JP5660145B2 - Curable composition, cured product, and optical semiconductor device - Google Patents

Curable composition, cured product, and optical semiconductor device Download PDF

Info

Publication number
JP5660145B2
JP5660145B2 JP2013007112A JP2013007112A JP5660145B2 JP 5660145 B2 JP5660145 B2 JP 5660145B2 JP 2013007112 A JP2013007112 A JP 2013007112A JP 2013007112 A JP2013007112 A JP 2013007112A JP 5660145 B2 JP5660145 B2 JP 5660145B2
Authority
JP
Japan
Prior art keywords
group
curable composition
cured product
polysiloxane
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013007112A
Other languages
Japanese (ja)
Other versions
JP2013231160A (en
Inventor
佑太 後藤
佑太 後藤
康二 中西
康二 中西
哲也 根本
哲也 根本
博幸 野村
博幸 野村
長谷川 公一
公一 長谷川
玉木 研太郎
研太郎 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2013007112A priority Critical patent/JP5660145B2/en
Priority to TW102110411A priority patent/TWI513766B/en
Priority to KR1020130035075A priority patent/KR20130112761A/en
Publication of JP2013231160A publication Critical patent/JP2013231160A/en
Application granted granted Critical
Publication of JP5660145B2 publication Critical patent/JP5660145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)
  • Led Device Packages (AREA)

Description

本発明は、硬化性組成物、硬化物および光半導体装置に関する。   The present invention relates to a curable composition, a cured product, and an optical semiconductor device.

シリコーン樹脂は、LED素子を始めとする半導体素子の封止材料などとして広く利用されてきている。シリコーン樹脂は、従来封止材料として使用されていたエポキシ樹脂に比較して耐熱性、透明性および耐変色性等に優れる一方、曲げ強度等の機械特性が低いことから、LEDへの通電や点灯の際に生じる熱衝撃や高温高湿環境などによりクラックが発生しやすいという問題を有する。   Silicone resins have been widely used as sealing materials for semiconductor elements including LED elements. Silicone resin is superior in heat resistance, transparency, and discoloration resistance compared to epoxy resin that has been used as a conventional sealing material, but it has low mechanical properties such as bending strength. There is a problem that cracks are likely to occur due to a thermal shock or a high temperature and high humidity environment.

このようなクラックの発生を防止する技術として、特許文献1に、1分子中に少なくとも2個のケイ素原子結合アルケニル基を有し、特定のシロキサン単位を有する分岐構造のオルガノポリシロキサンと、1分子中に少なくとも2個のケイ素原子結合水素原子を有し、25℃での粘度が1000mPas以下である直鎖状のオルガノハイドロジェンポリシロキサンと、付加反応触媒とを含有するオルガノポリシロキサン組成物が開示されている。特許文献2には、特定の有機基を有する直鎖状ポリオルガノシロキサンおよび特定のシロキサン単位を有する分岐状ポリオルガノシロキサンからなるアルケニル基含有ポリオルガノシロキサンと、特定のシロキサン単位を有する分子中に3個以上のケイ素原子結合水素原子を含むポリアルキルハイドロジェンシロキサンと、白金族金属化合物とを含むポリオルガノシロキサン組成物が開示されている。 As a technique for preventing the occurrence of such cracks, Patent Document 1 discloses a branched organopolysiloxane having at least two silicon-bonded alkenyl groups in one molecule and having a specific siloxane unit, and one molecule. An organopolysiloxane composition comprising a linear organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms and having a viscosity at 25 ° C. of 1000 mPa · s or less, and an addition reaction catalyst Is disclosed. Patent Document 2 discloses an alkenyl group-containing polyorganosiloxane composed of a linear polyorganosiloxane having a specific organic group and a branched polyorganosiloxane having a specific siloxane unit, and 3 in a molecule having a specific siloxane unit. A polyorganosiloxane composition containing a polyalkylhydrogensiloxane containing one or more silicon-bonded hydrogen atoms and a platinum group metal compound is disclosed.

特開2011−225715号公報JP 2011-225715 A 特開2006−335857号公報JP 2006-335857 A

本発明は、熱衝撃や高温高湿条件等に対して高い耐性を有し、過酷な環境下でもクラックが生じにくい硬化物を形成できる硬化性ポリシロキサン組成物を提供することを目的とする。   An object of this invention is to provide the curable polysiloxane composition which can form the hardened | cured material which has high tolerance with respect to a thermal shock, high temperature, high humidity conditions, etc., and is hard to produce a crack also in a severe environment.

本発明は、下記式(1)に示す化合物(A)、下記化学式(2)に示すポリシロキサン(B)、およびヒドロシリル化反応用触媒(C)を含有することを特徴とする硬化性組成物である。   The present invention comprises a curable composition comprising a compound (A) represented by the following formula (1), a polysiloxane (B) represented by the following chemical formula (2), and a hydrosilylation catalyst (C). It is.

Figure 0005660145
(式中、nは1以上の整数を示す。R1およびR2は炭素数1〜4のアルキル基を示す。Arはアリール基を示す。)
Figure 0005660145
(In the formula, n represents an integer of 1 or more. R 1 and R 2 represent an alkyl group having 1 to 4 carbon atoms. Ar represents an aryl group.)

Figure 0005660145
式中、3、R5およびR6はそれぞれ独立に有機基を示す。ただし、すべてのR3およびR6のうちの少なくとも2つはアルケニル基であり、R5は、そのR5が結合するケイ素原子に結合するもう1つのR5がアリール基であるとき、炭素数1〜4のアルキル基およびアリール基ではない。R4はそれぞれ独立に炭素数1〜4のアルキル基またはアリール基を示し、R4のうち少なくとも1つはアリール基を示す。Xは水素原子または炭素数1〜3のアルキル基を示す。a、c、eおよびfはそれぞれ独立に0以上の整数を示す。bおよびdはそれぞれ独立に1以上の整数を示す。ただし、aが0であるとき、dは2以上の整数である。)
Figure 0005660145
(Wherein, shows the R 3, R 5 and R 6 each independently represents an organic group. However, at least two of all R 3 and R 6 is an alkenyl group, R 5 is, its R 5 When another R 5 bonded to the bonding silicon atom is an aryl group, it is not an alkyl group or aryl group having 1 to 4 carbon atoms, and R 4 is independently an alkyl group or aryl group having 1 to 4 carbon atoms. And at least one of R 4 represents an aryl group, X represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and a, c, e and f each independently represents an integer of 0 or more. b and d each independently represent an integer of 1 or more, provided that when a is 0, d is an integer of 2 or more.)

前記硬化性組成物において、前記化学式(2)のR4がアリール基であることが好ましい。
他の発明は、前記硬化性組成物を硬化して得られる硬化物である。
他の発明は、前記硬化物を有する光半導体装置である。
In the curable composition, R 4 in the chemical formula (2) is preferably an aryl group.
Another invention is a cured product obtained by curing the curable composition.
Another invention is an optical semiconductor device having the cured product.

本発明の硬化性組成物は、熱衝撃や高温高湿条件等に対して高い耐性を有し、過酷な環境下でもクラックが生じにくい硬化物を形成できる。
したがって、この硬化性組成物から得られる硬化物で半導体発光素子を被覆して得られた光半導体装置は、信頼性に優れた光半導体装置となる。
The curable composition of the present invention has high resistance to thermal shock, high temperature and high humidity conditions, and can form a cured product that is less prone to crack even in harsh environments.
Therefore, an optical semiconductor device obtained by coating a semiconductor light emitting element with a cured product obtained from this curable composition is an optical semiconductor device with excellent reliability.

図1は、光半導体装置の一具体例を示す模式図である。FIG. 1 is a schematic diagram showing a specific example of an optical semiconductor device.

<硬化性組成物>
本発明の硬化性組成物は、下記式(1)に示す化合物(A)、下記化学式(2)に示すポリシロキサン(B)、およびヒドロシリル化反応用触媒(C)を含有する。
<Curable composition>
The curable composition of the present invention contains a compound (A) represented by the following formula (1), a polysiloxane (B) represented by the following chemical formula (2), and a hydrosilylation reaction catalyst (C).

Figure 0005660145
(式中、nは1以上の整数を示す。R1およびR2は炭素数1〜4のアルキル基を示す。Arはアリール基を示す。)
Figure 0005660145
(In the formula, n represents an integer of 1 or more. R 1 and R 2 represent an alkyl group having 1 to 4 carbon atoms. Ar represents an aryl group.)

Figure 0005660145
式中、3、R5およびR6はそれぞれ独立に有機基を示す。ただし、すべてのR3およびR6のうちの少なくとも2つはアルケニル基であり、R5は、そのR5が結合するケイ素原子に結合するもう1つのR5がアリール基であるとき、炭素数1〜4のアルキル基およびアリール基ではない。R4はそれぞれ独立に炭素数1〜4のアルキル基またはアリール基を示し、R4のうち少なくとも1つはアリール基を示す。Xは水素原子または炭素数1〜3のアルキル基を示す。a、c、eおよびfはそれぞれ独立に0以上の整数を示す。bおよびdはそれぞれ独立に1以上の整数を示す。ただし、aが0であるとき、dは2以上の整数である。)
なお、本発明において「ポリシロキサン」とは、シロキサン単位 (Si−O)が2個以上結合した分子骨格を有するシロキサンを意味する。
Figure 0005660145
(Wherein, shows the R 3, R 5 and R 6 each independently represents an organic group. However, at least two of all R 3 and R 6 is an alkenyl group, R 5 is, its R 5 When another R 5 bonded to the bonding silicon atom is an aryl group, it is not an alkyl group or aryl group having 1 to 4 carbon atoms, and R 4 is independently an alkyl group or aryl group having 1 to 4 carbon atoms. And at least one of R 4 represents an aryl group, X represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and a, c, e and f each independently represents an integer of 0 or more. b and d each independently represent an integer of 1 or more, provided that when a is 0, d is an integer of 2 or more.)
In the present invention, “polysiloxane” means a siloxane having a molecular skeleton in which two or more siloxane units (Si—O) are bonded.

化合物(A)
化合物(A)は、上記式(1)に示す化合物である。化合物(A)は、直鎖状のポリシロキサンであり、1分子当たり2個のケイ素原子結合水素原子を有する。ケイ素原子結合水素原子は分子の両末端のシロキサン単位に存在する。化合物(A)はポリシロキサン(B)に対する架橋剤であり、ポリシロキサン(B)とのヒドロシリル化反応により硬化物を形成する。
Compound (A)
Compound (A) is a compound represented by the above formula (1). The compound (A) is a linear polysiloxane and has two silicon-bonded hydrogen atoms per molecule. Silicon-bonded hydrogen atoms are present in the siloxane units at both ends of the molecule. Compound (A) is a crosslinking agent for polysiloxane (B) and forms a cured product by a hydrosilylation reaction with polysiloxane (B).

1およびR2は炭素数1〜4のアルキル基を示す。すなわち、化合物(A)は、ケイ素原子にアリール基と炭素数1〜4のアルキル基とが結合したD単位のシロキサン単位を1つ以上有するハイドロジェンシロキサンである。このようなD単位のシロキサン単位を有する化合物(A)は、2つのアリール基を有するD単位のシロキサン単位を含有するハイドロジェンシロキサンや、2つのアルキル基を有するD単位のシロキサン単位を含有するハイドロジェンシロキサンに比べて、結晶性が低下する。このため、化合物(A)と下記ポリシロキサン(B)とを併用して得られる硬化性組成物から得られる硬化物は、部分的に柔軟な構造となって、熱衝撃等に対して高い耐性を有し、クラックが生じにくくなる。 R 1 and R 2 represent an alkyl group having 1 to 4 carbon atoms. That is, the compound (A) is a hydrogen siloxane having one or more D unit siloxane units in which an aryl group and an alkyl group having 1 to 4 carbon atoms are bonded to a silicon atom. Such a compound (A) having a D unit siloxane unit is a hydrogen siloxane containing a D unit siloxane unit having two aryl groups, or a hydrogen siloxane containing a D unit siloxane unit having two alkyl groups. Compared with Gensiloxane, the crystallinity is lowered. For this reason, the hardened | cured material obtained from the curable composition obtained by using together a compound (A) and the following polysiloxane (B) becomes a flexible structure partially, and has high tolerance with respect to a thermal shock etc. And cracks are less likely to occur.

炭素数1〜4のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基およびtert−ブチル基等が挙げられ、これら中でもメチル基が好ましい。 The alkyl group having 1 to 4 carbon atoms, a methyl group, an ethyl group, n- propyl group, an isopropyl group, n- butyl group, sec- butyl group, etc. isobutyl and tert- butyl group, these inter alia A methyl group is preferred.

アリール基としては、フェニル基、トリル基等の芳香族炭化水素基、チエニル基、ピリジル等のヘテロアリール基を挙げることができる。また先に挙げたフェニル基等の基の水素原子をハロゲン原子やアルキル基等の基に置換してなる基であってもよい。式(1)中のnが2以上の整数である場合、式(1)に存在するn個のArは相互に同種のアリール基であっても、異種のアリール基であってもよい。   Examples of the aryl group include aromatic hydrocarbon groups such as phenyl group and tolyl group, and heteroaryl groups such as thienyl group and pyridyl. Moreover, the group formed by substituting the hydrogen atom of groups, such as the phenyl group mentioned above, by groups, such as a halogen atom and an alkyl group, may be sufficient. When n in the formula (1) is an integer of 2 or more, the n Ars present in the formula (1) may be the same kind of aryl groups or different kinds of aryl groups.

上記式(1)中、nは1以上の整数を示し、好ましくは1〜3の整数である。
化合物(A)は、たとえば、メチルフェニルジメトキシシランなどのアルコキシシランと、1,1,3,3−テトラメチルジシロキサンなどのハイドロジェンシロキサンとを公知の方法により反応させることにより得ることができる。
In said formula (1), n shows an integer greater than or equal to 1, Preferably it is an integer of 1-3.
Compound (A), for example, can be obtained by reacting any and alkoxysilanes methylphenyl dimethoxy Sila down, by a known method and hydrogen siloxane such as 1,1,3,3-tetramethyldisiloxane .

本発明の硬化性組成物における化合物(A)の含有量としては、ポリシロキサン(B)中のアルケニル基量に対する化合物(A)中のケイ素原子結合水素原子量のモル比が0.1〜5となる量であることが好ましく、より好ましくは0.5〜2、さらに好ましくは0.7〜1.4となる量である。化合物(A)の含有量が前記範囲内であると、熱衝撃等に対して高い耐性を有し、クラックが生じにくい硬化物が形成されやすくなり、また組成物の硬化が十分に進行する。   The content of the compound (A) in the curable composition of the present invention is such that the molar ratio of the amount of silicon atom-bonded hydrogen atoms in the compound (A) to the amount of alkenyl groups in the polysiloxane (B) is 0.1 to 5. The amount is preferably 0.5 to 2, more preferably 0.7 to 1.4. When the content of the compound (A) is within the above range, a cured product that has high resistance to thermal shock and the like and hardly causes cracks is easily formed, and curing of the composition proceeds sufficiently.

ポリシロキサン(B)
ポリシロキサン(B)は上記式(2)に示すポリシロキサンである。ポリシロキサン(B)は本組成物の主成分であり、化合物(A)とのヒドロシリル化反応により硬化し、硬化物の主体となる。
Polysiloxane (B)
The polysiloxane (B) is a polysiloxane represented by the above formula (2). The polysiloxane (B) is a main component of the composition, and is cured by a hydrosilylation reaction with the compound (A) to become a main component of the cured product.

上記式(2)中、R3、R5およびR6はそれぞれ独立に有機基を示す。1つのシロキサン単位に含まれる3個のR3は、それぞれ異なる有機基であってもよく、2つが同じ有機基であり、他の1つがそれと異なる有機基であってもよく、3つがすべて同じ有機基であってもよい。またaが2以上の整数である場合、R3を含む複数個のシロキサン単位は、それぞれ同じであってもよく、それぞれ異なっていてもよく、複数個のうちの一部が同じで、他がそれと異なっていてもよい。1つのシロキサン単位に含まれる2個のR5は、それぞれ異なる有機基であってもよく、同じ有機基であってもよい。またcが2以上の整数である場合、R5を含む複数個のシロキサン単位は、それぞれ同じであってもよく、それぞれ異なっていてもよく、複数個のうちの一部が同じで、他がそれと異なっていてもよい。dが2以上の整数である場合、R6を含む複数個のシロキサン単位は、それぞれ同じであってもよく、それぞれ異なっていてもよく、複数個のうちの一部が同じで、他がそれと異なっていてもよい。 In said formula (2), R < 3 >, R < 5 > and R < 6 > show an organic group each independently. Three R 3 contained in one siloxane unit may be different organic groups, two may be the same organic group, the other one may be a different organic group, and all three may be the same It may be an organic group. When a is an integer of 2 or more, the plurality of siloxane units containing R 3 may be the same or different from each other, some of the plurality are the same, It may be different. Two R 5 s contained in one siloxane unit may be different organic groups or the same organic group. When c is an integer of 2 or more, the plurality of siloxane units including R 5 may be the same or different from each other, some of the plurality are the same, It may be different. When d is an integer of 2 or more, the plurality of siloxane units containing R 6 may be the same or different from each other, some of the plurality are the same, and others are the same. May be different.

前記有機基としては、アルキル基、アルケニル基、アリール基等が挙げられる。
アルキル基としては、好ましくは炭素数1〜4のアルキル基であり、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基およびtert−ブチル基等が挙げられ、これら中でもメチル基が好ましい。
Examples of the organic group include an alkyl group, an alkenyl group, and an aryl group.
The alkyl group is preferably an alkyl group having 1 to 4 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, and tert-butyl group. Among these, a methyl group is preferable.

アルケニル基としては、たとえば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘプテニル基、ヘキセニル基およびシクロヘキセニル基等が挙げられる。これらの中でも、ビニル基、アリル基およびヘキセニル基が好ましい。   Examples of the alkenyl group include a vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group, pentenyl group, heptenyl group, hexenyl group, and cyclohexenyl group. Among these, a vinyl group, an allyl group, and a hexenyl group are preferable.

アリール基としては、たとえば、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられ、これら中でもフェニル基が好ましい。
前記有機基はエポキシ基を含む基であってもよい。ポリシロキサン(B)が有機基としてエポキシ基を含む基を有すると、硬化性組成物を硬化する際に起こるヒドロシリル化反応を阻害しにくく、基板や金属配線などに対する接着性が高い硬化物を形成することができる。前記エポキシ基を有する基としては、たとえば、グリシドキシ基、3−グリシドキシプロピル基等のグリシドキシアルキル基、並びに3,4−エポキシシクロペンチル基、3,4−エポキシシクロヘキシル基、2−(3,4−エポキシシクロペンチル)エチル基、および2−(3,4−エポキシシクロヘキシル)エチル基等のエポキシシクロアルキル基等が挙げられる。
As an aryl group, a phenyl group, a tolyl group, a xylyl group, a naphthyl group etc. are mentioned, for example, Among these, a phenyl group is preferable.
The organic group may be a group including an epoxy group. When the polysiloxane (B) has a group containing an epoxy group as an organic group, it hardly inhibits the hydrosilylation reaction that occurs when the curable composition is cured, and forms a cured product having high adhesion to a substrate or a metal wiring. can do. Examples of the group having an epoxy group include glycidoxyalkyl groups such as glycidoxy group and 3-glycidoxypropyl group, 3,4-epoxycyclopentyl group, 3,4-epoxycyclohexyl group, 2- (3 , 4-epoxycyclopentyl) ethyl group, and epoxycycloalkyl groups such as 2- (3,4-epoxycyclohexyl) ethyl group.

ただし、1分子に含まれるすべてのR3およびR6のうちの少なくとも2つはアルケニル基であり、好ましくは2〜4個がアルケニル基である。つまり、ポリシロキサン(B)は1分子当たり2個以上のアルケニル基を有する。R3のうちの2つ以上がアルケニル基あり、R6がすべてアルケニル基以外の基であってもよく、R3がすべてアルケニル基以外の基であり、R6のうちの2つ以上がアルケニル基であってもよく、R3のうちの1つ以上がアルケニル基あり、R6のうちの1つ以上がアルケニル基であってもよい。 However, at least two of all R 3 and R 6 contained in one molecule are alkenyl groups, and preferably 2 to 4 are alkenyl groups. That is, polysiloxane (B) has two or more alkenyl groups per molecule. Two or more of R 3 may be alkenyl groups, R 6 may be all groups other than alkenyl groups, R 3 may be all groups other than alkenyl groups, and two or more of R 6 are alkenyl groups A group, one or more of R 3 may be an alkenyl group , and one or more of R 6 may be an alkenyl group.

また、R5は、そのR5が結合するケイ素原子に結合するもう1つのR5がアリール基であるとき、炭素数1〜4のアルキル基およびアリール基ではない。つまり、R5を含むシロキサン単位は、R4を含むシロキサン単位と同じではない。 Further, R 5 may then another R 5 bonded to the silicon atoms of R 5 are attached is an aryl group, not alkyl groups and aryl groups of 1 to 4 carbon atoms. That is, the siloxane unit containing R 5 is not the same as the siloxane unit containing R 4 .

上記式(2)中、1つのシロキサン単位に含まれる2個のR4はそれぞれ独立に炭素数1〜4のアルキル基またはアリール基を示し、R4のうち少なくとも1つはアリール基を示す。bが2以上の整数である場合、R4を含む複数個のシロキサン単位は、それぞれ同じであってもよく、それぞれ異なっていてもよく、複数個のうちの一部が同じで、他がそれと異なっていてもよい。すなわち、ポリシロキサン(B)は、R4を含むシロキサン単位として、ケイ素原子にアリール基と炭素数1〜4のアルキル基とが結合したD単位のみを1つ以上有するか、ケイ素原子に2つのアリール基が結合したD単位のみを1つ以上有するか、またはケイ素原子にアリール基と炭素数1〜4のアルキル基とが結合したD単位を1つ以上有し、ケイ素原子に2つのアリール基が結合したD単位を1つ以上有する。このようなD単位のシロキサン単位を有するポリシロキサン(B)と上記化合物(A)とを併用することにより、熱衝撃等に対して高い耐性を有し、クラックが生じにくい硬化物を形成できる硬化性組成物を得ることが可能になる。 In the above formula (2), two R 4 contained in one siloxane unit each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group, and at least one of R 4 represents an aryl group. When b is an integer of 2 or more, the plurality of siloxane units containing R 4 may be the same or different from each other, some of the plurality are the same, and others are the same. May be different. That is, the polysiloxane (B) has at least one D unit in which an aryl group and an alkyl group having 1 to 4 carbon atoms are bonded to a silicon atom as a siloxane unit containing R 4 , Have only one or more D units to which an aryl group is bonded, or one or more D units to which an aryl group and an alkyl group having 1 to 4 carbon atoms are bonded to a silicon atom, and two aryl groups to the silicon atom Have one or more D units bonded to each other. Curing that can form a cured product that has high resistance to thermal shock and hardly cracks by using the polysiloxane (B) having a siloxane unit of D unit and the compound (A) in combination. It becomes possible to obtain a sex composition.

また、R4がアリール基であると、つまり、ポリシロキサン(B)が、R4を含むシロキサン単位として、ケイ素原子に2つのアリール基が結合したD単位のみを有すると、クラックが生じにくく、さらに水蒸気に対するガスバリア性の高い硬化物を形成することができる点で好ましい。 Further, if R 4 is an aryl group, that is, if the polysiloxane (B) has only a D unit in which two aryl groups are bonded to a silicon atom as a siloxane unit containing R 4 , cracks are unlikely to occur, Furthermore, it is preferable at the point which can form hardened | cured material with high gas barrier property with respect to water vapor | steam.

4が示す炭素数1〜4のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基およびtert−ブチル基等が挙げられ、これら中でも特にメチル基が好ましい。 Examples of the alkyl group having 1 to 4 carbon atoms represented by R 4 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group and tert-butyl group. Of these, a methyl group is particularly preferred.

4が示すアリール基としては、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられ、これら中でも特にフェル基が好ましい。
Xは水素原子または炭素数13のアルキル基を示す。
Examples of the aryl group R 4 represents a phenyl group, a tolyl group, a xylyl group, a naphthyl group, these inter alia Fe two Le group.
X represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.

a、c、eおよびfはそれぞれ独立に0以上の整数を示す。bおよびdはそれぞれ独立に1以上の整数を示す。ただし、aが0であるとき、dは2以上の整数である。dが1以上の整数であることから、ポリシロキサン(B)はT単位のシロキサン単位を必ず有するので、分岐構造を有する。分岐構造を有しないポリシロキサンと化合物(A)とを併用して組成物を作製しても、組成物は硬化しにくい。また、その組成物が硬化する場合でも、得られる硬化物はクラック耐性を有しない。   a, c, e and f each independently represent an integer of 0 or more. b and d each independently represent an integer of 1 or more. However, when a is 0, d is an integer of 2 or more. Since d is an integer of 1 or more, the polysiloxane (B) has a T unit siloxane unit and therefore has a branched structure. Even if a composition is prepared by using a polysiloxane having no branched structure and the compound (A) in combination, the composition is hardly cured. Further, even when the composition is cured, the obtained cured product does not have crack resistance.

aは好ましくは 0〜5、より好ましくは1〜3である。bは好ましくは1〜5、より好ましくは1〜3である。cは好ましくは0〜3、より好ましくは0〜1である。dは好ましくは1〜9、より好ましくは4〜7である。eは好ましくは0〜5、より好ましくは0〜1である。   a is preferably 0 to 5, more preferably 1 to 3. b is preferably 1 to 5, more preferably 1 to 3. c is preferably 0 to 3, more preferably 0 to 1. d is preferably 1 to 9, more preferably 4 to 7. e is preferably 0 to 5, more preferably 0 to 1.

本発明の硬化性組成物中に含まれるポリシロキサン(B)の含有量は、本組成物中に含まれる(A)成分、(B)成分および(C)成分の合計を100質量%としたとき、好ましくは30〜95質量%であり、より好ましくは40〜90質量%であり、さらに好ましくは50〜80質量%である。ポリシロキサン(B)の含有量が前記範囲内であると、熱衝撃等に対して高い耐性を有し、クラックが生じにくい硬化物が形成されやすくなり、また組成物の硬化が十分に進行する。   The content of the polysiloxane (B) contained in the curable composition of the present invention is 100% by mass of the total of the component (A), the component (B) and the component (C) contained in the composition. When it is, it is preferably 30 to 95% by mass, more preferably 40 to 90% by mass, and further preferably 50 to 80% by mass. When the content of the polysiloxane (B) is within the above range, a cured product having high resistance to thermal shock and the like, which hardly causes cracks, is easily formed, and curing of the composition proceeds sufficiently. .

ポリシロキサン(B)は、ゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算の重量平均分子量が100〜50000の範囲にあることが好ましく、500〜5000の範囲にあることがより好ましい。ゲルパーミエーションクロマトグラフィーによる測定条件の詳細は実施例に記載のとおりである。ポリシロキサン(B)の重量平均分子量が前記範囲内にあると、本組成物を用いて封止材を製造する際に取扱いやすく、また本組成物から得られる硬化物は光半導体封止材として十分な材料強度および特性を有する。   Polysiloxane (B) preferably has a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography in the range of 100 to 50000, and more preferably in the range of 500 to 5000. Details of measurement conditions by gel permeation chromatography are as described in Examples. When the weight average molecular weight of the polysiloxane (B) is within the above range, it is easy to handle when producing a sealing material using the composition, and the cured product obtained from the composition is used as an optical semiconductor sealing material. Has sufficient material strength and properties.

ポリシロキサン(B)の製造方法としては、特開平6−9659号公報、特開2003−183582号公報、特開2007−008996号公報、特開2007−106798号公報、特開2007−169427号公報および特開2010−059359号公報等に記載された公知の方法、たとえば、各単位源となるクロロシランやアルコキシシランを共加水分解する方法や、共加水分解物をアルカリ金属触媒などにより平衡化反応する方法などが挙げられる。   As a method for producing the polysiloxane (B), JP-A-6-9659, JP-A-2003-183582, JP-A-2007-008996, JP-A-2007-106798, JP-A-2007-169427. And known methods described in JP 2010-059359 A, for example, a method of co-hydrolyzing chlorosilane and alkoxysilane serving as each unit source, and an equilibration reaction of the co-hydrolyzed product with an alkali metal catalyst or the like. The method etc. are mentioned.

ヒドロシリル化反応用触媒(C)
ヒドロシリル化反応用触媒(C)は、化合物(A)とポリシロキサン(B)とのヒドロシリル化反応の触媒である。
Catalyst for hydrosilylation reaction (C)
The hydrosilylation catalyst (C) is a catalyst for hydrosilylation reaction between the compound (A) and the polysiloxane (B).

ヒドロシリル化反応用触媒(C)としては、従来のヒドロシリル系ポリシロキサン組成物においてヒドロシリル化反応用触媒として使用されている触媒であれば特に制限されることなく使用することができる。   The hydrosilylation reaction catalyst (C) can be used without any particular limitation as long as it is a catalyst used as a hydrosilylation reaction catalyst in a conventional hydrosilyl polysiloxane composition.

ヒドロシリル化反応用触媒(C)の具体例としては、白金系触媒、ロジウム系触媒、パラジウム系触媒を挙げることができる。これらの中で、本組成物の硬化促進の観点から白金系触媒が好ましい。白金系触媒としては、たとえば、白金−アルケニルシロキサン錯体等が挙げられる。アルケニルシロキサンとしては、たとえば、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン等が挙げられる。特に、錯体の安定性の観点から、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサンが好ましい。 Specific examples of the hydrosilylation catalyst (C) include a platinum-based catalyst, a rhodium-based catalyst, and a palladium-based catalyst. Among these, a platinum-based catalyst is preferable from the viewpoint of promoting the curing of the present composition. Examples of the platinum-based catalyst include a platinum-alkenylsiloxane complex. Examples of the alkenylsiloxane include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane. Etc. In particular, from the viewpoint of stability of the complex, 1,3-divinyl-1,1,3,3-tetra- disiloxane is preferable.

本発明の硬化性組成物におけるヒドロシリル化反応用触媒(C)の含有量は、化合物(A)とポリシロキサン(B)とのヒドロシリル化反応が現実的に進行する量である。
本発明の硬化性組成物は、本発明の目的が達成されるかぎり、前記成分以外にも、必要に応じて、たとえば、フュームドシリカ、石英粉末等の微粒子状シリカ、酸化チタン、酸化亜鉛等の無機充填剤、シクロ−テトラメチルテトラビニルテトラシロキサン等の遅延剤、ジフェニルビス(ジメチルビニルシロキシ)シラン、フェニルトリス(ジメチルビニルシロキシ)シラン等の希釈剤、蛍光体、顔料、難燃剤、耐熱剤、酸化防止剤等を含有することができる。
The content of the hydrosilylation reaction catalyst (C) in the curable composition of the present invention is such that the hydrosilylation reaction between the compound (A) and the polysiloxane (B) can actually proceed.
As long as the object of the present invention is achieved, the curable composition of the present invention can contain, for example, fumed silica, fine particle silica such as quartz powder, titanium oxide, zinc oxide, etc. Inorganic filler, retarder such as cyclo-tetramethyltetravinyltetrasiloxane, diluent such as diphenylbis (dimethylvinylsiloxy) silane, phenyltris (dimethylvinylsiloxy) silane, phosphor, pigment, flame retardant, heat-resistant agent Further, an antioxidant and the like can be contained.

本発明の硬化性組成物は、前記各成分をミキサー等公知の方法により均一に混合することによって調製することができる。
本発明の硬化性組成物の25℃における粘度としては、好ましくは1〜1000000mPa・sであり、より好ましくは10〜10000mPa・sである。粘度がこの範囲内であると、本組成物の操作性が向上する。
The curable composition of this invention can be prepared by mixing each said component uniformly by well-known methods, such as a mixer.
As a viscosity in 25 degreeC of the curable composition of this invention, Preferably it is 1-1000000 mPa * s, More preferably, it is 10-10000 mPa * s. When the viscosity is within this range, the operability of the composition is improved.

本発明の硬化性組成物は、1液として調製することもできるし、2液に分けて調製し、使用時に2液を混合して使用することもできる。必要に応じて、アセチレンアルコール等の硬化抑制剤を少量添加してもよい。   The curable composition of the present invention can be prepared as one liquid, or can be prepared by dividing into two liquids, and the two liquids can be mixed and used at the time of use. If necessary, a small amount of a curing inhibitor such as acetylene alcohol may be added.

<硬化物>
本発明の硬化性組成物を硬化させることにより硬化物が得られる。本発明の硬化性組成物により半導体素子を封止し、これを硬化させれば、封止材である硬化物が得られる。
<Hardened product>
A cured product is obtained by curing the curable composition of the present invention. If a semiconductor element is sealed with the curable composition of the present invention and cured, a cured product as a sealing material is obtained.

本発明の硬化性組成物を硬化させる方法としては、たとえば、硬化性組成物を基板上に塗布した後、100〜180℃で1〜13時間加熱する方法などが挙げられる。
前述のとおり、本発明の硬化性組成物を硬化して得られる硬化物は、熱衝撃等に対して高い耐性を有し、過酷な環境下でもクラックを生じにくい。
Examples of the method for curing the curable composition of the present invention include a method in which the curable composition is applied on a substrate and then heated at 100 to 180 ° C. for 1 to 13 hours.
As described above, the cured product obtained by curing the curable composition of the present invention has high resistance to thermal shock and the like, and is less likely to crack even in a harsh environment.

<光半導体装置>
本発明の光半導体装置は、前記硬化性組成物を硬化して得られる硬化物を有する。たとえば、本発明の光半導体装置は、半導体発光素子と、該半導体発光素子を被覆する前記硬化物とを有する。本発明の光半導体装置は、半導体発光素子に前記硬化性組成物を被覆し、その組成物を硬化させることによって得られる。硬化性組成物を硬化させる方法は上述のとおりである。
光半導体装置としては、LED(Light Emitting Diode、発光ダイオード)およびLD(Laser Diode)等が挙げられる。
<Optical semiconductor device>
The optical semiconductor device of the present invention has a cured product obtained by curing the curable composition. For example, the optical semiconductor device of the present invention includes a semiconductor light emitting element and the cured product that covers the semiconductor light emitting element. The optical semiconductor device of the present invention is obtained by coating a semiconductor light emitting element with the curable composition and curing the composition. The method for curing the curable composition is as described above.
Examples of the optical semiconductor device include an LED (Light Emitting Diode) and an LD (Laser Diode).

図1は、本発明の光半導体装置の一具体例の模式図である。光半導体装置1は、銀電極
等である電極6と、電極6上に設置され、ワイヤー7により電極6と電気的に接続された半導体発光素子2と、半導体発光素子2を収容するように配置されたリフレクター3と、リフレクター3内に充填され、半導体発光素子2を封止する封止材4を有する。封止材4は、本発明の硬化性組成物を硬化させて得られる硬化物からなる。封止材4中には、シリカや蛍光体などの粒子5が分散されている。
FIG. 1 is a schematic view of a specific example of the optical semiconductor device of the present invention. The optical semiconductor device 1 is disposed so as to accommodate an electrode 6 such as a silver electrode, a semiconductor light emitting element 2 installed on the electrode 6 and electrically connected to the electrode 6 by a wire 7, and the semiconductor light emitting element 2. And the sealing material 4 which is filled in the reflector 3 and seals the semiconductor light emitting element 2. The sealing material 4 consists of hardened | cured material obtained by hardening the curable composition of this invention. In the sealing material 4, particles 5 such as silica and phosphor are dispersed.

前述のとおり、本発明の硬化性組成物を硬化して得られる硬化物は過酷な環境下でもクラックが生じにくいので、前記硬化物を封止材として有する光半導体装置は、熱衝撃が加わる条件下や高温高湿条件下などにおいても使用することが可能である。   As described above, the cured product obtained by curing the curable composition of the present invention is less susceptible to cracking even under harsh environments, so the optical semiconductor device having the cured product as a sealing material is subject to thermal shock. It can be used under low temperature and high temperature and high humidity conditions.

1.硬化性組成物の準備
1−1.構造解析
合成した化合物の構造は、29Si NMRおよび13C NMRにて算出した。
1−2.重量平均分子量
重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により下記条件で測定し、ポリスチレン換算値として求めた。
装置:HLC−8120C(東ソー社製)
カラム:TSK−gel MultiporeHXL−M(東ソー社製)
溶離液:THF、流量0.5mL/min、負荷量5.0%、100μL
1. Preparation of curable composition
1-1. Structural analysis The structure of the synthesized compound was calculated by 29 Si NMR and 13 C NMR.
1-2. Weight average molecular weight Weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC) under the following conditions and was determined as a polystyrene equivalent value.
Apparatus: HLC-8120C (manufactured by Tosoh Corporation)
Column: TSK-gel Multipore HXL-M (manufactured by Tosoh Corporation)
Eluent: THF, flow rate 0.5 mL / min, load 5.0%, 100 μL

1−3.各成分の合成
以下に挙げるシロキサン単位は、次に示す記号で示す。
M(Vi):(ViMe2SiO1/2
D(MePh):(MePhSiO2/2
D(MeEp):(MeEpSiO2/2
D(Ph):(Ph2SiO2/2
T(Ph):(PhSiO3/2
(Meはメチル基、Phはフェニル基、Viはビニル基、Epはエポキシ3−グリシドキシプロピル基を示す。)
1-3. Synthesis of each component The following siloxane units are indicated by the following symbols.
M (Vi): (ViMe 2 SiO 1/2 )
D (MePh) :( MePhSiO 2/2 )
D (MeEp) :( MeEpSiO 2/2 )
D (Ph) :( Ph 2 SiO 2/2 )
T (Ph) :( PhSiO 3/2 )
(Me represents a methyl group, Ph represents a phenyl group, Vi represents a vinyl group, and Ep represents an epoxy 3-glycidoxypropyl group.)

[合成例1]化合物(A1)の合成
反応釜にメチルフェニルジメトキシシラン455g、トリフルオロメタンスルホン酸0.1g、1,1,3,3−テトラメチルジシロキサン336gを入れ、次いで、酢酸180gを添加後、50℃で3時間反応させた。反応終了後、トルエンと水を用いて分液抽出し、下記に示す化合物(A1)を得た。
[Synthesis Example 1] Synthesis of Compound (A1) 455 g of methylphenyldimethoxysilane, 0.1 g of trifluoromethanesulfonic acid, 336 g of 1,1,3,3-tetramethyldisiloxane were added to the reaction kettle, and then 180 g of acetic acid was added. Then, it was made to react at 50 degreeC for 3 hours. After completion of the reaction, liquid separation extraction was performed using toluene and water to obtain a compound (A1) shown below.

Figure 0005660145
Figure 0005660145

[合成例2]化合物(A2)の合成
反応釜にメチルフェニルジメトキシシラン300g、トリフルオロメタンスルホン酸0.1g、1,1,3,3−テトラメチルジシロキサン450gを入れ、次いで、酢酸100gを添加後、50℃で3時間反応させた。反応終了後、トルエンと水を用いて分液抽出し、下記に示す化合物(A2)を得た。
[Synthesis Example 2] Synthesis of Compound (A2) 300 g of methylphenyldimethoxysilane, 0.1 g of trifluoromethanesulfonic acid, 450 g of 1,1,3,3-tetramethyldisiloxane were added to a reaction kettle, and then 100 g of acetic acid was added. Then, it was made to react at 50 degreeC for 3 hours. After completion of the reaction, liquid separation extraction was performed using toluene and water to obtain a compound (A2) shown below.

Figure 0005660145
Figure 0005660145

[合成例3]化合物(A3)の合成
反応釜にメチルフェニルジメトキシシラン656g、トリフルオロメタンスルホン酸0.1g、1,1,3,3−テトラメチルジシロキサン188gを入れ、次いで、酢酸280gを添加後、50℃で3時間反応させた。反応終了後、トルエンと水を用いて分液抽出し、下記に示す化合物(A3)を得た。
[Synthesis Example 3] Synthesis of Compound (A3) 656 g of methylphenyldimethoxysilane, 0.1 g of trifluoromethanesulfonic acid, 188 g of 1,1,3,3-tetramethyldisiloxane were added to the reaction kettle, and then 280 g of acetic acid was added. Then, it was made to react at 50 degreeC for 3 hours. After completion of the reaction, liquid separation extraction was performed using toluene and water to obtain a compound (A3) shown below.

Figure 0005660145
Figure 0005660145

[合成例4]化合物(D1)の合成
反応釜にジフェニルジメトキシシラン403g、トリフルオロメタンスルホン酸0.1g、1,1,3,3−テトラメチルジシロキサン450gを入れ、次いで、酢酸130gを添加後、50℃で3時間反応させた。反応終了後、トルエンと水を用いて分液抽出し、下記に示す化合物(D1)を得た。
[Synthesis Example 4] Synthesis of Compound (D1) 403 g of diphenyldimethoxysilane, 0.1 g of trifluoromethanesulfonic acid, 450 g of 1,1,3,3-tetramethyldisiloxane were added to the reaction kettle, and then 130 g of acetic acid was added. And reacted at 50 ° C. for 3 hours. After completion of the reaction, liquid separation extraction was performed using toluene and water to obtain a compound (D1) shown below.

Figure 0005660145
Figure 0005660145

[合成例5]化合物(D2)の合成
反応釜にジフェニルジメトキシシラン403g、ジメトキシメチルシラン40g、トリフルオロメタンスルホン酸0.1g、1,1,3,3−テトラメチルジシロキサン450gを入れ、次いで、酢酸130gを添加後、50℃で3時間反応させた。反応終了後、トルエンと水を用いて分液抽出し、下記に示す化合物(D2)を得た。
[Synthesis Example 5] Synthesis of Compound (D2) 403 g of diphenyldimethoxysilane, 40 g of dimethoxymethylsilane, 0.1 g of trifluoromethanesulfonic acid, 450 g of 1,1,3,3-tetramethyldisiloxane were placed in a reaction kettle, After adding 130 g of acetic acid, the mixture was reacted at 50 ° C. for 3 hours. After completion of the reaction, liquid separation extraction was performed using toluene and water to obtain a compound (D2) shown below.

Figure 0005660145
Figure 0005660145

[合成例6]ポリシロキサン(B1)の合成
反応釜に1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン186g、フェニルトリメトキシシラン594g、メチルフェニルジメトキシシラン182g、水180g、トリフルオロメタンスルホン酸0.8gおよびトルエン650gを入れ、1時間加熱還流した。次いで、3−グリシドキシプロピルメチルジメトキシシラン1gと水酸化カリウム0.6gとを加え、5時間加熱還流した。酸にて中和した後、水洗し、M(Vi)20molに対して、T(Ph)60mol、D(MePh)20molおよびD(MeEp)0.1molを含むポリシロキサン(B1)を得た。ポリシロキサン(B1)の重量平均分子量は、1,400であった。
[Synthesis Example 6] Synthesis of polysiloxane (B1) In a reaction kettle, 186 g of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 594 g of phenyltrimethoxysilane, 182 g of methylphenyldimethoxysilane, 180 g of water, The trifluoromethanesulfonic acid 0.8g and toluene 650g were put, and it heated and refluxed for 1 hour. Next, 1 g of 3-glycidoxypropylmethyldimethoxysilane and 0.6 g of potassium hydroxide were added and heated to reflux for 5 hours. After neutralizing with an acid, it was washed with water to obtain polysiloxane (B1) containing 60 mol of T (Ph), 20 mol of D (MePh) and 0.1 mol of D (MeEp) with respect to 20 mol of M (Vi). The weight average molecular weight of the polysiloxane (B1) was 1,400.

[合成例7]ポリシロキサン(B2)の合成
反応釜に1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン186g、フェニルトリメトキシシラン595g、ジフェニルジメトキシシラン244g、水200g、トリフルオロメタンスルホン酸0.8gおよびトルエン700gを入れ、1時間加熱還流した。次いで、水酸化カリウム0.6gを加え、5時間還流した。酢酸にて中和した後、水洗し、M(Vi)20molに対して、T(Ph)60molおよびD(Ph)20molを含むポリシロキサン(B2)を得た。ポリシロキサン(B2)の重量平均分子量は、1,500であった。
[Synthesis Example 7] Synthesis of polysiloxane (B2) In a reaction kettle, 186 g of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 595 g of phenyltrimethoxysilane, 244 g of diphenyldimethoxysilane, 200 g of water, trifluoro The solution was charged with 0.8 g of romethanesulfonic acid and 700 g of toluene and heated to reflux for 1 hour. Next, 0.6 g of potassium hydroxide was added and refluxed for 5 hours. After neutralizing with acetic acid, it was washed with water to obtain polysiloxane (B2) containing 60 mol of T (Ph) and 20 mol of D (Ph) with respect to 20 mol of M (Vi). The weight average molecular weight of the polysiloxane (B2) was 1,500.

[合成例8]化合物(D3)の合成
反応釜にジフェニルジメトキシシラン183g、トリフルオロメタンスルホン酸0.6g、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン140gを入れ、次いで、酢酸40gを添加後、50℃で3時間反応させた。反応終了後、トルエンと水を用いて分液抽出し、下記に示す化合物(D)を得た。
[Synthesis Example 8] Synthesis of Compound (D3) 183 g of diphenyldimethoxysilane, 0.6 g of trifluoromethanesulfonic acid, and 140 g of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane were placed in a reaction kettle. After adding 40 g of acetic acid, the mixture was reacted at 50 ° C. for 3 hours. After completion of the reaction, liquid separation extraction was performed using toluene and water to obtain a compound (D 3 ) shown below.

Figure 0005660145
Figure 0005660145

[合成例9]ポリシロキサン(B3)の合成
反応釜にフェニルトリメトキシシラン149g、ジフェニルジメトキシシラン183g、トリフルオロメタンスルホン酸0.6g、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン653gを加え、次いで、酢酸40gを添加後、50℃で3時間反応させた。反応終了後、トルエンと水を用いて分液抽出し、M(Vi)70molに対して、T(Ph)15molおよびD(Ph)15molを含むポリシロキサン(B3)を得た。ポリシロキサン(B3)の重量平均分子量は、500であった。
[Synthesis Example 9] Synthesis of polysiloxane (B3) In a reaction kettle, 149 g of phenyltrimethoxysilane, 183 g of diphenyldimethoxysilane, 0.6 g of trifluoromethanesulfonic acid, 1,3-divinyl-1,1,3,3-tetramethyl After adding 653 g of disiloxane and then adding 40 g of acetic acid, the mixture was reacted at 50 ° C. for 3 hours. After completion of the reaction, separation and extraction were performed using toluene and water to obtain polysiloxane (B3) containing 15 mol of T (Ph) and 15 mol of D (Ph) with respect to 70 mol of M (Vi). The weight average molecular weight of the polysiloxane (B3) was 500.

2.硬化性組成物の調製
[実施例1〜5、および比較例1〜3]
下記表1に示す成分を、表1に示す配合量で混合し、実施例1〜5および比較例1〜3の硬化性組成物を得た。表1中の「部」は質量部を示す。なお、ポリシロキサン(B)中のアルケニル基量に対する化合物(A)中のケイ素原子結合水素原子量のモル比は、すべて、1.05である。また、表1中の各成分の詳細は以下の通りである。
2. Preparation of curable composition [Examples 1 to 5 and Comparative Examples 1 to 3]
The components shown in Table 1 below were mixed in the blending amounts shown in Table 1 to obtain curable compositions of Examples 1 to 5 and Comparative Examples 1 to 3. “Parts” in Table 1 indicates parts by mass. Note that the molar ratios of the amount of silicon-bonded hydrogen atoms in the compound (A) to the amount of alkenyl groups in the polysiloxane (B) are all 1.05. The details of each component in Table 1 are as follows.

Figure 0005660145
ヒドロシリル化反触媒(C1):白金と1,3−ジビニル−1,1,3,3−テトラメチルジシロキサンとの錯体(白金金属量4質量%)
化合物(D4):シクロ−テトラメチルテトラビニルテトラシロキサン
化合物(D5):ジフェニルビス(ジメチルビニルシロキシ)シラン
化合物(D6):フェニルトリス(ジメチルビニルシロキシ)シラン
Figure 0005660145
Hydrosilylation Kahan Applied catalyst (C1): complex of platinum and 1,3-divinyl-1,1,3,3-tetramethyldisiloxane (platinum metal content 4% by weight)
Compound (D4): Cyclo-tetramethyltetravinyltetrasiloxane compound (D5): Diphenylbis (dimethylvinylsiloxy) silane compound (D6): Phenyltris (dimethylvinylsiloxy) silane

3.硬化性組成物の評価
実施例1〜5および比較例1〜3の硬化性組成物について、下記、(3−1)〜(3−)の手法にて、評価した。評価結果を表2に示す。
3−1.耐熱性
前記「2.硬化性組成物の調製」で得られた硬化性組成物を石英ガラス上に塗布した後、100℃で1時間、次いで150℃で5時間加熱し、石英ガラス上に膜厚1mmの硬化物を形成した。この硬化物を150℃で500時間保管した前後の外観を目視で観察し、耐熱性を評価した。評価は下記基準で行った。
A:保管前後で、色変化なし。
B:保管後、微黄色化した。
C:保管後、明らかに黄色化した。
3. Evaluation of Curable Composition The curable compositions of Examples 1 to 5 and Comparative Examples 1 to 3 were evaluated by the following methods (3-1) to ( 3-5 ). The evaluation results are shown in Table 2.
3-1. Heat resistance After the curable composition obtained in “2. Preparation of curable composition” was applied on quartz glass, it was heated at 100 ° C. for 1 hour and then at 150 ° C. for 5 hours to form a film on the quartz glass. A cured product having a thickness of 1 mm was formed. The appearance before and after storing the cured product at 150 ° C. for 500 hours was visually observed to evaluate heat resistance. Evaluation was performed according to the following criteria.
A: No color change before and after storage.
B: Slightly yellow after storage.
C: The yellow color was clearly observed after storage.

3−2.高温高湿試験後のクラック耐性
前記「2.硬化性組成物の調製」で得られた硬化性組成物をLEDパッケージ(表面実装型、トップビュータイプ)中に注入し、100℃で1時間、次いで150℃で5時間加熱し、LEDパッケージ中に硬化物が形成されたサンプル(以下、評価用サンプル1という)を10個作製した。得られた評価用サンプル1を恒温恒湿槽(エスペック製、商品名「PL−3KP」)に入れ、85℃85%RHの雰囲気下で8時間保持した後、はんだリフロー装置(千住金属工業株式会社製、商品名「STR−2010」)を用いて、260℃で20秒間加熱した(高温高湿試験)。高温高湿試験後の硬化物のクラックの有無を光学顕微鏡にて観察し、高温高湿試験後のクラック耐性を評価した。評価は下記基準で行った。
A:10個のサンプルのいずれにもクラックはなかった。
B:10個のサンプル中1〜4個のサンプルにクラックがあった。
C:10個のサンプル中5個以上のサンプルにクラックがあった。
3-2. Crack resistance after high-temperature and high-humidity test The curable composition obtained in “2. Preparation of curable composition” is injected into an LED package (surface-mount type, top-view type), and at 100 ° C. for 1 hour. Subsequently, it heated at 150 degreeC for 5 hours, and produced ten samples (henceforth the sample 1 for evaluation) in which the hardened | cured material was formed in the LED package. The obtained sample 1 for evaluation was placed in a thermo-hygrostat (product name “PL-3KP” manufactured by ESPEC) and held for 8 hours in an atmosphere of 85 ° C. and 85% RH, and then a solder reflow device (Senju Metal Industry Co., Ltd.) The product was heated at 260 ° C. for 20 seconds (high temperature and high humidity test) using a product name “STR-2010”). The presence or absence of cracks in the cured product after the high temperature and high humidity test was observed with an optical microscope, and the crack resistance after the high temperature and high humidity test was evaluated. Evaluation was performed according to the following criteria.
A: There were no cracks in any of the 10 samples.
B: There were cracks in 1 to 4 samples out of 10 samples.
C: There were cracks in 5 or more samples out of 10 samples.

3−3.ヒートサイクル試験後のクラック耐性
前記「2.硬化性組成物の調」で得られた硬化性組成物をLEDパッケージ(表面実装型、トップビュータイプ)中に注入し、100℃で1時間、次いで150℃で5時間加熱し、LEDパッケージ中に硬化物が形成されたサンプル(以下、評価用サンプル2という)を10個作製した。得られた評価用サンプル2に対し、冷熱衝撃試験装置(ESPEC社製、商品名「TOM17」)で、−40℃から100℃の加熱(加熱速度:1℃/秒)、100℃から−40℃の冷却(冷却速度:−1℃/秒)を1サイクルとする加熱および冷却試験を500サイクル行った(ヒートサイクル試験)。500サイクル後の硬化物のクラックの有無を光学顕微鏡にて観察し、ヒートサイクル試験後のクラック耐性を評価した。評価は下記基準で行った。
A:10個のサンプルのいずれにもクラックはなかった。
B:10個のサンプル中1〜4個のサンプルにクラックがあった。
C:10個のサンプル中5個以上のサンプルにクラックがあった。
3-3. Injecting crack resistance wherein after heat cycle test curable composition obtained in "2 tone made of the curable composition" LED package (surface mount, top-view type) in 1 hour at 100 ° C., Subsequently, it heated at 150 degreeC for 5 hours, and produced ten samples (henceforth the sample 2 for evaluation) in which the hardened | cured material was formed in the LED package. The obtained sample 2 for evaluation was heated from −40 ° C. to 100 ° C. (heating rate: 1 ° C./second) and 100 ° C. to −40 with a thermal shock test apparatus (trade name “TOM17” manufactured by ESPEC). 500 cycles of heating and cooling tests in which cooling at 0 ° C. (cooling rate: −1 ° C./second) was taken as one cycle were performed (heat cycle test). The presence or absence of cracks in the cured product after 500 cycles was observed with an optical microscope, and the crack resistance after the heat cycle test was evaluated. Evaluation was performed according to the following criteria.
A: There were no cracks in any of the 10 samples.
B: There were cracks in 1 to 4 samples out of 10 samples.
C: There were cracks in 5 or more samples out of 10 samples.

3−4.硫化水素に対するガスバリア性
前記「2.硬化性組成物の調製」で得られた硬化性組成物をLEDパッケージ(表面実装型、トップビュータイプ)中に注入し、100℃で1時間、次いで150℃で5時間加熱し、LEDパッケージ中に硬化物が形成されたサンプル(以下、評価用サンプル3という)を作製した。空気を90体積%および硫化水素を10体積%含む気体を満たした加熱容器内に評価用サンプル3を入れ、評価用サンプル3を80℃で24時間加熱した。加熱前後の評価用サンプル3のLEDパッケージの銀電極の外観を光学顕微鏡にて観察し、硫化水素に対するガスバリア性を評価した。評価は下記基準で行った。
A:加熱前後で、銀電極の色変化がなかった。
B:加熱後、銀電極部分が微黄色化した。
C:加熱後、銀電極部分が黒色化した。
3-4. Gas barrier property against hydrogen sulfide The curable composition obtained in the above “2. Preparation of curable composition” is injected into an LED package (surface mount type, top view type), 100 ° C. for 1 hour, and then 150 ° C. Was heated for 5 hours to prepare a sample in which a cured product was formed in the LED package (hereinafter referred to as evaluation sample 3). The evaluation sample 3 was placed in a heating container filled with a gas containing 90% by volume of air and 10% by volume of hydrogen sulfide, and the evaluation sample 3 was heated at 80 ° C. for 24 hours. The appearance of the silver electrode of the LED package of the sample 3 for evaluation before and after heating was observed with an optical microscope, and the gas barrier property against hydrogen sulfide was evaluated. Evaluation was performed according to the following criteria.
A: There was no color change of the silver electrode before and after heating.
B: The silver electrode part became slightly yellow after heating.
C: After heating, the silver electrode portion was blackened.

3−5.水蒸気に対するガスバリア性
前記「2.硬化性組成物の調製」で得られた硬化性組成物を剥離フィルム上で塗布した後、100℃で1時間、次いで150℃で5時間加熱し、剥離フィルムを剥離することで、膜厚200μmのフィルム状の硬化物を形成した。この硬化物をMOCON水蒸気透過率測定装置(MOCON社製、商品名「PERMATRAN−W3/31」)にて水蒸気透過量を測定し、(水蒸気透過量×膜厚)から拡散係数を算出することで、水蒸気に対するガスバリア性を評価した。評価は下記基準で行った。
A:水蒸気拡散係数が16未満。
B:水蒸気拡散係数が16〜20。
C:水蒸気拡散係数が20より大きい。
3-5. Gas barrier property against water vapor After the curable composition obtained in “2. Preparation of curable composition” was coated on a release film, the release film was heated at 100 ° C. for 1 hour and then at 150 ° C. for 5 hours. By peeling, a film-like cured product having a film thickness of 200 μm was formed. By measuring the water vapor transmission amount of this cured product with a MOCON water vapor transmission rate measuring device (manufactured by MOCON, trade name “PERMATRAN-W3 / 31”), and calculating the diffusion coefficient from (water vapor transmission amount × film thickness). The gas barrier property against water vapor was evaluated. Evaluation was performed according to the following criteria.
A: Water vapor diffusion coefficient is less than 16.
B: Water vapor diffusion coefficient is 16-20.
C: The water vapor diffusion coefficient is larger than 20.

Figure 0005660145
Figure 0005660145

本発明の硬化性組成物は、熱衝撃や高温高湿環境等に対して高い耐性を有し、クラックが生じにくい硬化物を形成できるので、光学用半導体素子および光半導体部材の封止剤、接着剤、ポッティング剤、保護コーティング剤、アンダーフィル剤等として有用である。   The curable composition of the present invention has high resistance to thermal shock, high temperature and high humidity environment, and can form a cured product that is less prone to cracking. Therefore, an optical semiconductor element and an encapsulant for an optical semiconductor member, It is useful as an adhesive, potting agent, protective coating agent, underfill agent and the like.

1 光半導体装置
2 半導体発光素子
3 リフレクター
4 封止材
5 粒子
6 電極
7 ワイヤー
DESCRIPTION OF SYMBOLS 1 Optical semiconductor device 2 Semiconductor light emitting element 3 Reflector 4 Sealing material 5 Particle 6 Electrode 7 Wire

Claims (4)

下記式(1)に示す化合物(A)、下記化学式(2)に示すポリシロキサン(B)、およびヒドロシリル化反応用触媒(C)を含有することを特徴とする硬化性組成物。
Figure 0005660145
(式中、nは1以上の整数を示す。R1およびR2は炭素数1〜4のアルキル基を示す。Arはアリール基を示す。)
Figure 0005660145
(式中、R3、R5およびR6はそれぞれ独立にアルキル基、アルケニル基、アリール基、または、エポキシ基を含む基、を示す。ただし、すべてのR3およびR6のうちの少なくとも2つはアルケニル基であり、R5は、そのR5が結合するケイ素原子に結合するもう1つのR5がアリール基であるとき、炭素数1〜4のアルキル基およびアリール基ではない。R4はそれぞれ独立に炭素数1〜4のアルキル基またはアリール基を示し、R4のうち少なくとも1つはアリール基を示す。Xは水素原子または炭素数1〜3のアルキル基を示す。a、c、eおよびfはそれぞれ独立に0以上の整数を示す。bおよびdはそれぞれ独立に1以上の整数を示す。ただし、aが0であるとき、dは2以上の整数である。)
A curable composition comprising a compound (A) represented by the following formula (1), a polysiloxane (B) represented by the following chemical formula (2), and a hydrosilylation catalyst (C).
Figure 0005660145
(In the formula, n represents an integer of 1 or more. R 1 and R 2 represent an alkyl group having 1 to 4 carbon atoms. Ar represents an aryl group.)
Figure 0005660145
(In the formula, R 3, R 5 and R 6 each independently represent an alkyl group, an alkenyl group, an aryl group or a group containing an epoxy group, a. Provided that at least 2 of all R 3 and R 6 one is an alkenyl group, R 5 may then another R 5 bonded to the silicon atom to which R 5 is attached is an aryl group, .R 4 not alkyl groups and aryl groups of 1 to 4 carbon atoms Each independently represents an alkyl or aryl group having 1 to 4 carbon atoms, and at least one of R 4 represents an aryl group, X represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, a, c , E and f each independently represents an integer of 0 or more, b and d each independently represents an integer of 1 or more, provided that when a is 0, d is an integer of 2 or more.)
前記化学式(2)のR4がアリール基である請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein R 4 in the chemical formula (2) is an aryl group. 請求項1または2に記載の硬化性組成物を硬化して得られる硬化物。   A cured product obtained by curing the curable composition according to claim 1. 請求項3に記載の硬化物を有する光半導体装置。   An optical semiconductor device having the cured product according to claim 3.
JP2013007112A 2012-04-03 2013-01-18 Curable composition, cured product, and optical semiconductor device Active JP5660145B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013007112A JP5660145B2 (en) 2012-04-03 2013-01-18 Curable composition, cured product, and optical semiconductor device
TW102110411A TWI513766B (en) 2012-04-03 2013-03-25 Curable composition, cured product and optical semiconductor device
KR1020130035075A KR20130112761A (en) 2012-04-03 2013-04-01 Curable composition, cured product and photo-semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012084723 2012-04-03
JP2012084723 2012-04-03
JP2013007112A JP5660145B2 (en) 2012-04-03 2013-01-18 Curable composition, cured product, and optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2013231160A JP2013231160A (en) 2013-11-14
JP5660145B2 true JP5660145B2 (en) 2015-01-28

Family

ID=49677887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013007112A Active JP5660145B2 (en) 2012-04-03 2013-01-18 Curable composition, cured product, and optical semiconductor device

Country Status (2)

Country Link
JP (1) JP5660145B2 (en)
TW (1) TWI513766B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015136820A1 (en) * 2014-03-12 2017-04-06 横浜ゴム株式会社 Curable resin composition
EP3953420B1 (en) * 2019-04-10 2024-01-03 Henkel AG & Co. KGaA Thermally conductive silicone potting composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908736B2 (en) * 2003-10-01 2012-04-04 東レ・ダウコーニング株式会社 Curable organopolysiloxane composition and semiconductor device
JP4503271B2 (en) * 2003-11-28 2010-07-14 東レ・ダウコーニング株式会社 Method for producing silicone laminate
JP4961828B2 (en) * 2006-05-12 2012-06-27 ソニー株式会社 Method for producing nanoparticle-resin composite material
JP5667740B2 (en) * 2008-06-18 2015-02-12 東レ・ダウコーニング株式会社 Curable organopolysiloxane composition and semiconductor device
KR101251553B1 (en) * 2010-01-18 2013-04-08 한국과학기술원 Siloxane Resin Composition for LED Encapsulants
JP5524017B2 (en) * 2010-10-08 2014-06-18 信越化学工業株式会社 Addition-curable silicone composition and semiconductor device in which semiconductor element is coated with cured product of the composition
US20130256742A1 (en) * 2010-12-08 2013-10-03 Dow Corning Corporation Siloxane-Compositions Including Metal-Oxide Nanoparticles Suitable For Forming Encapsulants
KR101334349B1 (en) * 2011-12-15 2013-11-29 한국과학기술연구원 Heat-curable siloxane encapsulant components

Also Published As

Publication number Publication date
TWI513766B (en) 2015-12-21
JP2013231160A (en) 2013-11-14
TW201341472A (en) 2013-10-16

Similar Documents

Publication Publication Date Title
KR101589936B1 (en) Curable organopolysiloxane composition and semiconductor device
KR101722123B1 (en) Curable organopolysiloxane composition and optical semiconductor device
KR101722089B1 (en) Curable organopolysiloxane composition and optical semiconductor device
KR101472829B1 (en) Curable composition, cured product, photo-semiconductor device, and polysiloxane
TWI506095B (en) Additional hardened siloxane composition, optical element sealing material, and optical element
JP2013139547A (en) Curable composition, cured product, and optical semiconductor device
EP3587498B1 (en) Curable organopolysiloxane composition and semiconductor device
KR20140145177A (en) Curable silicone composition, cured product thereof, and optical semiconductor device
KR20140017447A (en) Addition-curable silicone composition, and semiconductor device having semiconductor element coated with cured product of said composition
JP5858027B2 (en) Curable composition, cured product, and optical semiconductor device
JP5696798B2 (en) Polysiloxane
JP2011225715A (en) Curable organopolysiloxane composition
JP7158100B2 (en) Crosslinkable organopolysiloxane composition, cured product thereof, and LED device
TW201910432A (en) Curable organic polyoxane composition and optical semiconductor device
JP5660145B2 (en) Curable composition, cured product, and optical semiconductor device
JP5368379B2 (en) Curable organopolysiloxane composition and semiconductor device using the same
JP5621819B2 (en) Curable composition, cured product, and optical semiconductor device
JP2012052025A (en) Thermosetting resin composition and cured product of the same
TW202024236A (en) Addition-curable silicone composition and semiconductor device
TW202010780A (en) Curable organopolysiloxane composition, encapsulant, and semiconductor device
JP6905486B2 (en) Additive-curable silicone compositions, silicone cured products, and semiconductor devices
KR20130062869A (en) Curable composition, cured product, and optical semiconductor device
KR101594343B1 (en) Curable composition and method for producing thereof, cured product, and optical semiconductor device
KR101733960B1 (en) Curable composition, cured product and photo-semiconductor device
KR20130112761A (en) Curable composition, cured product and photo-semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5660145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250