JP5216292B2 - Electricity storage element - Google Patents

Electricity storage element Download PDF

Info

Publication number
JP5216292B2
JP5216292B2 JP2007254077A JP2007254077A JP5216292B2 JP 5216292 B2 JP5216292 B2 JP 5216292B2 JP 2007254077 A JP2007254077 A JP 2007254077A JP 2007254077 A JP2007254077 A JP 2007254077A JP 5216292 B2 JP5216292 B2 JP 5216292B2
Authority
JP
Japan
Prior art keywords
laminated
negative electrode
electrode body
lithium
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007254077A
Other languages
Japanese (ja)
Other versions
JP2009088131A (en
Inventor
靖生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2007254077A priority Critical patent/JP5216292B2/en
Publication of JP2009088131A publication Critical patent/JP2009088131A/en
Application granted granted Critical
Publication of JP5216292B2 publication Critical patent/JP5216292B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a storage element which includes a multilayer electrode made by alternately laminating a positive electrode capable of occluding/discharging anions and a negative electrodes capable of occluding/discharging lithium ions with a separator interposed between both electrodes, and allows smooth and quick processes of melting of a preocclusion metal lithium and preocclusion of lithium ions by the negative electrode to improve production efficiency, reduce internal resistance, thus improve quality stability. <P>SOLUTION: The storage element includes a hard container (shape retaining jig) 11 which contains the metal lithium 42 disposed along the lamination end face of the multilayer electrode 20, together with a nonaqueous electrolytic solution 24, and a lid 13 which presses the multilayer electrode 20 in the direction of lamination. The hard container 11 and the lid 13 are entirely encased in an element container 15 of a soft packaging material. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、蓄電素子に関し、とくに、アニオンの吸蔵・放出が可能な正極とリチウムイオンの吸蔵・放出が可能な負極とが間にセパレータを介在させながら交互に積層された積層電極体を用いるものに適用して有効である。   The present invention relates to a power storage device, and particularly uses a stacked electrode body in which a positive electrode capable of inserting and extracting anions and a negative electrode capable of inserting and extracting lithium ions are alternately stacked with a separator interposed therebetween. It is effective to apply to.

近年、たとえば風力発電や太陽電池等における負荷平準化、瞬低・停電対策、自動車等におけるエネルギー回生等のために、比較的大きな電気エネルギーの急速充放電が可能な蓄電素子が求められるようになってきた。   In recent years, there has been a demand for a storage element capable of rapidly charging / discharging relatively large electric energy, for example, for load leveling in wind power generation, solar cells, etc., countermeasures for voltage sag and power failure, and energy regeneration in automobiles. I came.

このための蓄電素子として、従来は、リチウムイオン二次電池、ニッケル水素二次電池、鉛蓄電池、ニッケル・カドミウム電池などの化学反応を利用する二次電池が使用されてきた。しかし、これらの二次電池は、充放電の繰り返しによる特性の劣化が早く、充放電サイクル数(寿命)に制限があった。また、充電所要時間が長く、上記エネルギー回生などで要求されるような急速充電は無理であった。   Conventionally, secondary batteries using chemical reactions such as lithium ion secondary batteries, nickel metal hydride secondary batteries, lead storage batteries, and nickel-cadmium batteries have been used as power storage elements for this purpose. However, these secondary batteries are rapidly deteriorated in characteristics due to repeated charge / discharge, and the number of charge / discharge cycles (life) is limited. In addition, the time required for charging is long, and rapid charging as required by the energy regeneration is impossible.

充放電特性に注目するならば、上記二次電池よりも、電気二重層キャパシタが適している。電気二重層キャパシタは、電極に形成されるイオンの物理吸着層(電気二重層)に電荷を蓄えるものであって、原理的に電気化学反応を使用しないため、無保守、長寿命であるとともに、充放電への応答が速く、急速充放電が可能である。しかし、電気二重層キャパシタは、キャパシタとしては非常に大きな容量(静電容量)を持つことができるが、充放電可能な電気容量はリチウムイオン二次電池等に比べてかなり見劣りする。つまり、エネルギー密度が低いという弱点があった。   If attention is paid to the charge / discharge characteristics, an electric double layer capacitor is more suitable than the secondary battery. The electric double layer capacitor stores charges in the physical adsorption layer (electric double layer) of ions formed on the electrode, and in principle does not use an electrochemical reaction, so it has no maintenance and long life, Fast response to charging / discharging and rapid charging / discharging. However, although the electric double layer capacitor can have a very large capacity (capacitance) as a capacitor, the electric capacity that can be charged and discharged is considerably inferior to that of a lithium ion secondary battery or the like. In other words, there was a weak point that the energy density was low.

この電気二重層キャパシタのエネルギー密度を向上させる手法としては、セル電圧を高めることが有効である。キャパシタの蓄電エネルギーは充電電圧の二乗に比例するので、セル電圧を高めることはエネルギー密度の向上に大きく寄与することができる。
電気二重層キャパシタのセル電圧を高める手段としては、負極にリチウムイオンをあらかじめ吸蔵(リチウムプレドープ)させた電極材を用いる。この電極材の主材料としては、例えば炭素材料が検討されている。
Increasing the cell voltage is effective as a method for improving the energy density of the electric double layer capacitor. Since the energy stored in the capacitor is proportional to the square of the charging voltage, increasing the cell voltage can greatly contribute to an improvement in energy density.
As means for increasing the cell voltage of the electric double layer capacitor, an electrode material in which lithium ions are occluded (lithium pre-doped) in advance in the negative electrode is used. As the main material of this electrode material, for example, a carbon material has been studied.

負極にリチウムイオンを予備吸蔵させることにより、負極の電位をより低い電位にすることができるため、セル電圧を高めることができる。この高いセル電圧が得られるようにするためには、上記予備吸蔵を確実に行う必要がある。
負極にリチウムイオンを予備吸蔵させて充放電使用する蓄電素子として、例えばシート状の正極とシート状の負極とが間にセパレータを介して交互に積層された積層電極体を使用し、正極および負極の各積層面に対向して金属リチウムが配置されたものが知られている(例えば特許文献1参照)。
By preliminarily storing lithium ions in the negative electrode, the potential of the negative electrode can be made lower, so that the cell voltage can be increased. In order to obtain this high cell voltage, it is necessary to reliably perform the above-mentioned pre-occlusion.
As a power storage element in which lithium ions are preliminarily occluded in a negative electrode and used for charging and discharging, for example, a laminated electrode body in which sheet-like positive electrodes and sheet-like negative electrodes are alternately laminated via separators is used. There is known a structure in which metallic lithium is disposed so as to face each laminated surface (see, for example, Patent Document 1).

図7は、従来の蓄電素子に収容される積層電極体200の構成の一例を示す。
図7に示す積層電極体200は、シート状に形成された正極21と負極23が、間にセパレータ22を挟みながら積層されたものであり、その下部に金属リチウム42が配置されている。
FIG. 7 shows an example of the configuration of the laminated electrode body 200 accommodated in a conventional power storage element.
A laminated electrode body 200 shown in FIG. 7 is formed by laminating a positive electrode 21 and a negative electrode 23 formed in a sheet shape with a separator 22 interposed therebetween, and a metallic lithium 42 is disposed below the positive electrode 21 and the negative electrode 23.

シート状の正極21は、アニオンの吸蔵・放出が可能な正極材211をシート状の正極集電体212に塗布等の方法で層状に添着することにより作製される。同様にシート状の負極23は、電解質カチオンであるリチウムイオンの吸蔵・放出が可能な負極材231をシート状の負極集電体232に塗布等の方法で層状に添着することにより作製される。正極集電体212,負極集電体232には、それぞれ表裏面を貫通する孔(以下貫通孔と記す)が分布形成されている。   The sheet-like positive electrode 21 is produced by attaching a positive electrode material 211 capable of occluding and releasing anions to a sheet-like positive electrode current collector 212 in a layered manner by a method such as coating. Similarly, the sheet-like negative electrode 23 is produced by attaching a negative electrode material 231 capable of occluding and releasing lithium ions, which are electrolyte cations, to the sheet-like negative electrode current collector 232 by a method such as coating. In the positive electrode current collector 212 and the negative electrode current collector 232, holes penetrating the front and back surfaces (hereinafter referred to as through holes) are distributedly formed.

金属リチウム42は、導電支持体40上に形成され、正極21及び負極23の面に対向して配置される。   The metallic lithium 42 is formed on the conductive support 40 and is disposed to face the surfaces of the positive electrode 21 and the negative electrode 23.

各層の正極集電体212の一部にはリード端子213が形成されており、各リード端子213は、直接または導電線を介して一体に接続される。
また、各層の負極集電体232の一部にはリード端子233が形成され、さらに導電支持体40の一部には連結リード44が形成されている。各リード端子233および連結リード44は、直接または導電線を介して一体に接続される。
A lead terminal 213 is formed on a part of the positive electrode current collector 212 of each layer, and each lead terminal 213 is integrally connected directly or via a conductive wire.
A lead terminal 233 is formed on a part of the negative electrode current collector 232 of each layer, and a connecting lead 44 is formed on a part of the conductive support 40. Each lead terminal 233 and the connecting lead 44 are integrally connected directly or via a conductive wire.

このようにして積層電極体200が形成されている。なお、リード端子213は正極端子(図示省略)と接続され、リード端子233および連結リード44は負極端子(図示省略)と接続される。
この積層電極体200を非水電解液とともに軟包装材(例えばラミネートフィルム)の素子容器(図示省略)に密閉収容することにより、金属リチウム42が非水電解液にリチウムイオンとして溶解するようになる。リチウムイオンは、正極集電体212,負極集電体232の貫通孔を通って積層電極体200内を拡散し、負極23に吸蔵される。
In this way, the laminated electrode body 200 is formed. The lead terminal 213 is connected to a positive terminal (not shown), and the lead terminal 233 and the connecting lead 44 are connected to a negative terminal (not shown).
When this laminated electrode body 200 is hermetically housed in an element container (not shown) of a soft packaging material (for example, a laminate film) together with a non-aqueous electrolyte, the metal lithium 42 is dissolved in the non-aqueous electrolyte as lithium ions. . Lithium ions diffuse through the laminated electrode body 200 through the through holes of the positive electrode current collector 212 and the negative electrode current collector 232, and are stored in the negative electrode 23.

また、このような積層電極体200を用いる蓄電素子の内部抵抗は、積層電極体の積層方向へ圧力を加える(密着性を向上させる)ことによって低減することが知られている(例えば、特許文献2参照)。
特許第3485935号 特開2001−244156号公報
In addition, it is known that the internal resistance of an electric storage element using such a laminated electrode body 200 is reduced by applying pressure (improving adhesion) in the laminating direction of the laminated electrode body (for example, Patent Documents). 2).
Japanese Patent No. 3485935 JP 2001-244156 A

上述した蓄電素子では、積層電極体内にリチウムイオンを拡散させるには正極(正極集電体の貫通孔)も通過させることが必要であるため、例えば貫通孔の開孔率が低い場合、積層電極体の負極全体にリチウムイオンを吸蔵させるのに長時間を要していた。また、正極と負極との積層数を増加するほどリチウムイオンの予備吸蔵に時間がかかるという問題があった。さらに、リチウムイオンが正極を通過するため、負極に予備吸蔵されるリチウムイオンが積層電極体の上下層と内部層で均一になりにくかった。   In the above-described storage element, since it is necessary to pass the positive electrode (through hole of the positive electrode current collector) in order to diffuse lithium ions in the laminated electrode body, for example, when the through hole has a low hole area ratio, the laminated electrode It took a long time to occlude lithium ions throughout the negative electrode of the body. Further, there is a problem that it takes time to pre-occlude lithium ions as the number of stacked positive and negative electrodes increases. Further, since lithium ions pass through the positive electrode, the lithium ions preliminarily occluded in the negative electrode are difficult to be uniform in the upper and lower layers and the inner layer of the laminated electrode body.

また、軟包装材の素子容器を用いる蓄電素子では、積層電極体を積層方向に十分押圧できず、内部抵抗を低減することが困難であった。このことにより、品質の安定性を向上できないという問題があった。   Moreover, in the electrical storage element using the element container of a soft packaging material, the laminated electrode body could not be pressed sufficiently in the laminating direction, and it was difficult to reduce the internal resistance. As a result, there is a problem that the stability of quality cannot be improved.

本発明は、以上のような問題を解決するものであって、その目的は、アニオンの吸蔵・放出が可能な正極とリチウムイオンの吸蔵・放出が可能な負極とが間にセパレータを介在させながら交互に積層された積層電極体を用いる蓄電素子において、予備吸蔵用金属リチウムの溶解および負極へのリチウムイオンの予備吸蔵を円滑かつ迅速に行わせることによって生産効率を向上し、さらに内部抵抗を低減して品質の安定性を向上することにある。   The present invention solves the above problems, and its purpose is to provide a separator between a positive electrode capable of absorbing and releasing anions and a negative electrode capable of inserting and releasing lithium ions. In storage elements that use alternately stacked electrode bodies, the production efficiency is improved and the internal resistance is reduced by smoothly and quickly pre-occluding metal lithium for pre-occlusion and pre-occluding lithium ions to the negative electrode. It is to improve the stability of quality.

本発明の上記以外の目的および構成については、本明細書の記述および添付図面にてあきらかにする。   Other objects and configurations of the present invention will be clarified in the description of the present specification and the accompanying drawings.

本発明が提供する解決手段は以下のとおりである。
(1)アニオンの吸蔵・放出が可能な正極材がシート状の正極集電体上に添着された正極と、リチウムイオンの吸蔵・放出が可能な負極材がシート状の負極集電体上に添着された負極とが、間にセパレータを介在させながら交互に上下方向に積層されてなる積層電極体と、リチウム塩を含んだ非水電解液と、上記負極集電体と導電接続されて前記リチウムイオンを前記負極にあらかじめ吸蔵させておくための金属リチウムと、上記積層電極体が上記非水電解液とともに密閉収容される軟包装体の素子容器とを備えた蓄電素子において、
上記負極集電体と導電接続された金属リチウムが上記積層電極体の左右両側の積層端面に対面して配置され、
上記積層電極体および上記金属リチウムが、下方を底面として上方が開口する箱形の保形治具内に上記非水電解液とともに収容されているとともに、上記積層電極体が、上記保形冶具の上記開口を覆う蓋体の下面によって積層方向に上方から押圧され、
上記保形治具の内壁には、上記積層電極体の積層端面に向けて突出する突起が形成されているとともに、上記金属リチウムが上記突起の非形成部分にて上記積層端面に対面するように配置されていることで、当該金属リチウムが上記非水電解液によって溶解した後も、上記積層電極体が上記突起によって定位置に保持され、
上記保形冶具および上記蓋体が上記素子容器内に密閉収容されている、
ことを特徴とする蓄電素子。
The solution provided by the present invention is as follows.
(1) A positive electrode material capable of inserting and extracting anions is attached to a sheet-like positive electrode current collector, and a negative electrode material capable of inserting and extracting lithium ions is provided on the sheet-like negative electrode current collector. A laminated electrode body in which the attached negative electrode is alternately laminated in the vertical direction with a separator interposed therebetween, a non-aqueous electrolyte containing a lithium salt, and the negative electrode current collector are conductively connected to each other. In a power storage device comprising metal lithium for preliminarily occluding lithium ions in the negative electrode, and an element container of a soft package in which the laminated electrode body is hermetically housed together with the non-aqueous electrolyte,
Metal lithium conductively connected to the negative electrode current collector is disposed facing the laminated end faces on the left and right sides of the laminated electrode body,
The laminated electrode body and the metallic lithium are housed together with the non-aqueous electrolyte in a box-shaped shape holding jig whose upper side is open at the bottom, and the laminated electrode body is formed of the shape retaining jig. Pressed from above in the stacking direction by the lower surface of the lid covering the opening,
The inner wall of the shape retaining jig is formed with a protrusion protruding toward the laminated end face of the laminated electrode body, and the metallic lithium faces the laminated end face at a portion where the protrusion is not formed. By being arranged, even after the metallic lithium is dissolved by the non-aqueous electrolyte, the laminated electrode body is held in place by the protrusions,
The shape retaining jig and the lid are hermetically housed in the element container;
A power storage element.

(2)上記手段(1)において、上記積層電極体は、上記蓋体で覆われた状態の保形冶具内において、上記金属リチウムが配置されていない側の端面と当該保形治具の内壁面との間に上記非水電解液が充填されて、当該非水電解液が当該積層電極体に含浸させる量よりも多く上記保形治具内に収容されていることを特徴とする蓄電素子。
(3)上記手段(1)または(2)において、上記積層電極体の各負極集電体並びに上記セパレータが上記保形治具側面に配置されたリチウム金属に接触していることを特徴とする蓄電素子。
(4)上記手段(3)において、上記各正極集電体から引き出されるリード端子は正極端子と接続され、上記各負極集電体から引き出されるリード端子は負極端子と接続され、上記保形冶具と上記蓋体の合わせ目形状に合わせて上記正極端子および上記負極端子が形成されたことを特徴とする蓄電素子。
In (2) above means (1), the upper Symbol laminated electrode body, in the shape-retaining jig in a state of being covered with the cover body, an end surface of the side where the metal lithium is not disposed and the shape retaining jig The nonaqueous electrolyte solution is filled between the inner wall surfaces, and the nonaqueous electrolyte solution is accommodated in the shape retention jig in a larger amount than the multilayer electrode body is impregnated. element.
(3) In the above means (1) or (2), each negative electrode current collector of the laminated electrode body and the separator are in contact with lithium metal disposed on the side of the shape retaining jig. Power storage element.
(4) In the above means (3), the lead terminal drawn from each of the positive electrode current collectors is connected to the positive electrode terminal, the lead terminal drawn from each of the negative electrode current collectors is connected to the negative electrode terminal, and the shape retaining jig And the positive electrode terminal and the negative electrode terminal are formed in accordance with the joint shape of the lid body.

(5)上記手段(1)〜(4)のいずれかにおいて、上記蓋体と上記保形冶具とを押さえつけた状態に保持する固定具を備えたことを特徴とする蓄電素子。
(6)上記手段(1)〜(5)のいずれかにおいて、上記保形冶具の内部空間を仕切る隔離壁が設けられ、上記隔離壁によって仕切られた各領域に、上記積層電極体、当該積層電極体の積層端面に配置された上記金属リチウム、上記非水電解液がそれぞれ収容され、上記各積層電極体の各正極同士がそれぞれ接続され、各負極同士がそれぞれ接続されたことを特徴とする蓄電素子。
(5) The electricity storage device according to any one of the above means (1) to (4), further comprising a fixture that holds the lid and the shape retaining jig in a pressed state.
(6) In any one of the above means (1) to (5), an isolation wall for partitioning the internal space of the shape retaining jig is provided, and the stacked electrode body and the stacked layer are provided in each region partitioned by the isolation wall. The metal lithium and the non-aqueous electrolyte disposed on the laminated end face of the electrode body are respectively accommodated, the positive electrodes of the laminated electrode bodies are connected to each other, and the negative electrodes are connected to each other. Power storage element.

アニオンの吸蔵・放出が可能な正極とリチウムイオンの吸蔵・放出が可能な負極とが間にセパレータを介在させながら交互に積層された積層電極体を用いる蓄電素子において、予備吸蔵用の金属リチウムの溶解および負極へのリチウムイオンの予備吸蔵を円滑かつ迅速に行わせることによって生産効率を向上することができ、さらに内部抵抗を低減して品質の安定性を向上することができる。   In a storage element using a laminated electrode body in which a positive electrode capable of occluding and releasing anions and a negative electrode capable of occluding and releasing lithium ions are alternately laminated with a separator interposed therebetween, The production efficiency can be improved by smoothly and rapidly performing the pre-occlusion of lithium ions into the negative electrode and the negative electrode, and the internal resistance can be reduced to improve the quality stability.

上記以外の作用/効果については、本明細書の記述および添付図面にてあきらかにする。   The operations / effects other than the above will be clarified in the description of the present specification and the accompanying drawings.

図1は、本発明による蓄電素子10の第1実施形態を示す。同図において、(a)は蓄電素子10の長手方向の断面図、(b)は(a)と直交する方向の断面図をそれぞれ示す。また、図2は、本発明による蓄電素子10内に収容される積層電極体20の構成の一例を示す。なお、同図において、(a)は図1(a)と同方向の積層電極体20の断面図、(b)は図1(b)と同方向の積層電極体20の断面図、(c)は正極21の平面図、(d)は負極23の平面図をそれぞれ示す。   FIG. 1 shows a first embodiment of a power storage device 10 according to the present invention. In the figure, (a) is a cross-sectional view in the longitudinal direction of the electricity storage element 10, and (b) is a cross-sectional view in the direction orthogonal to (a). Moreover, FIG. 2 shows an example of the structure of the laminated electrode body 20 accommodated in the electrical storage element 10 by this invention. 1A is a sectional view of the laminated electrode body 20 in the same direction as FIG. 1A, FIG. 1B is a sectional view of the laminated electrode body 20 in the same direction as FIG. ) Is a plan view of the positive electrode 21, and (d) is a plan view of the negative electrode 23.

まず、図1(a),(b)を参照しつつ蓄電素子10の構成について説明する。
図1(a),(b)に示す本発明の蓄電素子10は、積層電極体20、金属リチウム42、非水電解液24、正極端子31、負極端子33、ハード容器(保形冶具)11、蓋体13及び素子容器15によって構成されている。
First, the structure of the electrical storage element 10 is demonstrated, referring FIG. 1 (a), (b).
1A and 1B, a storage element 10 of the present invention includes a laminated electrode body 20, a metal lithium 42, a non-aqueous electrolyte 24, a positive electrode terminal 31, a negative electrode terminal 33, and a hard container (shape retaining jig) 11. The lid body 13 and the element container 15 are configured.

積層電極体20は、図1(a),(b)に示すように後述するハード容器11内に収容され、その積層端面に沿って金属リチウム42が配置されている。また、積層電極体20は後述する蓋体13によって積層方向に押圧されている。   As shown in FIGS. 1A and 1B, the laminated electrode body 20 is accommodated in a hard container 11 to be described later, and metallic lithium 42 is disposed along the laminated end face. The laminated electrode body 20 is pressed in the laminating direction by a lid body 13 which will be described later.

正極端子31および負極端子33は、積層電極体20のリード端子213,233とそれぞれ接続されており、図1(a)に示すように素子容器15の密閉状態を保ちながら当該素子容器15の内外に跨って設置されている。また、正極端子31および負極端子33は、ハード容器11と蓋体13の形状に合わせて形成されている。例えば図1(a)の場合では、正極端子31および負極端子33はハード容器11と蓋体13の合わせ目形状に合わせてL字状に形成されている。こうすることにより、ハード容器11に正極端子31および負極端子33の取り出し部を形成する手間を省くことができ、また、正極端子31および負極端子33と接続された積層電極体20を、ハード容器11に容易に設置することができる。   The positive electrode terminal 31 and the negative electrode terminal 33 are respectively connected to the lead terminals 213 and 233 of the laminated electrode body 20, and the inner and outer sides of the element container 15 are maintained while the element container 15 is kept sealed as shown in FIG. It is installed across. The positive electrode terminal 31 and the negative electrode terminal 33 are formed in accordance with the shapes of the hard container 11 and the lid body 13. For example, in the case of FIG. 1A, the positive electrode terminal 31 and the negative electrode terminal 33 are formed in an L shape in accordance with the joint shape of the hard container 11 and the lid body 13. By doing so, it is possible to save the trouble of forming the lead-out portion of the positive electrode terminal 31 and the negative electrode terminal 33 in the hard container 11, and the laminated electrode body 20 connected to the positive electrode terminal 31 and the negative electrode terminal 33 is replaced with the hard container. 11 can be easily installed.

非水電解液24は、環状炭酸エステルや鎖状炭酸エステルなどの非水溶媒にカチオンとしてリチウムイオンを含有するリチウム塩が溶解された電解液である。   The nonaqueous electrolytic solution 24 is an electrolytic solution in which a lithium salt containing lithium ions as a cation is dissolved in a nonaqueous solvent such as a cyclic carbonate or a chain carbonate.

ハード容器11は、上面が開放された例えば有底箱状の容器であり、積層電極体20,リチウム金属42を非水電解液24とともに収容する。このハード容器11の収容積は積層電極体20の体積より十分大きく形成されており、これにより、積層電極体20に含浸させる量に対し余剰の非水電解液24を収容できるようになっている。   The hard container 11 is, for example, a bottomed box-shaped container having an open upper surface, and accommodates the laminated electrode body 20 and the lithium metal 42 together with the nonaqueous electrolytic solution 24. The storage volume of the hard container 11 is formed to be sufficiently larger than the volume of the laminated electrode body 20, so that the surplus nonaqueous electrolyte solution 24 can be accommodated with respect to the amount impregnated in the laminated electrode body 20. .

蓋体13は、ハード容器11の上面を覆うとともにハード容器11内の積層電極体20を積層方向に押圧する一種の落とし蓋である。ハード容器11および蓋体13は、非水電解液24に侵されず、かつ塑性変形を生じない絶縁体(例えば樹脂)によって形成されている。   The lid body 13 is a kind of drop lid that covers the upper surface of the hard container 11 and presses the laminated electrode body 20 in the hard container 11 in the laminating direction. The hard container 11 and the lid 13 are formed of an insulator (for example, resin) that is not affected by the non-aqueous electrolyte 24 and does not cause plastic deformation.

素子容器15は、積層電極体20、金属リチウム42、非水電解液24を収容したハード容器11と、ハード容器11の上面を覆った蓋体13とを密閉封止している。素子容器15にはラミネートフィルム等の気密性軟包装材を融着等により矩形袋状に加工したソフト容器が使用される。このソフト容器は、開口部の熱融着により簡単に封止することができる。熱融着による封止は、その融着部に正極端子31および負極端子33を挟み込んだ状態で行うことができる。また、別の方法として、ハード容器11と蓋体13を接着剤等で接着してもよいし、あるいは溶接などで接合してもよい。   The element container 15 hermetically seals the hard container 11 containing the laminated electrode body 20, the metal lithium 42, and the nonaqueous electrolyte solution 24, and the lid body 13 covering the upper surface of the hard container 11. As the element container 15, a soft container obtained by processing an airtight soft packaging material such as a laminate film into a rectangular bag shape by fusion or the like is used. This soft container can be easily sealed by heat-sealing the opening. Sealing by thermal fusion can be performed in a state where the positive electrode terminal 31 and the negative electrode terminal 33 are sandwiched between the fusion portions. As another method, the hard container 11 and the lid 13 may be bonded with an adhesive or the like, or may be joined by welding or the like.

次に、図2を参照しつつ積層電極体20の構成について説明する。
積層電極体20は、図2(a),(b)に示すように正極21と負極23とが、間にセパレータ22を介して交互に積層されて構成されたものである。
Next, the configuration of the laminated electrode body 20 will be described with reference to FIG.
The laminated electrode body 20 is configured by alternately laminating positive electrodes 21 and negative electrodes 23 with separators 22 therebetween, as shown in FIGS.

正極21は、図2(c)に示すようにアニオンの吸蔵・放出が可能な正極材211が、金属(例えばAl)箔からなるシート状の正極集電体212の両面に塗布等により層状に添着されて、全体がシート状に形成されている。同様に、負極23は、図2(d)に示すようにリチウムイオンの吸蔵・放出が可能な負極材231が金属(例えばCu)箔からなるシート状の負極集電体232の両面に塗布等により層状に添着されて、全体がシート状に形成されている。セパレータ22は、例えばポレオリフィンなどの非電導性の多孔性フィルムを用いてシート状に形成されている。   As shown in FIG. 2 (c), the positive electrode 21 is layered by applying a positive electrode material 211 capable of occluding and releasing anions on both surfaces of a sheet-like positive electrode current collector 212 made of a metal (eg, Al) foil. By attaching, the whole is formed in a sheet shape. Similarly, as shown in FIG. 2D, the negative electrode 23 is coated on both surfaces of a sheet-like negative electrode current collector 232 in which a negative electrode material 231 capable of inserting and extracting lithium ions is made of a metal (for example, Cu) foil. Thus, the whole is formed into a sheet shape. The separator 22 is formed in a sheet shape using a non-conductive porous film such as, for example, poreolyfin.

正極集電体212,負極集電体232には図1(a)に示すように正極端子31,負極端子33との接続をなすためのリード端子213,233がそれぞれ一体形成されている。   The positive electrode current collector 212 and the negative electrode current collector 232 are integrally formed with lead terminals 213 and 233 for connection to the positive electrode terminal 31 and the negative electrode terminal 33, respectively, as shown in FIG.

正極21と負極23はセパレータ22を挟みながら順次積層されて積層電極体20を構成している。このとき各正極集電体212のリード端子213と各負極集電体232のリード端子233は、図2(a)に示すように積層電極体20の積層端面のうち対向する2面からそれぞれ引き出されている。   The positive electrode 21 and the negative electrode 23 are sequentially stacked while sandwiching the separator 22 to form the stacked electrode body 20. At this time, the lead terminals 213 of the respective positive electrode current collectors 212 and the lead terminals 233 of the respective negative electrode current collectors 232 are respectively drawn out from two opposing surfaces of the stacked end surfaces of the stacked electrode body 20 as shown in FIG. It is.

また、図2(b)に示すように、正極集電体212と負極集電体232は、上記リード端子213,233が形成される辺に直交する2辺間の長さが正極集電体212よりも負極集電体232の方が大きくなるように形成されている(d2>d1)。そして、積層電極体20において負極集電体232はリード端子213,233が引き出される積層端面とは異なる積層端面側に、正極集電体212よりも張り出すように積層されている。また、積層電極体20の最下層の負極集電体232は、金属リチウム42を支持する支持体の役目もしている。つまり、当該最下層の負極集電体232は、図2(b)に示すように、上述した対向する2辺間の長さがd2よりもさらに大きく形成され、積層電極体20の積層端面に向けて屈曲されている。金属リチウム42は、この屈曲した部分の積層端面側に貼着され、積層電極体20の積層端面の各負極集電体232の縁端部と直接接触している。   Further, as shown in FIG. 2B, the positive electrode current collector 212 and the negative electrode current collector 232 have a length between two sides orthogonal to the side on which the lead terminals 213 and 233 are formed. The negative electrode current collector 232 is formed to be larger than 212 (d2> d1). In the laminated electrode body 20, the negative electrode current collector 232 is laminated so as to protrude from the positive electrode current collector 212 on the laminated end face side different from the laminated end face from which the lead terminals 213 and 233 are drawn. The lowermost negative electrode current collector 232 of the laminated electrode body 20 also serves as a support for supporting the metal lithium 42. In other words, as shown in FIG. 2B, the lowermost negative electrode current collector 232 is formed such that the length between the two opposing sides is larger than d2, and is formed on the laminated end face of the laminated electrode body 20. It is bent toward. The metallic lithium 42 is attached to the side of the laminated end face of the bent portion and is in direct contact with the edge of each negative electrode current collector 232 on the laminated end face of the laminated electrode body 20.

また、金属リチウム42が貼られた集電体は、積層電極体20とは別に設けてもよい。その場合、金属リチウムが貼られて集電体を一番下に敷き、その上に積層電極体を乗せ、そのリチウム金属部を側面に向けて屈曲すると同じ効果が得られる。その集電体にもリード端子が引き出され、負極集電体に接続されると更に良い。   Further, the current collector on which the metallic lithium 42 is stuck may be provided separately from the laminated electrode body 20. In that case, the same effect can be obtained when metallic lithium is stuck and the current collector is laid on the bottom, the laminated electrode body is placed thereon, and the lithium metal portion is bent toward the side surface. It is even better if the lead terminal is drawn out to the current collector and connected to the negative electrode current collector.

さらに、リード端子213,233が引き出される積層端面とは異なる積層端面において、各正極21の上下に配置されるセパレータ22は、図2(b)に示すように当該正極21の縁端部を包み込んでいる。例えばセパレータ22、正極21、セパレータ22と積層した後、それらのセパレータ22の端部同士を熱することによって正極21の縁端部を包み込むように接合している。このように、正極21の縁端をセパレータ22で包み込んでおくことによって、正極集電体212と金属リチウム42とを接触させないようにすることができ、安全性を高めることができる。尚、この場合好ましくは、セパレータの両端部を金属リチウム42と接触させることである。   Further, the separator 22 disposed above and below each positive electrode 21 on the laminated end face different from the laminated end face from which the lead terminals 213 and 233 are drawn, envelops the edge of the positive electrode 21 as shown in FIG. It is out. For example, after laminating | stacking with the separator 22, the positive electrode 21, and the separator 22, the edge parts of those separators 22 are heated so that the edge part of the positive electrode 21 may be wrapped. Thus, by enveloping the edge of the positive electrode 21 with the separator 22, the positive electrode current collector 212 and the metal lithium 42 can be prevented from contacting each other, and safety can be improved. In this case, preferably, both end portions of the separator are brought into contact with the metal lithium 42.

積層電極体20の各正極集電体212のリード端子213は図1(a)に示すように一体に接続され、正極端子31の一端側と接続される。同様に、各負極集電体232のリード端子233は一体に接続され、負極端子33の一端側と接続される。   The lead terminal 213 of each positive electrode current collector 212 of the laminated electrode body 20 is integrally connected as shown in FIG. 1A and is connected to one end side of the positive electrode terminal 31. Similarly, the lead terminal 233 of each negative electrode current collector 232 is connected integrally and connected to one end side of the negative electrode terminal 33.

このように積層電極体20が構成され、その積層端面に沿って金属リチウム42が配置されている。   Thus, the laminated electrode body 20 is configured, and the metal lithium 42 is arranged along the laminated end face.

正極21は充電時に非水電解液24中のアニオンを吸蔵し、放電時にそれを放出する。負極23は充電時に非水電解液24中のリチウムイオン(カチオン)を吸蔵し、放電時にそれを放出する。このアニオンとリチウムイオンの可逆的な吸蔵・放出により、充放電の可逆プロセスが行われるようになっている。正極材211および負極材231の材料としては炭素材料がそれぞれ好適である。   The positive electrode 21 occludes the anion in the non-aqueous electrolyte 24 during charging and releases it during discharging. The negative electrode 23 occludes lithium ions (cations) in the non-aqueous electrolyte 24 during charging and releases it during discharging. A reversible charging / discharging process is performed by reversible occlusion / release of these anions and lithium ions. As the material for the positive electrode material 211 and the negative electrode material 231, a carbon material is suitable.

次に、図3を参照しつつ、ハード容器11内の積層電極体20、金属リチウム42の配置、およびリチウムイオンの予備吸蔵について説明する。図3は、ハード容器11に積層電極体20を収容した状態を示す。同図において、(a)は平面図、(b)は(a)のA−A方向の断面図、(c)は(a)のB−B方向の断面図をそれぞれ示す。図3(b)、(c)は、非水電解液24を注液した後の断面を示している。   Next, the arrangement of the laminated electrode body 20, the metallic lithium 42 in the hard container 11, and the pre-occlusion of lithium ions will be described with reference to FIG. FIG. 3 shows a state in which the laminated electrode body 20 is accommodated in the hard container 11. In the figure, (a) is a plan view, (b) is a cross-sectional view in the AA direction of (a), and (c) is a cross-sectional view in the BB direction of (a). FIGS. 3B and 3C show cross sections after the non-aqueous electrolyte 24 is injected.

図3(a)に示すようにハード容器11には、積層電極体20,正極端子31、負極端子33、金属リチウム42が収容されている。金属リチウム42は、積層電極体20の、リード端子213,233が引き出される積層端面とは異なる積層端面(図3(a)の上側および下側)に沿って配置されている。この金属リチウム42は、リード端子233を介することによって積層電極体20内の各負極集電体232と導電接続されている。   As shown in FIG. 3A, the hard container 11 contains a laminated electrode body 20, a positive electrode terminal 31, a negative electrode terminal 33, and metallic lithium 42. The metallic lithium 42 is disposed along a laminated end face (upper side and lower side in FIG. 3A) of the laminated electrode body 20 different from the laminated end face from which the lead terminals 213 and 233 are drawn. The metallic lithium 42 is conductively connected to each negative electrode current collector 232 in the laminated electrode body 20 through the lead terminal 233.

図3(a)に示すリード端子213とリード端子233、あるいは正極端子31と負極端子33の幅又は形状を異なるように形成しておくと、極性が判別しやすくなり、例えばハード容器11に積層電極体20,正極端子31,負極端子33を収容する際に入れ間違いを防止することができる。   If the lead terminal 213 and the lead terminal 233 shown in FIG. 3A, or the positive electrode terminal 31 and the negative electrode terminal 33 are formed so as to have different widths or shapes, the polarities can be easily distinguished. When the electrode body 20, the positive electrode terminal 31, and the negative electrode terminal 33 are accommodated, mistakes can be prevented.

そして、非水電解液24が注液されると、非水電解液24によって、金属リチウム42から非水電解液24に溶出したリチウムイオンは、積層電極体20の積層端面から各層に沿って(図3(c)に示す紙面横方向)に拡散していく。よって、リチウムイオンが正極21を通過しなくてもよいので、負極23へのリチウムイオンの予備吸蔵を円滑かつ迅速に行うことができる。その際、余剰(積層電極体20に含浸させるよりも多量)の非水電解液24をハード容器11に注液しておくことにより、積層電極体20の積層端面に配置された金属リチウム42が非水電解液24に溶解しやすくなり、リチウムイオンの予備吸蔵をより迅速に行うことができる。   When the nonaqueous electrolytic solution 24 is injected, the lithium ions eluted from the metallic lithium 42 to the nonaqueous electrolytic solution 24 by the nonaqueous electrolytic solution 24 along each layer from the laminated end surface of the laminated electrode body 20 ( It spreads in the horizontal direction of the paper shown in FIG. Therefore, since lithium ions do not need to pass through the positive electrode 21, it is possible to smoothly and quickly preliminarily store lithium ions in the negative electrode 23. At that time, surplus (a larger amount than impregnating the laminated electrode body 20) is poured into the hard container 11, so that the metal lithium 42 disposed on the laminated end face of the laminated electrode body 20 is formed. It becomes easy to melt | dissolve in the non-aqueous electrolyte 24, and the preliminary occlusion of lithium ion can be performed more rapidly.

このように本発明の蓄電素子10では、積層電極体の積層端面のうちリード端子213,233が引き出される面を除く積層端面に対面するように金属リチウム42が配置されている。このことにより金属リチウム42から溶出したリチウムイオンは、積層電極体20の各層に沿って移動するようになる。これにより、リチウムイオンを負極23のみで拡散させることが可能となり、各層の負極23へのリチウムイオンの予備吸蔵を迅速かつ均一に行わせることができる。   As described above, in the electric storage element 10 of the present invention, the metal lithium 42 is disposed so as to face the laminated end surface excluding the surface from which the lead terminals 213 and 233 are drawn out of the laminated end surface of the laminated electrode body. As a result, lithium ions eluted from the metal lithium 42 move along each layer of the laminated electrode body 20. Thereby, it becomes possible to diffuse lithium ion only by the negative electrode 23, and the preliminary occlusion of the lithium ion to the negative electrode 23 of each layer can be performed rapidly and uniformly.

さらに、そのリチウムイオンの供給源である金属リチウム42が積層電極体20の積層端面に対面して配置されていることにより、金属リチウム42から溶出したリチウムイオンは、積層電極体20内の各層の負極23に同時並行的に到達して吸蔵されるようになる。この結果、正極21と負極23の積層の数にかかわらず、電極体20内の各層の負極23にリチウムイオンをさらに迅速かつ均一に予備吸蔵させることができる。したがって、従来は長時間を要していた予備吸蔵を、大幅に短縮させることができる。   Furthermore, since the lithium metal 42 that is a supply source of the lithium ions is arranged so as to face the laminated end face of the laminated electrode body 20, the lithium ions eluted from the metallic lithium 42 are separated from each layer in the laminated electrode body 20. It reaches the negative electrode 23 simultaneously and is occluded. As a result, lithium ions can be preoccluded more rapidly and uniformly in the negative electrode 23 of each layer in the electrode body 20 regardless of the number of stacked positive electrodes 21 and negative electrodes 23. Therefore, the pre-occlusion that conventionally required a long time can be greatly shortened.

また、ハード容器11に収容した積層電極体20を蓋体13によって積層方向に押圧することにより、蓄電素子10の内部抵抗を低減することができ、品質の安定性を向上することができる。   Moreover, the internal resistance of the electrical storage element 10 can be reduced and the stability of quality can be improved by pressing the laminated electrode body 20 accommodated in the hard container 11 in the laminating direction by the lid body 13.

図4は本発明による蓄電素子の第2実施形態を示す、同図において(a)は長手方向の断面図、(b)は(a)と直交する方向の断面図をそれぞれ示す。   4A and 4B show a second embodiment of the electricity storage device according to the present invention, wherein FIG. 4A is a longitudinal sectional view, and FIG. 4B is a sectional view perpendicular to FIG.

上記実施形態との相違に着目して説明すると、同図に示す第2実施形態では、素子容器15の外側に固定具17が取り付けられている。
固定具17は、蓋体13とハード容器11とを押さえつけた状態に保持するものである。固定具17を用いて蓋体13とハード容器11を押さえつけた状態に保持することによって、積層電極体20を確実に押圧することができ、内部抵抗をより確実に低減させることができる。
If it demonstrates paying attention to the difference with the said embodiment, the fixing tool 17 is attached to the outer side of the element container 15 in 2nd Embodiment shown in the figure.
The fixture 17 holds the lid 13 and the hard container 11 in a pressed state. By holding the lid 13 and the hard container 11 in a pressed state using the fixture 17, the laminated electrode body 20 can be reliably pressed and the internal resistance can be reduced more reliably.

本実施形態では、素子容器15の外側に固定具17を設けることとしたが、蓋体13とハード容器11を固定具17で固定して、その外側を素子容器15で包むようにしてもよい。また、本実子形態では、固定具17を図4(b)に示すようにコの字形状としたが、これに限定されない。例えば図4(b)に示す素子容器15の外周全体を囲むようにしてもよい。またワイヤなどを用いて蓋体13とハード容器11を固定させてもよい。   In the present embodiment, the fixing tool 17 is provided outside the element container 15. However, the lid body 13 and the hard container 11 may be fixed by the fixing tool 17 and the outside may be wrapped by the element container 15. Moreover, in this actual child form, although the fixing tool 17 was made into the U shape as shown in FIG.4 (b), it is not limited to this. For example, the entire outer periphery of the element container 15 shown in FIG. Further, the lid 13 and the hard container 11 may be fixed using a wire or the like.

図5は本発明による蓄電素子の第3実施形態の要部平面図を示す。
上記実施形態との相違に着目して説明すると、同図に示す第3実施形態のハード容器51は積層電極体20の収容側に積層電極体20の位置決め用の突起51a、51b、51cが形成されている。
FIG. 5 shows a plan view of the main part of a third embodiment of the electricity storage device according to the present invention.
If it demonstrates paying attention to the difference with the said embodiment, the protrusion 51a, 51b, 51c for positioning of the laminated electrode body 20 will be formed in the housing | casing side of the laminated electrode body 20 of the hard container 51 of 3rd Embodiment shown in the figure. Has been.

突起51a、51b、51cは、図5に示すようにハード容器51の内壁から積層電極体20の積層端面に向けて突出して形成されている。
また、金属リチウム42は、ハード容器51の突起51a、51b、51cの非形成部分において積層端面に対面するように配置されている。
The protrusions 51a, 51b, 51c are formed so as to protrude from the inner wall of the hard container 51 toward the laminated end surface of the laminated electrode body 20, as shown in FIG.
Further, the metallic lithium 42 is disposed so as to face the laminated end surface in the portions where the protrusions 51a, 51b, 51c of the hard container 51 are not formed.

同図のように、ハード容器51の積層電極体20側に突起51a、51b、51cを設けておくことによって、金属リチウム42が非水電解液24に溶解しても、突起51a、51b、51cによって積層電極体20を安定して支えることができる。よって、例えば電車や車などで使用される場合に、振動による積層電極体20の勝手な移動を抑制することができる。   As shown in the figure, by providing the protrusions 51a, 51b, 51c on the laminated electrode body 20 side of the hard container 51, even if the metallic lithium 42 is dissolved in the non-aqueous electrolyte 24, the protrusions 51a, 51b, 51c. Thus, the laminated electrode body 20 can be supported stably. Therefore, for example, when used in a train or a car, it is possible to suppress arbitrary movement of the laminated electrode body 20 due to vibration.

図6は本発明による蓄電素子の第4実施形態を示す、同図において(a),(d)は要部平面図、(b)は(a)のC−C断面図、(c)は、その等価回路図をそれぞれ示す。
上記実施形態との相違に着目して説明すると、同図に示す第4実施形態では、ハード容器61は、図6(a),(b)に示すようにハード容器61の内部空間を仕切る隔離壁62が設けられている。
6A and 6B show a fourth embodiment of a power storage device according to the present invention, in which FIGS. 6A and 6D are plan views of main parts, FIG. 6B is a cross-sectional view taken along the line CC in FIG. The equivalent circuit diagrams are respectively shown.
If it demonstrates paying attention to the difference with the said embodiment, in 4th Embodiment shown to the figure, as shown to Fig.6 (a), (b), the hard container 61 will isolate the internal space of the hard container 61. A wall 62 is provided.

隔離壁62で仕切られたハード容器61の各領域には、積層電極体20、当該積層電極体20の積層端面に沿って配置されたリチウム金属42、非水電解液24が、それぞれ収容されている。各積層電極体20のリード端子213は接続リード45で連結され、さらに当該接続リード45は正極端子31と接続されている。同様に、各積層電極体20のリード端子233は接続リード46で連結され、さらに当該接続リード46は負極端子33と接続されている。   In each region of the hard container 61 partitioned by the isolation wall 62, the laminated electrode body 20, the lithium metal 42 disposed along the laminated end surface of the laminated electrode body 20, and the nonaqueous electrolyte solution 24 are accommodated, respectively. Yes. The lead terminals 213 of each laminated electrode body 20 are connected by connection leads 45, and the connection leads 45 are connected to the positive electrode terminal 31. Similarly, the lead terminal 233 of each laminated electrode body 20 is connected by a connection lead 46, and the connection lead 46 is connected to the negative electrode terminal 33.

この構成による等価回路は図6(c)に示すように一方の積層電極体20によるキャパシタCA(容量をC1とする)と他方の積層電極体20によるキャパシタCB(容量をC2とする)の並列接続となる。よって、その合成容量Cは、C=C1+C2となり、各積層電極体20の各容量の加算値となる。   As shown in FIG. 6C, an equivalent circuit with this configuration is a parallel arrangement of a capacitor CA (capacitance is C1) by one laminated electrode body 20 and a capacitor CB (capacitance is C2) by the other laminated electrode body 20. Connect. Therefore, the combined capacity C is C = C1 + C2, and is an added value of each capacity of each stacked electrode body 20.

つまり、積層電極体20を並列に接続することによって、金属リチウム42から溶出したリチウムイオンの拡散距離を増加させることなく、あるいは短縮させながら、合成容量を増大することができることになる。この場合、図6(b)に示すように、ハード容器61内の各積層電極体20を押圧できるよう、ハード容器61の形状に蓋体63を形成しておくようにする。   That is, by connecting the stacked electrode bodies 20 in parallel, the combined capacity can be increased without increasing or shortening the diffusion distance of lithium ions eluted from the metal lithium 42. In this case, as shown in FIG. 6B, a lid 63 is formed in the shape of the hard container 61 so that each laminated electrode body 20 in the hard container 61 can be pressed.

また、図6(d)に示すようにスリット状の隔離壁72を設けてもよい。こうすることにより、ハード容器61内の非水電解液24が隔離壁72の間隙を通って各領域を流通できるようになり、より円滑にリチウムイオンの予備吸蔵を行うことができる。   Further, as shown in FIG. 6D, a slit-shaped isolation wall 72 may be provided. By doing so, the non-aqueous electrolyte 24 in the hard container 61 can flow through each region through the gap between the isolation walls 72, and lithium ion pre-occlusion can be performed more smoothly.

さらに、本実施形態では積層電極体20を2個並列に接続するようにしたが、隔離壁62を2つ以上設け、積層電極体20を3個以上並列に接続するようにしてもよい。   Further, in the present embodiment, two laminated electrode bodies 20 are connected in parallel, but two or more separation walls 62 may be provided, and three or more laminated electrode bodies 20 may be connected in parallel.

このように複数の積層電極体20を並列に接続し、各積層電極体20の積層端面に金属リチウム42をそれぞれ配置することによって、リチウムイオンの予備吸蔵を迅速に行うことができ、さらに蓄電素子の容量を増大することができる。また、ハード容器61を用いることによって、並列に接続された各積層電極体20を安定して収容しておくことができる。   Thus, by connecting a plurality of laminated electrode bodies 20 in parallel and disposing metallic lithium 42 on the laminated end face of each laminated electrode body 20, it is possible to quickly preliminarily occlude lithium ions, and to further store an electric storage element. Capacity can be increased. Further, by using the hard container 61, the stacked electrode bodies 20 connected in parallel can be stably accommodated.

<実施例>
正極の作製:
正極材料である活性炭YP−17(クラレケミカル(株)社製)、アセチレンブラックHS−100(電気化学工業(株)社製)、PTFE(ポリテトラフルオロエチレン)の水性ディスパージョン(三井デュポンフルオロケミカル30J)およびCMC(第1製薬(株)セロゲン4H)の2重量%水溶液を、重量比で88:8:2:2となるように混合し、蒸留水を加えてペースト状に混練して正極合剤スラリーを作製した。なお30J及びCMCの比率は固形分の割合である。厚さ20μmのアルミニウム箔2の両面に当該スラリーを塗布した後、乾燥、圧延し、幅56mmに裁断して正極のシート電極を作製した。この正極の端部には、正極端子との接続のためのリード端子となる未塗布部分も含まれている。
<Example>
Production of positive electrode:
Activated carbon YP-17 (manufactured by Kuraray Chemical Co., Ltd.), acetylene black HS-100 (manufactured by Denki Kagaku Kogyo Co., Ltd.), PTFE (polytetrafluoroethylene) aqueous dispersion (Mitsui Dupont Fluorochemical) 30J) and 2% by weight aqueous solution of CMC (Daiichi Pharmaceutical Co., Ltd. Cellogen 4H) in a weight ratio of 88: 8: 2: 2, mixed with distilled water and kneaded into a paste, A mixture slurry was prepared. In addition, the ratio of 30J and CMC is a ratio of solid content. The slurry was applied to both surfaces of an aluminum foil 2 having a thickness of 20 μm, dried and rolled, and cut into a width of 56 mm to produce a positive electrode sheet. The end portion of the positive electrode also includes an uncoated portion that becomes a lead terminal for connection with the positive electrode terminal.

負極の作製:
負極材料である難黒鉛化炭素材料(呉羽化学(株)製のPIC)と結着剤であるポリフッ化ビニリデン樹脂(呉羽化学(株)性のKF#1100)を95:5の重量比で混合し、これに、溶剤としてN−メチル−2−ピロリジノンを加えてペースト状の合剤を調製した。
この合剤を、集電体となる銅箔の両面に塗布した。これに乾燥および圧延操作を行った後、所定形状に切断してシート状の負極を作製した。この負極の端部には、負極端子との接続のためのリード端子となる未塗布部分も含まれている。
Production of negative electrode:
A non-graphitizable carbon material (PIC manufactured by Kureha Chemical Co., Ltd.) as a negative electrode material and polyvinylidene fluoride resin (KF # 1100, Kureha Chemical Co., Ltd.) as a binder are mixed at a weight ratio of 95: 5. Then, N-methyl-2-pyrrolidinone was added as a solvent to prepare a paste mixture.
This mixture was applied to both sides of a copper foil serving as a current collector. This was dried and rolled, and then cut into a predetermined shape to produce a sheet-like negative electrode. The end portion of the negative electrode also includes an uncoated portion that becomes a lead terminal for connection to the negative electrode terminal.

電極体の作製:
作製した負極と正極を、間にポリオレフィン系セパレータを介して、対向するように複数ペア積層して、図2(a)に示したような積層電極体を構成した。リード端子が形成される面以外は、正極の上下のセパレータを、端部に熱をかけることにより、正極を包み込むように接合した。また積層電極体の最下部となる負極集電体は図2(b)に示すd2をさらに大きく形成するとともに積層電極体の下面以外に金属リチウムを貼着した。この金属リチウムの貼着部分を、積層端面に対向させるように屈曲し、金属リチウムを積層電極体の積層端面における負極集電体の縁端部と接触させた。
そして、正極のリード端子を束ねて接続し、負極のリード端子を束ねて接続した。
Production of electrode body:
A plurality of pairs of the produced negative electrode and positive electrode were laminated so as to face each other with a polyolefin-based separator interposed therebetween, so that a laminated electrode body as shown in FIG. Except for the surface on which the lead terminals are formed, the upper and lower separators of the positive electrode were joined so as to wrap the positive electrode by applying heat to the end portions. Further, the negative electrode current collector which is the lowermost part of the laminated electrode body was formed with d2 shown in FIG. 2 (b) larger, and metal lithium was stuck on the lower surface of the laminated electrode body. The bonded portion of the metallic lithium was bent so as to face the laminated end face, and the metallic lithium was brought into contact with the edge of the negative electrode current collector on the laminated end face of the laminated electrode body.
The positive lead terminals were bundled and connected, and the negative lead terminals were bundled and connected.

素子の作製:
積層電極体の正極のリード端子を正極端子に接続し、負極のリード端子を負極端子に接続した。これらをハード容器に挿入し、リチウム塩を含む非水電解液を積層電極体が十分浸かるように注液した(図3(b),(c))。その後真空引きを行った。
ドライ雰囲気中で数日放置し、積層電極体内部に非水電解液を含浸させ、積層電極体の負極にリチウムイオンを予備吸蔵させた。
そして、ハード容器に蓋体を取り付けて積層電極体を積層方向に押圧し、全体を素子容器となるラミネートパッケージに挿入し、真空引きを行った。その後、正極端子および負極端子の各一端側がそれぞれ容器の外に出るようにした状態で、ラミネートパッケージの開口部を熱融着により密閉封止した。このようにして蓄電素子を作製した(図1参照)。
Device fabrication:
The positive electrode lead terminal of the laminated electrode body was connected to the positive electrode terminal, and the negative electrode lead terminal was connected to the negative electrode terminal. These were inserted into a hard container, and a nonaqueous electrolytic solution containing lithium salt was injected so that the laminated electrode body was sufficiently immersed (FIGS. 3B and 3C). Thereafter, vacuuming was performed.
It was left to stand in a dry atmosphere for several days, the non-aqueous electrolyte was impregnated inside the laminated electrode body, and lithium ions were preoccluded in the negative electrode of the laminated electrode body.
Then, a lid was attached to the hard container, the laminated electrode body was pressed in the laminating direction, the whole was inserted into a laminated package serving as an element container, and evacuation was performed. Thereafter, the opening portion of the laminate package was hermetically sealed by heat sealing in a state where each one end side of the positive electrode terminal and the negative electrode terminal was outside the container. In this way, a power storage element was produced (see FIG. 1).

なお、リチウムイオンの予備吸蔵を、ハード容器に蓋体を取り付けラミネートパッケージで密封封止した状態で行っても良い。その場合、予備吸蔵を大気雰囲気中で行うことができコストを低減できる。   In addition, you may perform preliminary occlusion of lithium ion in the state which attached the cover body to the hard container and sealed with the laminate package. In that case, pre-occlusion can be performed in an air atmosphere, and the cost can be reduced.

以上、本発明をその代表的な実施例に基づいて説明したが、本発明は上述した以外にも種々の態様が可能である。   As mentioned above, although this invention was demonstrated based on the typical Example, this invention can have various aspects other than having mentioned above.

アニオンの吸蔵・放出が可能な正極とリチウムイオンの吸蔵・放出が可能な負極とが間にセパレータを介在させながら交互に積層された積層電極体を用いる蓄電素子において、予備吸蔵用金属リチウムの溶解および負極へのリチウムイオンの予備吸蔵を円滑かつ迅速に行わせることによって生産効率を向上することができ、さらに内部抵抗を低減して品質の安定性を向上することができる。   Dissolution of pre-occlusion metal lithium in a storage element using a laminated electrode body in which a positive electrode capable of occluding and releasing anions and a negative electrode capable of occluding and releasing lithium ions are alternately laminated with a separator interposed therebetween. In addition, the production efficiency can be improved by smoothly and quickly preliminarily storing lithium ions in the negative electrode, and the internal resistance can be reduced to improve the quality stability.

本発明による蓄電素子の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the electrical storage element by this invention. 本発明による蓄電素子内に収容される積層電極体の断面図および平面図である。It is sectional drawing and a top view of the laminated electrode body accommodated in the electrical storage element by this invention. 本発明による蓄電素子の第1実施形態の要部平面図およびその断面図である。It is the principal part top view and sectional drawing of 1st Embodiment of the electrical storage element by this invention. 本発明による蓄電素子の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the electrical storage element by this invention. 本発明による蓄電素子の第3実施形態を示す要部平面図である。It is a principal part top view which shows 3rd Embodiment of the electrical storage element by this invention. 本発明による蓄電素子の第4実施形態を示す要部平面図およびその断面図である。It is a principal part top view which shows 4th Embodiment of the electrical storage element by this invention, and its sectional drawing. 従来の蓄電素子の構成例を示す要部断面図である。It is principal part sectional drawing which shows the structural example of the conventional electrical storage element.

符号の説明Explanation of symbols

10 蓄電素子
11,51,61 ハード容器
13,63 蓋体
15 素子容器
17 固定具
20 積層電極体
21 正極
211 正極材
212 正極集電体
213 リード端子(正極)
22 セパレータ
23 負極
231 負極材
232 負極集電体
233 リード端子(負極)
24 非水電解液
31 正極端子
33 負極端子
40 導電支持体
42 金属リチウム
44 連結リード
45,46 接続リード
51a,51b,51c 突起
62 隔離壁
DESCRIPTION OF SYMBOLS 10 Power storage element 11, 51, 61 Hard container 13, 63 Lid 15 Element container 17 Fixture 20 Stacked electrode body 21 Positive electrode 211 Positive electrode material 212 Positive electrode collector 213 Lead terminal (positive electrode)
22 Separator 23 Negative electrode 231 Negative electrode material 232 Negative electrode current collector 233 Lead terminal (negative electrode)
24 Nonaqueous Electrolytic Solution 31 Positive Electrode Terminal 33 Negative Electrode Terminal 40 Conductive Support Body 42 Metal Lithium 44 Connection Lead 45, 46 Connection Lead 51a, 51b, 51c Projection 62 Isolation Wall

Claims (6)

アニオンの吸蔵・放出が可能な正極材がシート状の正極集電体上に添着された正極と、リチウムイオンの吸蔵・放出が可能な負極材がシート状の負極集電体上に添着された負極とが、間にセパレータを介在させながら交互に上下方向に積層されてなる積層電極体と、リチウム塩を含んだ非水電解液と、上記負極集電体と導電接続されて前記リチウムイオンを前記負極にあらかじめ吸蔵させておくための金属リチウムと、上記積層電極体が上記非水電解液とともに密閉収容される軟包装体の素子容器とを備えた蓄電素子において、
上記負極集電体と導電接続された金属リチウムが上記積層電極体の左右両側の積層端面に対面して配置され、
上記積層電極体および上記金属リチウムが、下方を底面として上方が開口する箱形の保形治具内に上記非水電解液とともに収容されているとともに、上記積層電極体が、上記保形冶具の上記開口を覆う蓋体の下面によって積層方向に上方から押圧され、
上記保形治具の内壁には、上記積層電極体の積層端面に向けて突出する突起が形成されているとともに、上記金属リチウムが上記突起の非形成部分にて上記積層端面に対面するように配置されていることで、当該金属リチウムが上記非水電解液によって溶解した後も、上記積層電極体が上記突起によって定位置に保持され、
上記保形冶具および上記蓋体が上記素子容器内に密閉収容されている、
ことを特徴とする蓄電素子。
A positive electrode material capable of occluding and releasing anions was attached on a sheet-like positive electrode current collector, and a negative electrode material capable of occluding and releasing lithium ions was attached on a sheet-like negative electrode current collector. A negative electrode is alternately laminated in the vertical direction with a separator interposed therebetween, a non-aqueous electrolyte containing a lithium salt, and the negative electrode current collector electrically connected to the lithium ion. In a power storage device comprising metal lithium for preliminarily occlusion in the negative electrode and an element container of a soft package in which the laminated electrode body is hermetically housed together with the non-aqueous electrolyte,
Metal lithium conductively connected to the negative electrode current collector is disposed facing the laminated end faces on the left and right sides of the laminated electrode body,
The laminated electrode body and the metallic lithium are housed together with the non-aqueous electrolyte in a box-shaped shape holding jig whose upper side is open at the bottom, and the laminated electrode body is formed of the shape retaining jig. Pressed from above in the stacking direction by the lower surface of the lid covering the opening,
The inner wall of the shape retaining jig is formed with a protrusion protruding toward the laminated end face of the laminated electrode body, and the metallic lithium faces the laminated end face at a portion where the protrusion is not formed. By being arranged, even after the metallic lithium is dissolved by the non-aqueous electrolyte, the laminated electrode body is held in place by the protrusions,
The shape retaining jig and the lid are hermetically housed in the element container;
A power storage element.
請求項1において、上記積層電極体は、上記蓋体で覆われた状態の保形冶具内において、上記金属リチウムが配置されていない側の端面と当該保形治具の内壁面との間に上記非水電解液が充填されて、当該非水電解液が当該積層電極体に含浸させる量よりも多く上記保形治具内に収容されていることを特徴とする蓄電素子。   2. The laminated electrode body according to claim 1, wherein the laminated electrode body is disposed between the end surface on the side where the metallic lithium is not disposed and the inner wall surface of the shape retaining jig in the shape retaining jig covered with the lid. An electricity storage element characterized in that the non-aqueous electrolyte is filled, and the non-aqueous electrolyte is accommodated in the shape retention jig in a larger amount than the multilayer electrode body is impregnated. 請求項1または2において、上記積層電極体の各負極集電体並びに上記セパレータが上記保形治具側面に配置されたリチウム金属に接触していることを特徴とする蓄電素子。   3. The power storage device according to claim 1, wherein each of the negative electrode current collector of the multilayer electrode body and the separator are in contact with lithium metal disposed on a side surface of the shape retaining jig. 請求項3において、上記各正極集電体から引き出されるリード端子は正極端子と接続され、上記各負極集電体から引き出されるリード端子は負極端子と接続され、上記保形冶具と上記蓋体の合わせ目形状に合わせて上記正極端子および上記負極端子が形成されたことを特徴とする蓄電素子。   4. The lead terminal drawn from each of the positive electrode current collectors is connected to the positive electrode terminal, the lead terminal drawn from each of the negative electrode current collectors is connected to the negative electrode terminal, and the shape retaining jig and the lid body A power storage element, wherein the positive electrode terminal and the negative electrode terminal are formed in accordance with a joint shape. 請求項1〜4のいずれかにおいて、上記蓋体と上記保形冶具とを押さえつけた状態に保持する固定具を備えたことを特徴とする蓄電素子。   5. The power storage device according to claim 1, further comprising: a fixture that holds the lid and the shape-retaining jig in a pressed state. 請求項1〜のいずれかにおいて、上記保形冶具の内部空間を仕切る隔離壁が設けられ、上記隔離壁によって仕切られた各領域に、上記積層電極体、当該積層電極体の積層端面に配置された上記金属リチウム、上記非水電解液がそれぞれ収容され、上記各積層電極体の各正極同士がそれぞれ接続され、各負極同士がそれぞれ接続されたことを特徴とする蓄電素子。 In any one of Claims 1-5, the isolation wall which partitions off the internal space of the said shape-retaining jig is provided, and it arrange | positions in each area | region partitioned by the said isolation wall on the lamination | stacking end surface of the said lamination electrode body. An electrical storage element characterized in that said metallic lithium and said non-aqueous electrolyte are respectively accommodated, each positive electrode of each said laminated electrode body is connected to each other, and each negative electrode is connected to each other.
JP2007254077A 2007-09-28 2007-09-28 Electricity storage element Expired - Fee Related JP5216292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007254077A JP5216292B2 (en) 2007-09-28 2007-09-28 Electricity storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007254077A JP5216292B2 (en) 2007-09-28 2007-09-28 Electricity storage element

Publications (2)

Publication Number Publication Date
JP2009088131A JP2009088131A (en) 2009-04-23
JP5216292B2 true JP5216292B2 (en) 2013-06-19

Family

ID=40661192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007254077A Expired - Fee Related JP5216292B2 (en) 2007-09-28 2007-09-28 Electricity storage element

Country Status (1)

Country Link
JP (1) JP5216292B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112524A (en) 2012-11-12 2014-06-19 Ricoh Co Ltd Nonaqueous electrolyte electricity storage element
JP2014130717A (en) 2012-12-28 2014-07-10 Ricoh Co Ltd Nonaqueous electrolyte storage element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546024U (en) * 1991-11-19 1993-06-18 富士電気化学株式会社 Electric double layer capacitor
JPH08162161A (en) * 1994-12-06 1996-06-21 Kanebo Ltd Organic electrolytic battery
JPH10233234A (en) * 1997-02-19 1998-09-02 Fuji Elelctrochem Co Ltd Nonaqueous lithium secondary battery
JP2004327887A (en) * 2003-04-28 2004-11-18 Sanyo Electric Co Ltd Capacitor array or battery array
JP4601917B2 (en) * 2003-05-20 2010-12-22 シャープ株式会社 Secondary battery and manufacturing method thereof
JP2005019656A (en) * 2003-06-26 2005-01-20 Sanyo Electric Co Ltd Electric double layer capacitor and secondary battery
JP4249698B2 (en) * 2004-11-25 2009-04-02 日本電気株式会社 Film-clad electrical device and film-clad electrical device assembly
JP2006286919A (en) * 2005-03-31 2006-10-19 Fuji Heavy Ind Ltd Lithium ion capacitor

Also Published As

Publication number Publication date
JP2009088131A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP6884795B2 (en) Stepped electrochemical cell with folded encapsulation
US20120129037A1 (en) Electrochemical energy storage cell
KR20130135017A (en) A stepwise electrode assembly, and battery cell, battery pack and device comprising the same
US20160315294A1 (en) Pouch type secondary battery and manufacturing method thereof
JP2023011675A (en) Power storage element
JP2014524131A (en) Electrode assembly having step, battery cell, battery pack and device including the same
WO2021065335A1 (en) Secondary cell
KR20080005623A (en) Safety kit for secondary battery
JP2008060130A (en) Storage element and manufacturing method thereof
KR101108447B1 (en) Process for Preparation of Pouch-typed Secondary Battery Having Excellent Sealing Property
JP2008097991A (en) Electric storage device
JP2011086760A (en) Energy storage element
KR20180126534A (en) Multi-joint battery module
KR101297858B1 (en) Second battery with porous structures and battery Module using the same
JP2015088605A (en) Method of manufacturing power storage device and power storage device
US8879239B2 (en) Supercapacitor cell and supercapacitive module incorporating a plurality of these cells
JP4948109B2 (en) Electricity storage element
JP2014199780A (en) Electricity storage element
JP2006054189A (en) Battery for automobile
KR20130031076A (en) Electrode unit with porous structures and second battery using the same
JP7489406B2 (en) Cell battery
JP5216292B2 (en) Electricity storage element
JP2021197331A (en) Laminated body
JP2007110061A (en) Separated film sheet used in manufacturing electric double layer capacitor and method for manufacturing electric double layer capacitor using it
JP2005079080A (en) Thin battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees