing method
JPS6313785A (en) Information recording film
JPS62181189A (en) Information-recording thin film and recording and reproduction of information
JPH0829616B2 (en) Information recording member
JPH08249721A (en) Optical recording medium
JPH0315589A (en) Information recording thin film
JPH02151482A (en) Data recording membrane
JPS63263642A (en) Thin film for information recording
JPH0298488A (en) Information recording thin film and recording and reproduction of information

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees