JP7571601B2 - 電力変換システム - Google Patents
電力変換システム Download PDFInfo
- Publication number
- JP7571601B2 JP7571601B2 JP2021023112A JP2021023112A JP7571601B2 JP 7571601 B2 JP7571601 B2 JP 7571601B2 JP 2021023112 A JP2021023112 A JP 2021023112A JP 2021023112 A JP2021023112 A JP 2021023112A JP 7571601 B2 JP7571601 B2 JP 7571601B2
- Authority
- JP
- Japan
- Prior art keywords
- converter
- power conversion
- inverter
- power
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 191
- 239000003990 capacitor Substances 0.000 claims description 136
- 230000010349 pulsation Effects 0.000 claims description 92
- 230000008878 coupling Effects 0.000 claims description 60
- 238000010168 coupling process Methods 0.000 claims description 60
- 238000005859 coupling reaction Methods 0.000 claims description 60
- 238000010586 diagram Methods 0.000 description 22
- 230000001360 synchronised effect Effects 0.000 description 15
- 230000007423 decrease Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000003993 interaction Effects 0.000 description 6
- 238000009499 grossing Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 108010053803 Sermorelin Proteins 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- BVLCEKWPOSAKSZ-YQMCHIOTSA-N sermorelin acetate Chemical compound CC(O)=O.C([C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(N)=O)C1=CC=C(O)C=C1 BVLCEKWPOSAKSZ-YQMCHIOTSA-N 0.000 description 3
- 101150110971 CIN7 gene Proteins 0.000 description 2
- 101100286980 Daucus carota INV2 gene Proteins 0.000 description 2
- 101001068634 Homo sapiens Protein PRRC2A Proteins 0.000 description 2
- 101000908580 Homo sapiens Spliceosome RNA helicase DDX39B Proteins 0.000 description 2
- 101150110298 INV1 gene Proteins 0.000 description 2
- 102100033954 Protein PRRC2A Human genes 0.000 description 2
- 102100024690 Spliceosome RNA helicase DDX39B Human genes 0.000 description 2
- 101100397044 Xenopus laevis invs-a gene Proteins 0.000 description 2
- 101100397045 Xenopus laevis invs-b gene Proteins 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M5/4585—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/51—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0043—Converters switched with a phase shift, i.e. interleaved
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/14—Arrangements for reducing ripples from dc input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4815—Resonant converters
- H02M7/4818—Resonant converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/539—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
- H02M7/5395—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/10—Air crafts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/20—AC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/14—Arrangements for reducing ripples from dc input or output
- H02M1/15—Arrangements for reducing ripples from dc input or output using active elements
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Inverter Devices (AREA)
- Rectifiers (AREA)
- Power Conversion In General (AREA)
Description
また、特許文献2には、コンバータ-インバータ間の直流回路に流れる共振電流を抑制するために、コンバータ及びインバータのキャリア波の周波数及び位相を同期させ、上記直流回路には、二つのキャリア波の位相差がゼロの時に共振電流が少なくなるように直流コンデンサ等を付加することが記載されている。
また、特許文献2に係る従来技術では、直流回路のインピーダンスや二つの電力系統の条件、コンバータ及びインバータの電圧、電流等によって決まる共振電流が少なくなるようにシミュレーションを行って直流回路を構成しているが、この直流回路の共振電流を抑制する原理が具体的に示されておらず、直流回路に接続されるコンデンサやリアクトル等の接続構成や作用も明確には開示されていない。
更に、特許文献3に係る従来技術は、コンバータ及びインバータの制御回路にアクティブフィルタ機能を持たせることで交流電源系統に流出する低次高調波を抑制する発明であり、直流回路の電流の脈動を低減することを課題とするものではない。
前記コンバータの直流電圧部に接続された第1のコンデンサと、前記インバータの直流電圧部に接続された第2のコンデンサと、前記第1のコンデンサと前記第2のコンデンサとを接続する手段であってインダクタンス成分を有する直流結合手段と、を備え、
前記コンバータ及び前記インバータのスイッチング周波数を等しくすると共に、当該スイッチング周波数を、前記第1のコンデンサと前記第2のコンデンサと前記直流結合手段とからなる共振回路の共振周波数よりも高くし、
前記コンバータ及び前記インバータのスイッチング動作によって生じる前記第1のコンデンサ及び前記第2のコンデンサの電圧脈動の所定成分の位相が概ね同相となるように、前記コンバータ及び前記インバータの少なくとも一方のスイッチング動作を制御することを特徴とする。
図1(a)は、本発明の一実施形態に係る電力変換システムの主回路構成図であり、図1(b)はその制御回路の一例を示すブロック図である。
コンバータ10は、IGBTやFET等の半導体スイッチング素子(以下、単にスイッチング素子ともいう)S1~S6を三相ブリッジ接続してなる電力変換部11と、その直流出力端子間に接続された第1のコンデンサとしての電圧平滑用のコンデンサCcとを備え、インバータ20は、前記コンデンサCcに直流結合手段30を介して接続された第2のコンデンサとしての電圧平滑用のコンデンサCiと、その両端に三相ブリッジ接続されたスイッチング素子S21~S26からなる電力変換部21とを備えている。
以下では、符号Cc,Ciをコンデンサ及びキャパシタンスの両方の意味で使用する。また、直流結合手段30が有するインダクタンスをLciにより表すものとする。なお、このインダクタンスLciは、直流結合手段30としてのケーブル自体のインダクタンスや、ケーブルの途中に部品としての直流リアクトルが接続されている場合の、直流リアクトル及びケーブルのインダクタンスを含む。
この実施例の特徴は、図1(a)のように、コンバータ10とインバータ20との間の直流回路にコンデンサCc,CiとインダクタンスLciとからなる共振回路(以下、CLC共振回路ともいう)を有する電力変換システムにおいて、コンバータ10及びインバータ20のスイッチング周波数を等しくし、かつ、このスイッチング周波数をCLC共振回路の共振周波数よりも高く設定することにある。更に、この実施例の特徴は、コンバータ10及びインバータ20のスイッチングにより発生するコンデンサCc,Ciの電圧脈動の所定成分の位相が概ね同相となるように、コンバータ10及びインバータ20の少なくとも一方のスイッチング動作を制御し、これによって前記電圧脈動の差分に起因する直流結合手段30の電流Iciの脈動を低減することにある。
上記スイッチング周波数またはその高調波の周波数が共振周波数に一致すると、Cc,Ci,Lciからなるループにおける振動電流が制限なく増大し、コンデンサCc,Ciの過電圧、あるいは上記ループの過電流によって装置の破壊に至る。仮にこのような事態を回避できたとしても、スイッチング周波数が共振周波数より低い場合には、コンバータ10の電力変換部11またはインバータ20の電力変換部21から見て、これらの直流電圧部に設けられたコンデンサCcやコンデンサCiよりもインダクタンスLciの方が、スイッチング周波数におけるインピーダンスが低いことになる。このため、スイッチング動作により発生する電流の脈動成分の多くがコンデンサCc,Ciによって吸収されずにインダクタンスLciに流れることになり、コンデンサCc,Ciが本来担うべき電圧平滑要素としての機能が損なわれてしまう。
以上のことから、コンバータ10及びインバータ20(電力変換部11,21)のスイッチング周波数をCLC共振回路の共振周波数よりも高くすることが、システムを安定的に動作させるための要件となる。
図2は、図1(a)を簡略化したものである。この図2において、コンバータ10側から見たインピーダンスZの絶対値|Z|の周波数特性は、例えば図3のようになり、これを定式化すると数式1が得られる。なお、インバータ20側から見たインピーダンスも同様であり、数式1の右辺において第二分数項の分子のCiがCcになる。
数式2,数式3によれば必ずfr1<fr2の関係があるため、コンバータ10及びインバータ20のスイッチング周波数は、図3のfr2よりも高くする必要がある。つまり、スイッチング周波数がfr1またはfr2に一致すると共振状態となって過電圧や過電流となり、fr2より低いと、インダクタンスLciにはスイッチング動作に起因する電流成分の多くが流れてしまう。なお、システムを安定的に動作させるためには、コンバータ10及びインバータ20のスイッチング周波数がfr2に近いと共振に近い状態になるため、実用的には、スイッチング周波数をfr2の概ね2倍以上とすることが望ましい。
前述した図2において、コンバータ10及びインバータ20の電力変換部11,21は、それぞれ交流電源G及び交流モータMにPWM制御された電圧を印加して電流を直接または間接的に制御している。交流電源Gや交流モータM自体は、通常、基本波とその高調波の電圧を有しており、これらの電圧にPWM制御による矩形波状の電圧が重畳されるので、交流電源Gと交流モータMとの間には、一般にリアクトル等を接続して両者の電圧の差分がこのリアクトル等に印加されることで電流が平滑化される。但し、上記リアクトル等は、交流電源Gや交流モータMが有するインダクタンス成分によって代用されることが多いため、図2では、その前提でリアクトル等の記載を省略し、直流結合手段30が有するインダクタンスLciのみを表記してある。
ここまでの説明から明らかなように、コンデンサCc,Ciの電圧脈動の差分がインダクタンスLciに印加される結果、電流脈動が発生するため、コンデンサCc,Ciの電圧脈動の差分を小さく抑えれば、インダクタンスLciにおける電流脈動を低減することができる。
その具体的手段としては、電力変換部11,21のスイッチングに起因するコンデンサCc,Ciの電圧脈動は、スイッチング周波数に関わる成分を有しているため、この成分のうち「所定成分」について、コンデンサCcとコンデンサCiとにおいて概ね同相となるように電力変換部11,21のスイッチング動作を制御すればよい。この場合の「所定成分」とは、コンデンサCc,Ciの電圧脈動が有する周波数成分のうち「主要な周波数成分」や「特に低減したい周波数成分」、あるいは、電圧脈動の時間波形において電圧振幅が大きい期間の「時間成分」を言う。
図4(a),(b)は、コンバータ10側及びインバータ20側のコンデンサCc,Ciの電圧Ec,Ei、並びに、直流結合手段30の電流Iciの波形を示しており、図4(a)はEc(実線にて示す),Ei(破線にて示す)が概ね逆相の場合、図4(b)はEc,Eiが概ね同相の場合である。何れの場合も電圧Ec,Eiは脈動しており、これらの電圧脈動の差分が直流結合手段30のインダクタンスLciに印加されて電流Iciが流れる。
従って、図4(b)のようにEc,Eiの電圧脈動が概ね同相となるようにコンバータ10及びインバータ20のスイッチング動作を制御すれば、直流結合手段30を流れる電流Iciの脈動を抑制することができる。
図5は、図2に示した電力変換システムの動作波形の一例であり、上からキャリア波(三角波)及び電圧指令値、裁断電流、コンバータ10側のコンデンサCcの電圧Ec、直流結合手段30の電流Iciを示している。
図5の裁断電流については、キャリア波が極大値となるタイミングを補助線で示してあり、ここから、裁断電流によるコンデンサCcの電圧脈動の周波数はキャリア波の周波数に支配されることが分かる。また、コンデンサCcの電圧脈動を詳しく見ると、裁断電流のパルスが存在する期間に増加し、裁断電流のパルスが存在しない期間(裁断電流がゼロの期間)には減少していることが分かり、これは、裁断電流がコンデンサCcに流入していることから理解できる。なお、図示されていないインバータ20側において、コンデンサCiの電圧Eiは裁断電流のパルスが存在する期間に減少し、パルスが存在しない期間では増加する。
仮に両キャリア波の周波数が等しくない場合には、コンデンサCc,Ciの電圧脈動は時間と共に位相がずれてしまい、また、両キャリア波の間に所定の位相関係を維持できない場合にも直流結合手段30の電流脈動を抑制することができなくなる。
次に、請求項3,4に係る実施例として、直流結合手段30の電流脈動を低減する具体的な方法について説明する。
一般に、PWMコンバータ及びPWMインバータにおいて、定常状態におけるコンデンサCc,Ciの電圧脈動の振幅は、交流側の基本波の相数の2倍で周期的に変動する。従って、コンデンサCc,Ciの電圧脈動が大きくなるタイミングをコンバータ10側とインバータ20側とで合わせるには、まず、コンバータ10及びインバータ20の相数、言い換えれば交流電源Gと交流モータMとの相数を等しくすることが必要である。
以下では、最も代表的な三相の場合について説明する。
前述の図5に示された電圧指令値は、交流側の一相の電圧基本波に相当する。この電圧指令値がキャリア波と比較されて、コンバータ10及びインバータ20の交流側に出力するべき電圧を生じさせるためのPWMパルスが生成される。これにより、裁断電流は、三相全ての上アームまたは下アームのスイッチング素子がオンとなる期間(零相期間と呼ぶ)にはゼロ、それ以外の期間には、交流側の何れかの相の電流と等しいパルス状の波形となる。
図5によれば、裁断電流において、電圧指令値(基本波)の振幅がキャリア波の振幅よりも小さい期間では、キャリア波の1周期当たり2パルスの裁断電流が存在する。ここで、裁断電流のパルスの時間間隔に着目すると、電圧指令値が振幅相当すなわち最大値あるいは最小値付近であるタイミングでは、裁断電流の隣り合うパルスが近接、離散を繰り返すことが観測され、これらの近接、離散を繰り返す期間(期間A)は、電圧指令値の半周期で相数回、つまりこの場合には3回存在し、ある期間Aと次の期間Aとの間には、裁断電流の隣り合うパルスが概ね均等に配置される期間(期間B)が同じ回数だけ存在することが分かる。
その理由を、以下に簡単に説明する。
このような現象は、三相の電圧指令値(電圧基本波)が正負交互に極大値、極小値となるたびに繰り返す。
・裁断電流のパルスが近接、離散を繰り返す期間Aは、三相の電圧指令値(電圧基本波)の半周期で3回あり、期間A同士の間には、裁断電流のパルスが概ね均等に配置される期間Bがある。
・期間Aにおいて、コンデンサCcの電圧脈動の振幅が大きくなっている。
・コンバータ10側のコンデンサCcの電圧は裁断電流のパルスが近接する期間に大きく増加し、パルスが離散する期間に大きく減少する。
そして、コンデンサCc,Ciの電圧脈動が大きい期間で両者の電圧脈動を同相とするためには、コンバータ10及びインバータ20が用いるキャリア波の周波数を同一とし、かつ逆相とすればよい。つまり、前述したように裁断電流のパルスの近接と離散に対するコンデンサCc,Ciの電圧の増減が、コンバータ10とインバータ20とでは逆になっているため、コンデンサCc,Ciの電圧の増減を合わせるためには裁断電流のパルスの近接と離散とを反転させればよい。
図6(a),(b)において、交流側電圧基本波はコンバータ10及びインバータ20で同期しているため波形が重なっており、また、インバータ20の交流側電流は電圧基本波と同相つまり力率1の例を示している。これらの図から明らかなように、コンデンサの電圧脈動の振幅が大きい期間はコンバータ10及びインバータ20において同時になっているものの、図6(a)に示すキャリア波同相の場合には電圧Ec,Eiが概ね逆相となっているのに対し、図6(b)に示すキャリア波逆相の場合には電圧Ec,Eiが概ね同相となっているため、図6(a)に比べて電流Iciの脈動を抑制できることが明らかである。
なお、上記の説明からの類推として、コンバータ10及びインバータ20の交流側の任意の一相の電圧基本波を同一周波数かつ逆相とし、コンバータ10及びインバータ20のキャリア波を同一周波数かつ同相とした場合にも、同様な効果を得ることができる。
このように、コンバータ10及びインバータ20の電流位相が異なる場合でも、前述した如く裁断電流のパルスの近接と離散が力率に依存せずに電圧基本波の位相のみで決まるため、コンデンサCc,Ciの電圧脈動の振幅の大小の繰り返しはコンバータ10及びインバータ20の両方で概ね一致しており、同様な作用効果が得られることが分かる。
本発明は、コンバータ及びインバータの少なくとも一方を、直流電圧部が並列接続された複数の電力変換部により構成する場合にも適用可能であり、その一例を本発明の他の実施形態として図8に示す。
この図8は、コンバータ10Aが2台の電力変換部11,12を並列接続して構成され、インバータ20Aが2台の電力変換部21,22を並列接続して構成されている場合であり、コンバータ10Aには1台の交流電源Gが接続され、インバータ20Aには1台の交流モータMが接続されている。なお、電力変換部11,12及び電力変換部21,22のスイッチング周波数は全て同一である。
本実施例でも、これまでに説明した各実施例と同様に、コンデンサCc,Ciの電圧脈動の所定の成分が概ね同相になるように電力変換部11,12及び電力変換部21,22をそれぞれ制御することにより、直流結合手段30の電流脈動を抑制することができる。
図8の構成において、コンバータ10AのコンデンサCc及びインバータ20AのコンデンサCiの電圧脈動は、並列接続される複数の電力変換部11,12の相互作用及び電力変換部21,22の相互作用によってそれぞれ生じる。
これに対しては、コンバータ10A内の電力変換部11,12に与えるPWMパルスをずらして直流母線電流(裁断電流)のパルス発生のタイミングをずらし、同様に、インバータ20A内の電力変換部21,22に与えるPWMパルスをずらして直流母線電流のパルス発生のタイミングをずらすことにより、コンデンサCcやコンデンサCiの電圧脈動をそれぞれ抑制することができる。
例えばコンバータ10A内の電力変換部11,12のPWMパルスを概ね均等になるようにずらせば、各電力変換部11,12から流れる直流母線電流のパルス発生のタイミングを概ね均等にずらすことができ、結果としてコンデンサCcに流入する電流の総和が平滑化されてコンデンサCcの電圧脈動を好適に抑制することができる。並列接続される電力変換部が2台の場合には、それぞれのPWMパルスが概ね交互になるようにすればよい。電力変換部のPWMパルスのずらし方は、インバータ20Aの電力変換部21,22についても同様である。
なお、本実施例によれば、前記各実施例と同様に直流結合手段30の電流脈動の低減にも寄与できることは言うまでもない。
図8の構成において、コンデンサCc,Ciの電圧脈動のうち、スイッチング周波数成分については、コンバータ10A及びインバータ20Aにおいて概ね同期させ、また、スイッチング周波数の高調波成分については、複数の電力変換部11,12及び電力変換部21,22の直流母線電流のパルス発生のタイミングを互いにずらして相殺することが望ましい。
これに対し、並列接続される複数の電力変換部11,12同士や電力変換部21,22同士は、それぞれ物理的に近い位置(例えば同じ筐体内)に配置されることが想定されるため、キャリア波の位相はコンバータ10Aとインバータ20Aとの間よりも高精度に管理することができる。よって、スイッチング周波数の高調波成分については、並列接続される複数の電力変換部の相互作用により抑制すればよい。
分布定数的な振る舞いは、一般に周波数が高いほど強く現れる。従って、ケーブル等の両端に高周波の電圧変動が印加された場合、これをケーブル両端における位相の管理によって相殺しようとしても、ケーブル等の分布定数的な要素、具体的には正負の導線間のキャパシタンス成分を通って高周波電流が通流してしまうことが考えられる。従って、ケーブル両端のスイッチング周波数の高調波成分は、複数の電力変換部11,12や電力変換部21,22の相互作用によってそれぞれ相殺しておき、相対的に周波数が低いスイッチング周波数成分については、ケーブル両端の位相の管理によって抑制することで、ケーブルの分布定数的な振る舞いの影響を受け難くして電流脈動を好適に抑制することができる。
上述した請求項8に係る実施例とは逆に、コンバータ10A及びインバータ20AのコンデンサCc,Ciの電圧脈動のうち、スイッチング周波数成分については、複数の電力変換部11,12及び電力変換部21,22の直流母線電流のパルス発生のタイミングを互いにずらして相殺し、スイッチング周波数の高調波成分については、コンバータ10A及びインバータ20Aにおいて概ね同相となるようにしてもよい。
すなわち、ケーブル等の直流結合手段30に生じる電流脈動のうち、通常は最も成分比率が高いスイッチング周波数成分については、直流結合手段30の両端、つまり、コンバータ10A及びインバータ20Aのそれぞれの内部において、電力変換部11,12の直流母線電流のパルス発生のタイミングをずらし、かつ、電力変換部21,22の直流母線電流のパルス発生のタイミングをずらすことにより、脈動成分を根源的に低減させる。また、直流結合手段30に生じる電流脈動のうち残存するスイッチング周波数の高調波成分については、コンバータ10Aとインバータ20Aとの相互作用、つまり、コンデンサCc,Ciの電圧脈動の所定成分を同相にして相殺するものである。
この実施例は、コンバータ10A及びインバータ20Aが、並列接続される複数の電力変換部により構成される場合を更に具体化したものである。
電力変換部が単一である場合と同様に、PWMパルスを電圧指令値とキャリア波との比較によって生成する場合、並列接続される複数の電力変換部について、各電力変換部に対するキャリア波を同一周波数とし、かつ、各キャリア波の間に所定の位相差を持たせることにより、各電力変換部から出力される裁断電流のパルスの発生タイミングを簡便にずらすことができる。これは、図5を用いた説明等により容易に理解可能である。
そして、電力変換部が単数の場合と同様に、電力変換部が複数である場合も、コンバータ10A及びインバータ20Aのキャリア波の周波数を同一にし、コンバータ10A側のキャリア波とインバータ20Aの側のキャリア波との位相関係を調整することにより、コンデンサCc,Ciの電圧脈動の主成分を概ね同相にして直流結合手段30の電流脈動を抑制することができる。
図8のように、コンバータ10A及びインバータ20Aが、並列接続される複数の電力変換部を有する場合も、コンバータ10A及びインバータ20Aの交流側電圧基本波の周波数を同一にすれば、コンデンサCc,Ciの電圧脈動の振幅が変動するタイミングを合わせることができる。そして、並列接続される複数の電力変換部の交流側電圧及び交流側電流の基本波の振幅をほぼ等しくすることで、各電力変換部が発生する裁断電流も相似波形となり、これらの裁断電流に位相差を設けることによって脈動電流を好適に相殺することができる。
図9(a)は、比較のために、コンバータ10及びインバータ20が何れも単一の電力変換部を有する場合の、交流側電流、交流側電圧基本波、キャリア波、裁断電流、コンデンサの電圧、及び、直流結合手段の電流を示す波形図である。この図9(a)では、コンバータ10側及びインバータ20側のキャリア波が逆相となっており、前述した図6(b)の例に相当する。
一方、図9(b)は、図8のように、コンバータ10A及びインバータ20Aがそれぞれ並列接続された電力変換部11,12、及び電力変換部21,22を有する場合の各部の波形図であり、コンバータ10A及びインバータ20Aの交流側電圧基本波を同期させ、電力変換部11,21、電力変換部12,22の各組について交流側電流及び交流側電圧基本波の振幅をほぼ等しくすると共に、4台の電力変換部11,12,21,22のキャリア波の周波数を同一にしてそれぞれの位相を順に0°,90°,180°,270°とした場合のものである。つまり、コンバータ10Aでは電力変換部11,12に対するキャリア波の位相が互いに90°ずれ、インバータ20Aでは電力変換部21,22に対するキャリア波の位相が互いに90°ずれている。そして、コンバータ10Aとインバータ20Aとの間ではキャリア波の位相が全体として180°ずれている。図9(b)では、コンバータ10A内の電力変換部11に対するキャリア波とインバータ20A内の電力変換部21に対するキャリア波(互いの位相差は180°)のみを示しており、他の電力変換部12,22に対するキャリア波は図示を省略してある。
また、図9(b)における裁断電流は、実線がコンバータ10A内の電力変換部11側、破線がインバータ20A内の電力変換部21側を示し、コンデンサCc,Ciの電圧は、実線がコンデンサCcの電圧Ec、破線がコンデンサCiの電圧Eiを示している。
なお、図9(a),(b)において、対応する各波形のスケールは同一である。
この例では、4台の電力変換部11,12,21,22のキャリア波の周波数を同一にしてそれぞれの位相を順に0°,180°,90°,270°としている。図10では、コンバータ10A内の電力変換部11に対するキャリア波とインバータ20A内の電力変換部21に対するキャリア波(互いの位相差は90°)のみを示しており、他の電力変換部12,22に対するキャリア波は図示を省略してある。また、裁断電流については、実線がコンバータ10A内の電力変換部11側、破線がインバータ20A内の電力変換部21側を示し、コンデンサCc,Ciの電圧は、実線がコンデンサCcの電圧Ec、破線がコンデンサCiの電圧Eiを示している。
この図10においても、図9(b)と同様に、直流結合手段30の電流脈動が顕著に低減されていることが分かる。
複数の電力変換部を並列接続してコンバータ10A及びインバータ20Aを構成する場合には、単一の電力変換部が故障などによって停止したとしても残りの電力変換部によってシステムの動作を継続することが可能である。
その場合、残りの電力変換部が、全ての電力変換部が動作している時と同様に動作すると、個々の電力変換部の相互作用によって直流結合手段30の電流脈動を抑制していたことのバランスが崩れ、電流脈動が大きくなってしまうという問題が生じる。
そこで、残りの電力変換部の動作状態を修正することにより上記問題を緩和することが本実施例の要点である。
(a)インバータ20A側の2台の電力変換部21,22のうちの1台の運転を停止してコンバータ10A及びインバータ20Aとも1台の電力変換部が動作する状態とし、これまでに説明した動作によって直流結合手段30の電流脈動を抑制する。
(b)インバータ20A側の2台の電力変換部21,22を、あたかも1台の電力変換部であるように同じ動作をさせる、すなわち、交流側電圧と交流側電流及びキャリア波を共通化して直流結合手段30の電流脈動を抑制する。
この実施例は、電力変換システムの制御回路についてのものであり、前述した図1(b)の制御回路の構成及び作用に関する。以下では、図1(a)のコンバータ10及びインバータ20を制御する場合について説明するが、図8に示したように複数の電力変換部が並列接続されたコンバータ10A及びインバータ20Aを制御する場合も、基本的には同様の制御回路を適用することができる。
なお、本発明における制御回路の構成は、後述するように、図1(b)の例に何ら限定されるものではない。
一方、インバータ20の制御系は、交流モータMのトルクを制御する場合にはその電流を操作すればよく、また、交流モータMの速度を制御する場合には、速度のフィードバック制御を行ってトルクを操作すればよい。
つまり、コンバータ10側では交流電源Gの電流制御を行っているため、交流電源Gの電流の周波数の情報を有している。一方、インバータ20側は交流モータMの速度制御を行っており、この速度制御の指令値は、交流モータMの電流の周波数と直接的な関係がある。この関係は、交流モータMの種類(同期モータ、誘導モータ等)や極数等によって決まる。従って、交流モータMの電流の周波数が交流電源Gの電流の周波数に一致するように、つまり両者が同期するように、コンバータ10側が持つ電流の周波数の情報をインバータ20側に送り、インバータ20側はこれに基づいて例えば速度の指令値等を生成している。
すなわち、同期電動機の場合には、電流の周波数と電動機の回転周波数は、電動機の極対数(整数)倍で一致する。このため、コンバータ10、インバータ20の両者において、それぞれ位置センサSENSg,SENSmにより検出した同期電動機の位相角θg,θmを電気角変換手段pg,peにより電気角θge,θmeに変換し、これらのθge,θmeを用いて、制御系における回転座標変換手段VR及び逆変換手段VRIにそれぞれ与えている。なお、いわゆるセンサレス制御の場合には、θge,θmeとして、制御系が有する電圧や電流の情報を使って演算された推定値が用いられる。
コンバータ10の直流電圧部の電圧Ecを検出し、低域通過フィルタLPFを通した電圧Ec-lpfを生成する。この電圧Ec-lpfを目標値Ecrefに一致させるためのフィードバック制御系が構成されており、両者の差分が電圧調節手段AVRに入力されて電力の指令値が得られる。これに相当する発電量を交流電源Gに出力させるための電流指令値が電力指令値変換手段「P→I」によって生成され、先に述べたコンバータ10側の電流制御マイナーループに与えられる。
交流モータMの回転周波数ωmに極対数peを乗じた電気角周波数ωmeが、後述の位相同期手段43から出力される回転周波数の目標値ωmerefに一致するようにフィードバック制御を行う。電気角周波数ωmeと目標値ωmerefとの差分が速度調節手段ASRに入力されてトルク指令値が得られる。このトルク指令値に応じたトルクを交流モータMに発生させるための電流指令値がトルク指令値変換手段「T→I」によって生成され、先に述べたインバータ20側の電流制御マイナーループに与えられる。
図1(b)では、周波数を一致させるだけでなく、電流の位相角も制御可能としている。これを実現しているのが位相同期手段43である。この位相同期手段43では、交流電源Gの電流位相角θgeを基準として交流モータMの電流位相角θmeを同期させるため、フィードバック制御を行っている。すなわち、θgeとθmeとの差分に所定のオフセット角θadfを加えた値を位相調節手段PLLに入力し、その出力を交流モータMの回転周波数の目標値ωmerefとしている。つまり、θgeとθmeとが同期するように、交流モータMの回転速度に比例するωmerefを調整するように構成されている。
上述した制御回路の動作により、交流電源G及び交流モータMの基本波を同期させることができる。
この場合の制御回路のブロック図を、図11に示す。図11において、位相同期手段43Aは、交流モータMの電気位相角θmeを基準として交流電源Gの電気位相角θgeを同期させるため、θmeとθgeとの差分に所定のオフセット角θadfを加えた値を位相調節手段PLLに入力し、その出力を交流電源Gの電気角周波数の目標値ωgerefとしている。すなわち、θmeとθgeとが同期するように交流電源Gの回転速度に比例するωgerefを調整するように構成されている。交流電源Gは、図示しない外力、例えばエンジンによって駆動されているため、ωgerefは同じく図示しない当該外力の制御系に与えられる。この制御回路を用いた場合でも、交流電源G及び交流モータMの基本波を同期させることができる。なお、この制御系において、交流モータMの電気角周波数の目標値ωmerefは、負荷の都合によって与えられるものとなる。
従って、電力Pmのフィードフォワード制御を行うことにより、上記のような直流電圧部の電圧の変動を最小限にすることができるため、電力供給が安定し、交流電源Gと交流モータMの基本波の同期も安定して実現可能になる。
各実施例において説明したように、ケーブル等の直流結合手段30の電流脈動は、コンバータ10及びインバータ20の交流側の電圧基本波、電流基本波、及びキャリア波の状態によって変化する。基本的には、これらの交流側の電圧基本波、電流基本波、及びキャリア波について、コンバータ10側とインバータ20側とで周波数を一致させることが有効であり、しかもキャリア波の位相を調整して直流結合手段30の電流脈動を低減させることが可能であるから、これらを自動調整するような制御系を構成すればよい。特に、システム本来の目的である交流モータMの駆動を妨げないように、前記自動調整の時定数は交流モータMを駆動する際の応答時定数に対して大きく、例えば概ね5倍以上とすればよい。これにより、システムを安定に動作させることに加え、制御回路の計算負荷を低減することができる。
本発明に係る電力変換システムの適用分野は様々であるが、その一例として、図12に示すような公知の航空機推進システムに本発明を適用した場合を一つの実施例として説明する。
図12において、EN1,EN2は航空機のジェットエンジンであり、これらに発電機G1,G2が結合されている。発電機G1,G2にはコンバータCON1,CON2が接続され、更にバッテリーBAT1,BAT2を充放電させるための変換器CON1a,CON2aを経由して、モータM1,M2駆動用のインバータINV1,INV2が接続されている。前記モータM1,M2は、航空機を推進させる電動ファンを構成している。なお、バッテリーBAT1,BAT2を用いない場合には、変換器CON1a,CON2aが不要になり、コンバータCON1,CON2とインバータINV1,INV2とが直流結合手段としてのケーブルにて直結される。
この航空機推進システムの基本的な構成は、図1や図2(a)に示した本発明に係る電力変換システムを二つ備えたものと考えることができる。
従って、本発明の適用により、コンバータ及びインバータの直流電圧部に小容量のコンデンサを使用しながらケーブルの電流脈動を抑制することで、発熱の低減、効率の向上を図ることができる。
なお、直流結合手段としては超電導ケーブルを用いることも考えられ、その場合には、超伝導体が高周波電流の流通によって損失を発生し、これが超電導状態の維持を妨害することから、本発明の適用が特に有効となる。
以上の説明は、主として三相の電力変換システムについて行ったが、本発明はこれに限定されず、他の相数の電力変換システムについても適用可能である。
11,12:電力変換部
20:インバータ
21,22:電力変換部
30:直流結合手段
41:モータ電力演算手段
42:電力フィードフォワード手段
43,43A:位相同期手段
S1~S12,S21~S32:半導体スイッチング素子
Cc,Ci:コンデンサ
SENSg,SENSm:位置センサ
Claims (17)
- 交流電源と、前記交流電源の交流電力をPWM制御により直流電力に変換するコンバータと、前記コンバータから出力される直流電力をPWM制御により交流電力に変換して交流モータに供給するインバータと、を備えた電力変換システムにおいて、
前記コンバータの直流電圧部に接続された第1のコンデンサと、前記インバータの直流電圧部に接続された第2のコンデンサと、前記第1のコンデンサと前記第2のコンデンサとを接続する手段であってインダクタンス成分を有する直流結合手段と、を備え、
前記コンバータ及び前記インバータのスイッチング周波数を等しくすると共に、当該スイッチング周波数を、前記第1のコンデンサと前記第2のコンデンサと前記直流結合手段とからなる共振回路の共振周波数よりも高くし、
前記コンバータ及び前記インバータのスイッチング動作によって生じる前記第1のコンデンサ及び前記第2のコンデンサの電圧脈動の所定成分の位相が概ね同相となるように、前記コンバータ及び前記インバータの少なくとも一方のスイッチング動作を制御することを特徴とする電力変換システム。 - 請求項1に記載した電力変換システムにおいて、
前記コンバータ及び前記インバータにそれぞれ与えるPWMパルスを電圧指令値とキャリア波との比較により生成し、前記コンバータ側のキャリア波及び前記インバータ側のキャリア波を同一周波数とし、かつ両キャリア波の間に所定の位相関係を持たせることを特徴とする電力変換システム。 - 請求項2に記載した電力変換システムにおいて、
前記交流電源及び前記交流モータの相数を等しくし、
前記交流電源及び前記交流モータにおける一相の電圧の基本波が同一周波数であって概ね同相となるように前記コンバータ及び前記インバータの少なくとも一方を制御すると共に、
前記コンバータ側及び前記インバータ側のキャリア波の位相を互いに反転させたことを特徴とする電力変換システム。 - 請求項2に記載した電力変換システムにおいて、
前記交流電源及び前記交流モータの相数を等しくし、
前記交流電源及び前記交流モータにおける一相の電圧の基本波が同一周波数であって概ね逆相となるように前記コンバータ及び前記インバータの少なくとも一方を制御すると共に、
前記コンバータ側及び前記インバータ側のキャリア波の位相を同相としたことを特徴とする電力変換システム。 - 請求項1~4の何れか1項に記載した電力変換システムにおいて、
前記コンバータ及び前記インバータの少なくとも一方が、直流電圧部が並列接続された複数の電力変換部を有することを特徴とする電力変換システム。 - 請求項5に記載した電力変換システムにおいて、
前記複数の電力変換部のスイッチング周波数を同一にし、かつ、前記コンバータまたは前記インバータを構成する前記複数の電力変換部の直流母線電流のパルス発生のタイミングをずらしたことを特徴とする電力変換システム。 - 請求項6に記載した電力変換システムにおいて、
前記複数の電力変換部の直流母線電流のパルス発生のタイミングを概ね均等に散在させることを特徴とする電力変換システム。 - 請求項6に記載した電力変換システムにおいて、
前記第1のコンデンサまたは前記第2のコンデンサの電圧脈動のうち、スイッチング周波数成分については、前記コンバータ及び前記インバータにおいて概ね同相とし、スイッチング周波数の高調波成分については、前記複数の電力変換部の直流母線電流のパルス発生のタイミングをずらすことにより、それぞれ相殺することを特徴とする電力変換システム。 - 請求項6に記載した電力変換システムにおいて、
前記第1のコンデンサまたは前記第2のコンデンサの電圧脈動のうち、スイッチング周波数成分については、前記複数の電力変換部の直流母線電流のパルス発生のタイミングをずらし、スイッチング周波数の高調波成分については、前記コンバータ及び前記インバータにおいて概ね同相とすることにより、それぞれ相殺することを特徴とする電力変換システム。 - 請求項6~9の何れか1項に記載した電力変換システムにおいて、
前記複数の電力変換部にそれぞれ与えるPWMパルスを電圧指令値とキャリア波との比較により生成し、これらのキャリア波を同一周波数として各キャリア波の間に所定の位相関係を持たせると共に、
前記コンバータ及び前記インバータに用いるキャリア波を同一周波数とし、かつこれらのキャリア波の間に所定の位相関係を持たせたことを特徴とする電力変換システム。 - 請求項10に記載した電力変換システムにおいて、
前記交流電源及び前記交流モータの相数を等しくすると共に交流側電圧の基本波の周波数を同一にし、
前記コンバータ及び前記インバータにおいて、前記複数の電力変換部の交流側電圧及び交流側電流の基本波の振幅を概ね等しくすることを特徴とする電力変換システム。 - 請求項5~11の何れか1項に記載した電力変換システムにおいて、
前記複数の電力変換部の一部を停止させるときには、スイッチングに起因する前記第1のコンデンサまたは前記第2のコンデンサの電圧脈動の所定成分の位相が前記コンバータ及び前記インバータにおいて概ね同相になるように制御することを特徴とする電力変換システム。 - 請求項1~12の何れか1項に記載した電力変換システムにおいて、
前記交流電源が外力によって駆動される交流発電機であり、
前記コンバータまたは前記インバータの直流電圧平均値が所定値となるように、前記交流発電機の電流を前記コンバータにより制御し、前記交流発電機の電流の周波数を前記交流モータの周波数指令に相当する量として前記インバータに与えることを特徴とする電力変換システム。 - 請求項1~12の何れか1項に記載した電力変換システムにおいて、
前記交流電源が外力によって駆動される交流発電機であり、
前記コンバータまたは前記インバータの直流電圧平均値が所定値となるように、前記交流発電機の電流を前記コンバータにより制御し、前記交流モータの電流の周波数を前記交流発電機の周波数指令に相当する量として前記外力の制御装置に与えることを特徴とする電力変換システム。 - 請求項13または14に記載した電力変換システムにおいて、
前記インバータの出力電力に相当する量を、前記コンバータの入力電力指令値に相当する量に加算することを特徴とする電力変換システム。 - 請求項1~15の何れか1項に記載した電力変換システムにおいて、
前記直流結合手段に流れる電流脈動を低減するように、前記コンバータ及び前記インバータをそれぞれPWM制御するためのキャリア波相互の位相関係、または、前記コンバータ及び前記インバータの交流側電圧基本波の相互の位相関係もしくは交流側電流基本波の相互の位相関係のうち、少なくとも一つを調整することを特徴とする電力変換システム。 - 請求項1~16の何れか1項に記載した電力変換システムが、航空機を推進させる電動ファンの前記交流モータを駆動するシステムであることを特徴とする電力変換システム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021023112A JP7571601B2 (ja) | 2021-02-17 | 2021-02-17 | 電力変換システム |
CN202280006187.9A CN116235400A (zh) | 2021-02-17 | 2022-02-02 | 电力转换系统 |
EP22755945.7A EP4175152A4 (en) | 2021-02-17 | 2022-02-02 | POWER CONVERSION SYSTEM |
PCT/JP2022/004110 WO2022176624A1 (ja) | 2021-02-17 | 2022-02-02 | 電力変換システム |
US18/158,629 US20230170818A1 (en) | 2021-02-17 | 2023-01-24 | Power conversion system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021023112A JP7571601B2 (ja) | 2021-02-17 | 2021-02-17 | 電力変換システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022125500A JP2022125500A (ja) | 2022-08-29 |
JP7571601B2 true JP7571601B2 (ja) | 2024-10-23 |
Family
ID=82932038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021023112A Active JP7571601B2 (ja) | 2021-02-17 | 2021-02-17 | 電力変換システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230170818A1 (ja) |
EP (1) | EP4175152A4 (ja) |
JP (1) | JP7571601B2 (ja) |
CN (1) | CN116235400A (ja) |
WO (1) | WO2022176624A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006067754A (ja) | 2004-08-30 | 2006-03-09 | Hitachi Ltd | コンバータおよびそのコンバータを用いてなる電力変換装置 |
JP2006288035A (ja) | 2005-03-31 | 2006-10-19 | Hitachi Ltd | 電力変換システム |
JP2008259343A (ja) | 2007-04-06 | 2008-10-23 | Hitachi Appliances Inc | コンバータ・インバータ装置 |
JP2013207962A (ja) | 2012-03-29 | 2013-10-07 | Toshiba Mitsubishi-Electric Industrial System Corp | 電力変換装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0834695B2 (ja) | 1990-09-07 | 1996-03-29 | 株式会社日立製作所 | 電力変換方法、電力変換装置およびその電力変換装置を用いた圧延システム |
JP3298450B2 (ja) * | 1997-03-19 | 2002-07-02 | 株式会社日立製作所 | 空気調和機及び電力変換装置 |
JPH1118435A (ja) * | 1997-06-18 | 1999-01-22 | Mitsubishi Electric Corp | 直流リンク部の共振を抑制した高力率インバータ装置 |
JP4373040B2 (ja) | 2001-09-19 | 2009-11-25 | 株式会社日立製作所 | 直流送電用自励式変換器の制御装置 |
US7202626B2 (en) * | 2005-05-06 | 2007-04-10 | York International Corporation | Variable speed drive for a chiller system with a switched reluctance motor |
JP2017204976A (ja) | 2016-05-13 | 2017-11-16 | 東芝三菱電機産業システム株式会社 | 電力変換装置 |
CN111133667B (zh) * | 2017-09-27 | 2022-08-02 | 东芝三菱电机产业系统株式会社 | 电源装置 |
CN111464001B (zh) * | 2019-01-18 | 2021-06-11 | 台达电子企业管理(上海)有限公司 | 减少并联运行的多个非隔离模块的输入环流的方法及系统 |
JP2021023112A (ja) | 2019-07-31 | 2021-02-22 | 株式会社クボタ | 作業車 |
-
2021
- 2021-02-17 JP JP2021023112A patent/JP7571601B2/ja active Active
-
2022
- 2022-02-02 WO PCT/JP2022/004110 patent/WO2022176624A1/ja unknown
- 2022-02-02 CN CN202280006187.9A patent/CN116235400A/zh active Pending
- 2022-02-02 EP EP22755945.7A patent/EP4175152A4/en active Pending
-
2023
- 2023-01-24 US US18/158,629 patent/US20230170818A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006067754A (ja) | 2004-08-30 | 2006-03-09 | Hitachi Ltd | コンバータおよびそのコンバータを用いてなる電力変換装置 |
JP2006288035A (ja) | 2005-03-31 | 2006-10-19 | Hitachi Ltd | 電力変換システム |
JP2008259343A (ja) | 2007-04-06 | 2008-10-23 | Hitachi Appliances Inc | コンバータ・インバータ装置 |
JP2013207962A (ja) | 2012-03-29 | 2013-10-07 | Toshiba Mitsubishi-Electric Industrial System Corp | 電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2022125500A (ja) | 2022-08-29 |
CN116235400A (zh) | 2023-06-06 |
WO2022176624A1 (ja) | 2022-08-25 |
EP4175152A1 (en) | 2023-05-03 |
EP4175152A4 (en) | 2024-02-21 |
US20230170818A1 (en) | 2023-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10523130B2 (en) | Alternate grounding of inverter midpoint for three level switching control | |
CN104124883B (zh) | 电力转换系统和控制电力转换系统的方法 | |
CN101355317B (zh) | 功率变换装置和电源装置 | |
JP4717114B2 (ja) | 電力変換器の制御装置 | |
WO2016059684A1 (ja) | 多重巻線電動機駆動制御装置 | |
JP5658224B2 (ja) | 回生型高圧インバータの制御装置 | |
EP2690775A2 (en) | Drive system for alternating current motors and electric motorized vehicles | |
JP5029315B2 (ja) | モータ駆動システム | |
CN112737445A (zh) | 一种永磁辅助同步磁阻电机振荡抑制的控制方法 | |
JPH09215398A (ja) | インバータの制御装置 | |
JP2013121234A (ja) | 電力変換装置 | |
JP2004120853A (ja) | 動力出力装置 | |
CN110365038B (zh) | 微电网逆变器的控制方法、控制装置以及微电网逆变器 | |
JP7571601B2 (ja) | 電力変換システム | |
Chikh et al. | A novel fixed-switching-frequency DTC for PMSM drive with low torque and flux ripple based on Sinusoidal Pulse With Modulation and predictive controller | |
CN114400715B (zh) | 一种提高抗负载扰动性能的虚拟同步整流器控制方法 | |
Shehada et al. | An improved CSI fed induction motor drive | |
JP4842179B2 (ja) | 電力変換装置及びその制御方法 | |
JP6833654B2 (ja) | 電動機駆動装置 | |
CN112737457A (zh) | 一种永磁辅助同步磁阻电机的稳定性控制方法 | |
Said et al. | Closed-loop control strategy for PM machines with non-sinusoidal back-EMFs using dual-inverter open-end winding | |
JP7436756B2 (ja) | モータ駆動システム | |
Wang et al. | Dynamic capacitor voltage control of high power current source converter fed PMSM drives for LC resonance suppression | |
Al-nabi et al. | Power factor compensation for CSC-fed PMSM drive using d-axis stator current control | |
WO2024157363A1 (ja) | 電動機制御装置および電動機制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20210907 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20211008 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240910 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240923 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7571601 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |