JP7066977B2 - L-アミノ酸の製造法 - Google Patents
L-アミノ酸の製造法 Download PDFInfo
- Publication number
- JP7066977B2 JP7066977B2 JP2017073937A JP2017073937A JP7066977B2 JP 7066977 B2 JP7066977 B2 JP 7066977B2 JP 2017073937 A JP2017073937 A JP 2017073937A JP 2017073937 A JP2017073937 A JP 2017073937A JP 7066977 B2 JP7066977 B2 JP 7066977B2
- Authority
- JP
- Japan
- Prior art keywords
- gene
- amino acid
- protein
- activity
- bacterium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/14—Glutamic acid; Glutamine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/10—Citrulline; Arginine; Ornithine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/24—Proline; Hydroxyproline; Histidine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y102/00—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
- C12Y102/04—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with a disulfide as acceptor (1.2.4)
- C12Y102/04002—Oxoglutarate dehydrogenase (succinyl-transferring) (1.2.4.2), i.e. alpha-ketoglutarat dehydrogenase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/01—Phosphotransferases with an alcohol group as acceptor (2.7.1)
- C12Y207/01004—Fructokinase (2.7.1.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/01—Hydro-lyases (4.2.1)
- C12Y402/01009—Dihydroxy-acid dehydratase (4.2.1.9), i.e. acetohydroxyacid dehydratase
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Description
クトース取り込み担体としては、FucPタンパク質が挙げられる。FucPタンパク質は、フコース取り込み担体であるL-fucose permeaseとして知られているが、フルクトース取り込
み活性も有する(非特許文献2)。FucPタンパク質によれば、フルクトースは、リン酸化されずに細胞内に取り込まれる。細胞内のフルクトースは、例えば、フルクトキナーゼによりリン酸化されてフルクトース-6-リン酸となり、資化され得る(非特許文献3)。
発現が増大するように細菌を改変することによって、フルクトースを炭素源として用いる場合の細菌のL-アミノ酸生産能を向上させることができることを見出し、本発明を完成させた。
[1]
L-アミノ酸生産能を有する細菌をフルクトースを含有する培地で培養し、該培地中および/または該細菌の菌体内にL-アミノ酸を蓄積すること、および前記培地および/または前記菌体より前記L-アミノ酸を採取すること、を含むL-アミノ酸の製造法であって、
前記細菌が、非改変株と比較して、非PTSフルクトース取り込み担体の活性およびフル
クトキナーゼの活性が増大するように改変されている、方法。
[2]
前記非PTSフルクトース取り込み担体が、fucP遺伝子にコードされるタンパク質である
、前記方法。
[3]
前記フルクトキナーゼが、frk遺伝子にコードされるタンパク質である、前記方法。
[4]
前記fucP遺伝子が、下記(a)、(b)、または(c)に記載のタンパク質をコードする遺伝子である、前記方法:
(a)配列番号27または29に示すアミノ酸配列を含むタンパク質;
(b)配列番号27または29に示すアミノ酸配列において、1~10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、非PTSフル
クトース取り込み活性を有するタンパク質;
(c)配列番号27または29に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、非PTSフルクトース取り込み活性を有するタンパク質。
[5]
前記frk遺伝子が、下記(a)、(b)、または(c)に記載のタンパク質をコードす
る遺伝子である、前記方法:
(a)配列番号31、33、または35に示すアミノ酸配列を含むタンパク質;
(b)配列番号31、33、または35に示すアミノ酸配列において、1~10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、フルクトキナーゼ活性を有するタンパク質;
(c)配列番号31、33、または35に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、フルクトキナーゼ活性を有するタンパク質。
[6]
前記非PTSフルクトース取り込み担体をコードする遺伝子および前記フルクトキナーゼ
をコードする遺伝子の発現を上昇させることにより、前記非PTSフルクトース取り込み担
体の活性およびフルクトキナーゼの活性が増大した、前記方法。
[7]
前記遺伝子の発現が、該遺伝子のコピー数を高めること、および/または該遺伝子の発現調節配列を改変することによって上昇した、前記方法。
[8]
前記細菌が、さらに、非改変株と比較して、ホスホケトラーゼの活性が増大するように改変されている、前記方法。
[9]
前記ホスホケトラーゼが、D-キシルロース-5-リン酸ホスホケトラーゼおよび/またはフルクトース6-リン酸ホスホケトラーゼである、前記方法。
[10]
ホスホケトラーゼをコードする遺伝子の発現が増大することにより、ホスホケトラーゼ
の活性が増大した、前記方法。
[11]
前記細菌が、コリネ型細菌または腸内細菌科に属する細菌である、前記方法。
[12]
前記細菌が、コリネバクテリウム属細菌である、前記方法。
[13]
前記細菌が、コリネバクテリウム・グルタミカムである、前記方法。
[14]
前記細菌が、パントエア属細菌またはエシェリヒア属細菌である、前記方法。
[15]
前記細菌が、パントエア・アナナティスまたはエシェリヒア・コリである、前記方法。[16]
前記L-アミノ酸が、グルタミン酸系L-アミノ酸である、前記方法。
[17]
前記グルタミン酸系L-アミノ酸が、L-グルタミン酸、L-グルタミン、L-プロリン、L-アルギニン、L-シトルリン、およびL-オルニチンから選択される1種またはそれ以上のL-アミノ酸である、前記方法。
[18]
前記グルタミン酸系L-アミノ酸が、L-グルタミン酸である、前記方法。
[19]
前記L-グルタミン酸が、L-グルタミン酸アンモニウムまたはL-グルタミン酸ナトリウムである、前記方法。
[20]
前記細菌が、さらに、非改変株と比較して、α-ケトグルタル酸デヒドロゲナーゼおよび/またはコハク酸デヒドロゲナーゼの活性が低下するように改変されている、前記方法。
[21]
前記細菌が、コリネ型細菌であり、さらに、変異型yggB遺伝子を保持するように改変されている、前記方法。
[22]
前記変異型yggB遺伝子が、コリネ型細菌のL-グルタミン酸生産能を向上させる変異を有するyggB遺伝子である、前記方法。
[23]
前記変異型yggB遺伝子が、下記(1)、(2)、または(3)に記載の変異を有するyggB遺伝子である、前記方法:
(1)野生型YggBタンパク質の419~533位のアミノ酸残基をコードする領域における変異;
(2)野生型YggBタンパク質の膜貫通領域をコードする領域における変異;
(3)それらの組み合わせ。
[24]
前記野生型YggBタンパク質が、下記(a)、(b)、または(c)に記載のタンパク質である、前記方法:
(a)配列番号10に示すアミノ酸配列を含むタンパク質;
(b)配列番号10に示すアミノ酸配列において、1~10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、コリネ型細菌において発現を上昇させた際にコリネ型細菌のL-グルタミン酸生産能を向上させる性質を有するタンパク質;
(c)配列番号10に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、コリネ型細菌において発現を上昇させた際にコリネ型細菌のL-グルタミン酸生産能を向上させる性質を有するタンパク質。
[25]
前記培地が、さらにフルクトース以外の炭素源を含有する、前記方法。
[26]
前記炭素源が、グルコースである、前記方法。
トキナーゼの活性が増大するように改変されている、方法である。同方法に用いられる細菌を、「本発明の細菌」ともいう。
本発明の細菌は、非PTSフルクトース取り込み担体の活性およびフルクトキナーゼの活
性が増大するように改変された、L-アミノ酸生産能を有する細菌である。
本発明において、「L-アミノ酸生産能を有する細菌」とは、培地(フルクトースを含有する培地、等)で培養したときに、目的とするL-アミノ酸を生成し、回収できる程度に培地中および/または菌体内に蓄積する能力を有する細菌をいう。L-アミノ酸生産能を有する細菌は、非改変株よりも多い量の目的とするL-アミノ酸を培地中および/または菌体内に蓄積することができる細菌であってよい。「非改変株」とは、非PTSフルクト
ース取り込み担体の活性およびフルクトキナーゼの活性が増大するように改変されていない対照株をいう。すなわち、非改変株としては、野生株や親株が挙げられる。また、L-アミノ酸生産能を有する細菌は、好ましくは0.5g/L以上、より好ましくは1.0g/L以上の量の目的とするL-アミノ酸を培地に蓄積することができる細菌であってもよい。
L-グルタミン酸、およびL-グルタミン酸を中間体として生合成されるL-アミノ酸の総称である。L-グルタミン酸を中間体として生合成されるL-アミノ酸としては、L-グルタミン、L-プロリン、L-アルギニン、L-シトルリン、L-オルニチンが挙げられる。本発明の細菌は、1種のL-アミノ酸の生産能のみを有していてもよく、2種またはそれ以上のL-アミノ酸の生産能を有していてもよい。
ー(Enterobacter)属、パントエア(Pantoea)属、クレブシエラ(Klebsiella)属、セ
ラチア(Serratia)属、エルビニア(Erwinia)属、フォトラブダス(Photorhabdus)属
、プロビデンシア(Providencia)属、サルモネラ(Salmonella)属、モルガネラ(Morganella)等の属に属する細菌が挙げられる。具体的には、NCBI(National Center for Biotechnology Information)のデータベース(https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347)で用いられている分類法により腸内細菌科に分類されている細菌を用いることができる。
of some mutant derivatives of Escherichia coli K-12, p. 2460-2488. Table 1. In F. D. Neidhardt (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology/Second Edition, American Society for Microbiology Press, Washington, D.C.
)に記載されたものが挙げられる。エシェリヒア属細菌としては、例えば、エシェリヒア・コリ(Escherichia coli)が挙げられる。エシェリヒア・コリとして、具体的には、例えば、W3110株(ATCC 27325)やMG1655株(ATCC 47076)等のエシェリヒア・コリK-12株
;エシェリヒア・コリK5株(ATCC 23506);BL21(DE3)株等のエシェリヒア・コリB株;およびそれらの派生株が挙げられる。
には、例えば、エンテロバクター・アエロゲネスATCC13048株、NBRC12010株(Biotechonol Bioeng. 2007 Mar 27; 98(2) 340-348)、AJ110637株(FERM BP-10955)が挙げられる
。また、エンテロバクター属細菌としては、例えば、欧州特許出願公開EP0952221号明細
書に記載されたものが挙げられる。なお、Enterobacter agglomeransには、Pantoea agglomeransと分類されているものも存在する。
トエア・シトレア(Pantoea citrea)が挙げられる。パントエア・アナナティスとして、具体的には、例えば、パントエア・アナナティスLMG20103株、AJ13355株(FERM BP-6614
)、AJ13356株(FERM BP-6615)、AJ13601株(FERM BP-7207)、SC17株(FERM BP-11091
)、SC17(0)株(VKPM B-9246)、及びSC17sucA株(FERM BP-8646)が挙げられる。なお、エンテロバクター属細菌やエルビニア属細菌には、パントエア属に再分類されたものもある(Int. J. Syst. Bacteriol., 39, 337-345 (1989); Int. J. Syst. Bacteriol., 43, 162-173 (1993))。例えば、エンテロバクター・アグロメランスのある種のものは、最近、16S rRNAの塩基配列分析等に基づき、パントエア・アグロメランス、パントエア・アナナティス、パントエア・ステワルティイ等に再分類された(Int. J. Syst. Bacteriol., 39, 337-345 (1989))。本発明において、パントエア属細菌には、このようにパントエア属に再分類された細菌も含まれる。
ビニア・カロトボーラ(Erwinia carotovora)が挙げられる。クレブシエラ属細菌としては、クレブシエラ・プランティコーラ(Klebsiella planticola)が挙げられる。
ウム(Brevibacterium)属、およびミクロバクテリウム(Microbacterium)属等の属に属する細菌が挙げられる。
コリネバクテリウム・アセトアシドフィラム(Corynebacterium acetoacidophilum)
コリネバクテリウム・アセトグルタミカム(Corynebacterium acetoglutamicum)
コリネバクテリウム・アルカノリティカム(Corynebacterium alkanolyticum)
コリネバクテリウム・カルナエ(Corynebacterium callunae)
コリネバクテリウム・クレナタム(Corynebacterium crenatum)
コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)
コリネバクテリウム・リリウム(Corynebacterium lilium)
コリネバクテリウム・メラセコーラ(Corynebacterium melassecola)
コリネバクテリウム・サーモアミノゲネス(コリネバクテリウム・エフィシエンス)(Corynebacterium thermoaminogenes (Corynebacterium efficiens))
コリネバクテリウム・ハーキュリス(Corynebacterium herculis)
ブレビバクテリウム・ディバリカタム(コリネバクテリウム・グルタミカム)(Brevibacterium divaricatum (Corynebacterium glutamicum))
ブレビバクテリウム・フラバム(コリネバクテリウム・グルタミカム)(Brevibacterium
flavum (Corynebacterium glutamicum))
ブレビバクテリウム・イマリオフィラム(Brevibacterium immariophilum)
ブレビバクテリウム・ラクトファーメンタム(コリネバクテリウム・グルタミカム)(Brevibacterium lactofermentum (Corynebacterium glutamicum))
ブレビバクテリウム・ロゼウム(Brevibacterium roseum)
ブレビバクテリウム・サッカロリティカム(Brevibacterium saccharolyticum)
ブレビバクテリウム・チオゲニタリス(Brevibacterium thiogenitalis)
コリネバクテリウム・アンモニアゲネス(コリネバクテリウム・スタティオニス)(Corynebacterium ammoniagenes (Corynebacterium stationis))
ブレビバクテリウム・アルバム(Brevibacterium album)
ブレビバクテリウム・セリナム(Brevibacterium cerinum)
ミクロバクテリウム・アンモニアフィラム(Microbacterium ammoniaphilum)
Corynebacterium acetoacidophilum ATCC 13870
Corynebacterium acetoglutamicum ATCC 15806
Corynebacterium alkanolyticum ATCC 21511
Corynebacterium callunae ATCC 15991
Corynebacterium crenatum AS1.542
Corynebacterium glutamicum ATCC 13020, ATCC 13032, ATCC 13060, ATCC 13869, FERM BP-734
Corynebacterium lilium ATCC 15990
Corynebacterium melassecola ATCC 17965
Corynebacterium efficiens (Corynebacterium thermoaminogenes) AJ12340 (FERM BP-1539)
Corynebacterium herculis ATCC 13868
Brevibacterium divaricatum (Corynebacterium glutamicum) ATCC 14020
Brevibacterium flavum (Corynebacterium glutamicum) ATCC 13826, ATCC 14067, AJ12418 (FERM BP-2205)
Brevibacterium immariophilum ATCC 14068
Brevibacterium lactofermentum (Corynebacterium glutamicum) ATCC 13869
Brevibacterium roseum ATCC 13825
Brevibacterium saccharolyticum ATCC 14066
Brevibacterium thiogenitalis ATCC 19240
Corynebacterium ammoniagenes (Corynebacterium stationis) ATCC 6871, ATCC 6872
Brevibacterium album ATCC 15111
Brevibacterium cerinum ATCC 15112
Microbacterium ammoniaphilum ATCC 15354
リウム・アンモニアゲネスに分類されていたが、16S rRNAの塩基配列解析等によりコリネバクテリウム・スタティオニスに再分類された細菌も含まれる(Int. J. Syst. Evol. Microbiol., 60, 874-879(2010))。
登録番号が付与されており、この登録番号を利用して分譲を受けることが出来る(https://www.atcc.org/参照)。各菌株に対応する登録番号は、アメリカン・タイプ・カルチャー・コレクションのカタログに記載されている。また、これらの菌株は、例えば、各菌株が寄託された寄託機関から入手することができる。
な方法としては、例えば、栄養要求性変異株の取得、L-アミノ酸のアナログ耐性株の取得、代謝制御変異株の取得、L-アミノ酸の生合成系酵素の活性が増強された組換え株の創製が挙げられる。L-アミノ酸生産菌の育種において、付与される栄養要求性、アナロ
グ耐性、代謝制御変異等の性質は、単独であってもよく、2種又は3種以上であってもよい。また、L-アミノ酸生産菌の育種において、活性が増強されるL-アミノ酸生合成系酵素も、単独であってもよく、2種又は3種以上であってもよい。さらに、栄養要求性、アナログ耐性、代謝制御変異等の性質の付与と、生合成系酵素の活性の増強が組み合わされてもよい。
L-グルタミン酸生産能を付与又は増強するための方法としては、例えば、L-グルタミン酸生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、グルタミン酸デヒドロゲナーゼ(gdhA)、グルタミンシンテターゼ(glnA)、グルタミン酸シンターゼ(gltBD)、イソクエン酸デヒドロゲナーゼ(icdA)、アコニテートヒドラターゼ
(acnA, acnB)、クエン酸シンターゼ(gltA)、メチルクエン酸シンターゼ(prpC)、ピルビン酸カルボキシラーゼ(pyc)、ピルビン酸デヒドロゲナーゼ(aceEF, lpdA)、ピルビン酸キナーゼ(pykA, pykF)、ホスホエノールピルビン酸シンターゼ(ppsA)、エノラーゼ(eno)、ホスホグリセロムターゼ(pgmA, pgmI)、ホスホグリセリン酸キナーゼ(pgk)、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ(gapA)、トリオースリン酸イソメラーゼ(tpiA)、フルクトースビスリン酸アルドラーゼ(fbp)、グルコースリン酸
イソメラーゼ(pgi)、6-ホスホグルコン酸デヒドラターゼ(edd)、2-ケト-3-デオキシ-6-ホスホグルコン酸アルドラーゼ(eda)、トランスヒドロゲナーゼが挙げら
れる。なお、カッコ内は、その酵素をコードする遺伝子の一例である(以下の記載においても同様)。これらの酵素の中では、例えば、グルタミン酸デヒドロゲナーゼ、クエン酸シンターゼ、ホスホエノールピルビン酸カルボキシラーゼ、及びメチルクエン酸シンターゼから選択される1種またはそれ以上の酵素の活性を増強するのが好ましい。
れたコリネ型細菌としては、WO99/07853に開示されたものが挙げられる。
、α-ケトグルタル酸デヒドロゲナーゼ活性を低下又は欠損させることが好ましい。
タル酸デヒドロゲナーゼ活性が低下または欠損したエシェリヒア属細菌として、具体的には、例えば、下記の株が挙げられる。
E. coli W3110sucA::Kmr
E. coli AJ12624(FERM BP-3853)
E. coli AJ12628(FERM BP-3854)
E. coli AJ12949(FERM BP-4881)
コードするsucA遺伝子を破壊することにより得られた株である。この株は、α-ケトグルタル酸デヒドロゲナーゼ活性を完全に欠損している。
ーゼ活性が低下または欠損したコリネ型細菌として、具体的には、例えば、下記の株が挙げられる。
Corynebacterium glutamicum(Brevibacterium lactofermentum)L30-2株(特開2006-340603)
Corynebacterium glutamicum(Brevibacterium lactofermentum)ΔS株(WO95/34672)
Corynebacterium glutamicum(Brevibacterium lactofermentum)AJ12821(FERM BP-4172;フランス特許第9401748号公報)
Corynebacterium glutamicum(Brevibacterium flavum)AJ12822(FERM BP-4173;フランス特許第9401748号公報)
Corynebacterium glutamicum AJ12823(FERM BP-4174;フランス特許第9401748号公報)
a ananatis SC17(0)株(VKPM B-9246)等のパントエア属細菌も挙げられる。AJ13355株は、静岡県磐田市の土壌から、低pHでL-グルタミン酸及び炭素源を含む培地で増殖できる株として分離された株である。SC17株は、AJ13355株から、粘液質低生産変異株として選
択された株である(米国特許第6,596,517号)。SC17株は、2009年2月4日に、独立行政法
人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構
特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に寄託され、受託番号FERM BP-11091が付与されている。AJ13355株は、1998年2月19日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に、受託番号FERM P-16644として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6614が付与されている。
遺伝子(sucA)欠損株であるAJ13356株(米国特許第6,331,419号)、及びSC17株のsucA遺伝子欠損株であるSC17sucA株(米国特許第6,596,517号)が挙げられる。AJ13356株は、1998年2月19日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技術基
盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-16645として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6616が付与されている。また、SC17sucA株は、ブライベートナンバーAJ417が付与され、2004年2月26日に独立行政法人産業技術総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM BP-8646として寄託されている。
、16S rRNAの塩基配列解析などにより、Pantoea ananatisに再分類されている。よって、AJ13355株及びAJ13356株は、上記寄託機関にEnterobacter agglomeransとして寄託されているが、本明細書ではPantoea ananatisとして記載する。
子の発現を増強することも挙げられる。
耐性を付与する方法(特開昭57-065198)、ウレアーゼを弱化させる方法(特開昭52-038088)、マロン酸耐性を付与する方法(特開昭52-038088)、ベンゾピロン類またはナフト
キノン類への耐性を付与する方法(特開昭56-1889)、HOQNO耐性を付与する方法(特開昭56-140895)、α-ケトマロン酸耐性を付与する方法(特開昭57-2689)、グアニジン耐性
を付与する方法(特開昭56-35981)、ペニシリンに対する感受性を付与する方法(特開平4-88994)が挙げられる。
Corynebacterium glutamicum AJ11628(FERM P-5736;特開昭57-065198)
Corynebacterium glutamicum(Brevibacterium flavum)AJ11355(FERM P-5007;特開昭56-1889)
Corynebacterium glutamicum AJ11368(FERM P-5020;特開昭56-1889)
Corynebacterium glutamicum(Brevibacterium flavum)AJ11217(FERM P-4318;特開昭57-2689)
Corynebacterium glutamicum AJ11218(FERM P-4319;特開昭57-2689)
Corynebacterium glutamicum(Brevibacterium flavum)AJ11564(FERM P-5472;特開昭56-140895)
Corynebacterium glutamicum(Brevibacterium flavum)AJ11439(FERM P-5136;特開昭56-35981)
Corynebacterium glutamicum H7684(FERM BP-3004;特開平04-88994)
Corynebacterium glutamicum(Brevibacterium lactofermentum)AJ11426(FERM P-5123
;特開平56-048890)
Corynebacterium glutamicum AJ11440(FERM P-5137;特開平56-048890)
Corynebacterium glutamicum(Brevibacterium lactofermentum)AJ11796(FERM P-6402
;特開平58-158192)
子の発現が増大するように改変されていてもよく、変異型yggB遺伝子を保持する(有する)ように改変されていてもよい。
配列の相補配列に相当し、NCgl1221とも呼ばれる。Corynebacterium glutamicum ATCC13032のyggB遺伝子にコードされるYggBタンパク質は、GenBank accession No. NP_600492と
して登録されている。また、Corynebacterium glutamicum 2256(ATCC 13869)のyggB遺
伝子の塩基配列、及び同遺伝子がコードするYggBタンパク質のアミノ酸配列を、それぞれ配列番号9および10に示す。
C末端側変異は、野生型yggB遺伝子中の、野生型YggBタンパク質の419~533位のアミノ
酸残基をコードする領域における変異である。C末端側変異は、同領域中の1またはそれ
以上の箇所に導入されてよい。C末端側変異により引き起こされるアミノ酸配列の変化の
種類は特に制限されない。C末端側変異は、例えば、アミノ酸残基の置換(ミスセンス変
異)、アミノ酸残基の挿入、アミノ酸残基の欠失、ストップコドンの出現(ナンセンス変異)、フレームシフト変異、またはそれらの組み合わせを引き起こすものであってよい。C末端側変異としては、例えば、インサーションシーケンス(以下、「IS」ともいう)や
トランスポゾン等の塩基配列の挿入が好ましい。
C末端側変異としては、例えば、野生型YggBタンパク質の419位のバリン残基をコードする箇所に塩基配列が挿入される変異(2A-1型変異)が挙げられる。2A-1型変異は、例えば、野生型YggBタンパク質の419~533位のアミノ酸残基の一部または全部の欠失または置換を引き起こすものであってよい。2A-1型変異を有する変異型yggB遺伝子として、具体的には、例えば、配列番号9の1255位の「G」の次にISが挿入され、元の野生型YggBタンパ
ク質(配列番号10)よりも短い全長423アミノ残基の変異型YggBタンパク質をコードす
るyggB遺伝子が挙げられる。この変異型yggB遺伝子(V419::IS)の塩基配列、及び同遺伝子がコードする変異型YggBタンパク質(V419::IS)のアミノ酸配列を、それぞれ配列番号11および12に示す。配列番号11中、1~1269位が変異型YggBタンパク質(V419::IS
)のCDSである。変異型yggB遺伝子(V419::IS)を有するL-グルタミン酸生産菌として、具体的には、例えば、C. glutamicum 2256ΔsucAΔldhA yggB*株(WO2014/185430)
が挙げられる。
C末端側変異としては、例えば、野生型YggBタンパク質の419~533位に存在するプロリ
ン残基を他のアミノ酸に置換する変異も挙げられる。そのようなプロリン残基としては、
野生型YggBタンパク質の424位、437位、453位、457位、462位、469位、484位、489位、497位、515位、529位、および533位のプロリン残基が挙げられる。中でも、424位および/
または437位のプロリン残基を他のアミノ酸に置換するのが好ましい。「他のアミノ酸」
は、プロリン以外の天然型アミノ酸であれば特に制限されない。「他のアミノ酸」としては、Lys、Glu、Thr、Val、Leu、Ile、Ser、Asp、Asn、Gln、Arg、Cys、Met、Phe、Trp、Tyr、Gly、Ala、Hisが挙げられる。例えば、424位のプロリン残基は、好ましくは疎水性アミノ酸(Ala、Gly、Val、Leu、またはIle)に置換されてよく、より好ましくは分岐鎖ア
ミノ酸(Leu、Val、またはIle)に置換されてよい。また、例えば、437位のプロリン残基は、好ましくは側鎖にヒドロキシル基を有するアミノ酸(Thr、Ser、またはTyr)に置換
されてよく、より好ましくはSerに置換されてよい。
YggBタンパク質は、5個の膜貫通領域を有していると推測される。膜貫通領域はそれぞれ、野生型YggBタンパク質の1~23位(第1膜貫通領域)、25~47位(第2膜貫通領域)
、62~84位(第3膜貫通領域)、86~108位(第4膜貫通領域)、110~132位(第5膜貫
通領域)のアミノ酸残基に相当する。膜貫通領域の変異は、野生型yggB遺伝子中の、これら膜貫通領域をコードする領域における変異である。膜貫通領域の変異は、同領域中の1またはそれ以上の箇所に導入されてよい。膜貫通領域の変異は、1若しくは数個のアミノ酸の置換、欠失、付加、挿入、又は逆位を引き起こすものであって、且つ、フレームシフト変異およびナンセンス変異を伴わないものが好ましい。「1若しくは数個」とは、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1~3個を意味する。膜貫通領域の変異としては、野生型YggBタンパク質の、14位のロイシン残基と15位のトリプトファン残基間に1又は数個のアミノ酸(例えば、Cys-Ser-Leu)を挿入する変異、100位のアラニン残基を他のアミノ酸残基(例えば、側鎖
にヒドロキシル基を有するアミノ酸(Thr、Ser、またはTyr)、好ましくはThr)へ置換する変異、111位のアラニン残基を他のアミノ酸残基(例えば、側鎖にヒドロキシル基を有するアミノ酸(Thr、Ser、またはTyr)、好ましくはThr)へ置換する変異などが挙げられる。
し、N末端のアミノ酸残基が1位のアミノ酸残基である。なお、アミノ酸残基の位置は相
対的な位置を示すものであって、アミノ酸の欠失、挿入、付加などによってその絶対的な位置は前後することがある。例えば、「野生型YggBタンパク質の419位のアミノ酸残基」
とは、配列番号10における419位のアミノ酸残基に相当するアミノ酸残基を意味し、419位よりもN末端側の1アミノ酸残基が欠失している場合は、N末端から418番目のアミノ酸
残基が「野生型YggBタンパク質の419位のアミノ酸残基」であるものとする。また、419位よりもN末端側に1アミノ酸残基挿入されている場合は、N末端から420番目のアミノ酸残
基が「野生型YggBタンパク質の419位のアミノ酸残基」であるものとする。具体的には、
例えば、Corynebacterium glutamicum ATCC14967株のYggBタンパク質においては、419~529位のアミノ酸残基が、野生型YggBタンパク質の419~533位のアミノ酸残基に相当する。
198(2), 327-37. 1987)。
用いる方法(Higuchi, R., 61, in PCR technology, Erlich, H. A. Eds., Stockton press (1989);Carter, P., Meth. in Enzymol., 154, 382 (1987))や、ファージを用いる
方法(Kramer,W. and Frits, H. J., Meth. in Enzymol., 154, 350 (1987);Kunkel, T.
A. et al., Meth. in Enzymol., 154, 367 (1987))が挙げられる。また、変異型yggB遺伝子は、化学合成によっても取得できる。
L-グルタミン生産能を付与又は増強するための方法としては、例えば、L-グルタミン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、グルタミン酸デヒドロゲナーゼ(gdhA)やグルタミンシンセターゼ(glnA)が挙げられる。なお、グルタミンシンセターゼの活性は、グルタミンアデニリルトランスフェラーゼ遺伝子(glnE)の破壊やPII制御タンパク質遺伝子(glnB)の破壊によって増強してもよい(EP1229121)。
を誘導するための親株としては、グルタミンシンセターゼの397位のチロシン残基が他の
アミノ酸残基に置換された変異型グルタミンシンセターゼを有するエシェリヒア属に属する株が挙げられる(US2003-0148474A)。
ログ耐性及びメチオニンスルホキシド耐性を付与する方法(特開昭61-202694)、α-ケトマロン酸耐性を付与する方法(特開昭56-151495)が挙げられる。L-グルタミン生産能
を有するコリネ型細菌として、具体的には、例えば、以下の株が挙げられる。
Corynebacterium glutamicum(Brevibacterium flavum)AJ11573(FERM P-5492;特開昭56-151495)
Corynebacterium glutamicum(Brevibacterium flavum)AJ11576(FERM BP-10381;特開
昭56-151495)
Corynebacterium glutamicum(Brevibacterium flavum)AJ12212(FERM P-8123;特開昭61-202694)
L-プロリン生産能を付与又は増強するための方法としては、例えば、L-プロリン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、グルタミン酸-5-キナーゼ(proB)、γ‐グルタミル-リン酸レダクターゼ、ピロリン-5-カルボキシレートレダクターゼ(putA)が挙げられる。酵素活性の増強には、例えば、L-プロリンによるフィードバック阻害が解除されたグルタミン酸-5-キナーゼをコードするproB遺伝子(ドイツ特許第3127361号)が好適に利用できる。
702ilvA株(VKPM B-8012;EP1172433)が挙げられる。
L-スレオニン生産能を付与又は増強するための方法としては、例えば、L-スレオニン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、アスパルトキナーゼIII(lysC)、アスパラギン酸セミアルデヒドデヒドロゲナーゼ(asd)、アスパルトキナーゼI(thrA)、ホモセリンキナーゼ(homoserine kinase)(thrB)、スレオニンシンターゼ(threonine synthase)(thrC)、アスパラギン酸アミノトランスフェラーゼ(アスパラギン酸トランスアミナーゼ)(aspC)が挙げられる。これらの酵素の中では、アスパルトキナーゼIII、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、アスパル
トキナーゼI、ホモセリンキナーゼ、アスパラギン酸アミノトランスフェラーゼ、及びス
レオニンシンターゼから選択される1種またはそれ以上の酵素の活性を増強するのが好ましい。L-スレオニン生合成系遺伝子は、スレオニン分解が抑制された株に導入してもよい。スレオニン分解が抑制された株としては、例えば、スレオニンデヒドロゲナーゼ活性が欠損したE. coli TDH6株(特開2001-346578)が挙げられる。
thrA、thrB、thrC遺伝子は、スレオニンオペロンを構成しており、スレオニンオペロンは、アテニュエーター構造を形成している。スレオニンオペロンの発現は、培養液中のイソロイシン、スレオニンに阻害を受け、アテニュエーションにより抑制される。スレオニンオペロンの発現の増強は、アテニュエーション領域のリーダー配列あるいはアテニュエーターを除去することにより達成できる(Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194:59-69 (1987);
WO02/26993; WO2005/049808; WO2003/097839)。
β-hydroxyvaleric acid(AHV)に耐性な菌株を選抜することによっても取得できる。
スレオニン耐性を付与する方法は、EP0994190AやWO90/04636に記載の方法を参照出来る。
coli TDH-6/pVIC40(VKPM B-3996;米国特許第5,175,107号, 米国特許第5,705,371号)
、E. coli 472T23/pYN7(ATCC 98081;米国特許第5,631,157号)、E. coli NRRL B-21593(米国特許第5,939,307号)、E. coli FERM BP-3756(米国特許第5,474,918号)、E. coli FERM BP-3519及びFERM BP-3520(米国特許第5,376,538号)、E. coli MG442(Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978))、E. coli VL643及びVL2055
(EP1149911A)、ならびにE. coli VKPM B-5318(EP0593792B)が挙げられる。
クロース資化性であり、thrC遺伝子を欠損し、ilvA遺伝子にリーキー(leaky)変異を有
する。また、TDH-6株は、rhtA遺伝子に、高濃度のスレオニンまたはホモセリンに対する
耐性を付与する変異を有する。プラスミドpVIC40は、RSF1010由来ベクターに、スレオニ
ンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異型thrA遺伝子と野生型thrBC遺伝子を含むthrA*BCオペロンが挿入されたプラスミドである(米国特許第5,705,371号)。この変異型thrA遺伝子は、スレオニンに
よるフィードバック阻害が実質的に解除されたアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする。B-3996株は、1987年11月19日、オールユニオン・サイエンティフィック・センター・オブ・アンチビオティクス(Nagatinskaya Street 3-A, 117105 Moscow, Russia)に、受託番号RIA 1867で寄託されている。この株は、また、1987年4月7日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズム
ズ(VKPM)(FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia)
に、受託番号VKPM B-3996で寄託されている。
ペロンの制御領域を温度感受性ラムダファージC1リプレッサー及びPRプロモーターにより置換したプラスミドpPRT614を保持する。VKPM B-5318は、1990年5月3日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM)(FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号VKPM B-5318で国際寄託されている。
は明らかにされている(ヌクレオチド番号337~2799, GenBank accession NC_000913.2, gi: 49175990)。thrA遺伝子は、E. coli K-12の染色体において、thrL遺伝子とthrB遺伝子との間に位置する。Escherichia coliのホモセリンキナーゼをコードするthrB遺伝子は明らかにされている(ヌクレオチド番号2801~3733, GenBank accession NC_000913.2, gi: 49175990)。thrB遺伝子は、E. coli K-12の染色体において、thrA遺伝子とthrC遺伝
子との間に位置する。E. coliのスレオニンシンターゼをコードするthrC遺伝子は明らか
にされている(ヌクレオチド番号3734~5020, GenBank accession NC_000913.2, gi: 49175990)。thrC遺伝子は、E. coli K-12の染色体において、thrB遺伝子とyaaXオープンリ
ーディングフレームとの間に位置する。また、スレオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異型thrA遺伝子と野生型thrBC遺伝子を含むthrA*BCオペロンは、スレオニン生産株E. coli VKPM B-3996に
存在する周知のプラスミドpVIC40(米国特許第5,705,371号)から取得できる。
子とompX遺伝子との間に位置する。ORF1によりコードされるタンパク質を発現するユニットは、rhtA遺伝子と呼ばれている(rht: resistant to homoserine and threonine(ホモセリン及びスレオニンに耐性))。また、高濃度のスレオニン又はホモセリンへの耐性を付与するrhtA23変異が、ATG開始コドンに対して-1位のG→A置換であることが判明してい
る(ABSTRACTS of the 17th International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract
No. 457, EP1013765A)。
て作製されたプライマーを用いるPCRにより得ることができる。他の微生物のaspC遺伝子
も同様に得ることができる。
L-リジン生産能を付与又は増強するための方法としては、例えば、L-リジン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ジヒドロジピコリン酸シンターゼ(dihydrodipicolinate synthase)(dapA)、アスパルトキナーゼIII(aspartokinase III)(lysC)、ジヒドロジピコリン酸レダクターゼ(dihydrodipicolinate reductase)(dapB)、ジアミノピメリン酸デカルボキシラーゼ(diaminopimelate decarboxylase)(lysA)、ジアミノピメリン酸デヒドロゲナーゼ(diaminopimelate dehydrogenase)(ddh)(米国特許第6,040,160号)、ホスホエノールピルビン酸カルボキシラー
ゼ(phosphoenolpyruvate carboxylase)(ppc)、アスパラギン酸セミアルデヒドデヒドロゲナーゼ(aspartate semialdehyde dehydrogenase)(asd)、アスパラギン酸アミノ
トランスフェラーゼ(aspartate aminotransferase)(アスパラギン酸トランスアミナーゼ(aspartate transaminase))(aspC)、ジアミノピメリン酸エピメラーゼ(diaminopimelate epimerase)(dapF)、テトラヒドロジピコリン酸スクシニラーゼ(tetrahydrodipicolinate succinylase)(dapD)、スクシニルジアミノピメリン酸デアシラーゼ(succinyl-diaminopimelate deacylase)(dapE)、及びアスパルターゼ(aspartase)(aspA)(EP 1253195 A)が挙げられる。これらの酵素の中では、例えば、ジヒドロジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、ホスホエノールピルビン酸カルボキシラーゼ、アスパラギン酸アミノトランスフェラーゼ、ジアミノピメリン酸エピメラーゼ、アスパラギン酸セミアルデヒドデヒドロゲナーゼ、テトラヒドロジピコリン酸スクシニラーゼ、及びスクシニルジアミノピメリン酸デアシラーゼから選択される1種またはそれ以上の酵素の活性を増強するのが好ましい。また、L-リジン生産菌又はそれを誘導するための親株では、エネルギー効率に関与する遺伝子(cyo)(EP 1170376 A)、ニコチンアミドヌクレオチドトランスヒドロゲナー
ゼ(nicotinamide nucleotide transhydrogenase)をコードする遺伝子(pntAB)(米国
特許第5,830,716号)、ybjE遺伝子(WO2005/073390)、またはこれらの組み合わせの発現レベルが増大していてもよい。アスパルトキナーゼIII(lysC)はL-リジンによるフィ
ードバック阻害を受けるので、同酵素の活性を増強するには、L-リジンによるフィードバック阻害が解除されたアスパルトキナーゼIIIをコードする変異型lysC遺伝子を利用し
てもよい(米国特許第5,932,453号)。L-リジンによるフィードバック阻害が解除され
たアスパルトキナーゼIIIとしては、318位のメチオニン残基がイソロイシン残基に置換される変異、323位のグリシン残基がアスパラギン酸残基に置換される変異、352位のスレオニン残基がイソロイシン残基に置換される変異の1またはそれ以上の変異を有するエシェリヒア・コリ由来のアスパルトキナーゼIIIが挙げられる(米国特許第5,661,012号、米国特許第6,040,160号)。また、ジヒドロジピコリン酸合成酵素(dapA)はL-リジンによ
るフィードバック阻害を受けるので、同酵素の活性を増強するには、L-リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素をコードする変異型dapA遺伝子を利用してもよい。L-リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素としては、118位のヒスチジン残基がチロシン残基に置換される変異を
有するエシェリヒア・コリ由来のジヒドロジピコリン酸合成酵素が挙げられる(米国特許第6,040,160号)。
は、例えば、リジン排出系(lysE)の活性が増大するように細菌を改変する方法が挙げられる(WO97/23597)。Corynebacterium glutamicum ATCC 13032のlysE遺伝子は、NCBIデ
ータベースにGenBank accession NC_006958(VERSION NC_006958.1 GI:62388892)とし
て登録されているゲノム配列中、1329712~1330413位の配列の相補配列に相当する。Corynebacterium glutamicum ATCC13032のLysEタンパク質は、GenBank accession YP_225551
(YP_225551.1 GI:62390149)として登録されている。
ログに対して耐性を有する変異株は、細菌を通常の人工変異処理に付すことによって得ることができる。
が挙げられる。これらの株では、アスパルトキナーゼのL-リジンによるフィードバック阻害が解除されている。
株も挙げられる。WC196株は、E. coli K-12に由来するW3110株にAEC耐性を付与すること
により育種された(米国特許第5,827,698号)。WC196株は、E. coli AJ13069と命名され
、1994年12月6日に、工業技術院生命工学工業技術研究所(現、独立行政法人製品評価技
術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-14690として寄託され、1995年9月29日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-5252が付与されている(米国特許第5,827,698号)。
Δldc/pCABD2が挙げられる(WO2010/061890)。WC196ΔcadAΔldcは、WC196株より、リジンデカルボキシラーゼをコードするcadA及びldcC遺伝子を破壊することにより構築した株である。WC196ΔcadAΔldc/pCABD2は、WC196ΔcadAΔldcに、リジン生合成系遺伝子を含
むプラスミドpCABD2(米国特許第6,040,160号)を導入することにより構築した株である
。WC196ΔcadAΔldcは、AJ110692と命名され、2008年10月7日に、独立行政法人産業技術
総合研究所 特許生物寄託センター(現、独立行政法人製品評価技術基盤機構 特許生物寄託センター、郵便番号:292-0818、住所:日本国千葉県木更津市かずさ鎌足2-5-8 120
号室)に受託番号FERM BP-11027として国際寄託された。pCABD2は、L-リジンによるフ
ィードバック阻害が解除される変異(H118Y)を有するエシェリヒア・コリ由来のジヒド
ロジピコリン酸合成酵素(DDPS)をコードする変異型dapA遺伝子と、L-リジンによるフィードバック阻害が解除される変異(T352I)を有するエシェリヒア・コリ由来のアスパ
ルトキナーゼIIIをコードする変異型lysC遺伝子と、エシェリヒア・コリ由来のジヒドロ
ジピコリン酸レダクターゼをコードするdapB遺伝子と、ブレビバクテリウム・ラクトファーメンタム由来ジアミノピメリン酸デヒドロゲナーゼをコードするddh遺伝子を含んでい
る。
。AJIK01株は、E. coli AJ111046と命名され、2013年1月29日に、独立行政法人製品評価
技術基盤機構 特許微生物寄託センター(郵便番号:292-0818、住所:日本国千葉県木更
津市かずさ鎌足2-5-8 122号室)に寄託され、2014年5月15日にブダペスト条約に基づく国際寄託に移管され、受託番号NITE BP-01520が付与されている。
株等;特公昭56-1914、特公昭56-1915、特公昭57-14157、特公昭57-14158、特公昭57-30474、特公昭58-10075、特公昭59-4993、特公昭61-35840、特公昭62-24074、特公昭62-36673、特公平5-11958、特公平7-112437、特公平7-112438);その生育にL-ホモセリン等のアミノ酸を必要とする変異株(特公昭48-28078、特公昭56-6499);AECに耐性を示し、更にL-ロイシン、L-ホモセリン、L-プロリン、L-セリン、L-アルギニン、L-アラニン、L-バリン等のアミノ酸を要求する変異株(米国特許第3,708,395号, 米国特許
第3,825,472号);DL-α-アミノ-ε-カプロラクタム、α-アミノ-ラウリルラク
タム、アスパラギン酸アナログ、スルファ剤、キノイド、N-ラウロイルロイシンに耐性を示す変異株;オキザロ酢酸デカルボキシラーゼ阻害剤または呼吸系酵素阻害剤に対する耐性を示す変異株(特開昭50-53588、特開昭50-31093、特開昭52-102498、特開昭53-9394、特開昭53-86089、特開昭55-9783、特開昭55-9759、特開昭56-32995、特開昭56-39778、特公昭53-43591、特公昭53-1833);イノシトールまたは酢酸を要求する変異株(特開昭55-9784、特開昭56-8692);フルオロピルビン酸または34℃以上の温度に対して感受性を
示す変異株(特開昭55-9783、特開昭53-86090);エチレングリコールに耐性を示す変異
株(米国特許第4,411,997号)が挙げられる。
L-アルギニン生産能を付与又は増強するための方法としては、例えば、L-アルギニン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、N-アセチルグルタミン酸シンターゼ(argA)、N-アセチルグルタミン酸キナーゼ(argB)、N-アセチルグルタミルリン酸レダクターゼ(argC)、アセチルオルニチントランスアミナーゼ(argD)、アセチルオルニチンデアセチラーゼ(argE)、オルニチンカルバモイルトランスフェラーゼ(argF, argI)、アルギニノコハク酸シンターゼ(argG)、アルギニノコハク酸リアーゼ(argH)、オルニチンアセチルトランスフェラーゼ(argJ)、カルバモイルリン酸シンターゼ(carAB)が挙げられる。N-アセチルグルタミン酸シンターゼ(argA)遺伝子としては、例えば、野生型の15位~19位に相当するアミノ酸残基が置換さ
れ、L-アルギニンによるフィードバック阻害が解除された変異型N-アセチルグルタミン酸シンターゼをコードする遺伝子を用いると好適である(EP1170361A)。
coli 237株(VKPM B-7925;US2002-058315A1)、変異型N-アセチルグルタミン酸シン
ターゼをコードするargA遺伝子が導入されたその誘導株(ロシア特許出願第2001112869号, EP1170361A1)、237株由来の酢酸資化能が向上した株であるE. coli 382株(VKPM B-7926;EP1170358A1)、及び382株にE. coli K-12株由来の野生型ilvA遺伝子が導入された株であるE. coli 382ilvA+株が挙げられる。E. coli 237株は、2000年4月10日にルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM)(FGUP GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia)にVKPM B-7925の受託番号で寄託され、2001年5月18日にブダペスト条約に基づく国際寄託に移管され
た。E. coli 382株は、2000年4月10日にルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM)(FGUP GosNII Genetika, 1 Dorozhny
proezd., 1 Moscow 117545, Russia)にVKPM B-7926の受託番号で寄託されている。
オニン、p-フルオロフェニルアラニン、D-アルギニン、アルギニンヒドロキサム酸、S-(2-アミノエチル)-システイン、α-メチルセリン、β-2-チエニルアラニン、またはスルファグアニジンに耐性を有するE. coli変異株(特開昭56-106598)が挙げられる。
ゼ活性を上昇させた株(US2005-0014236A)等のコリネ型細菌も挙げられる。
が挙げられる。L-アルギニン生産能を有するコリネ型細菌の具体例としては、下記のような菌株が挙げられる。
Corynebacterium glutamicum(Brevibacterium flavum)AJ11169(FERM BP-6892)
Corynebacterium glutamicum(Brevibacterium lactofermentum)AJ12092(FERM BP-6906)
Corynebacterium glutamicum(Brevibacterium flavum)AJ11336(FERM BP-6893)
Corynebacterium glutamicum(Brevibacterium flavum)AJ11345(FERM BP-6894)
Corynebacterium glutamicum(Brevibacterium lactofermentum)AJ12430(FERM BP-2228)
L-シトルリンおよびL-オルニチンは、L-アルギニン生合成経路における中間体である。よって、L-シトルリンおよび/またはL-オルニチンの生産能を付与又は増強するための方法としては、例えば、L-アルギニン生合成系酵素から選択される1またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、L-シトルリンについて、N-アセチルグルタミン酸シンターゼ(argA)、N-アセチルグルタミン酸キナーゼ(argB)、N-アセチルグルタミルリン酸レダクターゼ(argC)、アセチルオルニチントランスアミナーゼ(argD)、アセチルオルニチンデアセチラーゼ(argE)、オルニチンカルバモイルトランスフェラーゼ(argF, argI)、オルニチンアセチルトランスフェラーゼ(argJ)、カルバモイルリン酸シンターゼ(carAB)が挙げられる。また、そのような酵素としては、特に制限されないが
、L-オルニチンについて、N-アセチルグルタミン酸シンターゼ(argA)、N-アセチルグルタミン酸キナーゼ(argB)、N-アセチルグルタミルリン酸レダクターゼ(argC)、アセチルオルニチントランスアミナーゼ(argD)、アセチルオルニチンデアセチラーゼ(argE)、オルニチンアセチルトランスフェラーゼ(argJ)が挙げられる。
株(VKPM B-7926)等)から、argG遺伝子にコードされるアルギニノコハク酸シンターゼ
の活性を低下させることにより容易に得ることができる。また、L-オルニチン生産菌は、例えば、任意のL-アルギニン生産菌(E. coli 382株(VKPM B-7926)等)から、argF及びargI両遺伝子によりコードされるオルニチンカルバモイルトランスフェラーゼの活性を低下させることにより容易に得ることができる。
グルタル酸シンターゼの活性が増大し、且つフェレドキシンNADP+レダクターゼ、ピルビ
ン酸シンターゼ、及び/又はα-ケトグルタル酸デヒドロゲナーゼの活性がさらに改変されたE. coli株(EP2133417A1)等のエシェリヒア属に属する株が挙げられる。
L-ヒスチジン生産能を付与又は増強するための方法としては、例えば、L-ヒスチジン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ATPホスホリボシルトランスフェラーゼ(hisG)、ホスホリボシル-AMPサイクロヒドロラーゼ(hisI)、ホスホリボシル-ATPピロホスホヒドロラーゼ(hisI)、ホスホリボシルフォルミミノ-5-アミノイミダゾールカルボキサミドリボタイドイソメラーゼ(hisA)、アミドトランスフェラーゼ(hisH)、ヒスチジノールフォスフェイトアミノトランスフェラーゼ(hisC)、ヒスチジノールフォスファターゼ(hisB)、ヒスチジノールデヒドロゲナーゼ(hisD)が挙げられる。
coli 24株(VKPM B-5945;RU2003677)、E. coli NRRL B-12116~B-12121(米国特許第4,388,405号)、E. coli H-9342(FERM BP-6675)及びH-9343(FERM BP-6676)(米国特許第6,344,347号)、E. coli H-9341(FERM BP-6674;EP1085087)、E. coli AI80/pFM201
(米国特許第6,258,554号)、L-ヒスチジン生合成系酵素をコードするDNAを保持するベクターを導入したE. coli FERM P-5038及びFERM P-5048(特開昭56-005099号)、アミノ
酸輸送の遺伝子を導入したE. coli株(EP1016710A)、スルファグアニジン、DL-1,
2,4-トリアゾール-3-アラニン、及びストレプトマイシンに対する耐性を付与したE. coli 80株(VKPM B-7270;ロシア特許第2119536号)等のエシェリヒア属に属する株が挙げられる。
L-システイン生産能を付与又は増強するための方法としては、例えば、L-システイン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、セリンアセチルトランスフェラーゼ(cysE)や3-ホスホグリセリン酸デヒドロゲナーゼ(serA)が挙げられる。セリンアセチルトランスフェラーゼ活性は、例えば、システインによるフィードバック阻害に耐性の変異型セリンアセチルトランスフェラーゼをコードする変異型cysE遺伝子を細菌に導入することにより増強できる。変異型セリンアセチルトランスフェラーゼは、例えば、特開平11-155571やUS2005-0112731Aに開示されている。また、3-ホスホグリセリン酸デヒドロゲナーゼ活性は、例えば、セリンによるフィードバック阻害に耐性の変異型3-ホスホグリセリン酸デヒドロゲナーゼをコードする変異型serA遺伝子を細菌に導入することにより増強できる。変異型3-ホスホグリセリン酸デヒドロゲナーゼは、例えば、米国特許第6,180,373号に開示されている。
遺伝子を有するE. coli W3110(米国特許第5,972,663号)、システインデスルフヒドラーゼ活性が低下したE. coli株(特開平11-155571)、cysB遺伝子によりコードされる正のシステインレギュロンの転写制御因子の活性が上昇したE. coli W3110(WO01/27307A1)が
挙げられる。
L-セリン生産能を付与又は増強するための方法としては、例えば、L-セリン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる(特開平11-253187)。そのような酵素としては、特に制限されないが
、3-ホスホグリセリン酸デヒドロゲナーゼ(serA)、ホスホセリントランスアミナーゼ(serC)、ホスホセリンホスファターゼ(serB)が挙げられる(特開平11-253187)。3
-ホスホグリセリン酸デヒドロゲナーゼ活性は、例えば、セリンによるフィードバック阻害に耐性の変異型3-ホスホグリセリン酸デヒドロゲナーゼをコードする変異型serA遺伝子を細菌に導入することにより増強できる。変異型3-ホスホグリセリン酸デヒドロゲナーゼは、例えば、米国特許第6,180,373号に開示されている。
的には、例えば、アザセリンに耐性を示し、かつL-セリン分解能を欠失したCorynebacterium glutamicum(Brevibacterium flavum)AJ13324(FERM P-16128)や、β-(2-チエニル)-DL-アラニンに耐性を示し、かつL-セリンの分解能を欠失したCorynebacterium glutamicum(Brevibacterium flavum)AJ13325(FERM P-16129)が挙げられる(特開平10-248588)。
L-メチオニン生産菌又はそれを誘導するための親株としては、L-スレオニン要求株や、ノルロイシンに耐性を有する変異株が挙げられる(特開2000-139471)。また、L-
メチオニン生産菌又はそれを誘導するための親株としては、L-メチオニンによるフィードバック阻害に対して耐性をもつ変異型ホモセリントランスサクシニラーゼを保持する株も挙げられる(特開2000-139471、US2009-0029424A)。なお、L-メチオニンはL-システインを中間体として生合成されるため、L-システインの生産能の向上によりL-メチオニンの生産能も向上させることができる(特開2000-139471、US2008-0311632A)。
coli AJ11539(NRRL B-12399)、E. coli AJ11540(NRRL B-12400)、E. coli AJ11541
(NRRL B-12401)、E. coli AJ11542(NRRL B-12402)(英国特許第2075055号)、L-メチオニンのアナログであるノルロイシン耐性を有するE. coli 218株(VKPM B-8125;ロシア特許第2209248号)や73株(VKPM B-8126;ロシア特許第2215782号)、E. coli AJ13425(FERM P-16808;特開2000-139471)が挙げられる。AJ13425株は、メチオニンリプレッサーを欠損し、細胞内のS-アデノシルメチオニンシンセターゼ活性が弱化し、細胞内のホモセリントランスサクシニラーゼ活性、シスタチオニンγ-シンターゼ活性、及びアスパルトキナーゼ-ホモセリンデヒドロゲナーゼII活性が増強された、E. coli W3110由来の
L-スレオニン要求株である。
L-ロイシン生産能を付与又は増強するための方法としては、例えば、L-ロイシン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、leuABCDオペロ
ンの遺伝子にコードされる酵素が挙げられる。また、酵素活性の増強には、例えば、L-ロイシンによるフィードバック阻害が解除されたイソプロピルマレートシンターゼをコードする変異leuA遺伝子(米国特許第6,403,342号)が好適に利用できる。
2-チエニルアラニン、3-ヒドロキシロイシン、4-アザロイシン、5,5,5-トリフルオロロイシン等のロイシンアナログに耐性のE. coli株(特公昭62-34397及び特開平8-70879)、WO96/06926に記載された遺伝子工学的方法で得られたE. coli株、E. coli H-9068(特開平8-70879)等のエシェリヒア属に属する株が挙げられる。
L-イソロイシン生産能を付与又は増強するための方法としては、例えば、L-イソロイシン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、スレオ
ニンデアミナーゼやアセトヒドロキシ酸シンターゼが挙げられる(特開平2-458, EP0356739A, 米国特許第5,998,178号)。
リジン生産菌とのプロトプラスト融合によりL-イソロイシン生産能を付与したコリネ型細菌(特開昭62-74293)、ホモセリンデヒドロゲナーゼを強化したコリネ型細菌(特開昭62-91193)、スレオニンハイドロキサメート耐性株(特開昭62-195293)、α-ケトマロン耐性株(特開昭61-15695)、メチルリジン耐性株(特開昭61-15696)、Corynebacterium glutamicum(Brevibacterium flavum)AJ12149(FERM BP-759;米国特許第4,656,135号)が挙げられる。
L-バリン生産能を付与又は増強するための方法としては、例えば、L-バリン生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。そのような酵素としては、特に制限されないが、ilvGMEDAオペロンやilvBNCオペロンの遺伝子にコードされる酵素が挙げられる。ilvBNはアセトヒドロキシ酸
シンターゼを、ilvCはイソメロリダクターゼ(WO00/50624)を、それぞれコードする。なお、ilvGMEDAオペロンおよびilvBNCオペロンは、L-バリン、L-イソロイシン、および/またはL-ロイシンによる発現抑制(アテニュエーション)を受ける。よって、酵素活性の増強のためには、アテニュエーションに必要な領域を除去または改変し、生成するL-バリンによる発現抑制を解除するのが好ましい。また、ilvA遺伝子がコードするスレオニンデアミナーゼは、L-イソロイシン生合成系の律速段階であるL-スレオニンから2-ケト酪酸への脱アミノ化反応を触媒する酵素である。よって、L-バリン生産のためには、ilvA遺伝子が破壊等され、スレオニンデアミナーゼ活性が減少しているのが好ましい。
シンテターゼに変異を有する株(米国特許第5,658,766号)も挙げられる。そのような株
としては、例えば、イソロイシンtRNAシンテターゼをコードするileS遺伝子に変異を有するE. coli VL1970が挙げられる。E. coli VL1970は、1988年6月24日、ルシアン・ナショ
ナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM)(FGUP
GosNII Genetika, 1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号VKPM
B-4411で寄託されている。また、L-バリン生産菌又はそれを誘導するための親株としては、生育にリポ酸を要求する、および/または、H+-ATPaseを欠失している変異株(WO96/06926)も挙げられる。
リネ型細菌株(FERM P-1763、FERM P-1764)(特公平06-065314)、酢酸を唯一の炭素源
とする培地でL-バリン耐性を示し、且つグルコースを唯一の炭素源とする培地でピルビン酸アナログ(フルオロピルビン酸等)に感受性を有するコリネ型細菌株(FERM BP-3006、FERM BP-3007)(特許3006929号)が挙げられる。
L-アラニン生産菌又はそれを誘導するための親株としては、H+-ATPaseを欠失してい
るコリネ型細菌(Appl Microbiol Biotechnol. 2001 Nov;57(4):534-40)やアスパラギン酸β-デカルボキシラーゼ活性が増強されたコリネ型細菌(特開平07-163383)が挙げら
れる。
L-トリプトファン生産能、L-フェニルアラニン生産能、および/またはL-チロシン生産能を付与又は増強するための方法としては、例えば、L-トリプトファン、L-フェニルアラニン、および/またはL-チロシンの生合成系酵素から選択される1種またはそれ以上の酵素の活性が増大するように細菌を改変する方法が挙げられる。
チロシンリプレッサー(tyrR)によって制御されており、tyrR遺伝子を欠損させることによって、これらの酵素の活性を増強してもよい(EP763127B)。
ロゲナーゼ(serA)が挙げられる。例えば、トリプトファンオペロンを含むDNAを導入することにより、L-トリプトファン生産能を付与又は増強できる。トリプトファンシンターゼは、それぞれtrpA及びtrpB遺伝子によりコードされるα及びβサブユニットからなる。アントラニル酸シンターゼはL-トリプトファンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。ホスホグリセリン酸デヒドロゲナーゼはL-セリンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。さらに、マレートシンターゼ(aceB)、イソクエン酸リアーゼ(aceA)、およびイソクエン酸デヒドロゲナーゼキナーゼ/フォスファターゼ(aceK)からなるオペロン(aceオペロン)
の発現を増大させることによりL-トリプトファン生産能を付与又は増強してもよい(WO2005/103275)。
ゼ及びプレフェン酸デヒドラターゼが挙げられる。コリスミ酸ムターゼ及びプレフェン酸デヒドラターゼは、2機能酵素としてpheA遺伝子によってコードされている。コリスミ酸ムターゼ-プレフェン酸デヒドラターゼはL-フェニルアラニンによるフィードバック阻害を受けるので、同酵素の活性を増強するには、フィードバック阻害を解除する変異を導入した同酵素をコードする遺伝子を利用してもよい。
伝子を保持するE. coli JP4735/pMU3028(DSM10122)及びJP6015/pMU91(DSM10123)(米国特許第5,756,345号)、トリプトファンによるフィードバック阻害を受けないアントラ
ニル酸シンターゼをコードするtrpEアレルを有するE. coli SV164、セリンによるフィー
ドバック阻害を受けないホスホグリセリン酸デヒドロゲナーゼをコードするserAアレル及びトリプトファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを有するE. coli SV164 (pGH5)(米国特許第6,180,373号)、トリプト
ファンによるフィードバック阻害を受けないアントラニル酸シンターゼをコードするtrpEアレルを含むトリプトファンオペロンが導入された株(特開昭57-71397, 特開昭62-244382, 米国特許第4,371,614号)、トリプトファナーゼが欠損したE. coli AGX17 (pGX44)(NRRL B-12263)及びAGX6(pGX50)aroP(NRRL B-12264)(米国特許第4,371,614号)、ホス
ホエノールピルビン酸生産能が増大したE. coli AGX17/pGX50,pACKG4-pps(WO9708333,
米国特許第6,319,696号)、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活
性が増大したエシェリヒア属に属する株(US2003-0148473A1及びUS2003-0157667A1)が挙げられる。
ミ酸キナーゼをコードする遺伝子が導入された株(特許第1994749号)が挙げられる。
バック阻害が解除されたコリスミ酸ムターゼ-プレフェン酸デヒドラターゼをコードする変異型pheA34遺伝子を保持するE. coli HW1089(ATCC 55371;米国特許第5,354,672号)
、E. coli MWEC101-b(KR8903681)、E. coli NRRL B-12141、NRRL B-12145、NRRL B-12146、NRRL B-12147(米国特許第4,407,952号)が挙げられる。また、L-フェニルアラニ
ン生産菌又はそれを誘導するための親株として、具体的には、例えば、フィードバック阻害が解除されたコリスミ酸ムターゼ-プレフェン酸デヒドラターゼをコードする遺伝子を保持するE. coli K-12 <W3110 (tyrA)/pPHAB>(FERM BP-3566)、E. coli K-12 <W3110 (tyrA)/pPHAD>(FERM BP-12659)、E. coli K-12 <W3110 (tyrA)/pPHATerm>(FERM BP-12662)、E. coli K-12 AJ 12604 <W3110 (tyrA)/pBR-aroG4, pACMAB>(FERM BP-3579)も挙げられる(EP488424B1)。また、L-フェニルアラニン生産菌又はそれを誘導するための親株として、具体的には、例えば、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属する株も挙げられる(US2003-0148473A,
US2003-0157667A, WO03/044192)。
)、チロシン要求性株(特開平05-049489)が挙げられる。
子(pyc;WO99/18228, EP1092776A)、ホスホグルコムターゼ遺伝子(pgm;WO03/04598)、フルクトース二リン酸アルドラーゼ遺伝子(pfkB, fbp;WO03/04664)、トランスアル
ドラーゼ遺伝子(talB;WO03/008611)、フマラーゼ遺伝子(fum;WO01/02545)、non-PTSスクロース取り込み遺伝子(csc;EP1149911A)、スクロース資化性遺伝子(scrABオペ
ロン;米国特許第7,179,623号)が挙げられる。
変されていてよい。同方法は、特に、L-グルタミン酸等のグルタミン酸系L-アミノ酸
の生産能を付与又は増強するために有効であり得る。ホスホケトラーゼとしては、D-キシルロース-5-リン酸-ホスホケトラーゼやフルクトース-6-リン酸ホスホケトラーゼが挙げられる。D-キシルロース-5-リン酸-ホスホケトラーゼ活性及びフルクトース-6-リン酸ホスホケトラーゼ活性はいずれか一方を増強してもよいし、両方を増強してもよい。
ケトラーゼとしては、アセトバクター属、ビフィドバクテリウム属、ラクトバチルス属、チオバチルス属、ストレプトコッカス属、メチロコッカス属、ブチリビブリオ属、またはフィブロバクター属に属する細菌や、カンジダ属、ロドトルラ属、ロドスポリジウム属、ピキア属、ヤロウイア属、ハンセヌラ属、クルイベロミセス属、サッカロミセス属、トリコスポロン属、またはウィンゲア属に属する酵母のD-キシルロース-5-リン酸ホスホケトラーゼが挙げられる。D-キシルロース-5-リン酸ホスホケトラーゼおよびそれをコードする遺伝子の具体例は、WO2006/016705に開示されている。
ーゼ遺伝子(xfp遺伝子)の塩基配列、及び同遺伝子がコードするホスホケトラーゼ(Xfpタンパク質)のアミノ酸配列を、それぞれ配列番号13および14に示す。
り込み担体およびフルクトキナーゼ、並びにそれらをコードする遺伝子の保存的バリアントに関する記載を準用できる。
本発明の細菌は、非PTSフルクトース取り込み担体の活性およびフルクトキナーゼの活
性が増大するように改変されている。本発明の細菌は、L-アミノ酸生産能を有する細菌を、非PTSフルクトース取り込み担体の活性およびフルクトキナーゼの活性が増大するよ
うに改変することにより取得できる。また、本発明の細菌は、非PTSフルクトース取り込
み担体の活性およびフルクトキナーゼの活性が増大するように細菌を改変した後に、L-アミノ酸生産能を付与または増強することによっても取得できる。なお、本発明の細菌は、非PTSフルクトース取り込み担体の活性およびフルクトキナーゼの活性が増大するよう
に改変されたことにより、L-アミノ酸生産能を獲得したものであってもよい。本発明の細菌は、非PTSフルクトース取り込み担体の活性およびフルクトキナーゼの活性が増大す
るように改変されていることに加えて、例えば、上記のようなL-アミノ酸生産菌が有する性質を適宜有していてよい。例えば、本発明の細菌は、ホスホケトラーゼの活性が増大するように改変されていてよい。例えば、特に、Pantoea属細菌について、非PTSフルクトース取り込み担体の活性およびフルクトキナーゼの活性の増強と、ホスホケトラーゼの活性の増強(例えば、xfp遺伝子の導入)とを組み合わせることにより、L-グルタミン酸
生産を相乗的に向上させることができる。本発明の細菌を構築するための改変は、任意の順番で行うことができる。
に細菌を改変することによって、細菌のL-アミノ酸生産能を向上させることができ、すなわち同細菌によるL-アミノ酸生産を増大させることができる。特に、非PTSフルクト
ース取り込み担体の活性およびフルクトキナーゼの活性が増大するように細菌を改変することによって、フルクトースを炭素源として用いる条件における細菌のL-アミノ酸生産能を向上させることができ、すなわち同細菌によるL-アミノ酸生産を増大させることができる。
ードする遺伝子について説明する。
込むものをいう。例えば、フルクトースは、PTSによりフルクトース-1-リン酸として
取り込まれる。すなわち、「非PTSフルクトース取り込み活性」とは、具体的には、フル
クトースをリン酸化せずに細胞外から細胞内に取り込む活性であってよく、より具体的には、フルクトースの1位をリン酸化せずに細胞外から細胞内に取り込む活性であってよい。また、非PTSフルクトース取り込み担体をコードする遺伝子を「非PTSフルクトース取り込み担体遺伝子」ともいう。
子にコードされるタンパク質(非PTSフルクトース取り込み担体)を、FucPタンパク質と
もいう。FucPタンパク質は、フコース取り込み担体であるL-fucose permeaseとして知ら
れているが、フルクトース取り込み活性も有する。非PTSフルクトース取り込み担体の活
性は、例えば、非PTSフルクトース取り込み担体遺伝子の発現を増強することにより、増
強することができる。すなわち、「非PTSフルクトース取り込み担体の活性が増強される
」とは、例えば、非PTSフルクトース取り込み担体遺伝子の発現が増強されることを意味
してもよい。「非PTSフルクトース取り込み担体の活性が増強される」とは、具体的には
、例えば、fucP遺伝子の発現が増強されることを意味してもよい。
クトキナーゼ活性」とは、フルクトースの6位をリン酸化してフルクトース-6-リン酸を生成する反応を触媒する活性をいう(EC 2.7.1.4)。フルクトキナーゼによるフルクトースのリン酸化には、ATP等のリン酸基供与体を利用できる。また、フルクトキナーゼをコードする遺伝子を「フルクトキナーゼ遺伝子」ともいう。
、scrK遺伝子、sacK遺伝子、またはcscK遺伝子等とも呼ばれる場合がある。frk遺伝子に
コードされるタンパク質(フルクトキナーゼ)を、Frkタンパク質ともいう。フルクトキ
ナーゼの活性は、例えば、フルクトキナーゼ遺伝子の発現を増強することにより、増強することができる。すなわち、「フルクトキナーゼの活性が増強される」とは、例えば、フルクトキナーゼ遺伝子の発現が増強されることを意味してもよい。「フルクトキナーゼの活性が増強される」とは、具体的には、例えば、frk遺伝子の発現が増強されることを意
味してもよい。
科に属する細菌、コリネ型細菌、乳酸菌等の各種生物の遺伝子が挙げられる。各種生物由来の非PTSフルクトース取り込み担体遺伝子やフルクトキナーゼ遺伝子の塩基配列および
それらにコードされる非PTSフルクトース取り込み担体やフルクトキナーゼのアミノ酸配
列は、例えば、NCBI等の公開データベースから取得できる。fucP遺伝子として、具体的には、例えば、Corynebacterium ammoniagenesのfucP遺伝子やPantoea ananatisのfucP遺伝子が挙げられる。C. ammoniagenes ATCC 6872のfucP遺伝子の塩基配列、及び同遺伝
子がコードするタンパク質のアミノ酸配列を、それぞれ配列番号26および27に示す。P. ananatis AJ13355のfucP遺伝子の塩基配列、及び同遺伝子がコードするタンパク質の
アミノ酸配列を、それぞれ配列番号28および29に示す。frk遺伝子として、具体的に
は、例えば、Bifidobacterium longumのfrk遺伝子やPantoea ananatisのfrk(mak)遺伝
子およびfrk(scrK)遺伝子が挙げられる。B. longum JCM1217のfrk遺伝子の塩基配列、
及び同遺伝子がコードするタンパク質のアミノ酸配列を、それぞれ配列番号30および31に示す。P. ananatis AJ13355のfrk(mak)遺伝子の塩基配列、及び同遺伝子がコード
するタンパク質のアミノ酸配列を、それぞれ配列番号32および33に示す。P. ananatis AJ13355のfrk(scrK)遺伝子の塩基配列、及び同遺伝子がコードするタンパク質のアミノ酸配列を、それぞれ配列番号34および35に示す。すなわち、非PTSフルクトース取
り込み担体遺伝子は、例えば、上記例示した非PTSフルクトース取り込み担体遺伝子の塩
基配列(例えば配列番号26または28に示す塩基配列)を有する遺伝子であってよい。また、非PTSフルクトース取り込み担体は、例えば、上記例示した非PTSフルクトース取り込み担体のアミノ酸配列(例えば配列番号27または29に示すアミノ酸配列)を有するタンパク質であってよい。また、フルクトキナーゼ遺伝子は、例えば、上記例示したフルクトキナーゼ遺伝子の塩基配列(例えば配列番号30、32、または34に示す塩基配列)を有する遺伝子であってよい。また、フルクトキナーゼは、例えば、上記例示したフルクトキナーゼのアミノ酸配列(例えば配列番号31、33、または35に示すアミノ酸配列)を有するタンパク質であってよい。なお、「(アミノ酸または塩基)配列を有する」という表現は、当該「(アミノ酸または塩基)配列を含む」場合および当該「(アミノ酸または塩基)配列からなる」場合を包含する。
した非PTSフルクトース取り込み担体遺伝子(例えば配列番号26または28に示す塩基
配列を有する遺伝子)のバリアントであってもよい。同様に、非PTSフルクトース取り込
み担体は、元の機能が維持されている限り、上記例示した非PTSフルクトース取り込み担
体(例えば配列番号27または29に示すアミノ酸配列を有するタンパク質)のバリアントであってもよい。また、フルクトキナーゼ遺伝子は、元の機能が維持されている限り、上記例示したフルクトキナーゼ遺伝子(例えば配列番号30、32、または34に示す塩
基配列を有する遺伝子)のバリアントであってもよい。同様に、フルクトキナーゼは、元の機能が維持されている限り、上記例示したフルクトキナーゼ(例えば配列番号31、33、または35に示すアミノ酸配列を有するタンパク質)のバリアントであってもよい。なお、そのような元の機能が維持されたバリアントを「保存的バリアント」という場合がある。「fucP遺伝子」および「frk遺伝子」という用語は、それぞれ、上記例示したfucP
遺伝子およびfrk遺伝子に加えて、それらの保存的バリアントを包含するものとする。同
様に、「FucPタンパク質」および「Frkタンパク質」という用語は、それぞれ、上記例示
したFucPタンパク質およびFrkタンパク質に加えて、それらの保存的バリアントを包含す
るものとする。保存的バリアントとしては、例えば、上記例示した非PTSフルクトース取
り込み担体遺伝子やフルクトキナーゼ遺伝子および非PTSフルクトース取り込み担体やフ
ルクトキナーゼのホモログや人為的な改変体が挙げられる。
ス取り込み担体遺伝子についての「元の機能が維持されている」とは、遺伝子のバリアントが非PTSフルクトース取り込み活性を有するタンパク質をコードすることをいう。また
、非PTSフルクトース取り込み担体についての「元の機能が維持されている」とは、タン
パク質のバリアントが非PTSフルクトース取り込み活性を有することをいう。また、フル
クトキナーゼ遺伝子についての「元の機能が維持されている」とは、遺伝子のバリアントがフルクトキナーゼ活性を有するタンパク質をコードすることをいう。また、フルクトキナーゼについての「元の機能が維持されている」とは、タンパク質のバリアントがフルクトキナーゼ活性を有することをいう。
クトースとインキュベートし、同タンパク質依存的な菌体内へのフルクトースの取り込みを測定することにより、測定できる。
たは非PTSフルクトース取り込み担体もしくはフルクトキナーゼのホモログは、例えば、
上記例示した非PTSフルクトース取り込み担体遺伝子もしくはフルクトキナーゼ遺伝子の
塩基配列または上記例示した非PTSフルクトース取り込み担体もしくはフルクトキナーゼ
のアミノ酸配列を問い合わせ配列として用いたBLAST検索やFASTA検索によって公開データベースから容易に取得することができる。また、非PTSフルクトース取り込み担体遺伝子
またはフルクトキナーゼ遺伝子のホモログは、例えば、各種生物の染色体を鋳型にして、これら公知の非PTSフルクトース取り込み担体遺伝子またはフルクトキナーゼ遺伝子の塩
基配列に基づいて作製したオリゴヌクレオチドをプライマーとして用いたPCRにより取得
することができる。
維持されている限り、上記アミノ酸配列(例えば、非PTSフルクトース取り込み担体につ
いて配列番号27または29に示すアミノ酸配列、フルクトキナーゼについて配列番号31、33、または35に示すアミノ酸配列)において、1若しくは数個の位置での1又は
数個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有するタンパク質をコードする遺伝子であってもよい。例えば、コードされるタンパク質は、そのN末端および/またはC末端が、延長または短縮されていてもよい。なお上記「1又は数個」とは、アミノ酸残基のタンパク質の立体構造における位置や種類によっても異なるが、具体的には、例えば、1~50個、1~40個、1~30個、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1~3個を意味する。
性アミノ酸である場合には、Asp、Glu間で、ヒドロキシル基を持つアミノ酸である場合には、Ser、Thr間でお互いに置換する変異である。保存的置換とみなされる置換としては、具体的には、AlaからSer又はThrへの置換、ArgからGln、His又はLysへの置換、AsnからGlu、Gln、Lys、His又はAspへの置換、AspからAsn、Glu又はGlnへの置換、CysからSer又はAlaへの置換、GlnからAsn、Glu、Lys、His、Asp又はArgへの置換、GluからGly、Asn、Gln
、Lys又はAspへの置換、GlyからProへの置換、HisからAsn、Lys、Gln、Arg又はTyrへの置換、IleからLeu、Met、Val又はPheへの置換、LeuからIle、Met、Val又はPheへの置換、LysからAsn、Glu、Gln、His又はArgへの置換、MetからIle、Leu、Val又はPheへの置換、PheからTrp、Tyr、Met、Ile又はLeuへの置換、SerからThr又はAlaへの置換、ThrからSer又はAlaへの置換、TrpからPhe又はTyrへの置換、TyrからHis、Phe又はTrpへの置換、及び、ValからMet、Ile又はLeuへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加、または逆位等には、遺伝子が由来する生物の個体差、種の違いに基づく場合などの天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。
機能が維持されている限り、上記アミノ酸配列全体に対して、例えば、50%以上、65%以上、80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の相同性を有するアミノ酸配列を有するタンパク質をコードする遺
伝子であってもよい。尚、本明細書において、「相同性」(homology)は、「同一性」(identity)を意味する。
機能が維持されている限り、上記塩基配列(例えば、非PTSフルクトース取り込み担体遺
伝子について配列番号26または28に示す塩基配列、フルクトキナーゼ遺伝子について配列番号30、32、または34に示す塩基配列)から調製され得るプローブ、例えば上記塩基配列の全体または一部に対する相補配列、とストリンジェントな条件下でハイブリダイズするDNAであってもよい。「ストリンジェントな条件」とは、いわゆる特異的なハ
イブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。一例を示せば、相同性が高いDNA同士、例えば、50%以上、65%以上、80%以上、好ましくは90%以上、
より好ましくは95%以上、さらに好ましくは97%以上、特に好ましくは99%以上の相同性を
有するDNA同士がハイブリダイズし、それより相同性が低いDNA同士がハイブリダイズしない条件、あるいは通常のサザンハイブリダイゼーションの洗いの条件である60℃、1×SSC、0.1% SDS、好ましくは60℃、0.1×SSC、0.1% SDS、より好ましくは68℃、0.1×SSC、0.1% SDSに相当する塩濃度および温度で、1回、好ましくは2~3回洗浄する条件を挙げることができる。
部であってもよい。そのようなプローブは、公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとし、上述の遺伝子を含むDNA断片を鋳型とするPCRによって作製することができる。例えば、プローブとしては、300 bp程度の長さのDNA断片を用いる
ことができる。プローブとして300 bp程度の長さのDNA断片を用いる場合には、ハイブリ
ダイゼーションの洗いの条件としては、50℃、2×SSC、0.1% SDSが挙げられる。
伝子またはフルクトキナーゼ遺伝子は、任意のコドンをそれと等価のコドンに置換したものであってもよい。すなわち、非PTSフルクトース取り込み担体遺伝子またはフルクトキ
ナーゼ遺伝子は、遺伝コードの縮重による上記例示した非PTSフルクトース取り込み担体
遺伝子またはフルクトキナーゼ遺伝子のバリアントであってもよい。例えば、非PTSフル
クトース取り込み担体遺伝子またはフルクトキナーゼ遺伝子は、使用する宿主のコドン使用頻度に応じて最適なコドンを有するように改変されてよい。
=100、ワード長=12にて行うことができる。対象のタンパク質と相同性があるアミノ酸
配列を得るために、具体的には、例えば、BLASTタンパク質検索を、BLASTXプログラム、
スコア=50、ワード長=3にて行うことができる。BLASTヌクレオチド検索やBLASTタンパ
ク質検索については、https://www.ncbi.nlm.nih.govを参照されたい。また、比較を目的
としてギャップを加えたアライメントを得るために、Gapped BLAST(BLAST 2.0)を利用
できる。また、PSI-BLAST(BLAST 2.0)を、配列間の離間した関係を検出する反復検索を行うのに利用できる。Gapped BLASTおよびPSI-BLASTについては、Altschul et al. (1997) Nucleic Acids Res. 25:3389を参照されたい。BLAST、Gapped BLAST、またはPSI-BLASTを利用する場合、例えば、各プログラム(例えば、ヌクレオチド配列に対してBLASTN、アミノ酸配列に対してBLASTX)の初期パラメーターが用いられ得る。アライメントは、手動にて行われてもよい。
以下に、非PTSフルクトース取り込み担体やフルクトキナーゼ等のタンパク質の活性を
増大させる手法について説明する。
菌の説明において例示した菌株も挙げられる。すなわち、一態様において、タンパク質の活性は、基準株(すなわち本発明の細菌が属する種の基準株)と比較して増大してよい。また、別の態様において、タンパク質の活性は、C. glutamicum ATCC 13032株と比較して増大してもよい。また、別の態様において、タンパク質の活性は、C. glutamicum 2256株(ATCC 13869)と比較して増大してもよい。また、別の態様において、タンパク質の活性は、E. coli K-12 MG1655株と比較して増大してもよい。なお、「タンパク質の活性が増
大する」ことを、「タンパク質の活性が増強される」ともいう。「タンパク質の活性が増大する」とは、より具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が増加していること、および/または、同タンパク質の分子当たりの機能が増大していることをいう。すなわち、「タンパク質の活性が増大する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)または翻訳量(タンパク質の量)を意味してもよい。また、「タンパク質の活性が増大する」とは、もともと標的のタンパク質の活性を有する菌株において同タンパク質の活性を増大させることだけでなく、もともと標的のタンパク質の活性が存在しない菌株に同タンパク質の活性を付与することを含む。また、結果としてタンパク質の活性が増大する限り、宿主が本来有する標的のタンパク質の活性を低下または消失させた上で、好適な標的のタンパク質の活性を付与してもよい。
もともと標的の遺伝子が発現している菌株において同遺伝子の発現量を上昇させることだけでなく、もともと標的の遺伝子が発現していない菌株において、同遺伝子を発現させることを含む。すなわち、「遺伝子の発現が上昇する」とは、例えば、標的の遺伝子を保持しない菌株に同遺伝子を導入し、同遺伝子を発現させることを含む。
ション(Red-driven integration)法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))等の直鎖状DNAを用いる方法、温度感受
性複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法、ファージを用いたtransduction法が挙げられる。遺伝子は、1コピーのみ導入されてもよく、2コピーまたはそれ以上導入されてもよい。例えば、染色体上に多数のコピーが存在する配列を標的として相同組み換えを行うことで、染色体へ遺伝子の多数のコピーを導入することができる。染色体上に多数のコピーが存在する配列としては、反復DNA配列(repetitive DNA)、
トランスポゾンの両端に存在するインバーテッド・リピートが挙げられる。また、目的物質の生産に不要な遺伝子等の染色体上の適当な配列を標的として相同組み換えを行ってもよい。また、遺伝子は、トランスポゾンやMini-Muを用いて染色体上にランダムに導入す
ることもできる(特開平2-109985号公報、US5,882,888、EP805867B1)。
、pTrc99A(ファルマシア社)、pPROK系ベクター(クロンテック社)、pKK233‐2(クロ
ンテック社)、pET系ベクター(ノバジェン社)、pQE系ベクター(キアゲン社)、pCold TF DNA(タカラバイオ社)、pACYC系ベクター、広宿主域ベクターRSF1010が挙げられる。コリネ型細菌で自律複製可能なベクターとして、具体的には、例えば、pHM1519(Agric. Biol. Chem., 48, 2901-2903(1984));pAM330(Agric. Biol. Chem., 48, 2901-2903(1984));これらを改良した薬剤耐性遺伝子を有するプラスミド;pCRY30(特開平3-210184
);pCRY21、pCRY2KE、pCRY2KX、pCRY31、pCRY3KE、およびpCRY3KX(特開平2-72876、米
国特許5,185,262号);pCRY2およびpCRY3(特開平1-191686);pAJ655、pAJ611、およびpAJ1844(特開昭58-192900);pCG1(特開昭57-134500);pCG2(特開昭58-35197);pCG4およびpCG11(特開昭57-183799);pVK7(特開平10-215883);pVK9(US2006-0141588)
;pVC7(特開平9-070291);pVS7(WO2013/069634)が挙げられる。
鋳型として、PCRにより取得することができる。また、導入される遺伝子は、例えば、同
遺伝子の塩基配列に基づいて全合成してもよい(Gene, 60(1), 115-127 (1987))。取得
した遺伝子は、そのまま、あるいは適宜改変して、利用することができる。すなわち、遺伝子を改変することにより、そのバリアントを取得することができる。遺伝子の改変は公知の手法により行うことができる。例えば、部位特異的変異法により、DNAの目的部位に
目的の変異を導入することができる。すなわち、例えば、部位特異的変異法により、コードされるタンパク質が特定の部位においてアミノ酸残基の置換、欠失、挿入または付加を含むように、遺伝子のコード領域を改変することができる。部位特異的変異法としては、PCRを用いる方法(Higuchi, R., 61, in PCR technology, Erlich, H. A. Eds., Stockton press (1989);Carter, P., Meth. in Enzymol., 154, 382 (1987))や、ファージを用
いる方法(Kramer,W. and Frits, H. J., Meth. in Enzymol., 154, 350 (1987);Kunkel, T. A. et al., Meth. in Enzymol., 154, 367 (1987))が挙げられる。あるいは、遺伝子のバリアントを全合成してもよい。
きる。
るpta、aceA、aceB、adh、amyEプロモーター、コリネ型細菌内で発現量が多い強力なプロモーターであるcspB、SOD、tuf(EF-Tu)プロモーター(Journal of Biotechnology 104 (2003) 311-323, Appl Environ Microbiol. 2005 Dec;71(12):8587-96.)、lacプロモー
ター、tacプロモーター、trcプロモーターが挙げられる。また、より強力なプロモーターとしては、各種レポーター遺伝子を用いることにより、在来のプロモーターの高活性型のものを取得してもよい。例えば、プロモーター領域内の-35、-10領域をコンセンサス配列に近づけることにより、プロモーターの活性を高めることができる(国際公開第00/18935号)。高活性型プロモーターとしては、各種tac様プロモーター(Katashkina JI et al. Russian Federation Patent application 2006134574)やpnlp8プロモーター(WO2010/027045)が挙げられる。プロモーターの強度の評価法および強力なプロモーターの例は、Goldsteinらの論文(Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev.,
1, 105-128 (1995))等に記載されている。
列(リボソーム結合部位(RBS)ともいう)をより強力なSD配列に置換することにより達成できる。「より強力なSD配列」とは、mRNAの翻訳が、もともと存在している野生型のSD配列よりも向上するSD配列を意味する。より強力なSD配列としては、例えば、ファージT7由来の遺伝子10のRBSが挙げられる(Olins P. O. et al, Gene,
1988, 73, 227-235)。さらに、RBSと開始コドンとの間のスペーサー領域、特に開始コドンのすぐ上流の配列(5'-UTR)における数個のヌクレオチドの置換、あるいは挿入、あるいは欠失がmRNAの安定性および翻訳効率に非常に影響を及ぼすことが知られており、これらを改変することによっても遺伝子の翻訳効率を向上させることができる。
されている。
メタンスルフォネート(EMS)、およびメチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。また、in vitroでDNAを直接ヒドロキシルアミンで処理し
、ランダム変異を誘発してもよい。比活性の増強は、単独で用いてもよく、上記のような遺伝子の発現を増強する手法と任意に組み合わせて用いてもよい。
で処理してDNAの透過性を増す方法(Mandel, M. and Higa, A.,J. Mol. Biol. 1970, 53,
159-162)や、バチルス・ズブチリスについて報告されているような、増殖段階の細胞からコンピテントセルを調製してDNAを導入する方法(Duncan, C. H., Wilson, G. A. and Young, F. E.., 1997. Gene 1: 153-167)を用いることができる。あるいは、バチルス・ズブチリス、放線菌類、及び酵母について知られているような、DNA受容菌の細胞を、組
換えDNAを容易に取り込むプロトプラストまたはスフェロプラストの状態にして組換えDNAをDNA受容菌に導入する方法(Chang, S. and Choen, S. N., 1979.Mol. Gen. Genet. 168: 111-115; Bibb, M. J., Ward, J. M. and Hopwood, O. A. 1978.Nature 274: 398-400;
Hinnen, A., Hicks, J. B. and Fink, G. R. 1978. Proc. Natl.Acad. Sci. USA 75: 1929-1933)も応用できる。あるいは、コリネ型細菌について報告されているような、電気
パルス法(特開平2-207791)を利用することもできる。
al., Molecular Cloning: A Laboratory Manual/Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (USA), 2001)。mRNAの量は、例えば、非改変株
の、1.5倍以上、2倍以上、または3倍以上に上昇してよい。
性およびフルクトキナーゼの活性の増強に加えて、任意のタンパク質、例えばL-アミノ酸生合成系酵素、の活性増強や、任意の遺伝子、例えばそれら任意のタンパク質をコードする遺伝子、の発現増強に利用できる。
以下に、タンパク質の活性を低下させる手法について説明する。
菌の説明において例示した菌株も挙げられる。すなわち、一態様において、タンパク質の活性は、基準株(すなわち本発明の細菌が属する種の基準株)と比較して低下してよい。また、別の態様において、タンパク質の活性は、C. glutamicum ATCC 13032株と比較して低下してもよい。また、別の態様において、タンパク質の活性は、C. glutamicum 2256株(ATCC 13869)と比較して低下してもよい。また、別の態様において、タンパク質の活性
は、E. coli K-12 MG1655株と比較して低下してもよい。なお、「タンパク質の活性が低
下する」ことには、同タンパク質の活性が完全に消失している場合も包含される。「タンパク質の活性が低下する」とは、より具体的には、非改変株と比較して、同タンパク質の細胞当たりの分子数が低下していること、および/または、同タンパク質の分子当たりの機能が低下していることを意味してよい。すなわち、「タンパク質の活性が低下する」という場合の「活性」とは、タンパク質の触媒活性に限られず、タンパク質をコードする遺伝子の転写量(mRNA量)または翻訳量(タンパク質の量)を意味してもよい。なお、「タンパク質の細胞当たりの分子数が低下している」ことには、同タンパク質が全く存在していない場合が含まれる。また、「タンパク質の分子当たりの機能が低下している」ことには、同タンパク質の分子当たりの機能が完全に消失している場合が含まれる。タンパク質の活性の低下の程度は、タンパク質の活性が非改変株と比較して低下していれば特に制限されない。タンパク質の活性は、例えば、非改変株の、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
遺伝子の発現が低下するような変異を導入することによっても達成できる。例えば、遺伝子のコード領域のコドンを、宿主においてより低頻度で利用される同義コドンに置き換えることによって、遺伝子の発現を低下させることができる。また、例えば、後述するような遺伝子の破壊により、遺伝子の発現自体が低下し得る。
、同遺伝子から分子当たりの機能(活性や性質)が低下又は消失したタンパク質が産生される場合が含まれる。
H., Gumport, R. I., Gardner, J. F. J. Bacteriol. 184: 5200-5203 (2002))とを組
み合わせた方法(WO2005/010175号参照)等の直鎖状DNAを用いる方法や、温度感受性
複製起点を含むプラスミドを用いる方法、接合伝達可能なプラスミドを用いる方法、宿主内で機能する複製起点を持たないスイサイドベクターを用いる方法などがある(米国特許第6303383号、特開平05-007491号)。
-ニトロ-N-ニトロソグアニジン(MNNG)、エチルメタンスルフォネート(EMS)、およびメチルメタンスルフォネート(MMS)等の変異剤による処理が挙げられる。
てタンパク質の活性が低下する限り、それら複数のサブユニットの全てを改変してもよく、一部のみを改変してもよい。すなわち、例えば、それらのサブユニットをコードする複数の遺伝子の全てを破壊等してもよく、一部のみを破壊等してもよい。また、タンパク質に複数のアイソザイムが存在する場合、結果としてタンパク質の活性が低下する限り、複数のアイソザイムの全ての活性を低下させてもよく、一部のみの活性を低下させてもよい。すなわち、例えば、それらのアイソザイムをコードする複数の遺伝子の全てを破壊等してもよく、一部のみを破壊等してもよい。
非改変株の、50%以下、20%以下、10%以下、5%以下、または0%に低下してよい。
本発明の方法は、本発明の細菌をフルクトースを含有する培地で培養し、該培地中および/または該細菌の菌体内にL-アミノ酸を蓄積すること、および前記培地および/または前記菌体より前記L-アミノ酸を採取すること、を含むL-アミノ酸の製造方法である。本発明においては、1種のL-アミノ酸が製造されてもよく、2種またはそれ以上のL-アミノ酸が製造されてもよい。
タミン類;アミノ酸類;核酸類;これらを含有するペプトン、カザミノ酸、酵母エキス、大豆タンパク質分解物等の有機成分が挙げられる。その他の各種有機成分や無機成分としては、1種の成分を用いてもよく、2種またはそれ以上の成分を組み合わせて用いてもよい。
れらの組み合わせの濃度で培地に含有されていてもよい。フルクトースは、初発培地、流加培地、またはその両方に、上記例示した濃度範囲で含有されていてよい。
1996. Biosci. Biotechnol. Biochem. 70:22-30)やHPLC(Lin, J. T. et al. 1998. J.
Chromatogr. A. 808: 43-49)により測定することができる。
調整することができる。培地のpHは、アンモニアガス、アンモニア水、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム等の各種アルカリ性または酸性物質を用いて調整することができる。培養温度は、例えば、20~40℃、好ましくは25℃~37℃であってよい。培養期間は、例えば、10時間~120時間であってよい。培養は、例えば、培地中の
炭素源が消費されるまで、あるいは本発明の細菌の活性がなくなるまで、継続してもよい。このような条件下で本発明の細菌を培養することにより、培地中および/または菌体内にL-アミノ酸が蓄積する。
~4.0、さらに好ましくはpH4.3~4.0、特に好ましくはpH4.0の条件が挙げられる(EP1078989A)。
が挙げられる。これらの手法は、単独で、あるいは適宜組み合わせて用いることができる。
al., Separation Science and Technology, 39(16), 3691-3710)、沈殿法、膜分離法(特開平9-164323、特開平9-173792)、晶析法(WO2008/078448、WO2008/078646)が挙げられる。これらの手法は、単独で、あるいは適宜組み合わせて用いることができる。なお、菌体内にL-アミノ酸が蓄積する場合には、例えば、菌体を超音波などにより破砕し、遠心分離によって菌体を除去して得られる上清から、イオン交換樹脂法などによってL-アミノ酸を回収することができる。回収されるL-アミノ酸は、フリー体、その塩、またはそれらの混合物であってよい。塩としては、例えば、硫酸塩、塩酸塩、炭酸塩、アンモニウム塩、ナトリウム塩、カリウム塩が挙げられる。L-グルタミン酸を製造する場合、回収されるL-グルタミン酸は、具体的には、例えば、フリー体のL-グルタミン酸、L-グルタミン酸ナトリウム(monosodium L-glutamate;MSG)、L-グルタミン酸アンモニウム(monoammonium L-glutamate)、またはそれらの混合物であってもよい。例えば、発酵液中のL-グルタミン酸アンモニウムを酸を加えて晶析させ、結晶に等モルの水酸化ナトリウムを添加することでL-グルタミン酸ナトリウム(MSG)が得られる。なお、晶析前後に活性炭を加えて脱色してもよい(グルタミン酸ナトリウムの工業晶析 日本海水学会誌 56巻 5号 川喜田哲哉参照)。L-グルタミン酸ナトリウム結晶は、例えば
、うま味調味料として用いることができる。L-グルタミン酸ナトリウム結晶は、同様にうま味を有するグアニル酸ナトリウムやイノシン酸ナトリウム等の核酸と混合して調味料として用いてもよい。
くは85%(w/w)以上、特に好ましくは95%(w/w)以上であってよい(JP1214636B, USP5,431,933, USP4,956,471, USP4,777,051, USP4,946,654, USP5,840,358, USP6,238,714, US2005/0025878)。
本実施例では、非PTSフルクトース取り込み担体遺伝子(fucP)およびフルクトキナー
ゼ遺伝子(frk)を導入したC. glutamicumのグルタミン酸生産株を用いてグルタミン酸生産を行い、fucP-frk遺伝子の発現増強がグルタミン酸生産に与える影響を評価した。
本実施例で使用した材料は以下の通りである。
pVK9(KmR;US2006-0141588)
pVK9-xfp(KmR;WO2006/016705)
pVK9-PmsrA-fucP-frk(KmR;本願)
pVS7(SpcR;WO2013/069634)
pVS7-xfp(SpcR;本願)
C. glutamicum 2256ΔsucAΔldhA yggB*(WO2014/185430)
C. glutamicum 2256ΔsucAΔldhA yggB*/pVK9/pVS7(本願)
C. glutamicum 2256ΔsucAΔldhA yggB*/pVK9-PmsrA-fucP-frk/pVS7(本願)
C. glutamicum 2256ΔsucAΔldhA yggB*/pVK9/pVS7-xfp(本願)
C. glutamicum 2256ΔsucAΔldhA yggB*/pVK9-PmsrA-fucP-frk/pVS7-xfp(本願)
C. glutamicum 2256株(ATCC 13869)のゲノムDNAを鋳型として、プライマー1と2を用
いてPCRを行い、C. glutamicum由来のmsrA遺伝子の上流配列(プロモーター領域を含む、369 bp)を含むDNA断片を増幅した。Corynebacterium ammoniagenes ATCC 6872のゲノムDNAを鋳型として、プライマー3と4を用いてPCRを行い、C. ammoniagenes由来のfucP遺伝子(GenBank: AMJ44784.1、1335 bp)を含むDNA断片を増幅した。Bifidobacterium longum JCM1217のゲノムDNAを鋳型として、プライマー5と6を用いてPCRを行い、B. longum由来のfrk遺伝子(GenBank: BAJ66931.1、897 bp)を含むDNA断片を増幅した。得られたDNA断片およびBamHIとPstIで切断したpVK9(US2006-0141588)を、Clontech In-fusion HD Cloning Kit(TaKaRa Inc.)を用いて連結し、fucP-frk遺伝子の発現プラスミドpVK9-PmsrA-fucP-frkを構築した。
た。
、fucP-frk遺伝子およびxfp遺伝子の発現増強株を構築した。他の使用菌株も適宜プラス
ミドを導入することにより構築した。2256ΔsucAΔldhA yggB*株は、C. glutamicum 2256株(ATCC 13869)から誘導されたグルタミン酸生産株であり、ldhA遺伝子とsucA遺伝子を欠損し、yggB遺伝子にIS変異(V419::IS)を有する。この変異型yggB遺伝子(V419::IS)の塩基配列、及び同遺伝子にコードされる変異型YggBタンパク質(V419::IS)のアミノ酸配列を、それぞれ配列番号11および12に示す。
構築した菌株を用いてグルタミン酸生産培養を行った。使用した培地の組成を表2に示す。
各菌株を、薬剤を添加したCM2Gプレートにて31.5℃で一晩培養した。菌体を1/6プレー
ト分かきとり、培地1を20 mL張り込んだ坂口フラスコに植菌し、30℃、120 rpmにて振盪
培養した。培養開始18時間後に培養液のサンプリングを行い、グルタミン酸濃度をバイオテックアナライザーAS-310(サクラエスアイ)を用いて測定した。
ミン酸蓄積のさらなる向上が確認された。従って、fucP-frk遺伝子はフルクトースをC源
とするグルタミン酸生産に有効な因子であると考察された。
各菌株を、薬剤を添加したCM2Gプレートにて31.5℃で一晩培養した。菌体を1/6プレー
ト分かきとり、培地2を20 mL張り込んだ坂口フラスコに植菌し、30℃、120 rpmにて振盪
培養した。培養開始18時間後に培養液のサンプリングを行い、菌体量(620 nmにおけるOD値、101倍希釈)およびグルタミン酸濃度を測定した。グルタミン酸濃度はバイオテック
アナライザーAS-310(サクラエスアイ)を用いて測定した。
ことで、菌体量当たりのグルタミン酸蓄積のさらなる向上が確認された。従って、fucP-frk遺伝子はグルコースおよびフルクトースをC源とするグルタミン酸生成に有効な因子で
あると考察された。
配列番号1~8:プライマー
配列番号9:Corynebacterium glutamicum 2256 (ATCC 13869)のyggB遺伝子の塩基配列
配列番号10:Corynebacterium glutamicum 2256 (ATCC 13869)のYggBタンパク質のアミノ酸配列
配列番号11:Corynebacterium glutamicum 2256 (ATCC 13869)の変異型yggB遺伝子(V419::IS)の塩基配列
配列番号12:Corynebacterium glutamicum 2256 (ATCC 13869)の変異型YggBタンパク質(V419::IS)のアミノ酸配列
配列番号13:Bifidobacterium longum JCM1217のxfp遺伝子の塩基配列
配列番号14:Bifidobacterium longum JCM1217のXfpタンパク質のアミノ酸配列
配列番号15~25:プライマー
配列番号26:Corynebacterium ammoniagenes ATCC 6872のfucP遺伝子の塩基配列
配列番号27:Corynebacterium ammoniagenes ATCC 6872のFucPタンパク質のアミノ酸配列
配列番号28:Pantoea ananatis AJ13355のfucP遺伝子の塩基配列
配列番号29:Pantoea ananatis AJ13355のFucPタンパク質のアミノ酸配列
配列番号30:Bifidobacterium longum JCM1217のfrk遺伝子の塩基配列
配列番号31:Bifidobacterium longum JCM1217のFrkタンパク質のアミノ酸配列
配列番号32:Pantoea ananatis AJ13355のfrk(mak)遺伝子の塩基配列
配列番号33:Pantoea ananatis AJ13355のFrk(Mak)タンパク質のアミノ酸配列
配列番号34:Pantoea ananatis AJ13355のfrk(scrK)遺伝子の塩基配列
配列番号35:Pantoea ananatis AJ13355のFrk(ScrK)タンパク質のアミノ酸配列
Claims (22)
- L-アミノ酸生産能を有する細菌をフルクトースを含有する培地で培養し、該培地中および/または該細菌の菌体内にL-アミノ酸を蓄積すること、および前記培地および/または前記菌体より前記L-アミノ酸を採取すること、を含むL-アミノ酸の製造法であって、
前記細菌が、非改変株と比較して、非PTSフルクトース取り込み担体の活性およびフルクトキナーゼの活性が増大するように改変されており、
前記非PTSフルクトース取り込み担体が、fucP遺伝子にコードされるタンパク質であり、
前記L-アミノ酸が、グルタミン酸系L-アミノ酸であり、
前記非PTSフルクトース取り込み担体をコードする遺伝子および前記フルクトキナーゼをコードする遺伝子の発現を上昇させることにより、前記非PTSフルクトース取り込み担体の活性およびフルクトキナーゼの活性が増大した、方法。 - 前記フルクトキナーゼが、frk遺伝子にコードされるタンパク質である、請求項1に記載の方法。
- 前記fucP遺伝子が、下記(a)、(b)、または(c)に記載のタンパク質をコードする遺伝子である、請求項1または2に記載の方法:
(a)配列番号27または29に示すアミノ酸配列を含むタンパク質;
(b)配列番号27または29に示すアミノ酸配列において、1~10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、非PTSフルクトース取り込み活性を有するタンパク質;
(c)配列番号27または29に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、非PTSフルクトース取り込み活性を有するタンパク質。 - 前記frk遺伝子が、下記(a)、(b)、または(c)に記載のタンパク質をコードする遺伝子である、請求項2または3に記載の方法:
(a)配列番号31、33、または35に示すアミノ酸配列を含むタンパク質;
(b)配列番号31、33、または35に示すアミノ酸配列において、1~10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、フ
ルクトキナーゼ活性を有するタンパク質;
(c)配列番号31、33、または35に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、フルクトキナーゼ活性を有するタンパク質。 - 前記遺伝子の発現が、該遺伝子のコピー数を高めること、および/または該遺伝子の発現調節配列を改変することによって上昇した、請求項1~4のいずれか一項に記載の方法。
- 前記細菌が、さらに、非改変株と比較して、ホスホケトラーゼの活性が増大するように改変されており、
前記ホスホケトラーゼをコードする遺伝子の発現が増大することにより、前記ホスホケトラーゼの活性が増大した、請求項1~5のいずれか一項に記載の方法。 - 前記ホスホケトラーゼが、D-キシルロース-5-リン酸ホスホケトラーゼおよび/またはフルクトース6-リン酸ホスホケトラーゼである、請求項6に記載の方法。
- 前記細菌が、コリネ型細菌または腸内細菌科に属する細菌である、請求項1~7のいずれか一項に記載の方法。
- 前記細菌が、コリネバクテリウム属細菌である、請求項1~8のいずれか一項に記載の方法。
- 前記細菌が、コリネバクテリウム・グルタミカムである、請求項9に記載の方法。
- 前記細菌が、パントエア属細菌またはエシェリヒア属細菌である、請求項1~8のいずれか一項に記載の方法。
- 前記細菌が、パントエア・アナナティスまたはエシェリヒア・コリである、請求項11に記載の方法。
- 前記グルタミン酸系L-アミノ酸が、L-グルタミン酸、L-グルタミン、L-プロリン、L-アルギニン、L-シトルリン、およびL-オルニチンから選択される1種またはそれ以上のL-アミノ酸である、請求項1~12のいずれか一項に記載の方法。
- 前記グルタミン酸系L-アミノ酸が、L-グルタミン酸である、請求項1~13のいずれか一項に記載の方法。
- 前記L-グルタミン酸が、L-グルタミン酸アンモニウムまたはL-グルタミン酸ナトリウムである、請求項13または14に記載の方法。
- 前記細菌が、さらに、非改変株と比較して、α-ケトグルタル酸デヒドロゲナーゼおよび/またはコハク酸デヒドロゲナーゼの活性が低下するように改変されている、請求項1~15のいずれか一項に記載の方法。
- 前記細菌が、コリネ型細菌であり、さらに、変異型yggB遺伝子を保持するように改変されている、請求項14~16のいずれか1項に記載の方法。
- 前記変異型yggB遺伝子が、コリネ型細菌のL-グルタミン酸生産能を向上させる変異を有するyggB遺伝子である、請求項17に記載の方法。
- 前記変異型yggB遺伝子が、下記(1)、(2)、または(3)に記載の変異を有するyggB遺伝子である、請求項17または18に記載の方法:
(1)野生型YggBタンパク質の419~533位のアミノ酸残基をコードする領域における変異;
(2)野生型YggBタンパク質の膜貫通領域をコードする領域における変異;
(3)それらの組み合わせ。 - 前記野生型YggBタンパク質が、下記(a)、(b)、または(c)に記載のタンパク質である、請求項19に記載の方法:
(a)配列番号10に示すアミノ酸配列を含むタンパク質;
(b)配列番号10に示すアミノ酸配列において、1~10個のアミノ酸残基の置換、欠失、挿入、および/または付加を含むアミノ酸配列を含み、且つ、コリネ型細菌において発現を上昇させた際にコリネ型細菌のL-グルタミン酸生産能を向上させる性質を有するタンパク質;
(c)配列番号10に示すアミノ酸配列に対して90%以上の同一性を有するアミノ酸配列を含み、且つ、コリネ型細菌において発現を上昇させた際にコリネ型細菌のL-グルタミン酸生産能を向上させる性質を有するタンパク質。 - 前記培地が、さらにフルクトース以外の炭素源を含有する、請求項1~20のいずれか一項に記載の方法。
- 前記炭素源が、グルコースである、請求項21に記載の方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017073937A JP7066977B2 (ja) | 2017-04-03 | 2017-04-03 | L-アミノ酸の製造法 |
BR102018005065-6A BR102018005065A2 (pt) | 2017-04-03 | 2018-03-14 | Método para produzir um l-aminoácido |
PE2018000458A PE20181138A1 (es) | 2017-04-03 | 2018-03-27 | Metodo para producir l-aminoacidos |
US15/937,336 US10745725B2 (en) | 2017-04-03 | 2018-03-27 | Method for producing l-amino acid by increasing fructose uptake |
EP18164967.4A EP3385389B1 (en) | 2017-04-03 | 2018-03-29 | Method for producing l-amino acids from fructose |
CN201810281571.5A CN108690856B (zh) | 2017-04-03 | 2018-04-02 | 生产l-氨基酸的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017073937A JP7066977B2 (ja) | 2017-04-03 | 2017-04-03 | L-アミノ酸の製造法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018174717A JP2018174717A (ja) | 2018-11-15 |
JP7066977B2 true JP7066977B2 (ja) | 2022-05-16 |
Family
ID=61868216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017073937A Active JP7066977B2 (ja) | 2017-04-03 | 2017-04-03 | L-アミノ酸の製造法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10745725B2 (ja) |
EP (1) | EP3385389B1 (ja) |
JP (1) | JP7066977B2 (ja) |
CN (1) | CN108690856B (ja) |
BR (1) | BR102018005065A2 (ja) |
PE (1) | PE20181138A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111484963A (zh) * | 2019-01-28 | 2020-08-04 | 味之素株式会社 | 用于生产l-氨基酸的方法 |
CN110218710B (zh) * | 2019-04-30 | 2020-06-23 | 中国科学院天津工业生物技术研究所 | 活性提高的磷酸转酮酶及在生产代谢物中的应用 |
KR102269639B1 (ko) * | 2020-02-12 | 2021-06-25 | 대상 주식회사 | L-글루탐산 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-글루탐산의 생산 방법 |
KR20230092008A (ko) | 2020-10-28 | 2023-06-23 | 아지노모토 가부시키가이샤 | L-아미노산의 제조법 |
KR102254631B1 (ko) * | 2021-01-15 | 2021-05-21 | 씨제이제일제당 주식회사 | 신규한 펩타이드 메티오닌 설폭사이드 환원효소 변이체 및 이를 이용한 imp 생산 방법 |
CN112695036B (zh) * | 2021-03-23 | 2021-07-06 | 中国科学院天津工业生物技术研究所 | 一种天冬氨酸激酶基因表达调控序列及其应用 |
CN114107141B (zh) * | 2021-08-19 | 2022-07-12 | 中国科学院天津工业生物技术研究所 | 高产l-脯氨酸的谷氨酸棒杆菌以及高产l-脯氨酸的方法 |
WO2023195475A1 (ja) | 2022-04-04 | 2023-10-12 | 味の素株式会社 | 寄生植物を防除する方法 |
CN114874959B (zh) * | 2022-04-27 | 2024-04-16 | 天津科技大学 | 一种利用葡萄糖从头发酵生产l-茶氨酸的基因工程菌、方法及应用 |
CN117512029B (zh) * | 2024-01-03 | 2024-03-29 | 地奥集团成都药业股份有限公司 | 一种提升谷氨酰胺产量的培养基、方法及代谢组学分析方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110256598A1 (en) | 2009-10-23 | 2011-10-20 | E. I. Du Pont De Nemours And Company | Co-metabolism of fructose and glucose in microbial production strains |
JP2012223091A (ja) | 2009-08-25 | 2012-11-15 | Ajinomoto Co Inc | L−アミノ酸の製造法 |
JP2014510535A (ja) | 2011-04-01 | 2014-05-01 | シージェイ チェイルジェダン コーポレイション | エシェリキア属菌株に由来するフルクトキナーゼ遺伝子が導入されたコリネバクテリウム属菌株、及び該菌株を用いてl−アミノ酸を生産する方法。 |
WO2014185430A1 (ja) | 2013-05-13 | 2014-11-20 | 味の素株式会社 | L-アミノ酸の製造法 |
Family Cites Families (219)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5610036B1 (ja) | 1969-07-23 | 1981-03-05 | ||
JPS5028119B2 (ja) | 1971-08-14 | 1975-09-12 | ||
US3825472A (en) | 1972-04-27 | 1974-07-23 | Ajinomoto Kk | Method of producing l-lysine by fermentation |
JPS5031093A (ja) | 1973-07-26 | 1975-03-27 | ||
JPS5123592B2 (ja) | 1973-09-22 | 1976-07-17 | ||
JPS5238088A (en) | 1975-09-19 | 1977-03-24 | Ajinomoto Co Inc | Preparation of l-glutamic acid |
JPS52102498A (en) | 1976-02-20 | 1977-08-27 | Ajinomoto Co Inc | Preparation of l-lysine |
JPS531833A (en) | 1976-06-28 | 1978-01-10 | Shin Kobe Electric Machinery | Method of producing battery separator |
JPS539394A (en) | 1976-07-09 | 1978-01-27 | Kyowa Hakko Kogyo Co Ltd | Preparation of l-lysine by fermentation |
JPS5325034A (en) | 1976-08-19 | 1978-03-08 | Fujii Denko | Anti precipitation device for horizontal movement |
JPS5343591A (en) | 1976-10-01 | 1978-04-19 | Hitachi Ltd | Atomizing device for flameless atomic absorption analysis |
JPS5386090A (en) | 1976-12-29 | 1978-07-29 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS594993B2 (ja) | 1976-12-29 | 1984-02-02 | 味の素株式会社 | 発酵法によるl−リジンの製法 |
JPS5386091A (en) | 1976-12-29 | 1978-07-29 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS5444096A (en) | 1977-09-13 | 1979-04-07 | Ajinomoto Co Inc | Preparation of l-arginine by fermentation |
SU875663A1 (ru) | 1978-06-30 | 1982-09-15 | Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов | Штаммы е.coLI ВНИИГенетика VL 334 @ N6 и ВНИИГенетика VL 334 @ N7-продуценты L-треонина и способ их получени |
JPS559759A (en) | 1978-07-07 | 1980-01-23 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS559785A (en) | 1978-07-10 | 1980-01-23 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS559784A (en) | 1978-07-10 | 1980-01-23 | Ajinomoto Co Inc | Preparation of l-lysine |
JPS559783A (en) | 1978-07-10 | 1980-01-23 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS561890A (en) | 1979-06-15 | 1981-01-10 | Ajinomoto Co Inc | Preparation of l-phenylalanine by fermentation |
JPS561889A (en) | 1979-06-20 | 1981-01-10 | Ajinomoto Co Inc | Preparation of l-glutamic acid by fermentation |
JPS565099A (en) | 1979-06-25 | 1981-01-20 | Ajinomoto Co Inc | Production of l-histidine through fermentation process and microorganism used therefor |
JPS566499A (en) | 1979-06-26 | 1981-01-23 | Sanyo Electric Co | Hybrid integrated circuit unit |
JPS568692A (en) | 1979-07-03 | 1981-01-29 | Kyowa Hakko Kogyo Co Ltd | Preparation of l-lysine by fermentation |
JPS5618596A (en) | 1979-07-23 | 1981-02-21 | Ajinomoto Co Inc | Production of l-lysine through fermentation process |
JPS5832596B2 (ja) | 1979-08-10 | 1983-07-14 | 味の素株式会社 | 発酵法によるl−グルタミン酸の製造方法 |
JPS5632995A (en) | 1979-08-28 | 1981-04-02 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS5810075B2 (ja) | 1979-08-31 | 1983-02-24 | 味の素株式会社 | 新規変異株 |
JPS5639778A (en) | 1979-09-10 | 1981-04-15 | Ajinomoto Co Inc | Novel modified strain |
JPS5672695A (en) | 1979-11-15 | 1981-06-16 | Ajinomoto Co Inc | Preparation of l-leucine |
JPS5688799A (en) | 1979-12-21 | 1981-07-18 | Ajinomoto Co Inc | Preparation of l-lysine |
JPS56105344A (en) | 1980-01-25 | 1981-08-21 | Fuji Photo Film Co Ltd | Photomagnetic recording medium |
JPS56106598A (en) | 1980-01-30 | 1981-08-24 | Ajinomoto Co Inc | Preparation of l-arginine by fermentation method |
JPS56140895A (en) | 1980-04-02 | 1981-11-04 | Ajinomoto Co Inc | Preparation of l-glutamic acid by fermentation |
JPS56144092A (en) | 1980-04-14 | 1981-11-10 | Ajinomoto Co Inc | Preparation of l-methionine by fermentation |
JPS56144093A (en) | 1980-04-14 | 1981-11-10 | Ajinomoto Co Inc | Preparation of l-proline by fermentation |
JPS56151495A (en) | 1980-04-25 | 1981-11-24 | Ajinomoto Co Inc | Production of l-glutamine through fermentation |
JPS572869A (en) | 1980-06-10 | 1982-01-08 | Tohoku Electric Power Co Inc | Austenite stainless steel for hot corrosive environment |
JPS5718989A (en) | 1980-07-09 | 1982-01-30 | Ajinomoto Co Inc | Production of l-arginine through fermentation |
US4371614A (en) | 1980-08-22 | 1983-02-01 | Ajinomoto Co., Inc. | E.Coli bacteria carrying recombinant plasmids and their use in the fermentative production of L-tryptophan |
JPS5765198A (en) | 1980-10-09 | 1982-04-20 | Ajinomoto Co Inc | Fermentative production of l-glutamic acid |
JPS57115186A (en) | 1980-12-29 | 1982-07-17 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS57134500A (en) | 1981-02-12 | 1982-08-19 | Kyowa Hakko Kogyo Co Ltd | Plasmid pcg1 |
JPS572689A (en) | 1981-03-23 | 1982-01-08 | Ajinomoto Co Inc | Preparation of l-glutamic acid |
JPS57183799A (en) | 1981-04-17 | 1982-11-12 | Kyowa Hakko Kogyo Co Ltd | Novel plasmid |
DE3127361A1 (de) | 1981-07-08 | 1983-02-03 | Schering Ag, 1000 Berlin Und 4619 Bergkamen | Herstellung und anwendung von plasmiden mit genen fuer die biosynthese von l-prolin |
JPS5835197A (ja) | 1981-08-26 | 1983-03-01 | Kyowa Hakko Kogyo Co Ltd | プラスミドpcg2 |
JPS5794297A (en) | 1981-09-28 | 1982-06-11 | Ajinomoto Co Inc | Preparation of l-lysine by fermentation |
JPS5816872B2 (ja) | 1982-02-12 | 1983-04-02 | 協和醗酵工業株式会社 | コリネバクテリウム・グルタミクム変異株 |
JPH07112437B2 (ja) | 1982-03-05 | 1995-12-06 | 味の素株式会社 | 澱粉からの発酵生産物の製造方法 |
JPS58158192A (ja) | 1982-03-15 | 1983-09-20 | Ajinomoto Co Inc | 発酵法によるl−グルタミン酸の製造方法 |
JPH07112438B2 (ja) | 1982-03-15 | 1995-12-06 | 味の素株式会社 | 生育の改善されたアミノ酸生産菌を用いた発酵法によるアミノ酸の製造方法 |
JPS58158186A (ja) | 1982-03-15 | 1983-09-20 | Ajinomoto Co Inc | 細菌のプロトプラスト融合方法 |
JPS58192900A (ja) | 1982-05-04 | 1983-11-10 | Ajinomoto Co Inc | 複合プラスミド |
JPH06102030B2 (ja) | 1983-09-28 | 1994-12-14 | 味の素株式会社 | 発酵法によるl−チロシンの製造法 |
EP0163836B1 (de) | 1984-04-07 | 1988-10-12 | Bayer Ag | Verfahren und Vorrichtung zur Herstellung von Granulaten |
JPS6115696A (ja) | 1984-06-29 | 1986-01-23 | Ajinomoto Co Inc | 発酵法によるl−イソロイシンの製造法 |
JPS6115695A (ja) | 1984-06-29 | 1986-01-23 | Ajinomoto Co Inc | 発酵法によるl−イソロイシンの製造方法 |
DE3585052D1 (de) | 1984-06-29 | 1992-02-13 | Ajinomoto Kk | Verfahren zur herstellung von l-isoleucin durch fermentation. |
JPS61202694A (ja) | 1985-03-07 | 1986-09-08 | Ajinomoto Co Inc | 発酵法によるl−グルタミンの製造法 |
JPS6291193A (ja) | 1985-06-05 | 1987-04-25 | Kyowa Hakko Kogyo Co Ltd | L−スレオニンおよびl−イソロイシンの製造法 |
JPS6224075A (ja) | 1985-07-25 | 1987-02-02 | Toyota Motor Corp | 車両用駆動装置 |
JPS6274293A (ja) | 1985-09-28 | 1987-04-06 | Kyowa Hakko Kogyo Co Ltd | L−イソロイシンの製造法 |
JPS62195293A (ja) | 1986-02-22 | 1987-08-28 | Kyowa Hakko Kogyo Co Ltd | 発酵法によるl−イソロイシンの製造法 |
JPH06102024B2 (ja) | 1986-04-16 | 1994-12-14 | 味の素株式会社 | 新規プロモーター及び該プロモーターを用いた遺伝子発現方法 |
FR2603581B1 (fr) | 1986-04-28 | 1993-08-13 | Ajinomoto Kk | Procede pour isoler et purifier des aminoacides par chromatographie |
US4777051A (en) | 1986-06-20 | 1988-10-11 | Ajinomoto Co., Inc. | Process for the production of a composition for animal feed |
US5188949A (en) | 1986-09-29 | 1993-02-23 | Ajinomoto Co., Inc. | Method for producing L-threonine by fermentation |
JPS63240794A (ja) | 1987-03-30 | 1988-10-06 | Ajinomoto Co Inc | L−トリプトフアンの製造法 |
JP2536570B2 (ja) | 1987-10-12 | 1996-09-18 | 味の素株式会社 | 発酵法によるl―イソロイシンの製造法 |
JPH01191686A (ja) | 1988-01-26 | 1989-08-01 | Mitsubishi Petrochem Co Ltd | 複合プラスミド |
FR2627508B1 (fr) | 1988-02-22 | 1990-10-05 | Eurolysine | Procede pour l'integration d'un gene choisi sur le chromosome d'une bacterie et bacterie obtenue par ledit procede |
JP2578488B2 (ja) | 1988-03-04 | 1997-02-05 | 協和醗酵工業株式会社 | アミノ酸の製造法 |
JPH026517A (ja) | 1988-06-24 | 1990-01-10 | Toagosei Chem Ind Co Ltd | ポリエステル(メタ)アクリレートの製造方法 |
JP2678995B2 (ja) | 1988-09-08 | 1997-11-19 | 三菱化学株式会社 | トリプトフアンシンターゼの製造法 |
US5185262A (en) | 1988-07-27 | 1993-02-09 | Mitsubishi Petrochemical Co., Ltd. | DNA fragment containing gene which encodes the function of stabilizing plasmid in host microorganism |
JP2748418B2 (ja) | 1988-08-03 | 1998-05-06 | 味の素株式会社 | 組換えdna、該組換えdnaを有する微生物 |
US5705371A (en) | 1990-06-12 | 1998-01-06 | Ajinomoto Co., Inc. | Bacterial strain of escherichia coli BKIIM B-3996 as the producer of L-threonine |
WO1990004636A1 (en) | 1988-10-25 | 1990-05-03 | Vsesojuzny Nauchno-Issledovatelsky Institut Genetiki I Selektsii Promyshlennykh Mikroorganizmov (Vniigenetika) | Strain of bacteria escherichia coli, producer of l-threonine |
JP2817155B2 (ja) | 1989-01-12 | 1998-10-27 | 味の素株式会社 | 発酵法によるl‐アルギニンの製造法 |
JPH02207791A (ja) | 1989-02-07 | 1990-08-17 | Ajinomoto Co Inc | 微生物の形質転換法 |
JP2810697B2 (ja) | 1989-05-17 | 1998-10-15 | 協和醗酵工業株式会社 | 芳香族アミノ酸の製造法 |
JP2973446B2 (ja) | 1990-01-11 | 1999-11-08 | 三菱化学株式会社 | 新規プラスミドベクター |
JPH03232497A (ja) | 1990-02-08 | 1991-10-16 | Asahi Chem Ind Co Ltd | 発酵法によるl―グルタミンの製造方法 |
JPH0488994A (ja) | 1990-07-30 | 1992-03-23 | Kyowa Hakko Kogyo Co Ltd | 発酵法によるl―グルタミン酸の製造法 |
JPH07108228B2 (ja) | 1990-10-15 | 1995-11-22 | 味の素株式会社 | 温度感受性プラスミド |
EP1270721B1 (en) | 1990-11-30 | 2007-11-21 | Ajinomoto Co., Inc. | Recombinant DNA sequences encoding feedback inhibition released enzymes, plasmids comprising the recombinant DNA sequences, transformed microorganisms useful in the production of aromatic amino acids, and a process for preparing aromatic amino acids by fermentation |
US5534421A (en) | 1991-05-30 | 1996-07-09 | Ajinomoto Co., Inc. | Production of isoleucine by escherichia coli having isoleucine auxotrophy and no negative feedback inhibition of isoleucine production |
BR9203053A (pt) | 1991-08-07 | 1993-03-30 | Ajinomoto Kk | Processo para produzir acido l-glutamico pro fermentacao |
JPH0549489A (ja) | 1991-08-22 | 1993-03-02 | Ajinomoto Co Inc | 発酵法によるl−フエニルアラニンの製造法 |
JP3006926B2 (ja) | 1991-09-04 | 2000-02-07 | 協和醗酵工業株式会社 | 発酵法によるl−スレオニンの製造法 |
DE4130868C2 (de) | 1991-09-17 | 1994-10-13 | Degussa | Tierfuttermittelsupplement auf der Basis einer Aminosäure und Verfahren zu dessen Herstellung |
JP3036930B2 (ja) | 1991-11-11 | 2000-04-24 | 協和醗酵工業株式会社 | 発酵法によるl−イソロイシンの製造法 |
IT1262934B (it) | 1992-01-31 | 1996-07-22 | Montecatini Tecnologie Srl | Componenti e catalizzatori per la polimerizzazione di olefine |
JP3151073B2 (ja) | 1992-02-25 | 2001-04-03 | 協和醗酵工業株式会社 | 発酵法によるアミノ酸の製造法 |
RU2003677C1 (ru) | 1992-03-30 | 1993-11-30 | Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов | Штамм бактерий ESCHERICHIA COLI - продуцент L-гистидина |
JPH06749A (ja) | 1992-06-17 | 1994-01-11 | Mitsubishi Motors Corp | ワーク供給装置 |
DE4232468A1 (de) | 1992-09-28 | 1994-03-31 | Consortium Elektrochem Ind | Mikroorganismen für die Produktion von Tryptophan und Verfahren zu ihrer Herstellung |
EP0593792B2 (en) | 1992-10-14 | 2004-01-07 | Ajinomoto Co., Inc. | Novel L-threonine-producing microbacteria and a method for the production of L-threonine |
DK0643135T3 (da) | 1992-11-10 | 2001-10-15 | Ajinomoto Kk | DNA, som koder for aspartokinase III-mutanter, og mutanternes anvendelse til fremstilling af L-threonin ved fermentering |
US5354672A (en) | 1992-11-24 | 1994-10-11 | Ian Fotheringham | Materials and methods for hypersecretion of amino acids |
US5776736A (en) | 1992-12-21 | 1998-07-07 | Purdue Research Foundation | Deblocking the common pathway of aromatic amino acid synthesis |
JPH07163383A (ja) | 1993-10-18 | 1995-06-27 | Mitsubishi Chem Corp | L−アラニンの製造法 |
RU2182173C2 (ru) | 1993-10-28 | 2002-05-10 | Адзиномото Ко., Инк. | Способ получения l-аминокислоты |
JPH07155184A (ja) | 1993-12-08 | 1995-06-20 | Ajinomoto Co Inc | 発酵法によるl−リジンの製造法 |
JP3880636B2 (ja) | 1994-01-10 | 2007-02-14 | 味の素株式会社 | 発酵法によるl−グルタミン酸の製造法 |
US5998178A (en) | 1994-05-30 | 1999-12-07 | Ajinomoto Co., Ltd. | L-isoleucine-producing bacterium and method for preparing L-isoleucine through fermentation |
CN1103819C (zh) | 1994-06-14 | 2003-03-26 | 味之素株式会社 | α-酮戊二酸脱氢酶基因 |
JP3698758B2 (ja) | 1994-06-30 | 2005-09-21 | 協和醗酵工業株式会社 | 発酵法によるl−ロイシンの製造法 |
DE69535674T2 (de) | 1994-08-30 | 2009-01-02 | Ajinomoto Co., Inc. | Verfahren zur herstellung von l-valin und l-leucin |
KR100420743B1 (ko) | 1994-12-09 | 2004-05-24 | 아지노모토 가부시키가이샤 | 신규한리신데카복실라제유전자및l-리신의제조방법 |
JPH10512450A (ja) | 1995-01-23 | 1998-12-02 | ノボ ノルディスク アクティーゼルスカブ | 転移によるdnaの組込み |
JPH0970291A (ja) | 1995-06-30 | 1997-03-18 | Ajinomoto Co Inc | 人工トランスポゾンを用いた遺伝子増幅方法 |
US6110714A (en) | 1995-08-23 | 2000-08-29 | Ajinomoto Co., Inc. | Process for producing L-glutamic acid by fermentation |
JP4032441B2 (ja) | 1995-08-30 | 2008-01-16 | 味の素株式会社 | L−アミノ酸の製造方法 |
GB2304718B (en) | 1995-09-05 | 2000-01-19 | Degussa | The production of tryptophan by the bacterium escherichia coli |
JP3861341B2 (ja) | 1995-10-13 | 2006-12-20 | 味の素株式会社 | 発酵液の膜除菌方法 |
JPH09173792A (ja) | 1995-10-23 | 1997-07-08 | Ajinomoto Co Inc | 発酵液の処理方法 |
DE19539952A1 (de) | 1995-10-26 | 1997-04-30 | Consortium Elektrochem Ind | Verfahren zur Herstellung von O-Acetylserin, L-Cystein und L-Cystein-verwandten Produkten |
DE19548222A1 (de) | 1995-12-22 | 1997-06-26 | Forschungszentrum Juelich Gmbh | Verfahren zur mikrobiellen Herstellung von Aminosäuren durch gesteigerte Aktivität von Exportcarriern |
JPH09285294A (ja) | 1996-04-23 | 1997-11-04 | Ajinomoto Co Inc | 発酵法によるl−グルタミン酸の製造法 |
DE19621930C1 (de) | 1996-05-31 | 1997-12-11 | Degussa | Verfahren zur Herstellung eines Tierfuttermittel-Zusatzes auf Fermentationsbrühe-Basis |
US5939307A (en) | 1996-07-30 | 1999-08-17 | The Archer-Daniels-Midland Company | Strains of Escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production |
JP4088982B2 (ja) | 1996-10-15 | 2008-05-21 | 味の素株式会社 | 発酵法によるl−アミノ酸の製造法 |
JP4168463B2 (ja) | 1996-12-05 | 2008-10-22 | 味の素株式会社 | L−リジンの製造法 |
RU2119536C1 (ru) | 1997-01-21 | 1998-09-27 | Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов | Штамм escherichia coli - продуцент l-гистидина |
JPH10248588A (ja) | 1997-03-14 | 1998-09-22 | Ajinomoto Co Inc | 発酵法によるl−セリンの製造法 |
DE19726083A1 (de) | 1997-06-19 | 1998-12-24 | Consortium Elektrochem Ind | Mikroorganismen und Verfahren zur fermentativen Herstellung von L-Cystein, L-Cystin, N-Acetyl-Serin oder Thiazolidinderivaten |
DE69833200T2 (de) | 1997-08-12 | 2006-09-28 | Ajinomoto Co., Inc. | Verfahren für die produktion von l-glutaminsäure mittels fermentation |
EP1015621B1 (de) | 1997-10-04 | 2005-03-09 | Degussa AG | Verfahren zur mikrobiellen herstellung von aminosäuren der aspartat- und/oder glutamatfamilie und im verfahren einsetzbare mittel |
RU2140450C1 (ru) | 1997-10-29 | 1999-10-27 | Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") | Штамм бактерий escherichia coli продуцент l-лейцина (варианты) |
JP4151094B2 (ja) | 1997-11-25 | 2008-09-17 | 味の素株式会社 | L−システインの製造法 |
JP4066543B2 (ja) | 1998-01-12 | 2008-03-26 | 味の素株式会社 | 発酵法によるl−セリンの製造法 |
AU746542B2 (en) | 1998-03-18 | 2002-05-02 | Ajinomoto Co., Inc. | L-glutamic acid-producing bacterium and method for producing L-glutamic acid |
AU756507B2 (en) | 1998-03-18 | 2003-01-16 | Ajinomoto Co., Inc. | L-glutamic acid-producing bacterium and method for producing L-glutamic acid |
EP1070376A1 (de) | 1998-04-09 | 2001-01-24 | Siemens Aktiengesellschaft | Anordnung und verfahren zur elektrischen energieversorgung einer elektrischen last |
JP4294123B2 (ja) | 1998-07-03 | 2009-07-08 | 協和発酵バイオ株式会社 | ホスホリボシルピロリン酸を経由して生合成される代謝産物の製造法 |
RU2144564C1 (ru) | 1998-10-13 | 2000-01-20 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | ФРАГМЕНТ ДНК rhtB, КОДИРУЮЩИЙ СИНТЕЗ БЕЛКА RhtB, ПРИДАЮЩЕГО УСТОЙЧИВОСТЬ К L-ГОМОСЕРИНУ БАКТЕРИЯМ ESCHERICHIA COLI, И СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ |
JP4110641B2 (ja) | 1998-11-17 | 2008-07-02 | 味の素株式会社 | 発酵法によるl−メチオニンの製造法 |
DE69942821D1 (de) | 1998-12-18 | 2010-11-18 | Ajinomoto Kk | Verfahren zur fermentativen Herstellung von L-Glutaminsäure |
RU2148642C1 (ru) | 1998-12-23 | 2000-05-10 | ЗАО "Научно-исследовательский институт АДЖИНОМОТО-Генетика" (ЗАО "АГРИ") | Фрагмент днк rhtc, кодирующий синтез белка rhtc, придающего повышенную устойчивость к l-треонину бактериям escherichia coli, и способ получения l-аминокислоты |
RU2175351C2 (ru) | 1998-12-30 | 2001-10-27 | Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") | Фрагмент днк из escherichia coli, определяющий повышенную продукцию l-аминокислот (варианты), и способ получения l-аминокислот |
DE19907567B4 (de) | 1999-02-22 | 2007-08-09 | Forschungszentrum Jülich GmbH | Verfahren zur mikrobiellen Herstellung von L-Valin |
JP2000262288A (ja) | 1999-03-16 | 2000-09-26 | Ajinomoto Co Inc | コリネ型細菌の温度感受性プラスミド |
US6238714B1 (en) | 1999-05-05 | 2001-05-29 | Degussa-Huls Ag | Feedstuff additive which contains D-pantothenic acid and/or its salts and a process for the preparation thereof |
JP2003159092A (ja) | 1999-07-02 | 2003-06-03 | Ajinomoto Co Inc | L−アミノ酸の製造法 |
JP2003144160A (ja) | 1999-07-02 | 2003-05-20 | Ajinomoto Co Inc | L−アミノ酸の製造法 |
RU2201454C2 (ru) | 1999-07-09 | 2003-03-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Мутантная альфа-изопропилмалат синтаза (ipms), днк, кодирующая мутантную ipms, способ получения штамма escherichia coli, способ получения l-лейцина |
JP4427878B2 (ja) | 1999-08-20 | 2010-03-10 | 味の素株式会社 | 析出を伴う発酵法によるl−グルタミン酸の製造法 |
JP4245746B2 (ja) | 1999-09-20 | 2009-04-02 | 協和発酵バイオ株式会社 | 発酵法によるアミノ酸の製造法 |
CA2319283A1 (en) | 1999-09-20 | 2001-03-20 | Kuniki Kino | Method for producing l-amino acids by fermentation |
DE19949579C1 (de) | 1999-10-14 | 2000-11-16 | Consortium Elektrochem Ind | Verfahren zur fermentativen Herstellung von L-Cystein oder L-Cystein-Derivaten |
RU2207376C2 (ru) | 1999-10-14 | 2003-06-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Способ получения l-аминокислоты методом ферментации, штамм бактерии escherichia coli - продуцент l-аминокислоты (варианты) |
DE19951708A1 (de) | 1999-10-27 | 2001-05-03 | Degussa | Für den Export verzweigtkettiger Aminosäuren kodierende Nikleotidsequenzen, Verfahren zu deren Isolierung und ihre Verwendung |
JP4207426B2 (ja) | 2000-01-21 | 2009-01-14 | 味の素株式会社 | L−リジンの製造法 |
RU2212447C2 (ru) | 2000-04-26 | 2003-09-20 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Штамм escherichia coli - продуцент аминокислоты (варианты) и способ получения аминокислот (варианты) |
US7160705B2 (en) | 2000-04-28 | 2007-01-09 | Ajinomoto Co., Inc. | Arginine repressor deficient strain of coryneform bacterium and method for producing L-arginine |
RU2215783C2 (ru) | 2001-05-15 | 2003-11-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото - Генетика" | МУТАНТНАЯ N-АЦЕТИЛГЛУТАМАТ СИНТАЗА (ВАРИАНТЫ), ФРАГМЕНТ ДНК, ШТАММ БАКТЕРИИ Escherichia coli - ПРОДУЦЕНТ АРГИНИНА (ВАРИАНТЫ) И СПОСОБ ПОЛУЧЕНИЯ L-АРГИНИНА |
JP4682454B2 (ja) | 2000-06-28 | 2011-05-11 | 味の素株式会社 | 新規変異型n−アセチルグルタミン酸合成酵素及びl−アルギニンの製造法 |
JP4380029B2 (ja) | 2000-07-05 | 2009-12-09 | 味の素株式会社 | 微生物を利用した物質の製造法 |
DE60120570T2 (de) | 2000-07-06 | 2007-01-25 | Ajinomoto Co., Inc. | Bakterium, das befähigt ist L-Glutaminsäure, L-Prolin und L-Arginin herzustellen, und Verfahren zur Herstellung von L-Glutaminsäure, L-Prolin und L-Arginin |
RU2208640C2 (ru) | 2000-07-06 | 2003-07-20 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | СПОСОБ ПОЛУЧЕНИЯ L-АРГИНИНА, ШТАММ Escherichia coli - ПРОДУЦЕНТ L-АРГИНИНА |
RU2207371C2 (ru) | 2000-09-26 | 2003-06-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Способ получения l-аминокислот семейства l-глутаминовой кислоты, штамм бактерии escherichia coli - продуцент l-аминокислоты (варианты) |
US7220571B2 (en) | 2000-09-28 | 2007-05-22 | Archer-Daniels-Midland Company | Escherichia coli strains which over-produce L-threonine and processes for the production of L-threonine by fermentation |
JP4560998B2 (ja) | 2001-02-05 | 2010-10-13 | 味の素株式会社 | 発酵法によるl−グルタミンの製造法及びl−グルタミン生産菌 |
JP4622111B2 (ja) | 2001-02-09 | 2011-02-02 | 味の素株式会社 | L−システイン生産菌及びl−システインの製造法 |
RU2215782C2 (ru) | 2001-02-26 | 2003-11-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ, ШТАММ Escherichia coli - ПРОДУЦЕНТ L-АМИНОКИСЛОТЫ (ВАРИАНТЫ) |
JP2002238592A (ja) | 2001-02-20 | 2002-08-27 | Ajinomoto Co Inc | L−グルタミン酸の製造法 |
DE10112992A1 (de) * | 2001-03-17 | 2002-09-26 | Degussa | Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien |
RU2209248C2 (ru) | 2001-06-26 | 2003-07-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Способ получения l-метионина, штамм бактерии escherichia coli вкпм в-8125 - продуцент l-метионина |
EP1404838B1 (en) | 2001-07-06 | 2010-03-31 | Evonik Degussa GmbH | Process for the preparation of l-amino acids using strains of the enterobacteriaceae family overexpressing fba |
AU2002354854A1 (en) | 2001-07-18 | 2003-03-03 | Degussa Ag | Process for the preparation of l-amino acids using strains of the enterobacteriaceae family which contain an enhanced phoe gene |
RU2264459C2 (ru) | 2001-08-03 | 2005-11-20 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Новая мутантная карбамоилфосфатсинтетаза и способ продукции соединений - производных карбамоилфосфата |
JP4186564B2 (ja) | 2001-09-28 | 2008-11-26 | 味の素株式会社 | L−システイン生産菌及びl−システインの製造法 |
MXPA04004874A (es) | 2001-11-23 | 2004-09-03 | Ajinomoto Kk | Procedimiento para producir l-aminoacido utilizando escherichia. |
RU2229513C2 (ru) | 2001-11-23 | 2004-05-27 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Способ получения l-аминокислот, штамм escherichia coli - продуцент l-аминокислоты (варианты) |
RU2230114C2 (ru) | 2001-11-30 | 2004-06-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" | Мутантная глутаминсинтетаза, фрагмент днк, штамм escherichia coli - продуцент l-глутамина и способ получения l-аминокислот |
JP3932945B2 (ja) | 2002-03-27 | 2007-06-20 | 味の素株式会社 | L−アミノ酸の製造法 |
KR100459758B1 (ko) | 2002-05-15 | 2004-12-03 | 씨제이 주식회사 | 이소루이신 조절이 해제된 트레오닌 오페론 염기서열 및그를 포함하는 형질전환 세포를 이용한 l-트레오닌의생산방법 |
DE10232930A1 (de) | 2002-07-19 | 2004-02-05 | Consortium für elektrochemische Industrie GmbH | Verfahren zur fermentativen Herstellung von Aminosäuren und Aminosäure-Derivaten der Phosphoglycerat-Familie |
JP2004187684A (ja) | 2002-11-26 | 2004-07-08 | Ajinomoto Co Inc | L−グルタミンの製造法及びl−グルタミン生産菌 |
US20050014236A1 (en) | 2003-03-03 | 2005-01-20 | Yumi Matsuzaki | Method for producing L-arginine or L-lysine by fermentation |
EP1484410B1 (en) | 2003-06-05 | 2011-11-02 | Ajinomoto Co., Inc. | Fermentation methods using modified bacteria with increased byproduct uptake. |
DE10331366A1 (de) | 2003-07-11 | 2005-01-27 | Degussa Ag | Verfahren zur Granulation eines Tierfuttermittel-Zusatzes |
RU2003121601A (ru) | 2003-07-16 | 2005-02-27 | Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") (RU) | Мутантная серинацетилтрансфераза |
EP1650296B1 (en) | 2003-07-16 | 2012-04-18 | Ajinomoto Co., Inc. | Mutant serine acetyltransferase and process for producing l-cysteine |
DE602004014158D1 (de) | 2003-07-29 | 2008-07-10 | Ajinomoto Kk | Verfahren zur herstellung von l-lysin oder l-threonin unter verwendung von escherichia-bakterien mit abgeschwächter malatenzymaktivität |
JP4380305B2 (ja) | 2003-11-21 | 2009-12-09 | 味の素株式会社 | 発酵法によるl−アミノ酸の製造法 |
DE602005016763D1 (de) | 2004-01-30 | 2009-11-05 | Ajinomoto Kk | L-aminosäure produzierender mikroorganismus und verfahren zur l-aminosäureproduktion |
JP4479283B2 (ja) | 2004-03-04 | 2010-06-09 | 味の素株式会社 | L−システイン生産菌及びl−システインの製造法 |
US7344874B2 (en) | 2004-03-04 | 2008-03-18 | Ajinomoto Co., Inc. | L-glutamic acid-producing microorganism and a method for producing L-glutamic acid |
JP4604537B2 (ja) | 2004-03-31 | 2011-01-05 | 味の素株式会社 | L−システイン生産菌及びl−システインの製造法 |
WO2005103275A1 (ja) | 2004-04-26 | 2005-11-03 | Ajinomoto Co., Ltd. | 発酵法によるl-トリプトファンの製造法 |
WO2005111202A1 (en) | 2004-05-12 | 2005-11-24 | Metabolic Explorer | Recombinant enzyme with altered feedback sensitivity |
KR100892577B1 (ko) | 2004-08-10 | 2009-04-08 | 아지노모토 가부시키가이샤 | 유용한 대사산물을 생산하기 위한 포스포케톨라제의 용도 |
US7794989B2 (en) * | 2004-12-28 | 2010-09-14 | Ajinomoto Co., Inc. | L-glutamic acid-producing microorganism and a method for producing L-glutamic acid |
CN103468758B (zh) | 2004-12-28 | 2015-10-28 | 味之素株式会社 | 产生l-谷氨酸的微生物和产生l-谷氨酸的方法 |
WO2006135075A1 (en) * | 2005-06-17 | 2006-12-21 | Ajinomoto Co., Inc. | A method for producing an l-amino acid using a bacterium of the enterobacteriaceae family with enhanced expression of the fucpikur operon |
DE102005048818A1 (de) * | 2005-10-10 | 2007-04-12 | Degussa Ag | Mikrobiologische Herstellung von 3-Hydroxypropionsäure |
EP2314710B1 (en) | 2006-01-04 | 2016-03-30 | Metabolic Explorer | Method for the production of methionine by culturing a microorganism modified to enhance production of cysteine |
BRPI0707229B8 (pt) * | 2006-01-27 | 2017-06-27 | Ajinomoto Kk | método para produzir um l-aminoácido |
RU2418069C2 (ru) | 2006-09-29 | 2011-05-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) | Способ конструирования рекомбинантных бактерий, принадлежащих к роду pantoea, и способ продукции l-аминокислот с использованием бактерий, принадлежащих к роду pantoea |
JP2010041920A (ja) | 2006-12-19 | 2010-02-25 | Ajinomoto Co Inc | L−アミノ酸の製造法 |
WO2008078646A1 (ja) | 2006-12-22 | 2008-07-03 | Ajinomoto Co., Inc. | アミノ酸又は核酸の結晶の分離方法 |
BRPI0703692B1 (pt) | 2006-12-25 | 2016-12-27 | Ajinomoto Kk | método para se obter os cristais de um hidrocloreto de aminoácido básico compreendendo gerar um aminoácido básico usando células microbianas por fermentação em um caldo de fermentação ou por um método enzimático em uma solução de reação de enzima usando as células como catalisadores |
JP2010130899A (ja) | 2007-03-14 | 2010-06-17 | Ajinomoto Co Inc | L−グルタミン酸系アミノ酸生産微生物及びアミノ酸の製造法 |
EP2147970B1 (en) | 2007-04-17 | 2014-12-31 | Ajinomoto Co., Inc. | A method for producing an acidic substance having a carboxyl group |
JP2011067095A (ja) * | 2008-01-10 | 2011-04-07 | Ajinomoto Co Inc | 発酵法による目的物質の製造法 |
US8383372B2 (en) | 2008-03-06 | 2013-02-26 | Ajinomoto Co., Inc. | L-cysteine producing bacterium and a method for producing L-cysteine |
BRPI0918299B1 (pt) | 2008-09-08 | 2018-08-14 | Ajinomoto Co., Inc. | Método para produzir um l-aminoácido |
JP2012029565A (ja) | 2008-11-27 | 2012-02-16 | Ajinomoto Co Inc | L−アミノ酸の製造法 |
JP5521347B2 (ja) | 2009-02-16 | 2014-06-11 | 味の素株式会社 | L−アミノ酸生産菌及びl−アミノ酸の製造法 |
ES2439507T3 (es) * | 2011-01-20 | 2014-01-23 | Jennewein Biotechnologie Gmbh | Fucosiltransferasas novedosas y sus aplicaciones |
BR112013016373B1 (pt) * | 2011-11-11 | 2021-05-18 | Ajinomoto Co., Inc | método para produzir uma substância alvo |
CN102965354B (zh) * | 2012-12-14 | 2014-03-05 | 中国热带农业科学院橡胶研究所 | 一种磷酸果糖激酶及其编码基因的应用 |
BR112016001416A2 (pt) | 2013-07-23 | 2017-08-29 | Myriant Corp | Bactéria escherichia coli e método de produção de ácido succínico utilizando difusão facilitada para importação de açúcar |
JP6623690B2 (ja) | 2015-10-30 | 2019-12-25 | 味の素株式会社 | グルタミン酸系l−アミノ酸の製造法 |
CN111876450A (zh) * | 2020-07-29 | 2020-11-03 | 周杰 | 一种生产l-氨基酸的方法 |
-
2017
- 2017-04-03 JP JP2017073937A patent/JP7066977B2/ja active Active
-
2018
- 2018-03-14 BR BR102018005065-6A patent/BR102018005065A2/pt unknown
- 2018-03-27 PE PE2018000458A patent/PE20181138A1/es unknown
- 2018-03-27 US US15/937,336 patent/US10745725B2/en active Active
- 2018-03-29 EP EP18164967.4A patent/EP3385389B1/en active Active
- 2018-04-02 CN CN201810281571.5A patent/CN108690856B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012223091A (ja) | 2009-08-25 | 2012-11-15 | Ajinomoto Co Inc | L−アミノ酸の製造法 |
US20110256598A1 (en) | 2009-10-23 | 2011-10-20 | E. I. Du Pont De Nemours And Company | Co-metabolism of fructose and glucose in microbial production strains |
JP2014510535A (ja) | 2011-04-01 | 2014-05-01 | シージェイ チェイルジェダン コーポレイション | エシェリキア属菌株に由来するフルクトキナーゼ遺伝子が導入されたコリネバクテリウム属菌株、及び該菌株を用いてl−アミノ酸を生産する方法。 |
WO2014185430A1 (ja) | 2013-05-13 | 2014-11-20 | 味の素株式会社 | L-アミノ酸の製造法 |
Non-Patent Citations (2)
Title |
---|
Database GenBank, Accession no. BAJ66931,2016年10月07日,[2020年10月26日検索], インターネット<https://www.ncbi.nlm.nih.gov/protein/BAJ66931.1/> |
Database UniProtKB/TrEMBL, Accession no. D5NZS2,2017年03月15日,[2020年11月30日検索], インターネット<https://www.uniprot.org/uniprot/D5NZS2.txt?version=24> |
Also Published As
Publication number | Publication date |
---|---|
EP3385389A1 (en) | 2018-10-10 |
CN108690856A (zh) | 2018-10-23 |
EP3385389B1 (en) | 2020-10-07 |
US10745725B2 (en) | 2020-08-18 |
BR102018005065A2 (pt) | 2019-06-04 |
CN108690856B (zh) | 2022-12-23 |
PE20181138A1 (es) | 2018-07-17 |
JP2018174717A (ja) | 2018-11-15 |
US20180282773A1 (en) | 2018-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10428359B2 (en) | Method for producing L-amino acid | |
JP7066977B2 (ja) | L-アミノ酸の製造法 | |
US7833762B2 (en) | Method for producing L-amino acid | |
US8008047B2 (en) | L-amino acid producing bacterium which has enhanced expression of at least one of the nhaA gene, the nhaB gene, the nhaR gene, the chaA gene, the mdfA gene and a method of producing L-amino acid | |
US8765407B2 (en) | L-amino acid producing bacterium and method of producing L-amino acid | |
JP2009165355A (ja) | L−アミノ酸を生産する微生物及びl−アミノ酸の製造法 | |
JP2019165635A (ja) | L−アミノ酸の製造法 | |
US10787691B2 (en) | Method for producing L-amino acid | |
US10563234B2 (en) | Method for producing L-amino acids | |
WO2012002486A1 (ja) | L-アミノ酸の製造法 | |
WO2015064648A1 (ja) | 脂肪酸を生成する緑藻類 | |
US8313933B2 (en) | L-amino acid producing bacterium and method for producing L-amino acid | |
US9487806B2 (en) | Method for producing L-amino acid | |
JP2010200645A (ja) | L−アミノ酸の製造法 | |
US20150211033A1 (en) | Method for Producing L-Amino Acid | |
WO2014061805A1 (ja) | L-アミノ酸の製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210629 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220411 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7066977 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |