JP7437864B2 - Storage method for power storage device pack and storage device for power storage device pack - Google Patents

Storage method for power storage device pack and storage device for power storage device pack Download PDF

Info

Publication number
JP7437864B2
JP7437864B2 JP2022022106A JP2022022106A JP7437864B2 JP 7437864 B2 JP7437864 B2 JP 7437864B2 JP 2022022106 A JP2022022106 A JP 2022022106A JP 2022022106 A JP2022022106 A JP 2022022106A JP 7437864 B2 JP7437864 B2 JP 7437864B2
Authority
JP
Japan
Prior art keywords
storage device
pack
power storage
battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022022106A
Other languages
Japanese (ja)
Other versions
JP2023119291A (en
Inventor
洋平 進藤
正人 中山
大樹 森下
祐樹 城山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Planet Energy and Solutions Inc
Original Assignee
Prime Planet Energy and Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Planet Energy and Solutions Inc filed Critical Prime Planet Energy and Solutions Inc
Priority to JP2022022106A priority Critical patent/JP7437864B2/en
Publication of JP2023119291A publication Critical patent/JP2023119291A/en
Application granted granted Critical
Publication of JP7437864B2 publication Critical patent/JP7437864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)

Description

本発明は、複数の蓄電デバイスと、これらを内部に収容する収容外装体とを備える蓄電デバイスパックの保存方法、及び、蓄電デバイスパックの保存装置に関する。 The present invention relates to a method for storing a power storage device pack that includes a plurality of power storage devices and a housing exterior body that houses these devices, and a storage device for a power storage device pack.

蓄電デバイスパックとして、二次電池やキャパシタなどの蓄電デバイスが、収容外装体内に収容された蓄電デバイスパックが知られている。更にこれに含まれる蓄電デバイスとして、複数の電極板が積層された電極積層部を包含する積層部包含電極体(以下、単に電極体ともいう)を有する蓄電デバイスがある。例えば、複数の矩形状の電極板をセパレータや固体電解質層を介して交互に複数層積層した直方体状で積層型の電極体や、帯状の電極板を帯状のセパレータを介して扁平状に捲回した扁平状で捲回型の電極体などである。例えば特許文献1に、このような蓄電デバイスパックが開示されている(特許文献1の図1~図3等参照)。
更にこのような蓄電デバイスパックの中には、使用の際に使用機器に搭載する一方、充電や保存の際には使用機器から取り外す、繰り返し着脱可能なものがある。例えば電動工具やドローンなどでは、このような着脱可能な蓄電デバイスパックを用いることが多い。
2. Description of the Related Art As a power storage device pack, a power storage device pack in which a power storage device such as a secondary battery or a capacitor is housed in an accommodating exterior body is known. Furthermore, as an electricity storage device included in this, there is an electricity storage device having a laminated part-containing electrode body (hereinafter also simply referred to as an electrode body) that includes an electrode laminated part in which a plurality of electrode plates are laminated. For example, a rectangular parallelepiped-shaped laminated electrode body in which multiple rectangular electrode plates are alternately laminated with separators or solid electrolyte layers interposed in between, or a strip-shaped electrode plate wound into a flat shape with a strip-shaped separator in between. These include flat, wound-type electrode bodies. For example, Patent Document 1 discloses such an electricity storage device pack (see FIGS. 1 to 3 of Patent Document 1, etc.).
Furthermore, some of these power storage device packs are removable and can be installed in a device during use, but removed from the device for charging or storage. For example, such removable power storage device packs are often used in power tools, drones, and the like.

特表2014-519180号公報Special Publication No. 2014-519180

ところで、蓄電デバイスパックを使用機器に搭載して使用する際と、使用機器から取り外して保存する際とで、蓄電デバイスパックが備える各蓄電デバイスの電極体の電極積層部に掛かる電極板積層方向の圧縮荷重の大きさを変更したい場合がある。具体的には、保存の際に、この圧縮荷重を増加させたい場合がある。
例えば蓄電デバイスが、電解液を含むリチウムイオン二次電池の場合には、充電を繰り返し行うに連れて、充電の際に電極体内で電解液が分解して発生したガスが、電極体内に溜まっていき、これに起因して電池抵抗が増加していく。これに対し、保存の際に、この電池の電極体の電極積層部に掛かる電極板積層方向の圧縮荷重を増加させると、電極体内に溜まったガスが圧縮により電極体外に放出されるため、ガスにより電池抵抗が増加するのを抑制できる。
By the way, when the electricity storage device pack is mounted on a device and used, and when it is removed from the device and stored, There are cases where it is desired to change the magnitude of the compressive load. Specifically, there are cases where it is desired to increase this compressive load during storage.
For example, if the electricity storage device is a lithium ion secondary battery that contains an electrolyte, as it is repeatedly charged, the electrolyte decomposes within the electrode body during charging and the gas generated accumulates inside the electrode body. As a result, the battery resistance increases. On the other hand, if the compressive load applied to the electrode lamination part of the electrode body of this battery in the electrode plate lamination direction is increased during storage, the gas accumulated inside the electrode body will be released outside the electrode body due to compression. This can suppress an increase in battery resistance.

本発明は、かかる現状に鑑みてなされたものであって、使用機器に着脱可能な蓄電デバイスパックにおいて、保存の際に蓄電デバイスの積層部包含電極体の電極積層部に掛かる電極板積層方向の圧縮荷重を増加させることができる蓄電デバイスパックの保存方法、及び、この蓄電デバイスパックの保存装置を提供する。 The present invention has been made in view of the current situation, and provides an electricity storage device pack that is removably attached to equipment in use. Provided is a method for storing an electricity storage device pack that can increase compressive load, and a storage device for this electricity storage device pack.

上記課題を解決するための本発明の一態様は、蓄電デバイスパックは、複数の電極板が積層された電極積層部を包含する積層部包含電極体を有する複数の蓄電デバイスと、上記複数の蓄電デバイスを内部に収容する収容外装体と、を備えており、上記収容外装体は、上記蓄電デバイスパックを使用機器に繰り返し着脱可能な着脱可能構造を有しており、かつ、上記収容外装体及び上記複数の蓄電デバイスは、上記蓄電デバイスパックの外部から外部力を掛けて、上記複数の蓄電デバイスの上記電極積層部に掛かる電極板積層方向の圧縮荷重をそれぞれ増加させる外部圧縮を、繰り返し施工可能な圧縮可能構造を有する上記蓄電デバイスパックを、上記使用機器から取り外した状態で保存する保存方法であって、上記蓄電デバイスパックに上記外部力を掛けて、上記複数の蓄電デバイスの上記電極積層部に掛かる上記圧縮荷重をそれぞれ増加させる上記外部圧縮を行う外部圧縮ステップと、上記外部圧縮ステップにより上記圧縮荷重を増加させた状態で、上記蓄電デバイスパックを保存する保存ステップと、を備える蓄電デバイスパックの保存方法である。 In one aspect of the present invention for solving the above problems, a power storage device pack includes a plurality of power storage devices having an electrode body including a laminated part including an electrode laminated part in which a plurality of electrode plates are laminated, and an accommodating exterior body that accommodates the device therein, the accommodating exterior body has a removable structure that allows the electricity storage device pack to be repeatedly attached and detached from the equipment used, and the accommodating exterior body and The plurality of power storage devices can be repeatedly subjected to external compression that increases the compressive load in the electrode plate lamination direction applied to the electrode lamination portions of the plurality of power storage devices by applying an external force from outside the power storage device pack. A storage method in which the electricity storage device pack having a compressible structure is stored in a state in which it is removed from the equipment in use, wherein the external force is applied to the electricity storage device pack, and the electrode laminated portions of the plurality of electricity storage devices are stored. A power storage device pack comprising: an external compression step of performing the external compression to increase the compression load applied to each; and a storage step of storing the power storage device pack in a state where the compression load is increased by the external compression step. This is a method of preservation.

上述の蓄電デバイスパックの保存方法は、上述の外部圧縮ステップ及び保存ステップを備えるため、蓄電デバイスパックを使用機器から取り外し、そのまま或いは充電した後に、外部圧縮により各蓄電デバイスの電極積層部に掛かる圧縮荷重を増加させた状態で、蓄電デバイスパックを保存することができる。 The above-described storage method for power storage device packs includes the above-mentioned external compression step and storage step. Therefore, the power storage device pack is removed from the device in use, and either as is or after charging, the compression applied to the electrode laminated portion of each power storage device by external compression is performed. The power storage device pack can be stored with an increased load.

なお、収容外装体に設けた「着脱可能構造」は、使用機器で使用するために蓄電デバイスパックを使用機器に装着するのと、充電や保存のために蓄電デバイスパックを使用機器から取り外すのとを、繰り返すことを可能とするべく収容外装体に設けた構造である。例えば、収容外装体に、使用機器の蓄電デバイス搭載部に予め形成された係合穴や係合凹部に係合して、蓄電デバイスパックを蓄電デバイス搭載部に装着する係合爪を設けた構造などが挙げられる。 In addition, the "removable structure" provided on the housing exterior body allows the power storage device pack to be attached to the device in order to use it, and the power storage device pack to be removed from the device for charging or storage. This is a structure provided in the housing exterior body to make it possible to repeat the process. For example, a structure in which the housing exterior body is provided with an engaging claw that engages with an engagement hole or an engagement recess formed in advance in the power storage device mounting portion of the equipment used, and attaches the power storage device pack to the power storage device mounting portion. Examples include.

収容外装体及び複数の蓄電デバイスが有する「圧縮可能構造」は、外部圧縮を繰り返し施工可能とするべく採用した、収容外装体が有する形態や構造、複数の蓄電デバイスがそれぞれ有する形態や収容外装体内おける各蓄電デバイスの配置をいう。この「圧縮可能構造」には、収容外装体に所定の外部力を掛けることにより、この収容外装体を介して間接に、各蓄電デバイスの電極積層部に掛かる圧縮荷重を増加させる構造のほか、収容外装体を介さず、各々の蓄電デバイスに或いは蓄電デバイスを積層した積層体に直接、外部力を掛けることにより、各蓄電デバイスの電極積層部に掛かる圧縮荷重を増加させる構造も含まれる。
「蓄電デバイスパック」には、所定の外部力が掛けられていない状態では、蓄電デバイスの電極積層部に電極板積層方向の圧縮荷重が掛からない蓄電デバイスパックのほか、外部力が掛けられていない状態でも、蓄電デバイスの電極積層部に電極板積層方向の予備圧縮荷重が掛かっている蓄電デバイスパックも含まれる。
The "compressible structure" of the housing exterior body and the plurality of power storage devices is the form and structure of the housing exterior body, the shape and structure of each of the plurality of power storage devices, and the structure inside the housing exterior body, which is adopted to enable repeated external compression. refers to the arrangement of each power storage device. This "compressible structure" includes a structure that increases the compressive load indirectly applied to the electrode stack of each power storage device through the housing exterior by applying a predetermined external force to the housing exterior. It also includes a structure in which the compressive load applied to the electrode stack of each power storage device is increased by applying an external force directly to each power storage device or to a stacked structure in which power storage devices are stacked, without using the housing exterior body.
"Electricity storage device packs" include energy storage device packs in which no compressive load is applied to the electrode lamination part of the electricity storage device in the electrode plate lamination direction unless a predetermined external force is applied to them; This also includes an electricity storage device pack in which a pre-compression load is applied to the electrode lamination portion of the electricity storage device in the electrode plate lamination direction even in this state.

また他の態様は、蓄電デバイスパックは、複数の電極板が積層された電極積層部を包含する積層部包含電極体を有する複数の蓄電デバイスと、上記複数の蓄電デバイスを内部に収容する収容外装体と、を備えており、上記収容外装体は、上記蓄電デバイスパックを使用機器に繰り返し着脱可能な着脱可能構造を有しており、かつ、上記収容外装体及び上記複数の蓄電デバイスは、上記蓄電デバイスパックの外部から外部力を掛けて、上記複数の蓄電デバイスの上記電極積層部に掛かる電極板積層方向の圧縮荷重をそれぞれ増加させる外部圧縮を、繰り返し施工可能な圧縮可能構造を有する上記蓄電デバイスパックを、上記使用機器から取り外した状態で保存する保存装置であって、上記蓄電デバイスパックに上記外部力を掛けて、上記複数の蓄電デバイスの上記電極積層部に掛かる上記圧縮荷重をそれぞれ増加させる上記外部圧縮を行う外部圧縮機構部を備える蓄電デバイスパックの保存装置である。 In another aspect, the power storage device pack includes a plurality of power storage devices having a laminated part-containing electrode body that includes an electrode laminated part in which a plurality of electrode plates are laminated, and a housing exterior that houses the plurality of power storage devices therein. The housing exterior body has a removable structure that allows the power storage device pack to be repeatedly attached to and detached from the equipment used, and the housing exterior body and the plurality of power storage devices are The above-mentioned power storage device has a compressible structure that allows repeated external compression to be performed by applying an external force from outside the power storage device pack to increase the compressive load in the electrode plate lamination direction applied to the electrode laminated portions of the plurality of power storage devices. A storage device for storing a device pack in a state where it is removed from the equipment in use, wherein the external force is applied to the power storage device pack to increase the compressive load applied to the electrode laminated portions of the plurality of power storage devices, respectively. This is a storage device for a power storage device pack including an external compression mechanism section that performs the above-mentioned external compression.

上述の蓄電デバイスパックの保存装置では、上述の外部圧縮機構部を備えるため、蓄電デバイスパックを使用機器から取り外し、そのまま或いは充電した後に、外部圧縮により各蓄電デバイスの電極積層部に掛かる圧縮荷重を増加させた状態で、蓄電デバイスパックを保存することができる。 Since the above-mentioned power storage device pack storage device includes the above-mentioned external compression mechanism, it is possible to remove the power storage device pack from the equipment in use and remove the compressive load applied to the electrode stack of each power storage device by external compression, either as is or after charging. The power storage device pack can be stored in an increased state.

実施形態に係る電池パックの上面図である。FIG. 2 is a top view of a battery pack according to an embodiment. 実施形態に係る電池パックのパック横方向及びパック高さ方向に沿う部分破断断面図である。FIG. 2 is a partially cutaway sectional view of the battery pack according to the embodiment along the pack lateral direction and the pack height direction. 実施形態に係る電池の斜視図である。FIG. 1 is a perspective view of a battery according to an embodiment. 実施形態に係る電池パック保存装置の上方から見た説明図である。FIG. 2 is an explanatory diagram of the battery pack storage device according to the embodiment viewed from above. 実施形態に係る電池パック保存装置の側方から見た説明図である。It is an explanatory view seen from the side of the battery pack preservation device concerning an embodiment. 実施形態に係る電池パックの保存方法のフローチャートである。3 is a flowchart of a method for storing a battery pack according to an embodiment. 拘束圧力を異ならせた各電池について、拘束時間と抵抗増加率Rzとの関係を示すグラフである。It is a graph showing the relationship between restraint time and resistance increase rate Rz for each battery with different restraint pressures. 拘束圧力を異ならせた各電池について、拘束時間と電極体内ガス含有率Gaとの関係を示すグラフである。It is a graph showing the relationship between restraint time and electrode internal gas content rate Ga for each battery with different restraint pressures.

(実施形態)
以下、本発明の実施形態を、図面を参照しつつ説明する。図1に本実施形態に係る電池パック(蓄電デバイスパック)1の上面図を、図2に電池パック1の部分破断断面図を示す。また図3に、電池パック1が備える電池(蓄電デバイス)10の斜視図を示す。この電池パック1は、ドローンなどの使用機器(不図示)に搭載される電池パックである。なお以下では、電池パック1のパック縦方向AH、パック横方向BH及びパック高さ方向CHを、図1及び図2に示す方向と定めて説明する。
(Embodiment)
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a top view of a battery pack (power storage device pack) 1 according to the present embodiment, and FIG. 2 shows a partially cutaway sectional view of the battery pack 1. Further, FIG. 3 shows a perspective view of the battery (power storage device) 10 included in the battery pack 1. This battery pack 1 is a battery pack that is installed in a device (not shown) such as a drone. In the following description, the pack longitudinal direction AH, pack lateral direction BH, and pack height direction CH of the battery pack 1 are defined as the directions shown in FIGS. 1 and 2.

電池パック1は、複数の電池10からなる電池集合体40と、この電池集合体40を内部に収容するパックケース(収容外装体)50とを備える。
このうち電池10は、リチウムイオン二次電池である。電池10は、積層部包含電極体(以下、単に電極体ともいう)11と、この電極体11を内部に収容する電池ケース21と、この電池ケース21に支持された正極端子31及び負極端子32等から構成されている。また電池ケース21内には、電解液25が収容されており、その一部は電極体11内に含浸され、一部は電池ケース21の底部に溜まっている。
The battery pack 1 includes a battery assembly 40 made up of a plurality of batteries 10, and a pack case (accommodating exterior body) 50 that accommodates the battery assembly 40 inside.
Among these, the battery 10 is a lithium ion secondary battery. The battery 10 includes a laminated part-containing electrode body (hereinafter also simply referred to as an electrode body) 11, a battery case 21 that houses the electrode body 11 inside, and a positive terminal 31 and a negative terminal 32 supported by the battery case 21. It is composed of etc. Further, an electrolytic solution 25 is housed in the battery case 21 , a part of which is impregnated into the electrode body 11 and a part of which remains at the bottom of the battery case 21 .

電極体11は、扁平な直方体状であり、矩形状の正極板(電極板)12と矩形状の負極板(電極板)15とを、樹脂製の多孔質膜からなる矩形状のセパレータ18を介して、交互に積層した積層型の電極体である。この電極体11は、正極板12及び負極板15がセパレータ18を介して電極板積層方向SHに積層された電極積層部11aからなる。電極積層部11aのうち、電極体幅方向DHの一方側DH1(図3において左下方向)の部位は、正極板12の後述する正極露出部12dが電極板積層方向SHに重なった正極積層集電部11bであり、電極体幅方向DHの他方側DH2(図3において右上方向)の部位は、負極板15の後述する負極露出部15dが電極板積層方向SHに重なった負極積層集電部11cである。この電極体11は、電極体幅方向DHが電池幅方向EHに一致すると共に、電極板積層方向SHが電池厚み方向FHに一致するように、横倒しの状態で電池ケース21内に収容されている。そして、電極体11の正極積層集電部11bに正極端子31が電気的に接続され、電極体11の負極積層集電部11cに負極端子32が電気的に接続されている。 The electrode body 11 has a flat rectangular parallelepiped shape, and includes a rectangular positive electrode plate (electrode plate) 12, a rectangular negative electrode plate (electrode plate) 15, and a rectangular separator 18 made of a porous resin membrane. It is a laminated type electrode body in which the electrode bodies are alternately laminated with each other. This electrode body 11 consists of an electrode lamination section 11a in which a positive electrode plate 12 and a negative electrode plate 15 are laminated in the electrode plate lamination direction SH with a separator 18 in between. In the electrode laminated portion 11a, a portion on one side DH1 in the electrode body width direction DH (lower left direction in FIG. 3) is a positive electrode laminated current collector where a later-described positive electrode exposed portion 12d of the positive electrode plate 12 overlaps in the electrode plate lamination direction SH. The portion 11b on the other side DH2 in the electrode body width direction DH (upper right direction in FIG. 3) is a negative electrode laminated current collector portion 11c where a negative electrode exposed portion 15d, which will be described later, of the negative electrode plate 15 overlaps in the electrode plate lamination direction SH. It is. This electrode body 11 is housed in the battery case 21 in a sideways state so that the electrode body width direction DH coincides with the battery width direction EH and the electrode plate stacking direction SH coincides with the battery thickness direction FH. . The positive electrode terminal 31 is electrically connected to the positive electrode laminated current collector 11b of the electrode body 11, and the negative electrode terminal 32 is electrically connected to the negative electrode laminated current collector 11c of the electrode body 11.

正極板12は、矩形状のアルミニウム箔からなる正極集電箔13を有する。この正極集電箔13の両主面上には、それぞれリチウムイオンを吸蔵及び放出可能な正極活物質粒子を含む正極活物質層14が形成されている。正極板12のうち電極体幅方向DHの一方側DH1の端部は、厚み方向に正極活物質層14が存在せず、正極集電箔13が厚み方向に露出した正極露出部12dとなっている。各々の正極板12の正極露出部12dは、前述のように電極板積層方向SHに重なって正極積層集電部11bを形成している。 The positive electrode plate 12 has a positive current collector foil 13 made of rectangular aluminum foil. A positive electrode active material layer 14 containing positive electrode active material particles capable of intercalating and deintercalating lithium ions is formed on both main surfaces of the positive electrode current collector foil 13, respectively. At the end of one side DH1 of the positive electrode plate 12 in the electrode body width direction DH, the positive electrode active material layer 14 is not present in the thickness direction, and the positive electrode current collector foil 13 is exposed in the thickness direction, forming a positive electrode exposed portion 12d. There is. As described above, the positive electrode exposed portions 12d of each positive electrode plate 12 overlap in the electrode plate lamination direction SH to form the positive electrode laminated current collector portion 11b.

負極板15は、矩形状の銅箔からなる負極集電箔16を有する。この負極集電箔16の両主面上には、それぞれリチウムイオンを吸蔵及び放出可能な負極活物質粒子を含む負極活物質層17が形成されている。負極板15のうち、電極体幅方向DHの他方側DH2の端部は、厚み方向に負極活物質層17が存在せず、負極集電箔16が厚み方向に露出した負極露出部15dとなっている。各々の負極板15の負極露出部15dは、前述のように電極板積層方向SHに重なって負極積層集電部11cを形成している。 The negative electrode plate 15 has a negative electrode current collector foil 16 made of rectangular copper foil. On both main surfaces of this negative electrode current collector foil 16, negative electrode active material layers 17 each containing negative electrode active material particles capable of intercalating and deintercalating lithium ions are formed. In the negative electrode plate 15, the end of the other side DH2 in the electrode body width direction DH has no negative electrode active material layer 17 in the thickness direction, and becomes a negative electrode exposed part 15d where the negative electrode current collector foil 16 is exposed in the thickness direction. ing. As described above, the negative electrode exposed portions 15d of each negative electrode plate 15 overlap in the electrode plate lamination direction SH to form the negative electrode laminated current collector portion 11c.

電池ケース21は、アルミニウムからなる扁平な直方体箱状であり、上方に開口22cを有する有底角筒状のケース本体部材22と、このケース本体部材22の開口22cを閉塞する形態で溶接された矩形板状のケース蓋部材23とから構成されている。このうちケース蓋部材23には、複数のアルミニウムの部材から構成される正極端子31が、ケース蓋部材23と絶縁された状態で固設されている。この正極端子31は、電池ケース21の内部で電極体11の正極積層集電部11bに接続し導通する一方、ケース蓋部材23を貫通して電池外部まで延びている。またケース蓋部材23には、複数の銅の部材から構成される負極端子32が、ケース蓋部材23と絶縁された状態で固設されている。この負極端子32は、電池ケース21の内部で電極体11の負極積層集電部11cに接続し導通する一方、ケース蓋部材23を貫通して電池外部まで延びている。 The battery case 21 is a flat rectangular parallelepiped box made of aluminum, and is welded to a case body member 22 having a bottomed rectangular cylindrical shape having an opening 22c at the top in such a manner as to close the opening 22c of the case body member 22. The case lid member 23 has a rectangular plate shape. A positive electrode terminal 31 made of a plurality of aluminum members is fixed to the case lid member 23 while being insulated from the case lid member 23 . The positive electrode terminal 31 is connected to the positive electrode laminated current collecting portion 11b of the electrode body 11 inside the battery case 21 for conduction, and extends through the case lid member 23 to the outside of the battery. Further, a negative electrode terminal 32 made of a plurality of copper members is fixed to the case lid member 23 while being insulated from the case lid member 23 . This negative electrode terminal 32 is connected to the negative electrode laminated current collecting portion 11c of the electrode body 11 inside the battery case 21 for conduction, and extends through the case lid member 23 to the outside of the battery.

電池集合体40は、上述の電池10が複数、電池厚み方向FH(電極積層部11aの電極板積層方向SH)に積層されている。電池集合体40を構成する各電池10は、矩形板状のバスバ45を介して直列に接続されている。そして、この電池集合体40の総正極端子41は、電池パック1のパック正極端子71に電気的に接続され、電池集合体40の総負極端子42は、電池パック1のパック負極端子72に電気的に接続されている。 In the battery assembly 40, a plurality of the batteries 10 described above are stacked in the battery thickness direction FH (the electrode plate stacking direction SH of the electrode stacking portion 11a). The batteries 10 constituting the battery assembly 40 are connected in series via a rectangular plate-shaped bus bar 45. The total positive terminals 41 of this battery assembly 40 are electrically connected to the pack positive terminal 71 of the battery pack 1, and the total negative terminals 42 of the battery assembly 40 are electrically connected to the pack negative terminal 72 of the battery pack 1. connected.

パックケース50は、各々アルミニウムからなる第1収容部51及び第2収容部61とを有し、伸縮可能な構造を有する。具体的には、第1収容部51は、パックケース50が伸縮する伸縮方向IH(パック横方向BHと同じ方向)の一方側IH1に開口する第1開口部51cを有する有底角筒状であり、矩形板状の第1底部52と、この第1底部52の周縁から垂直に立ち上がる4つの矩形板状の第1側部53,54,55,56とを有する。
一方、第2収容部61は、伸縮方向IHの他方側IH2に開口する第2開口部61cを有する有底角筒状であり、矩形板状の第2底部62と、この第2底部62の周縁から垂直に立ち上がる4つの矩形板状の第2側部63,64,65,66とを有する。この第2収容部61の第2開口部61cは、第1収容部51の第1開口部51cの内側に配置されて、第2収容部61が伸縮方向IHに移動可能に第1収容部51に嵌合している。
The pack case 50 has a first accommodating part 51 and a second accommodating part 61 each made of aluminum, and has an expandable structure. Specifically, the first accommodating portion 51 is shaped like a square cylinder with a bottom and has a first opening 51c that opens on one side IH1 in the expansion/contraction direction IH (the same direction as the pack lateral direction BH) in which the pack case 50 expands and contracts. It has a rectangular plate-shaped first bottom part 52 and four rectangular plate-shaped first side parts 53 , 54 , 55 , 56 rising vertically from the periphery of the first bottom part 52 .
On the other hand, the second accommodating part 61 has a bottomed square cylindrical shape having a second opening 61c that opens to the other side IH2 in the expansion/contraction direction IH, and has a rectangular plate-shaped second bottom part 62 and a second bottom part 62. It has four rectangular plate-shaped second side portions 63, 64, 65, and 66 rising vertically from the periphery. The second opening 61c of the second accommodating part 61 is arranged inside the first opening 51c of the first accommodating part 51, so that the second accommodating part 61 can move in the expansion/contraction direction IH. is fitted.

前述の電池集合体40は、これら第1収容部51及び第2収容部61の内部に収容されている。具体的には、電池集合体40は、各電池10の電池幅方向EH(電極体幅方向DH)がパック縦方向AHと一致し、各電池10の電池厚み方向FH(電極板積層方向SH)がパック横方向BH(伸縮方向IH)と一致するようにして、第1収容部51の第1底部52と第2収容部61の第2底部62との間に配置されている。これにより、各電池10の電極積層部11aの電極板積層方向SHと、パックケース50の伸縮方向IHとが一致している。 The aforementioned battery assembly 40 is accommodated inside these first accommodating section 51 and second accommodating section 61 . Specifically, in the battery assembly 40, the battery width direction EH (electrode body width direction DH) of each battery 10 coincides with the pack longitudinal direction AH, and the battery thickness direction FH (electrode plate stacking direction SH) of each battery 10 coincides with the pack longitudinal direction AH. It is arranged between the first bottom part 52 of the first accommodating part 51 and the second bottom part 62 of the second accommodating part 61 so that it coincides with the pack lateral direction BH (expansion/contraction direction IH). As a result, the electrode plate lamination direction SH of the electrode lamination portion 11a of each battery 10 and the expansion/contraction direction IH of the pack case 50 match.

またパックケース50には、パック正極端子71及びパック負極端子72が固設されている。パック正極端子71は、パックケース50の内部で電池集合体40の総正極端子41に電気的に接続する一方、パックケース50を貫通してパック外部まで延びている。またパック負極端子72は、パックケース50の内部で電池集合体40の総負極端子42に電気的に接続する一方、パックケース50を貫通してパック外部まで延びている。 Further, a pack positive terminal 71 and a pack negative terminal 72 are fixed to the pack case 50. The pack positive terminal 71 is electrically connected to all the positive terminals 41 of the battery assembly 40 inside the pack case 50, and extends through the pack case 50 to the outside of the pack. Further, the pack negative terminal 72 is electrically connected to all the negative terminals 42 of the battery assembly 40 inside the pack case 50, and extends through the pack case 50 to the outside of the pack.

またパックケース50は、使用機器に繰り返し着脱可能な着脱可能構造を有する。具体的には、パックケース50の第1収容部51の第1側部55,56には、それぞれ係合爪57が設けられており、これらの係合爪57を、使用機器の電池搭載部(不図示)に形成された係合凹部(不図示)に係合させることにより、電池パック1を使用機器に搭載して固定することができる。一方、係合爪57を使用機器の係合凹部から外すことにより、電池パック1を使用機器から取り外すことができる。従って、使用機器を利用する際に充電済みの電池パック1を使用機器に搭載する一方、電池パック1を充電する際や保存する際には、電池パック1を使用機器から取り外して、電池パック1単体に対して充電等を行うことができる。 Moreover, the pack case 50 has a detachable structure that can be repeatedly attached to and detached from the equipment used. Specifically, engaging claws 57 are provided on the first side portions 55 and 56 of the first housing portion 51 of the pack case 50, and these engaging claws 57 are connected to the battery mounting portion of the device in use. By engaging with an engagement recess (not shown) formed in the battery pack 1 (not shown), the battery pack 1 can be mounted and fixed on a device to be used. On the other hand, by removing the engagement claw 57 from the engagement recess of the device, the battery pack 1 can be removed from the device. Therefore, when using the device, a charged battery pack 1 is installed in the device, but when charging or storing the battery pack 1, the battery pack 1 is removed from the device and the battery pack 1 is loaded into the device. It is possible to charge a single unit.

また電池パック1は、外部圧縮を繰り返し施工可能な圧縮可能構造を有する。即ち、電池パック1は、外部圧縮を行っていない状態では、電池集合体40に拘束荷重が掛かっていないため、各電池10の電極体11の電極積層部11aには、電極板積層方向SHの圧縮荷重Fcが掛かっていない。
一方、この電池パック1に、後述するように所定の外部力Fgを掛けて外部圧縮を行うと(図4及び図5参照)、具体的には、パックケース50のうち第1収容部51の第1底部52と第2収容部61の第2底部62とに、伸縮方向IHの内側IH3に向かう所定の外部力Fgを掛けると、パックケース50が伸縮方向IHに縮まり、第1底部52及び第2底部62を介して間接に、これらの間に挟まれた電池集合体40も伸縮方向IHに圧縮することができる。これにより、電池集合体40を構成する各電池10が電池厚み方向FH(電極板積層方向SH)に圧縮され、各電池10の電極体11の電極積層部11aに電極板積層方向SHの圧縮荷重Fcがそれぞれ掛かる(圧縮荷重Fcが零から増加する)。
Further, the battery pack 1 has a compressible structure that allows repeated external compression. That is, in the battery pack 1, when no external compression is performed, no restraining load is applied to the battery assembly 40, so that the electrode laminated portion 11a of the electrode body 11 of each battery 10 has a load in the electrode plate lamination direction SH. No compressive load Fc is applied.
On the other hand, when external compression is performed by applying a predetermined external force Fg to the battery pack 1 as described later (see FIGS. 4 and 5), specifically, when the first storage section 51 of the pack case 50 When a predetermined external force Fg directed toward the inner side IH3 in the stretching direction IH is applied to the first bottom part 52 and the second bottom part 62 of the second storage part 61, the pack case 50 contracts in the stretching direction IH, and the first bottom part 52 and The battery assembly 40 sandwiched between them can also be compressed in the expansion/contraction direction IH indirectly via the second bottom portion 62. As a result, each battery 10 constituting the battery assembly 40 is compressed in the battery thickness direction FH (electrode plate stacking direction SH), and a compressive load is applied to the electrode stacking portion 11a of the electrode body 11 of each battery 10 in the electrode plate stacking direction SH. Fc is applied respectively (compressive load Fc increases from zero).

なお、この外部力Fgを解除すると、各電池10の電極積層部11aに掛かる圧縮荷重Fcはそれぞれ零に戻る。
このように電池パック1は、パックケース50に外部力Fgを掛けて各電池10の電極積層部11aに掛かる圧縮荷重Fcをそれぞれ増加させる外部圧縮を、繰り返し施工可能となっている。
Note that when this external force Fg is released, the compressive load Fc applied to the electrode laminated portion 11a of each battery 10 returns to zero.
In this manner, the battery pack 1 can be repeatedly subjected to external compression in which the external force Fg is applied to the pack case 50 to increase the compression load Fc applied to the electrode laminated portion 11a of each battery 10.

次いで、使用機器から取り外した上述の電池パック1の保存方法について説明する(図4~図6参照)。まず電池パック1の保存に用いる電池パック保存装置(蓄電デバイスパックの保存装置、以下、単に保存装置ともいう)100について説明する。保存装置100は、電池パック1が備える各電池10に外部圧縮を行う外部圧縮機構部110を備える。この外部圧縮機構部110は、電池パック1を載置する載置部111と、この載置部111から上方に延びる第1固定壁部112と、載置部111から上方に延び、第1固定壁部112に対向する第2固定壁部113と、第1固定壁部112と第2固定壁部113との間に配置され、これらに対向し、第1固定壁部112に向けて移動可能な移動壁部115と、移動壁部115を移動させるボルト116とを有する。 Next, a method for storing the above-mentioned battery pack 1 removed from the device used will be explained (see FIGS. 4 to 6). First, a battery pack storage device (storage device for power storage device pack, hereinafter also simply referred to as storage device) 100 used to store the battery pack 1 will be described. The storage device 100 includes an external compression mechanism section 110 that performs external compression on each battery 10 included in the battery pack 1. The external compression mechanism section 110 includes a placing section 111 on which the battery pack 1 is placed, a first fixing wall section 112 extending upward from the placing section 111, and a first fixing wall section 112 extending upward from the placing section 111. A second fixed wall part 113 facing the wall part 112 is disposed between the first fixed wall part 112 and the second fixed wall part 113, and is movable toward the first fixed wall part 112 while facing them. The movable wall portion 115 has a movable wall portion 115 and a bolt 116 for moving the movable wall portion 115.

第1固定壁部112は、載置部111に載置された電池パック1の伸縮方向IH(パック横方向BH)の一方側IH1(図4,図5において左方)に位置しており、パックケース50のうち第1収容部51の第1底部52を当接させる部位である。
一方、移動壁部115は、載置部111に載置された電池パック1の伸縮方向IH(パック横方向BH)の他方側IH2(図4,図5において右方)に位置している。またボルト116は、第2固定壁部113に穿設された雌ねじ部113aに螺合しつつ第2固定壁部113を貫通しており、ボルト116の先端部116sが移動壁部115に当接する。このボルト116の頭部116tを回転させて、ボルト116及びこれに当接する移動壁部115を第1固定壁部112に向けて(図4,図5において左方に向けて)移動させると、移動壁部115がパックケース50のうち第2収容部61の第2底部62に当接し、第1固定壁部112と移動壁部115でパックケース50を伸縮方向IH(パック横方向BH)に挟圧することができる。
The first fixed wall portion 112 is located on one side IH1 (left side in FIGS. 4 and 5) in the expansion/contraction direction IH (pack lateral direction BH) of the battery pack 1 placed on the placement portion 111, This is a portion of the pack case 50 that is brought into contact with the first bottom portion 52 of the first accommodating portion 51 .
On the other hand, the movable wall portion 115 is located on the other side IH2 (right side in FIGS. 4 and 5) in the expansion/contraction direction IH (pack lateral direction BH) of the battery pack 1 placed on the placement portion 111. Further, the bolt 116 passes through the second fixed wall part 113 while being screwed into a female screw part 113a bored in the second fixed wall part 113, and the tip end 116s of the bolt 116 comes into contact with the movable wall part 115. . When the head 116t of this bolt 116 is rotated to move the bolt 116 and the movable wall portion 115 in contact with it toward the first fixed wall portion 112 (towards the left in FIGS. 4 and 5), The movable wall portion 115 contacts the second bottom portion 62 of the second storage portion 61 of the pack case 50, and the first fixed wall portion 112 and the movable wall portion 115 move the pack case 50 in the expansion/contraction direction IH (pack lateral direction BH). Can be compressed.

電池パック1の保存に当たっては、まず電池パック1を使用機器から取り外し、この電池パック1を外部圧縮機構部110の載置部111上に載置する。なお、電池パック1を使用機器から取り外した後、電池パック1に充電を行ってから、電池パック1を外部圧縮機構部110の載置部111上に載置してもよい。
そして「外部圧縮ステップ」S1において、外部圧縮機構部110のボルト116の頭部116tを回転させて、ボルト116及び移動壁部115を第1固定壁部112に向けて移動させ、第1固定壁部112と移動壁部115との間に電池パック1のパックケース50を伸縮方向IH(パック横方向BH)に挟む。更にボルト116及び移動壁部115を第1固定壁部112に向けて移動させて、パックケース50に伸縮方向IHの内側IH3に向かう所定の外部力Fgを掛けると、パックケース50の第1収容部51と第2収容部61が摺動してパックケース50が伸縮方向IHに縮まり、パックケース50に内蔵された電池集合体40を構成する各電池10が電池厚み方向FH(電極板積層方向SH)に圧縮されて、各電池10の電極体11の電極積層部11aに電極板積層方向SHの圧縮荷重Fcがそれぞれ掛かる(圧縮荷重Fcが零から増加する)。
When storing the battery pack 1, the battery pack 1 is first removed from the device in use, and the battery pack 1 is placed on the mounting section 111 of the external compression mechanism section 110. Note that, after removing the battery pack 1 from the device in use, the battery pack 1 may be charged, and then the battery pack 1 may be placed on the placement section 111 of the external compression mechanism section 110.
Then, in the "external compression step" S1, the head 116t of the bolt 116 of the external compression mechanism section 110 is rotated to move the bolt 116 and the movable wall section 115 toward the first fixed wall section 112, and the first fixed wall section 116 is moved toward the first fixed wall section 112. The pack case 50 of the battery pack 1 is sandwiched between the section 112 and the movable wall section 115 in the expansion/contraction direction IH (pack lateral direction BH). Further, when the bolt 116 and the movable wall portion 115 are moved toward the first fixed wall portion 112 and a predetermined external force Fg directed toward the inner side IH3 in the expansion/contraction direction IH is applied to the pack case 50, the first accommodation of the pack case 50 is performed. The part 51 and the second accommodating part 61 slide to contract the pack case 50 in the expansion/contraction direction IH, and each battery 10 constituting the battery assembly 40 built into the pack case 50 is moved in the battery thickness direction FH (electrode plate stacking direction). SH), and a compressive load Fc in the electrode plate lamination direction SH is applied to the electrode laminated portion 11a of the electrode body 11 of each battery 10 (the compressive load Fc increases from zero).

次に「保存ステップ」S2において、外部圧縮ステップS1により圧縮荷重Fcを増加させた状態で、蓄電デバイスパック1を保存する。本実施形態では、蓄電デバイスが電解液25を含むリチウムイオン二次電池10であるため、充電の際に電極体11内で電解液25が分解してガスが発生し、このガスが電極体11内に溜まり易い。しかし、この保存ステップS2は、電池10の電極積層部11aに掛かる圧縮荷重Fcを増加させた状態で行っているため、電極体11内に溜まったガスは圧縮により電極体11外に放出され易い。このため、電極体11内に溜まったガスに起因して電池抵抗が増加するのを抑制できる。 Next, in a "storage step" S2, the power storage device pack 1 is stored with the compression load Fc increased in the external compression step S1. In this embodiment, since the electricity storage device is the lithium ion secondary battery 10 containing the electrolyte 25, the electrolyte 25 decomposes within the electrode body 11 during charging and gas is generated, and this gas is transferred to the electrode body 11. It tends to accumulate inside. However, since this storage step S2 is performed with the compressive load Fc applied to the electrode stack 11a of the battery 10 increased, the gas accumulated inside the electrode body 11 is likely to be released outside the electrode body 11 due to compression. . Therefore, it is possible to suppress an increase in battery resistance due to gas accumulated in the electrode body 11.

この電池パック1を使用機器に搭載するに当たっては、「圧縮解除ステップ」S3において、前述の外部圧縮を解除する。即ち、外部圧縮機構部110のボルト116の頭部116tを逆回転させて、ボルト116及び移動壁部115を第1固定壁部112から遠ざかる方向(図4,図5において右方)に移動させ、移動壁部115をパックケース50の第2収容部61の第2底部62から離間させる。これにより、パックケース50が伸縮方向IHに伸びると共に、各電池10の電極積層部11aに掛かる圧縮荷重Fcが零になる。その後、電池パック1を保存装置100から取り外す。 When this battery pack 1 is installed in a device to be used, the above-mentioned external compression is released in a "compression release step" S3. That is, the head 116t of the bolt 116 of the external compression mechanism section 110 is reversely rotated to move the bolt 116 and the movable wall section 115 in a direction away from the first fixed wall section 112 (to the right in FIGS. 4 and 5). , the movable wall portion 115 is separated from the second bottom portion 62 of the second storage portion 61 of the pack case 50. As a result, the pack case 50 extends in the expansion/contraction direction IH, and the compressive load Fc applied to the electrode laminated portion 11a of each battery 10 becomes zero. Thereafter, the battery pack 1 is removed from the storage device 100.

(試験結果)
次いで、本発明の効果を検証するために行った試験結果について説明する。まず電池10を複数用意し、初期の電池抵抗Rをそれぞれ測定した。具体的には、電池10をSOC50%(電池電圧3.7V)に調整した後、2Cの定電流Iで10秒間放電を行い、放電前後の電池電圧Vを測定して電圧変化量ΔVを求め、R=ΔV/Iにより電池抵抗(IV抵抗)Rを求めた。
次に、これらの電池10に充放電サイクル試験を行って、電池10をある程度劣化させた。具体的には、無拘束状態(電極体11の電極積層部11aに圧縮荷重Fcが掛かっていない状態)の電池10に充放電装置(不図示)を接続し、1Cの定電流でSOC100%(電池電圧4.2V)まで充電し、その後、2Cの定電流でSOC0%(電池電圧3.0V)まで放電させる充放電を1サイクルとして、この充放電を300回繰り返し行った。
その後、各電池10について、充放電サイクル試験後の電池抵抗Rを、初期の電池抵抗Rの測定と同様にしてそれぞれ測定した。更に、各電池10について、初期の電池抵抗Rに対する抵抗増加率Rz(%)を、抵抗増加率Rz=((充放電サイクル試験後の電池抵抗R)/(初期の電池抵抗R)-1)×100によりそれぞれ算出した。
(Test results)
Next, the results of tests conducted to verify the effects of the present invention will be explained. First, a plurality of batteries 10 were prepared, and the initial battery resistance R was measured for each battery. Specifically, after adjusting the battery 10 to SOC 50% (battery voltage 3.7V), it was discharged for 10 seconds at a constant current I of 2C, and the battery voltage V before and after discharge was measured to find the voltage change amount ΔV. , the battery resistance (IV resistance) R was determined by R=ΔV/I.
Next, these batteries 10 were subjected to a charge/discharge cycle test to cause the batteries 10 to deteriorate to some extent. Specifically, a charging/discharging device (not shown) is connected to the battery 10 in an unrestrained state (a state in which no compressive load Fc is applied to the electrode laminated portion 11a of the electrode body 11), and the SOC is 100% (with a constant current of 1C). One cycle of charging and discharging was charging to a battery voltage of 4.2 V) and then discharging at a constant current of 2 C to a SOC of 0% (battery voltage of 3.0 V), and this charging and discharging was repeated 300 times.
Thereafter, for each battery 10, the battery resistance R after the charge/discharge cycle test was measured in the same manner as the initial battery resistance R was measured. Furthermore, for each battery 10, the resistance increase rate Rz (%) with respect to the initial battery resistance R is calculated as the resistance increase rate Rz = ((Battery resistance R after charge/discharge cycle test)/(Initial battery resistance R) - 1) Each was calculated by ×100.

次に充放電サイクル試験後の各電池10について、SOC50%に調整した後、拘束圧力の大きさを電池10毎に0kpa(拘束なし)、50kpa、180kpaまたは1100kpaに変えて、電池厚み方向FH(電極板積層方向SH)に圧縮し、この圧縮状態で各電池10をそれぞれ保存した。
また拘束開始から12時間経過した後と48時間経過した後に、各電池10について、前述の測定と同様にして電池抵抗Rを測定し、初期の電池抵抗Rに対する抵抗増加率Rzをそれぞれ算出した。その結果を図7に示す。
Next, for each battery 10 after the charge/discharge cycle test, after adjusting the SOC to 50%, the magnitude of the restraint pressure was changed for each battery 10 to 0 kpa (no restraint), 50 kpa, 180 kpa, or 1100 kpa, and the battery thickness direction FH ( The battery 10 was compressed in the electrode plate stacking direction SH), and each battery 10 was stored in this compressed state.
Further, after 12 hours and 48 hours had passed from the start of restraint, the battery resistance R was measured for each battery 10 in the same manner as the measurement described above, and the resistance increase rate Rz with respect to the initial battery resistance R was calculated. The results are shown in FIG.

また試験に用いた各電池10について、前述の充放電サイクル試験後(拘束前)と、拘束開始から12時間経過した後と、48時間経過した後に、それぞれ電極体11内に溜まっているガスの量を調査した。具体的には、超音波測定により電池10の電極体11内にガスが存在している部分を調べ、電極体内ガス含有率Ga=((ガスが存在している部分の面積)/(電極体の面積))×100により、電極体内ガス含有率Ga(%)を算出した。その結果を図8に示す。 In addition, for each battery 10 used in the test, the amount of gas accumulated in the electrode body 11 was measured after the aforementioned charge/discharge cycle test (before restraint), after 12 hours from the start of restraint, and after 48 hours, respectively. The amount was investigated. Specifically, the part where gas exists in the electrode body 11 of the battery 10 is investigated by ultrasonic measurement, and the gas content rate inside the electrode Ga=((area of the part where gas exists)/(electrode body) The gas content rate Ga (%) in the electrode body was calculated by (area))×100. The results are shown in FIG.

図7及び図8のグラフから明らかなように、電池10を電池厚み方向FH(電極板積層方向SH)に圧縮した状態で保存すると、電池10を圧縮しないで保存する場合(0kpa、拘束なし)に比べて、初期の電池抵抗Rに対する抵抗増加率Rzが低下すると共に、電極体内ガス含有率Gaが低下する。具体的には、拘束圧力を高くするほど、また拘束時間を長くするほど、抵抗増加率Rzが低下する共に、電極体内ガス含有率Gaが低下する。即ち、充放電サイクル試験により電極体11内に溜まったガスが少なくなって、充放電サイクル試験により劣化(電池抵抗Rが増加)した電池10の劣化状態が改善することが判る。 As is clear from the graphs in FIGS. 7 and 8, when the battery 10 is stored compressed in the battery thickness direction FH (electrode plate stacking direction SH), when the battery 10 is stored without being compressed (0 kpa, no restraint) Compared to this, the resistance increase rate Rz with respect to the initial battery resistance R decreases, and the gas content rate Ga within the electrode decreases. Specifically, the higher the restraint pressure and the longer the restraint time, the lower the resistance increase rate Rz and the lower the gas content Ga within the electrode. That is, it can be seen that the gas accumulated in the electrode body 11 is reduced by the charge/discharge cycle test, and the deterioration state of the battery 10, which has deteriorated (battery resistance R increases) by the charge/discharge cycle test, is improved.

このような結果が生じた理由は、以下であると考えられる。即ち、電池10を充電すると、電極体11内で電解液25が分解してガスが発生するため、無拘束状態の電池10に充電を繰り返し行うに連れて、電極体11内にガスが溜まっていく。このため、充放電サイクル試験後の電池10では、電極体11内に多くのガスが溜まっている。そして、このように電極体11内に多くのガスが溜まっていると、電池反応が阻害されるため、電池抵抗Rが高くなる。このため、充放電サイクル試験後(拘束前)の各電池10では、電極体内ガス含有率Gaが95%程度まで上がり、抵抗増加率Rzが35%程度となった。
一方、電池10の保存に当たり、電池10の拘束圧力を高くするほど、また拘束時間を長くするほど、充放電サイクル試験で電極体11内に溜まったガスが、電極体11外に放出されるため、電池抵抗Rが低くなる。このため、電池10の拘束圧力を高くするほど、また拘束時間を長くするほど、電極体内ガス含有率Gaが低下し、抵抗増加率Rzが低くなったと考えられる。
The reason for this result is considered to be as follows. That is, when the battery 10 is charged, the electrolyte 25 decomposes within the electrode body 11 and gas is generated, so as the battery 10 in an unrestrained state is repeatedly charged, gas accumulates within the electrode body 11. go. Therefore, in the battery 10 after the charge/discharge cycle test, a large amount of gas remains in the electrode body 11. If a large amount of gas accumulates in the electrode body 11 in this way, the battery reaction will be inhibited, and thus the battery resistance R will increase. Therefore, in each battery 10 after the charge/discharge cycle test (before restraint), the gas content rate Ga in the electrode rose to about 95%, and the resistance increase rate Rz became about 35%.
On the other hand, when storing the battery 10, the higher the restraint pressure and the longer the restraint time of the battery 10, the more gas accumulated in the electrode body 11 during the charge/discharge cycle test will be released to the outside of the electrode body 11. , the battery resistance R becomes low. For this reason, it is considered that the higher the restraint pressure of the battery 10 and the longer the restraint time, the lower the gas content rate Ga within the electrode and the lower the resistance increase rate Rz.

以上で説明したように、電池パック1の保存方法は、外部圧縮ステップS1及び保存ステップS2を備えるため、電池パック1を使用機器から取り外し、そのまま或いは充電した後に、外部圧縮により各電池10の電極積層部11aに掛かる圧縮荷重Fcを増加させた状態で、電池パック1を保存することができる。
また電池パック保存装置100は、外部圧縮機構部110を備えるため、外部圧縮により各電池10の電極積層部11aに掛かる圧縮荷重Fcを増加させた状態で、電池パック1を保存することができる。
As explained above, since the method for storing the battery pack 1 includes the external compression step S1 and the storage step S2, the battery pack 1 is removed from the device used, and the electrodes of each battery 10 are removed by external compression either as is or after charging. The battery pack 1 can be stored in a state where the compressive load Fc applied to the laminated portion 11a is increased.
Furthermore, since the battery pack storage device 100 includes the external compression mechanism section 110, the battery pack 1 can be stored in a state where the compression load Fc applied to the electrode lamination section 11a of each battery 10 is increased by external compression.

以上において、本発明を実施形態に即して説明したが、本発明は実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば実施形態では、蓄電デバイスを備える蓄電デバイスパックとして、リチウムイオン二次電池からなる電池10を備える電池パック1を例示したが、これに限られない。例えば、全固体電池を備える全固体電池パックや、リチウムイオンキャパシタを備えるキャパシタパックに、本発明を適用してもよい。
また実施形態では、電池10の電池ケースとして、金属からなる直方体箱状の電池ケース21を用いたが、これに限られない。例えばラミネートフィルムからなるケースを用いてもよい。
Although the present invention has been described above based on the embodiments, it goes without saying that the present invention is not limited to the embodiments and can be modified and applied as appropriate without departing from the gist thereof.
For example, in the embodiment, the battery pack 1 including the battery 10 made of a lithium ion secondary battery is exemplified as an electricity storage device pack including an electricity storage device, but the present invention is not limited to this. For example, the present invention may be applied to an all-solid battery pack including an all-solid battery or a capacitor pack including a lithium ion capacitor.
Further, in the embodiment, the rectangular parallelepiped box-shaped battery case 21 made of metal is used as the battery case of the battery 10, but the present invention is not limited to this. For example, a case made of laminate film may be used.

また実施形態の保存装置100では、ボルト116により移動壁部115を電池パック1に向けて移動させる構成の外部圧縮機構部110を例示したが、これに限られない。外部圧縮機構部は、例えば、回動軸材に偏心カムを固設すると共に、この回動軸材を回動させるレバーを設けた偏心カム付きクランプレバーの機構により、移動壁部を移動させる構成としてもよい。 Further, in the storage device 100 of the embodiment, the external compression mechanism section 110 is illustrated as having a configuration in which the movable wall section 115 is moved toward the battery pack 1 by the bolt 116, but the present invention is not limited to this. The external compression mechanism part is configured to move the movable wall part, for example, by a mechanism of a clamp lever with an eccentric cam in which an eccentric cam is fixed to a rotating shaft member and a lever for rotating this rotating shaft member is provided. You can also use it as

1 電池パック(蓄電デバイスパック)
10 電池(リチウムイオン二次電池、蓄電デバイス)
11 積層部包含電極体(電極体)
11a 電極積層部
12 正極板(電極板)
15 負極板(電極板)
50 パックケース(収容外装体)
100 電池パック保存装置(蓄電デバイスパックの保存装置、保存装置)
110 外部圧縮機構部
IH 伸縮方向
IH1 (伸縮方向の)一方側
IH2 (伸縮方向の)他方側
IH3 (伸縮方向の)内側
SH 電極板積層方向
Fg 外部力
Fc 圧縮荷重
S1 外部圧縮ステップ
S2 充電ステップ
S3 圧縮解除ステップ
1 Battery pack (power storage device pack)
10 Batteries (lithium ion secondary batteries, power storage devices)
11 Laminated part containing electrode body (electrode body)
11a Electrode lamination part 12 Positive electrode plate (electrode plate)
15 Negative electrode plate (electrode plate)
50 Pack case (accommodation exterior body)
100 Battery pack storage device (storage device for power storage device pack, storage device)
110 External compression mechanism section IH Stretching direction IH1 (Stretching direction) One side IH2 (Stretching direction) Other side IH3 (Stretching direction) Inside SH Electrode plate stacking direction Fg External force Fc Compression load S1 External compression step S2 Charging step S3 Decompression step

Claims (2)

蓄電デバイスパックは、
複数の電極板が積層された電極積層部を包含する積層部包含電極体を有する複数の蓄電デバイスと、
上記複数の蓄電デバイスを内部に収容する収容外装体と、を備えており、
上記収容外装体は、
上記蓄電デバイスパックを使用機器に繰り返し着脱可能な着脱可能構造を有しており、かつ、
上記収容外装体及び上記複数の蓄電デバイスは、
上記蓄電デバイスパックの外部から外部力を掛けて、上記複数の蓄電デバイスの上記電極積層部に掛かる電極板積層方向の圧縮荷重をそれぞれ増加させる外部圧縮を、繰り返し施工可能な圧縮可能構造を有する
上記蓄電デバイスパックを、上記使用機器から取り外した状態で保存する保存方法であって、
上記蓄電デバイスパックに上記外部力を掛けて、上記複数の蓄電デバイスの上記電極積層部に掛かる上記圧縮荷重をそれぞれ増加させる上記外部圧縮を行う外部圧縮ステップと、
上記外部圧縮ステップにより上記圧縮荷重を増加させた状態で、上記蓄電デバイスパックを保存する保存ステップと、を備える
蓄電デバイスパックの保存方法。
The power storage device pack is
A plurality of electricity storage devices each having a laminated part-containing electrode body that includes an electrode laminated part in which a plurality of electrode plates are laminated;
an accommodating exterior body that accommodates the plurality of power storage devices therein;
The above-mentioned housing exterior body is
It has a removable structure that allows the power storage device pack to be repeatedly installed and removed from the equipment used, and
The housing exterior body and the plurality of power storage devices are
The above-mentioned power storage device pack has a compressible structure capable of repeatedly performing external compression that increases the compressive load in the electrode plate lamination direction applied to the electrode lamination portions of the plurality of power storage devices by applying an external force from outside the power storage device pack. A storage method in which the power storage device pack is stored in a state where it is removed from the equipment used, comprising:
an external compression step of applying the external force to the electricity storage device pack to increase the compression load applied to the electrode laminated portions of the plurality of electricity storage devices;
A method for storing an electricity storage device pack, comprising: storing the electricity storage device pack in a state where the compression load is increased by the external compression step.
蓄電デバイスパックは、
複数の電極板が積層された電極積層部を包含する積層部包含電極体を有する複数の蓄電デバイスと、
上記複数の蓄電デバイスを内部に収容する収容外装体と、を備えており、
上記収容外装体は、
上記蓄電デバイスパックを使用機器に繰り返し着脱可能な着脱可能構造を有しており、かつ、
上記収容外装体及び上記複数の蓄電デバイスは、
上記蓄電デバイスパックの外部から外部力を掛けて、上記複数の蓄電デバイスの上記電極積層部に掛かる電極板積層方向の圧縮荷重をそれぞれ増加させる外部圧縮を、繰り返し施工可能な圧縮可能構造を有する
上記蓄電デバイスパックを、上記使用機器から取り外した状態で保存する保存装置であって、
上記蓄電デバイスパックに上記外部力を掛けて、上記複数の蓄電デバイスの上記電極積層部に掛かる上記圧縮荷重をそれぞれ増加させる上記外部圧縮を行う外部圧縮機構部を備える
蓄電デバイスパックの保存装置。
The power storage device pack is
A plurality of electricity storage devices each having a laminated part-containing electrode body that includes an electrode laminated part in which a plurality of electrode plates are laminated;
an accommodating exterior body that accommodates the plurality of power storage devices therein;
The above-mentioned housing exterior body is
It has a removable structure that allows the power storage device pack to be repeatedly installed and removed from the equipment used, and
The housing exterior body and the plurality of power storage devices are
The above-mentioned power storage device pack has a compressible structure capable of repeatedly performing external compression that increases the compressive load in the electrode plate lamination direction applied to the electrode lamination portions of the plurality of power storage devices by applying an external force from outside the power storage device pack. A storage device that stores an electricity storage device pack in a state where it is removed from the equipment used,
A storage device for a power storage device pack, comprising: an external compression mechanism section that applies the external force to the power storage device pack to increase the compressive load applied to the electrode laminated portions of the plurality of power storage devices.
JP2022022106A 2022-02-16 2022-02-16 Storage method for power storage device pack and storage device for power storage device pack Active JP7437864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022022106A JP7437864B2 (en) 2022-02-16 2022-02-16 Storage method for power storage device pack and storage device for power storage device pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022022106A JP7437864B2 (en) 2022-02-16 2022-02-16 Storage method for power storage device pack and storage device for power storage device pack

Publications (2)

Publication Number Publication Date
JP2023119291A JP2023119291A (en) 2023-08-28
JP7437864B2 true JP7437864B2 (en) 2024-02-26

Family

ID=87763462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022022106A Active JP7437864B2 (en) 2022-02-16 2022-02-16 Storage method for power storage device pack and storage device for power storage device pack

Country Status (1)

Country Link
JP (1) JP7437864B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080045A (en) 2004-09-13 2006-03-23 Max Co Ltd Battery pack
JP2007165698A (en) 2005-12-15 2007-06-28 Mitsubishi Electric Corp Electric power storage device
JP2010009978A (en) 2008-06-27 2010-01-14 Toyota Motor Corp Electrode body gas discharge method of secondary battery and secondary battery structure
JP2012252848A (en) 2011-06-02 2012-12-20 Matsusada Precision Inc Electric power source element holding tool and electric power source element holding tray
JP2017117636A (en) 2015-12-24 2017-06-29 トヨタ自動車株式会社 Processing method for recycling secondary battery
JP2018092724A (en) 2016-11-30 2018-06-14 株式会社豊田自動織機 Method for manufacturing power storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080045A (en) 2004-09-13 2006-03-23 Max Co Ltd Battery pack
JP2007165698A (en) 2005-12-15 2007-06-28 Mitsubishi Electric Corp Electric power storage device
JP2010009978A (en) 2008-06-27 2010-01-14 Toyota Motor Corp Electrode body gas discharge method of secondary battery and secondary battery structure
JP2012252848A (en) 2011-06-02 2012-12-20 Matsusada Precision Inc Electric power source element holding tool and electric power source element holding tray
JP2017117636A (en) 2015-12-24 2017-06-29 トヨタ自動車株式会社 Processing method for recycling secondary battery
JP2018092724A (en) 2016-11-30 2018-06-14 株式会社豊田自動織機 Method for manufacturing power storage device

Also Published As

Publication number Publication date
JP2023119291A (en) 2023-08-28

Similar Documents

Publication Publication Date Title
US8652672B2 (en) Large format electrochemical energy storage device housing and module
DK2779269T3 (en) The battery cell having a novel structure
JP6306431B2 (en) Battery module
JP7050849B2 (en) Battery pack
US9905829B2 (en) Energy storage apparatus
KR101898295B1 (en) Battery Module Assembly and Method of manufacturing the same
WO2015045632A1 (en) Assembled cell
CN109155380B (en) Battery module including cover assembly
KR102117076B1 (en) Battery Module Assembly
WO2017126285A1 (en) Power storage device
JP5344237B2 (en) Assembled battery
JP2016219257A (en) Power storage device
JP7437864B2 (en) Storage method for power storage device pack and storage device for power storage device pack
JP7437863B2 (en) Energy storage device pack, charging method for energy storage device pack, and charging device for energy storage device pack
JP3680768B2 (en) Assembled battery
JP2004134203A (en) Battery pack
JP5216292B2 (en) Electricity storage element
WO2023068029A1 (en) Power storage device and method for manufacturing power storage device
JP6387772B2 (en) Power storage device restraint jig
US20230198074A1 (en) Power storage device
JP2020092049A (en) Secondary battery manufacturing method
WO2015001711A1 (en) Power source device
CN115084658A (en) Method for manufacturing secondary battery
JP2024111479A (en) Power storage device and method for manufacturing power storage device
JP2024111477A (en) Power storage device and method for manufacturing power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240212

R150 Certificate of patent or registration of utility model

Ref document number: 7437864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150