JP5315361B2 - Method for manufacturing light emitting device - Google Patents

Method for manufacturing light emitting device Download PDF

Info

Publication number
JP5315361B2
JP5315361B2 JP2011008084A JP2011008084A JP5315361B2 JP 5315361 B2 JP5315361 B2 JP 5315361B2 JP 2011008084 A JP2011008084 A JP 2011008084A JP 2011008084 A JP2011008084 A JP 2011008084A JP 5315361 B2 JP5315361 B2 JP 5315361B2
Authority
JP
Japan
Prior art keywords
vapor deposition
chamber
substrate
light
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011008084A
Other languages
Japanese (ja)
Other versions
JP2011117083A (en
Inventor
舜平 山崎
健司 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2011008084A priority Critical patent/JP5315361B2/en
Publication of JP2011117083A publication Critical patent/JP2011117083A/en
Application granted granted Critical
Publication of JP5315361B2 publication Critical patent/JP5315361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/32Processes for applying liquids or other fluent materials using means for protecting parts of a surface not to be coated, e.g. using stencils, resists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • C23C14/044Coating on selected surface areas, e.g. using masks using masks using masks to redistribute rather than totally prevent coating, e.g. producing thickness gradient
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明は、陽極、陰極及びそれらの間にEL(Electro Luminescence)が得られる発光性材料、特に自発光性有機材料(以下、有機EL材料という)を挟んだ構造からなるEL素子の作製に用いる成膜装置及び成膜方法に関する。   The present invention is used for manufacturing an EL element having a structure in which an anode, a cathode, and a luminescent material from which EL (Electro Luminescence) is obtained, in particular, a self-emitting organic material (hereinafter referred to as an organic EL material) is sandwiched. The present invention relates to a film forming apparatus and a film forming method.

なお、上記有機EL材料は、一重項励起もしくは三重項励起または両者の励起を経由して発光(燐光および/または蛍光)するすべての発光性有機材料を含むものとする。   The organic EL material includes all light-emitting organic materials that emit light (phosphorescence and / or fluorescence) via singlet excitation, triplet excitation, or both excitation.

近年、有機EL材料のEL現象を利用した自発光素子としてEL素子を用いた表示装置(以下、EL表示装置という)の開発が進んでいる。EL表示装置は自発光型であるため、液晶表示装置のようなバックライトが不要であり、さらに視野角が広いため、屋外で使用する携帯型機器の表示部として有望視されている。   In recent years, a display device using an EL element as a self-luminous element using the EL phenomenon of an organic EL material (hereinafter referred to as an EL display device) has been developed. Since the EL display device is a self-luminous type, it does not require a backlight like a liquid crystal display device, and further has a wide viewing angle, and thus is promising as a display unit of a portable device used outdoors.

EL表示装置にはパッシブ型(単純マトリクス型)とアクティブ型(アクティブマトリクス型)の二種類があり、どちらも盛んに開発が行われている。特に現在はアクティブマトリクス型EL表示装置が注目されている。また、EL素子の発光層となるEL材料は、有機材料と無機材料があり、さらに有機材料は低分子系(モノマー系)有機EL材料と高分子系(ポリマー系)有機EL材料とに分けられる。両者ともに盛んに研究されているが、低分子系有機EL材料は主に蒸着法で成膜され、高いポリマー系有機EL材料は主に塗布法で成膜される。   There are two types of EL display devices, a passive type (simple matrix type) and an active type (active matrix type), both of which are actively developed. In particular, active matrix EL display devices are currently attracting attention. In addition, EL materials used as a light emitting layer of an EL element include an organic material and an inorganic material, and the organic material is further classified into a low molecular (monomer) organic EL material and a high molecular (polymer) organic EL material. . Although both are actively studied, low molecular organic EL materials are mainly formed by vapor deposition, and high polymer organic EL materials are mainly formed by coating.

カラー表示のEL表示装置を作製するためには、異なる発色をするEL材料を画素ごとに分けて成膜する必要がある。しかしながら、一般的にEL材料は水及び酸素に弱く、フォトリソグラフィによるパターニングができない。そのため、成膜と同時にパターン化することが必要となる。   In order to fabricate an EL display device for color display, it is necessary to form EL materials having different colors for each pixel. However, EL materials are generally weak against water and oxygen and cannot be patterned by photolithography. Therefore, it is necessary to form a pattern simultaneously with the film formation.

最も一般的な方法は、開口部を設けた金属板もしくはガラス板からなるマスク(以下、シャドーマスクという)を、成膜を行う基板と蒸着源との間に設ける方法である。この場合、蒸着源から気化したEL材料が開口部だけを通過して選択的に成膜されるため、成膜と同時にパターン化されたEL層を形成することが可能である。   The most common method is a method in which a mask made of a metal plate or glass plate (hereinafter referred to as a shadow mask) provided with an opening is provided between a substrate on which a film is formed and an evaporation source. In this case, since the EL material vaporized from the evaporation source passes through only the opening and is selectively formed, it is possible to form a patterned EL layer simultaneously with the film formation.

従来の蒸着装置は一つの蒸着源から放射状に飛んだEL材料が基板上に堆積されて薄膜を形成していたため、EL材料の飛行距離を考慮して基板の配置を工夫していた。例えば、円錐形の基板ホルダに基板を固定することで蒸着源から基板までの距離を全て等しくするといった工夫が行われていた。   In the conventional vapor deposition apparatus, the EL material flying radially from one vapor deposition source is deposited on the substrate to form a thin film. Therefore, the arrangement of the substrate has been devised in consideration of the flight distance of the EL material. For example, a device has been devised in which all the distances from the vapor deposition source to the substrate are made equal by fixing the substrate to a conical substrate holder.

しかしながら、大型基板上に複数のパネルを作製する多面取りプロセスを採用する場合には、上述の方法を行うと基板ホルダが非常に大きくなってしまい、成膜装置本体の大型化を招いてしまう。また、枚葉式で行うにも基板が平板であるため、蒸着源からの距離が基板の面内で異なり、均一な膜厚で成膜することが困難であるという問題が残る。   However, in the case of adopting a multi-chamfering process for producing a plurality of panels on a large substrate, if the above-described method is used, the substrate holder becomes very large, resulting in an increase in size of the film forming apparatus main body. In addition, since the substrate is a flat plate even in the single-wafer method, the distance from the evaporation source differs in the plane of the substrate, and it is difficult to form a film with a uniform film thickness.

さらに、大型基板を用いる場合には蒸着源とシャドーマスクとの距離を長くしないと気化されたEL材料が十分に広がらず、基板全面に均一に薄膜を形成することが困難となる。この距離の確保も装置の大型化を助長している。   Furthermore, when a large substrate is used, the vaporized EL material does not spread sufficiently unless the distance between the vapor deposition source and the shadow mask is increased, and it becomes difficult to form a thin film uniformly on the entire surface of the substrate. Ensuring this distance also helps to increase the size of the device.

本発明は上記問題点を鑑みてなされたものであり、高いスループットで膜厚分布の均一性の高い薄膜を成膜できる成膜装置を提供することを課題とする。また、本発明の成膜装置を用いた成膜方法を提供することを課題とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a film forming apparatus capable of forming a thin film with high throughput and high uniformity of film thickness distribution. It is another object of the present invention to provide a film forming method using the film forming apparatus of the present invention.

本発明は、長手方向を有する蒸着セル(蒸着する薄膜の材料を入れる部分)もしくは複数個の蒸着セルを設けた蒸着源を用い、この蒸着源を蒸着源の長手方向と垂直な方向に移動させることで薄膜を成膜することを特徴とする。なお、「長手方向を有する」とは、形状が細長い長方形、細長い楕円形もしくは線状であることを指している。本発明の場合、長手方向の長さが成膜される基板の一辺の長さよりも長いと一括で処理できるため好ましい。具体的には300mm〜1200mm(典型的には600〜800mm)であると良い。   The present invention uses a vapor deposition cell having a longitudinal direction (a portion into which a material for a thin film to be deposited) or a plurality of vapor deposition cells is provided, and moves the vapor deposition source in a direction perpendicular to the longitudinal direction of the vapor deposition source. Thus, a thin film is formed. Note that “having a longitudinal direction” means that the shape is an elongated rectangle, an elongated ellipse, or a line. In the case of the present invention, it is preferable that the length in the longitudinal direction is longer than the length of one side of the substrate on which the film is formed, since the treatment can be performed collectively. Specifically, it is good that it is 300 mm to 1200 mm (typically 600 to 800 mm).

本発明の蒸着源と基板との位置関係を図1に示す。図1において、図1(A)
は上面図、図1(B)は図1(A)をA−A’で切断した断面図、図1(C)は図1(A)をB−B’で切断した断面図である。なお、図1(A)〜(C)において符号は共通のものを用いている。
The positional relationship between the vapor deposition source and the substrate of the present invention is shown in FIG. In FIG. 1, FIG.
FIG. 1B is a cross-sectional view taken along line AA ′ of FIG. 1A, and FIG. 1C is a cross-sectional view taken along line BB ′ of FIG. 1A. In FIGS. 1A to 1C, common reference numerals are used.

図1(A)に示すように、基板101の下方にはシャドーマスク102が設置され、さらにその下方には複数の蒸着セル103が一直線上に並べられた長方形の蒸着源104が設置されている。なお、本明細書において基板とは、基板とその上に形成された薄膜も含めて基板とする。また、基板の表面とは、薄膜を形成する基板面のことを指す。   As shown in FIG. 1A, a shadow mask 102 is installed below the substrate 101, and a rectangular deposition source 104 in which a plurality of deposition cells 103 are arranged in a straight line is installed below the shadow mask 102. . Note that in this specification, a substrate includes a substrate and a thin film formed thereon. Further, the surface of the substrate refers to a substrate surface on which a thin film is formed.

蒸着源104の長手方向の長さは基板101の1辺の長さよりも長く、矢印方向(蒸着源104の長手方向と垂直な方向)へ蒸着源104を移動させる機構を備えている。そして、蒸着源104を移動させることで基板全面に薄膜を成膜できるようになっている。なお、長手方向の長さが基板の1辺よりも短い場合は、数回の走査を繰り返して薄膜を形成すれば良い。また、蒸着源104を繰り返し移動させることにより同一の薄膜を数回積層しても構わない。   The length in the longitudinal direction of the vapor deposition source 104 is longer than the length of one side of the substrate 101, and a mechanism for moving the vapor deposition source 104 in the arrow direction (direction perpendicular to the longitudinal direction of the vapor deposition source 104) is provided. A thin film can be formed on the entire surface of the substrate by moving the vapor deposition source 104. If the length in the longitudinal direction is shorter than one side of the substrate, the thin film may be formed by repeating several scans. Further, the same thin film may be stacked several times by repeatedly moving the vapor deposition source 104.

個々の蒸着セル103にて気化した薄膜材料は上方に飛散し、シャドーマスク102に設けられた開口部(図示せず)を通って基板101に堆積される。こうして基板101には選択的に薄膜が成膜される。このとき、蒸着セル103から飛散した薄膜材料が成膜される領域は隣接する他の蒸着セルから飛散した薄膜材料が成膜される領域と重なるようにする。互いに成膜される領域を重ねることで最終的には長方形の領域で成膜されることになる。   The thin film material evaporated in each vapor deposition cell 103 is scattered upward and deposited on the substrate 101 through an opening (not shown) provided in the shadow mask 102. Thus, a thin film is selectively formed on the substrate 101. At this time, the region where the thin film material scattered from the vapor deposition cell 103 is formed is overlapped with the region where the thin film material scattered from another adjacent vapor deposition cell is formed. By overlapping the regions to be formed with each other, the film is finally formed in a rectangular region.

このように本発明は複数個の蒸着セルを並べた蒸着源を用いることで、従来の点からの放射ではなく線からの放射となり、薄膜の膜厚の均一性を大幅に向上させることができる。さらに、長方形の蒸着源を基板面の下方にて移動させることで高スループットで成膜を行うことができる。   As described above, the present invention uses a vapor deposition source in which a plurality of vapor deposition cells are arranged, so that radiation from a line is used instead of radiation from a conventional point, and the film thickness uniformity can be greatly improved. . Furthermore, film formation can be performed with high throughput by moving a rectangular deposition source below the substrate surface.

さらに、本発明によれば蒸着源104とシャドーマスク102との距離を長くする必要がなく、非常に近接した状態で蒸着を行うことが可能である。これは蒸着セルが並んで複数設けられているため、薄膜材料の飛散距離が短くても基板の中心部から端部に至るまでを同時に成膜することが出来るためである。この効果は蒸着セル103が密に並んでいるほど高い。   Furthermore, according to the present invention, it is not necessary to increase the distance between the vapor deposition source 104 and the shadow mask 102, and vapor deposition can be performed in a very close state. This is because a plurality of vapor deposition cells are provided side by side, so that the film can be formed simultaneously from the center to the end of the substrate even if the scattering distance of the thin film material is short. This effect is higher as the deposition cells 103 are arranged more closely.

蒸着源104とシャドーマスク102との距離は蒸着セル103を設ける密度によっても異なるため特に限定はない。しかし近すぎると基板の中心部から端部までを均一に成膜することが困難となり、遠すぎると従来の点からの放射による蒸着と変わらなくなってしまう。そのため、蒸着セル103同士の間隔をaとすると、蒸着源104とシャドーマスク102との距離は2a〜100a(好ましくは5a〜50a)とすることが望ましい。   The distance between the vapor deposition source 104 and the shadow mask 102 is not particularly limited because it varies depending on the density at which the vapor deposition cells 103 are provided. However, if it is too close, it becomes difficult to form a film uniformly from the center to the end of the substrate, and if it is too far, it will not be different from the conventional vapor deposition by radiation. Therefore, when the distance between the vapor deposition cells 103 is a, the distance between the vapor deposition source 104 and the shadow mask 102 is desirably 2a to 100a (preferably 5a to 50a).

以上のような構成からなる本発明の成膜装置は、蒸着源を用いることで長方形、楕円形もしくは線状の領域において薄膜の膜厚分布の均一性を確保し、その上で蒸着源を移動させることで基板全面に均一性の高い薄膜を成膜することが可能である。また、点からの蒸着でないため、蒸着源と基板との距離を短くすることができ、さらに膜厚の均一性を高めることができる。   The film forming apparatus of the present invention configured as described above uses a vapor deposition source to ensure the uniformity of the thin film thickness distribution in a rectangular, elliptical, or linear region, and then moves the vapor deposition source thereon. By doing so, a highly uniform thin film can be formed on the entire surface of the substrate. Moreover, since it is not vapor deposition from a point, the distance of a vapor deposition source and a board | substrate can be shortened, and the uniformity of a film thickness can be improved further.

また、本発明の成膜装置にチャンバー内にてプラズマを発生させる手段を設けることは有効である。酸素ガスによるプラズマ処理もしくはフッ素を含むガスによるプラズマ処理を行うことで、チャンバー壁に成膜された薄膜を除去し、チャンバー内のクリーニングを行うことができる。プラズマを発生させる手段としては、チャンバー内に平行平板の電極を設けて、その間でプラズマを発生させれば良い。   It is also effective to provide a means for generating plasma in the chamber in the film forming apparatus of the present invention. By performing the plasma treatment with oxygen gas or the plasma treatment with a gas containing fluorine, the thin film formed on the chamber wall can be removed and the inside of the chamber can be cleaned. As means for generating plasma, parallel plate electrodes may be provided in the chamber, and plasma may be generated therebetween.

本発明の成膜装置を用いることで、基板面内において膜厚分布の均一性の高い薄膜を高いスループットで成膜することが可能となる。   By using the film forming apparatus of the present invention, it is possible to form a thin film with high uniformity of film thickness distribution on the substrate surface with high throughput.

蒸着源の構成を示す図。The figure which shows the structure of a vapor deposition source. 蒸着室の構造を示す図。The figure which shows the structure of a vapor deposition chamber. 蒸着室の構造を示す図。The figure which shows the structure of a vapor deposition chamber. 成膜装置の構造を示す図。The figure which shows the structure of the film-forming apparatus. 成膜装置の構造を示す図。The figure which shows the structure of the film-forming apparatus. 成膜装置の構造を示す図。The figure which shows the structure of the film-forming apparatus. 成膜装置の構造を示す図。The figure which shows the structure of the film-forming apparatus. 成膜装置の構造を示す図。The figure which shows the structure of the film-forming apparatus.

本発明の成膜装置に備えられる蒸着室の構成について図2に示す。図2(A)
は蒸着室の上面図であり、図2(B)は断面図である。なお、共通の部分には共通の符号を使うものとする。また、本実施の形態では薄膜としてEL(エレクトロルミネッセンス)膜を成膜する例を示す。
The structure of the vapor deposition chamber provided in the film forming apparatus of the present invention is shown in FIG. FIG. 2 (A)
Is a top view of the vapor deposition chamber, and FIG. 2B is a cross-sectional view. In addition, a common code | symbol shall be used for a common part. In this embodiment mode, an example of forming an EL (electroluminescence) film as a thin film is shown.

図2(A)において、201はチャンバー、202は基板搬送口であり、ここから基板がチャンバー201の内部に搬送される。搬送された基板203は基板ホルダ204に載せられ、搬送レール205によって矢印205で示すように成膜部206へと搬送される。   In FIG. 2A, 201 is a chamber and 202 is a substrate transfer port, from which a substrate is transferred into the chamber 201. The transferred substrate 203 is placed on the substrate holder 204 and transferred to the film forming unit 206 by the transfer rail 205 as indicated by an arrow 205.

成膜部206に基板203が搬送されると、マスクホルダ207に固定されたシャドーマスク208が基板203に近づく。なお、本実施形態ではシャドーマスク208の材料として金属板を用いる。((図2(B))また、本実施形態ではシャドーマスク208には開口部209が長方形、楕円形もしくは線状に形成されている。勿論、開口部の形状はこれに限定されるものではなく、マトリクス状もしくは網目状に形成されていても構わない。   When the substrate 203 is transferred to the film forming unit 206, the shadow mask 208 fixed to the mask holder 207 approaches the substrate 203. In this embodiment, a metal plate is used as the material for the shadow mask 208. ((FIG. 2B)) In this embodiment, the opening 209 is formed in a rectangular, elliptical, or linear shape in the shadow mask 208. Of course, the shape of the opening is not limited to this. Alternatively, it may be formed in a matrix shape or a mesh shape.

このとき、本実施形態では、図2(B)に示すように基板203に電磁石210が近接するような構造とする。電磁石210により磁場を形成すると、シャドーマスク208が基板203の方へと引き寄せられ、所定の間隔をもって保持される。この間隔は図3に示すようにシャドーマスク208に設けられた複数の突起301により確保される。   At this time, in this embodiment, as shown in FIG. 2B, the electromagnet 210 is close to the substrate 203. When a magnetic field is formed by the electromagnet 210, the shadow mask 208 is drawn toward the substrate 203 and held at a predetermined interval. This interval is ensured by a plurality of protrusions 301 provided on the shadow mask 208 as shown in FIG.

このような構造は、基板203が300mmを超える大型基板である場合において特に有効である。基板203が大型化すると、基板の自重によりたわみが生じる。しかしながら、電磁石210によりシャドーマスク208を基板203側に引き寄せれば、基板203も電磁石210に引き寄せられ、たわみを解消することができる。但し、図4に示すように電磁石210にも突起401を設け、基板203と電磁石210との間隔を確保することが好ましい。   Such a structure is particularly effective when the substrate 203 is a large substrate exceeding 300 mm. When the substrate 203 is increased in size, deflection occurs due to the weight of the substrate. However, if the shadow mask 208 is pulled toward the substrate 203 by the electromagnet 210, the substrate 203 is also pulled toward the electromagnet 210, and the deflection can be eliminated. However, as shown in FIG. 4, it is preferable that the electromagnet 210 is also provided with a protrusion 401 to ensure a space between the substrate 203 and the electromagnet 210.

こうして基板203とシャドーマスク208との間隔が確保されたら、長手方向を有する蒸着セル211を設けた蒸着源212を矢印213の方向へ移動させる。移動させる間、蒸着セルの内部に設けられたEL材料は蒸着セルが加熱されることにより気化し、成膜部206のチャンバー内へと飛散する。但し、本発明の場合、蒸着源212と基板203との距離を非常に短いものとすることができるため、チャンバー内の駆動部(蒸着源、基板ホルダもしくはマスクホルダを駆動する部分)へのEL材料の付着を最小限に抑えることができる。   When the space between the substrate 203 and the shadow mask 208 is secured in this way, the vapor deposition source 212 provided with the vapor deposition cell 211 having the longitudinal direction is moved in the direction of the arrow 213. During the movement, the EL material provided in the vapor deposition cell is vaporized by heating the vapor deposition cell and is scattered into the chamber of the film formation unit 206. However, in the case of the present invention, since the distance between the vapor deposition source 212 and the substrate 203 can be made very short, the EL to the drive unit (the portion that drives the vapor deposition source, the substrate holder or the mask holder) in the chamber. Material adhesion can be minimized.

蒸着源212は基板203の一端から他端まで走査される。本実施形態では、図2(A)に示すように、蒸着源212の長手方向の長さが十分に長いため、1回の走査で基板203の全面を移動させることができる。   The deposition source 212 is scanned from one end of the substrate 203 to the other end. In this embodiment, as shown in FIG. 2A, since the length of the evaporation source 212 in the longitudinal direction is sufficiently long, the entire surface of the substrate 203 can be moved by one scan.

以上のようにして、赤、緑もしくは青のEL材料(ここでは赤)を成膜したら、電磁石210の磁場を消し、マスクホルダ207を下げて、シャドーマスク208と基板203との距離を離す。そして、基板ホルダ204を一画素分ずらして、再びマスクホルダ207を上げ、シャドーマスク208と基板203とを近づける。さらに、電磁石210により磁場を形成して、シャドーマスク208及び基板203のたわみを解消する。その後、蒸着セルを切り換えて再び赤、緑もしくは青のEL材料(ここでは緑)を成膜する。   When a red, green, or blue EL material (here, red) is formed as described above, the magnetic field of the electromagnet 210 is turned off, the mask holder 207 is lowered, and the distance between the shadow mask 208 and the substrate 203 is increased. Then, the substrate holder 204 is shifted by one pixel, the mask holder 207 is raised again, and the shadow mask 208 and the substrate 203 are brought closer to each other. Further, a magnetic field is formed by the electromagnet 210 to eliminate the deflection of the shadow mask 208 and the substrate 203. Thereafter, the deposition cell is switched to form a red, green or blue EL material (here, green) again.

なお、ここでは基板ホルダ204を一画素分ずらす構成としたが、マスクホルダ204を一画素部ずらしても構わない。   Here, the substrate holder 204 is shifted by one pixel, but the mask holder 204 may be shifted by one pixel.

このような繰り返しにより赤、緑もしくは青のEL材料をすべて成膜したら、最後に基板203を基板搬送口202の方へ搬送し、チャンバー201からロボットアーム(図示せず)にて取り出す。以上で本発明を用いたEL膜の成膜が完了する。   When all the red, green, and blue EL materials are formed by repeating such processes, the substrate 203 is finally transferred toward the substrate transfer port 202 and taken out from the chamber 201 by a robot arm (not shown). This completes the formation of the EL film using the present invention.

本発明の成膜装置について図5を用いて説明する。図5において、501は搬送室であり、搬送室501には搬送機構502が備えられ、基板503の搬送が行われる。搬送室501は減圧雰囲気にされており、各処理室とはゲートによって連結されている。各処理室への基板の受け渡しは、ゲートを開けた際に搬送機構502によって行われる。また、搬送室501を減圧するには、油回転ポンプ、メカニカルブースターポンプ、ターボ分子ポンプ若しくはクライオポンプなどの排気ポンプを用いることが可能であるが、水分の除去に効果的なクライオポンプが好ましい。   The film forming apparatus of the present invention will be described with reference to FIG. In FIG. 5, reference numeral 501 denotes a transfer chamber. The transfer chamber 501 is provided with a transfer mechanism 502, and the substrate 503 is transferred. The transfer chamber 501 is in a reduced pressure atmosphere and is connected to each processing chamber by a gate. The transfer of the substrate to each processing chamber is performed by the transfer mechanism 502 when the gate is opened. In order to decompress the transfer chamber 501, an exhaust pump such as an oil rotary pump, a mechanical booster pump, a turbo molecular pump, or a cryopump can be used, but a cryopump effective for removing moisture is preferable.

以下に、各処理室についての説明を行う。なお、搬送室501は減圧雰囲気となるので、搬送室501に直接的に連結された処理室には全て排気ポンプ(図示せず)が備えられている。排気ポンプとしては上述の油回転ポンプ、メカニカルブースターポンプ、ターボ分子ポンプ若しくはクライオポンプが用いられる。   Hereinafter, each processing chamber will be described. Since the transfer chamber 501 has a reduced pressure atmosphere, all the processing chambers directly connected to the transfer chamber 501 are provided with an exhaust pump (not shown). As the exhaust pump, the above-described oil rotary pump, mechanical booster pump, turbo molecular pump, or cryopump is used.

まず、504は基板のセッティング(設置)を行うロード室であり、アンロード室も兼ねている。ロード室504はゲート500aにより搬送室501と連結され、ここに基板503をセットしたキャリア(図示せず)が配置される。なお、ロード室504は基板搬入用と基板搬出用とで部屋が区別されていても良い。
また、ロード室504は上述の排気ポンプと高純度の窒素ガスまたは希ガスを導入するためのパージラインを備えている。
First, reference numeral 504 denotes a load chamber for setting (installing) a substrate, which also serves as an unload chamber. The load chamber 504 is connected to the transfer chamber 501 by a gate 500a, and a carrier (not shown) on which a substrate 503 is set is disposed. It should be noted that the load chamber 504 may be distinguished for substrate loading and substrate unloading.
The load chamber 504 includes the above-described exhaust pump and a purge line for introducing high-purity nitrogen gas or rare gas.

なお、本実施例では基板503として、EL素子の陽極となる透明導電膜までを形成した基板を用いる。本実施例では基板503を、被成膜面を下向きにしてキャリアにセットする。これは後に蒸着法による成膜を行う際に、フェイスダウン方式(デポアップ方式ともいう)を行いやすくするためである。フェイスダウン方式とは、基板の被成膜面が下を向いた状態で成膜する方式をいい、この方式によればゴミの付着などを抑えることができる。   Note that in this embodiment, as the substrate 503, a substrate in which up to a transparent conductive film to be an anode of an EL element is formed is used. In this embodiment, the substrate 503 is set on the carrier with the deposition surface facing downward. This is for facilitating the face-down method (also referred to as a deposit-up method) when a film is formed by an evaporation method later. The face-down method refers to a method in which a film is formed with the deposition surface of the substrate facing down. According to this method, adhesion of dust and the like can be suppressed.

次に、505で示されるのはEL素子の陽極もしくは陰極(本実施例では陽極)の表面を処理する処理室(以下、前処理室という)であり、前処理室505はゲート500bにより搬送室501と連結される。前処理室はEL素子の作製プロセスによって様々に変えることができるが、本実施例では透明導電膜からなる陽極の表面に酸素中で紫外光を照射しつつ100〜120℃で加熱できるようにする。このような前処理は、EL素子の陽極表面を処理する際に有効である。   Reference numeral 505 denotes a processing chamber (hereinafter referred to as a pretreatment chamber) for treating the surface of the anode or cathode (anode in this embodiment) of the EL element. The pretreatment chamber 505 is a transfer chamber by a gate 500b. 501 is connected. The pretreatment chamber can be variously changed depending on the manufacturing process of the EL element. In this embodiment, the surface of the anode made of the transparent conductive film can be heated at 100 to 120 ° C. while irradiating ultraviolet light in oxygen. . Such pretreatment is effective when the anode surface of the EL element is treated.

次に、506は蒸着法により有機EL材料を成膜するための蒸着室であり、蒸着室(A)と呼ぶ。蒸着室(A)506はゲート500cを介して搬送室501に連結される。本実施例では蒸着室(A)506として図2に示した構造の蒸着室を設けている。   Next, reference numeral 506 denotes a vapor deposition chamber for depositing an organic EL material by a vapor deposition method and is referred to as a vapor deposition chamber (A). The deposition chamber (A) 506 is connected to the transfer chamber 501 through the gate 500c. In this embodiment, a vapor deposition chamber having the structure shown in FIG.

本実施例では、蒸着室(A)506内の成膜部507において、まず正孔注入層を基板面全体に成膜し、次に赤色に発色する発光層、その次に緑色に発色する発光層、最後に青色に発色する発光層を成膜する。なお、正孔注入層、赤色に発色する発光層、緑色に発色する発光層及び青色に発色する発光層としては如何なる材料を用いても良い。   In this embodiment, in the film forming portion 507 in the vapor deposition chamber (A) 506, a hole injection layer is first formed on the entire substrate surface, then a light emitting layer that develops red color, and then light emission that produces green color. Then, a light emitting layer that develops a blue color is formed. Note that any material may be used for the hole injection layer, the red light emitting layer, the green light emitting layer, and the blue light emitting layer.

蒸着室(A)506は蒸着源を成膜する有機材料の種類に対応して切り換えが可能な構成となっている。即ち、複数種類の蒸着源を格納した予備室508が蒸着室(A)506に接続されており、内部の搬送機構により蒸着源の切り換えを行うことができる。従って、成膜する有機EL材料が変わるたびに蒸着源も切り換えることになる。また、シャドーマスクは同一のマスクを成膜する有機EL材料が変わるたびに一画素分移動させて用いる。   The vapor deposition chamber (A) 506 is configured to be switchable in accordance with the type of organic material for forming a vapor deposition source. That is, the preliminary chamber 508 storing a plurality of types of vapor deposition sources is connected to the vapor deposition chamber (A) 506, and the vapor deposition sources can be switched by an internal transfer mechanism. Therefore, whenever the organic EL material to form into a film changes, a vapor deposition source will also be switched. The shadow mask is moved by one pixel each time the organic EL material for forming the same mask changes.

なお、蒸着室(A)506内における成膜プロセスに関しては、図2の説明を参照すれば良い。   Note that the description of FIG. 2 may be referred to for the film formation process in the vapor deposition chamber (A) 506.

次に、509は蒸着法によりEL素子の陽極もしくは陰極となる導電膜(本実施例では陰極となる金属膜)を成膜するための蒸着室であり、蒸着室(B)と呼ぶ。蒸着室(B)509はゲート500dを介して搬送室501に連結される。
本実施例では蒸着室(B)509として図2に示した構造の蒸着室を設けている。本実施例では、蒸着室(B)509内の成膜部510において、EL素子の陰極となる導電膜としてAl−Li合金膜(アルミニウムとリチウムとの合金膜)
を成膜する。
Next, reference numeral 509 denotes a vapor deposition chamber for depositing a conductive film (a metal film serving as a cathode in this embodiment) that becomes an anode or a cathode of an EL element by a vapor deposition method, and is called a vapor deposition chamber (B). The vapor deposition chamber (B) 509 is connected to the transfer chamber 501 through the gate 500d.
In this embodiment, a vapor deposition chamber having the structure shown in FIG. 2 is provided as the vapor deposition chamber (B) 509. In this embodiment, an Al—Li alloy film (alloy film of aluminum and lithium) is used as a conductive film to be a cathode of an EL element in the film forming portion 510 in the vapor deposition chamber (B) 509.
Is deposited.

なお、周期表の1族もしくは2族に属する元素とアルミニウムとを共蒸着することも可能である。共蒸着とは、同時に蒸着セルを加熱し、成膜段階で異なる物質を混合する蒸着法をいう。   Note that it is possible to co-evaporate an element belonging to Group 1 or Group 2 of the periodic table and aluminum. Co-evaporation refers to an evaporation method in which an evaporation cell is heated at the same time and different substances are mixed in a film formation stage.

次に、511は封止室(封入室またはグローブボックスともいう)であり、ゲート500eを介してロード室504に連結されている。封止室511では、最終的にEL素子を密閉空間に封入するための処理が行われる。この処理は形成されたEL素子を酸素や水分から保護するための処理であり、シーリング材で機械的に封入する、又は熱硬化性樹脂若しくは紫外光硬化性樹脂で封入するといった手段を用いる。   Next, reference numeral 511 denotes a sealing chamber (also referred to as a sealing chamber or a glove box), which is connected to the load chamber 504 through a gate 500e. In the sealing chamber 511, a process for finally sealing the EL element in the sealed space is performed. This treatment is a treatment for protecting the formed EL element from oxygen and moisture, and means such as mechanical sealing with a sealing material or sealing with a thermosetting resin or an ultraviolet light curable resin is used.

シーリング材としては、ガラス、セラミックス、プラスチックもしくは金属を用いることができるが、シーリング材側に光を放射させる場合は透光性でなければならない。また、シーリング材と上記EL素子が形成された基板とは熱硬化性樹脂又は紫外光硬化性樹脂を用いて貼り合わせられ、熱処理又は紫外光照射処理によって樹脂を硬化させて密閉空間を形成する。この密閉空間の中に酸化バリウムに代表される吸湿材を設けることも有効である。   As the sealing material, glass, ceramics, plastic, or metal can be used, but when light is emitted to the sealing material side, it must be translucent. The sealing material and the substrate on which the EL element is formed are bonded together using a thermosetting resin or an ultraviolet light curable resin, and the resin is cured by heat treatment or ultraviolet light irradiation treatment to form a sealed space. It is also effective to provide a hygroscopic material typified by barium oxide in this sealed space.

また、シーリング材とEL素子の形成された基板との空間を熱硬化性樹脂若しくは紫外光硬化性樹脂で充填することも可能である。この場合、熱硬化性樹脂若しくは紫外光硬化性樹脂の中に酸化バリウムに代表される吸湿材を添加しておくことは有効である。   In addition, the space between the sealing material and the substrate on which the EL element is formed can be filled with a thermosetting resin or an ultraviolet light curable resin. In this case, it is effective to add a moisture absorbing material typified by barium oxide in the thermosetting resin or the ultraviolet light curable resin.

図5に示した成膜装置では、封止室511の内部に紫外光を照射するための機構(以下、紫外光照射機構という)512が設けられており、この紫外光照射機構512から発した紫外光によって紫外光硬化性樹脂を硬化させる構成となっている。また、封止室511の内部は排気ポンプを取り付けることで減圧とすることも可能である。上記封入工程をロボット操作で機械的に行う場合には、減圧下で行うことで酸素や水分の混入を防ぐことができる。また、逆に封止室511の内部を与圧とすることも可能である。この場合、高純度な窒素ガスや希ガスでパージしつつ与圧とし、外気から酸素等が侵入することを防ぐ。   In the film forming apparatus shown in FIG. 5, a mechanism (hereinafter referred to as an ultraviolet light irradiation mechanism) 512 for irradiating ultraviolet light is provided in the sealing chamber 511, and the ultraviolet light irradiation mechanism 512 emits the light. An ultraviolet light curable resin is cured by ultraviolet light. Further, the inside of the sealing chamber 511 can be decompressed by attaching an exhaust pump. In the case where the sealing step is mechanically performed by robot operation, mixing of oxygen and moisture can be prevented by performing it under reduced pressure. Conversely, the inside of the sealing chamber 511 can be pressurized. In this case, the pressure is increased while purging with high-purity nitrogen gas or rare gas to prevent oxygen or the like from entering from the outside air.

次に、封止室511には受渡室(パスボックス)513が連結される。受渡室513には搬送機構(B)514が設けられ、封止室511でEL素子の封入が完了した基板を受渡室513へと搬送する。受渡室513も排気ポンプを取り付けることで減圧とすることが可能である。この受渡室513は封止室511を直接外気に晒さないようにするための設備であり、ここから基板を取り出す。   Next, a delivery chamber (pass box) 513 is connected to the sealing chamber 511. A delivery mechanism (B) 514 is provided in the delivery chamber 513, and the substrate in which the EL element is sealed in the sealing chamber 511 is delivered to the delivery chamber 513. The delivery chamber 513 can also be decompressed by attaching an exhaust pump. The delivery chamber 513 is a facility for preventing the sealing chamber 511 from being directly exposed to the outside air, from which the substrate is taken out.

以上のように、図5に示した成膜装置を用いることで完全にEL素子を密閉空間に封入するまで外気に晒さずに済むため、信頼性の高いEL表示装置を作製することが可能となる。   As described above, by using the film formation apparatus illustrated in FIG. 5, it is not necessary to expose to the outside air until the EL element is completely enclosed in a sealed space, and thus a highly reliable EL display device can be manufactured. Become.

本発明の成膜装置をマルチチャンバー方式(クラスターツール方式ともいう)
とした場合について図6を用いて説明する。図6において、601は搬送室であり、搬送室601には搬送機構(A)602が備えられ、基板603の搬送が行われる。搬送室601は減圧雰囲気にされており、各処理室とはゲートによって連結されている。各処理室への基板の受け渡しは、ゲートを開けた際に搬送機構(A)602によって行われる。また、搬送室601を減圧するには、油回転ポンプ、メカニカルブースターポンプ、ターボ分子ポンプ若しくはクライオポンプなどの排気ポンプを用いることが可能であるが、水分の除去に効果的なクライオポンプが好ましい。
The film forming apparatus of the present invention is a multi-chamber method (also called a cluster tool method).
The case will be described with reference to FIG. In FIG. 6, reference numeral 601 denotes a transfer chamber. The transfer chamber 601 is provided with a transfer mechanism (A) 602, and the substrate 603 is transferred. The transfer chamber 601 is in a reduced-pressure atmosphere, and is connected to each processing chamber by a gate. The transfer of the substrate to each processing chamber is performed by the transfer mechanism (A) 602 when the gate is opened. In order to decompress the transfer chamber 601, an exhaust pump such as an oil rotary pump, a mechanical booster pump, a turbo molecular pump, or a cryopump can be used, but a cryopump effective for removing moisture is preferable.

以下に、各処理室についての説明を行う。なお、搬送室601は減圧雰囲気となるので、搬送室601に直接的に連結された処理室には全て排気ポンプ(図示せず)が備えられている。排気ポンプとしては上述の油回転ポンプ、メカニカルブースターポンプ、ターボ分子ポンプ若しくはクライオポンプが用いられる。   Hereinafter, each processing chamber will be described. Since the transfer chamber 601 is in a reduced pressure atmosphere, all the processing chambers directly connected to the transfer chamber 601 are provided with an exhaust pump (not shown). As the exhaust pump, the above-described oil rotary pump, mechanical booster pump, turbo molecular pump, or cryopump is used.

まず、604は基板のセッティング(設置)を行うロード室であり、ロードロック室とも呼ばれる。ロード室604はゲート600aにより搬送室601と連結され、ここに基板603をセットしたキャリア(図示せず)が配置される。なお、ロード室604は基板搬入用と基板搬出用とで部屋が区別されていても良い。また、ロード室604は上述の排気ポンプと高純度の窒素ガスまたは希ガスを導入するためのパージラインを備えている。   First, reference numeral 604 denotes a load chamber for substrate setting (installation), which is also called a load lock chamber. The load chamber 604 is connected to the transfer chamber 601 by a gate 600a, and a carrier (not shown) on which a substrate 603 is set is disposed. It should be noted that the load chamber 604 may be distinguished for substrate loading and unloading. The load chamber 604 includes the above-described exhaust pump and a purge line for introducing high-purity nitrogen gas or rare gas.

次に、605で示されるのはEL素子の陽極もしくは陰極(本実施例では陽極)の表面を処理する前処理室であり、前処理室605はゲート600bにより搬送室601と連結される。前処理室はEL素子の作製プロセスによって様々に変えることができるが、本実施例では透明導電膜からなる陽極の表面に酸素中で紫外光を照射しつつ100〜120℃で加熱できるようにする。このような前処理は、EL素子の陽極表面を処理する際に有効である。   Next, reference numeral 605 denotes a pretreatment chamber for treating the surface of the anode or cathode (anode in this embodiment) of the EL element, and the pretreatment chamber 605 is connected to the transfer chamber 601 by a gate 600b. The pretreatment chamber can be variously changed depending on the manufacturing process of the EL element. In this embodiment, the surface of the anode made of the transparent conductive film can be heated at 100 to 120 ° C. while irradiating ultraviolet light in oxygen. . Such pretreatment is effective when the anode surface of the EL element is treated.

次に、606は蒸着法により有機EL材料を成膜するための蒸着室であり、蒸着室(A)と呼ぶ。蒸着室(A)606はゲート600cを介して搬送室601に連結される。本実施例では蒸着室(A)606として図2に示した構造の蒸着室を設けている。   Next, reference numeral 606 denotes a vapor deposition chamber for depositing an organic EL material by a vapor deposition method and is referred to as a vapor deposition chamber (A). The vapor deposition chamber (A) 606 is connected to the transfer chamber 601 through a gate 600c. In this embodiment, a vapor deposition chamber having the structure shown in FIG.

本実施例では、蒸着室(A)606内の成膜部607において、正孔注入層及び赤色に発色する発光層を成膜する。従って、蒸着源及びシャドーマスクを正孔注入層及び赤色に発色する発光層となる有機材料に対応して二種類ずつ備え、切り換えが可能な構成となっている。なお、正孔注入層及び赤色に発色する発光層としては公知の材料を用いれば良い。   In this embodiment, the hole injection layer and the light emitting layer that develops red color are formed in the film formation portion 607 in the vapor deposition chamber (A) 606. Therefore, two types of vapor deposition sources and shadow masks are provided corresponding to the hole injection layer and the organic material to be the light emitting layer that develops red color, and can be switched. A known material may be used for the hole injection layer and the light emitting layer that emits red color.

次に、608は蒸着法により有機EL材料を成膜するための蒸着室であり、蒸着室(B)と呼ぶ。蒸着室(B)608はゲート600dを介して搬送室601に連結される。本実施例では蒸着室(B)608として図2に示した構造の蒸着室を設けている。本実施例では、蒸着室(B)608内の成膜部609において、緑色に発色する発光層を成膜する。なお、緑色に発色する発光層としては公知の材料を用いれば良い。   Next, reference numeral 608 denotes a vapor deposition chamber for depositing an organic EL material by a vapor deposition method, and is referred to as a vapor deposition chamber (B). The deposition chamber (B) 608 is connected to the transfer chamber 601 through a gate 600d. In this embodiment, a vapor deposition chamber having the structure shown in FIG. 2 is provided as the vapor deposition chamber (B) 608. In this embodiment, a green light emitting layer is formed in the film formation portion 609 in the vapor deposition chamber (B) 608. A known material may be used for the light emitting layer that emits green light.

次に、610は蒸着法により有機EL材料を成膜するための蒸着室であり、蒸着室(C)と呼ぶ。蒸着室(C)610はゲート600eを介して搬送室601に連結される。本実施例では蒸着室(C)610として図2に示した構造の蒸着室を設けている。本実施例では、蒸着室(C)610内の成膜部611において、青色に発色する発光層を成膜する。なお、青色に発色する発光層としては公知の材料を用いれば良い。   Next, reference numeral 610 denotes a vapor deposition chamber for depositing an organic EL material by a vapor deposition method, and is referred to as a vapor deposition chamber (C). The deposition chamber (C) 610 is connected to the transfer chamber 601 through the gate 600e. In this embodiment, a vapor deposition chamber having the structure shown in FIG. 2 is provided as the vapor deposition chamber (C) 610. In this embodiment, a light emitting layer that develops blue color is formed in the film forming portion 611 in the vapor deposition chamber (C) 610. A known material may be used for the light emitting layer that develops blue color.

次に、612は蒸着法によりEL素子の陽極もしくは陰極となる導電膜(本実施例では陰極となる金属膜)を成膜するための蒸着室であり、蒸着室(D)と呼ぶ。蒸着室(D)612はゲート600fを介して搬送室601に連結される。
本実施例では蒸着室(D)612として図2に示した構造の蒸着室を設けている。本実施例では、蒸着室(D)612内の成膜部613において、EL素子の陰極となる導電膜としてAl−Li合金膜(アルミニウムとリチウムとの合金膜)
を成膜する。なお、周期表の1族もしくは2族に属する元素とアルミニウムとを共蒸着することも可能である。
Next, reference numeral 612 denotes a vapor deposition chamber for depositing a conductive film (a metal film serving as a cathode in this embodiment) that becomes an anode or a cathode of an EL element by a vapor deposition method, and is referred to as a vapor deposition chamber (D). The deposition chamber (D) 612 is connected to the transfer chamber 601 through a gate 600f.
In this embodiment, a vapor deposition chamber having the structure shown in FIG. 2 is provided as the vapor deposition chamber (D) 612. In this embodiment, an Al—Li alloy film (alloy film of aluminum and lithium) is used as a conductive film to be a cathode of the EL element in the film forming portion 613 in the vapor deposition chamber (D) 612.
Is deposited. Note that it is possible to co-evaporate an element belonging to Group 1 or Group 2 of the periodic table and aluminum.

次に、614は封止室であり、ゲート600gを介してロード室604に連結されている。封止室614の説明は実施例1を参照すれば良い。また、実施例1と同様に封止室614の内部には紫外光照射機構615が設けられている。さらに、封止室615には受渡室616が連結される。受渡室616には搬送機構(B)617が設けられ、封止室614でEL素子の封入が完了した基板を受渡室616へと搬送する。受渡室616の説明も実施例1を参照すれば良い。   Next, reference numeral 614 denotes a sealing chamber, which is connected to the load chamber 604 through a gate 600g. The description of the sealing chamber 614 may refer to the first embodiment. Further, as in the first embodiment, an ultraviolet light irradiation mechanism 615 is provided inside the sealing chamber 614. Further, a delivery chamber 616 is connected to the sealing chamber 615. A delivery mechanism (B) 617 is provided in the delivery chamber 616, and the substrate in which the EL element is completely sealed in the sealing chamber 614 is delivered to the delivery chamber 616. The description of the delivery room 616 may also refer to the first embodiment.

以上のように、図6に示した成膜装置を用いることで完全にEL素子を密閉空間に封入するまで外気に晒さずに済むため、信頼性の高いEL表示装置を作製することが可能となる。   As described above, by using the film formation apparatus illustrated in FIG. 6, it is not necessary to expose to the outside air until the EL element is completely enclosed in a sealed space, and thus a highly reliable EL display device can be manufactured. Become.

本発明の成膜装置をインライン方式とした場合について図7を用いて説明する。図7において701はロード室であり、基板の搬送はここから行われる。ロード室701には排気系700aが備えられ、排気系700aは第1バルブ71、ターボ分子ポンプ72、第2バルブ73及びロータリーポンプ(油回転ポンプ)74を含んだ構成からなっている。   The case where the film forming apparatus of the present invention is an in-line method will be described with reference to FIG. In FIG. 7, reference numeral 701 denotes a load chamber from which the substrate is transferred. The load chamber 701 is provided with an exhaust system 700a, and the exhaust system 700a includes a first valve 71, a turbo molecular pump 72, a second valve 73, and a rotary pump (oil rotary pump) 74.

第1バルブ71はメインバルブであり、コンダクタンスバルブを兼ねる場合もあるしバタフライバルブを用いる場合もある。第2バルブ73はフォアバルブであり、まず第2バルブ73を開けてロータリーポンプ74によりロード室701を粗く減圧し、次に第1バルブ71を空けてターボ分子ポンプ72で高真空まで減圧する。なお、ターボ分子ポンプの代わりにメカニカルブースターポンプ若しくはクライオポンプを用いることが可能であるがクライオポンプは水分の除去に特に効果的である。   The first valve 71 is a main valve, which may double as a conductance valve or a butterfly valve. The second valve 73 is a fore valve. First, the second valve 73 is opened, the load chamber 701 is roughly decompressed by the rotary pump 74, and then the first valve 71 is opened and the turbo molecular pump 72 is decompressed to a high vacuum. Although a mechanical booster pump or a cryopump can be used instead of the turbo molecular pump, the cryopump is particularly effective for removing moisture.

次に、702で示されるのはEL素子の陽極もしくは陰極(本実施例では陽極)の表面を処理する前処理室であり、前処理室702は排気系700bを備えている。また、ロード室701とは図示しないゲートで密閉遮断されている。前処理室702はEL素子の作製プロセスによって様々に変えることができるが、本実施例では透明導電膜からなる陽極の表面に酸素中で紫外光を照射しつつ100〜120℃で加熱できるようにする。   Reference numeral 702 denotes a pretreatment chamber for treating the surface of the anode or cathode (anode in this embodiment) of the EL element, and the pretreatment chamber 702 includes an exhaust system 700b. The load chamber 701 is hermetically shut off by a gate (not shown). The pretreatment chamber 702 can be variously changed depending on the manufacturing process of the EL element. In this embodiment, the surface of the anode made of the transparent conductive film can be heated at 100 to 120 ° C. while irradiating ultraviolet light in oxygen. To do.

次に、703は蒸着法により有機EL材料を成膜するための蒸着室であり、蒸着室(A)と呼ぶ。蒸着室(A)703は排気系700cを備えている。また、前処理室702とは図示しないゲートで密閉遮断されている。本実施例では蒸着室(A)703として図2に示した構造の蒸着室を設けている。   Next, reference numeral 703 denotes a vapor deposition chamber for depositing an organic EL material by a vapor deposition method and is referred to as a vapor deposition chamber (A). The vapor deposition chamber (A) 703 includes an exhaust system 700c. The pretreatment chamber 702 is hermetically shut off by a gate (not shown). In this embodiment, a vapor deposition chamber having the structure shown in FIG.

蒸着室(A)703に搬送された基板704及び蒸着室(A)703に備えられた蒸着源705は各々矢印の方向に向かって移動し、成膜が行われる。なお、蒸着室(A)703の詳細な動作に関しては、図2の説明を参照すれば良い。本実施例では、蒸着室(A)703において、正孔注入層を成膜する。正孔注入層としては公知の材料を用いれば良い。   The substrate 704 transferred to the vapor deposition chamber (A) 703 and the vapor deposition source 705 provided in the vapor deposition chamber (A) 703 each move in the direction of the arrow, and film formation is performed. Note that the detailed operation of the vapor deposition chamber (A) 703 may be referred to the description of FIG. In this embodiment, a hole injection layer is formed in the vapor deposition chamber (A) 703. A known material may be used for the hole injection layer.

次に、706は蒸着法により有機EL材料を成膜するための蒸着室であり、蒸着室(B)と呼ぶ。蒸着室(B)706は排気系700dを備えている。また、蒸着室(A)703とは図示しないゲートで密閉遮断されている。本実施例では蒸着室(B)706として図2に示した構造の蒸着室を設けている。従って蒸着室(B)706の詳細な動作に関しては、図2の説明を参照すれば良い。また、本実施例では、蒸着室(B)706において、赤色に発色する発光層を成膜する。赤色に発色する発光層としては公知の材料を用いれば良い。   Next, reference numeral 706 denotes a vapor deposition chamber for depositing an organic EL material by a vapor deposition method and is referred to as a vapor deposition chamber (B). The vapor deposition chamber (B) 706 includes an exhaust system 700d. Further, the deposition chamber (A) 703 is hermetically shut off by a gate (not shown). In this embodiment, a vapor deposition chamber having the structure shown in FIG. 2 is provided as the vapor deposition chamber (B) 706. Therefore, the detailed operation of the vapor deposition chamber (B) 706 may be referred to the description of FIG. In this embodiment, a light emitting layer that develops red color is formed in the vapor deposition chamber (B) 706. A known material may be used for the light emitting layer that develops red color.

次に、707は蒸着法により有機EL材料を成膜するための蒸着室であり、蒸着室(C)と呼ぶ。蒸着室(C)707は排気系700eを備えている。また、蒸着室(B)706とは図示しないゲートで密閉遮断されている。本実施例では蒸着室(C)707として図2に示した構造の蒸着室を設けている。従って蒸着室(C)707の詳細な動作に関しては、図2の説明を参照すれば良い。また、本実施例では、蒸着室(C)707において、緑色に発色する発光層を成膜する。緑色に発色する発光層としては公知の材料を用いれば良い。   Next, reference numeral 707 denotes a vapor deposition chamber for depositing an organic EL material by a vapor deposition method, and is referred to as a vapor deposition chamber (C). The vapor deposition chamber (C) 707 includes an exhaust system 700e. Further, the deposition chamber (B) 706 is hermetically sealed by a gate (not shown). In this embodiment, a vapor deposition chamber having the structure shown in FIG. Accordingly, the detailed operation of the vapor deposition chamber (C) 707 may be referred to the description of FIG. In this embodiment, a light-emitting layer that emits green light is formed in the vapor deposition chamber (C) 707. A known material may be used for the light emitting layer that develops a green color.

次に、708は蒸着法により有機EL材料を成膜するための蒸着室であり、蒸着室(D)と呼ぶ。蒸着室(D)708は排気系700fを備えている。また、蒸着室(C)707とは図示しないゲートで密閉遮断されている。本実施例では蒸着室(D)708として図2に示した構造の蒸着室を設けている。従って蒸着室(D)708の詳細な動作に関しては、図2の説明を参照すれば良い。また、本実施例では、蒸着室(D)708において、青色に発色する発光層を成膜する。青色に発色する発光層としては公知の材料を用いれば良い。   Next, reference numeral 708 denotes a vapor deposition chamber for depositing an organic EL material by a vapor deposition method, and is referred to as a vapor deposition chamber (D). The vapor deposition chamber (D) 708 includes an exhaust system 700f. Further, the deposition chamber (C) 707 is hermetically shut off by a gate (not shown). In this embodiment, a vapor deposition chamber having the structure shown in FIG. 2 is provided as the vapor deposition chamber (D) 708. Accordingly, the detailed operation of the vapor deposition chamber (D) 708 may be referred to the description of FIG. In this embodiment, a light-emitting layer that develops blue color is formed in the vapor deposition chamber (D) 708. A known material may be used for the light emitting layer that develops a blue color.

次に、709は蒸着法によりEL素子の陽極もしくは陰極となる導電膜(本実施例では陰極となる金属膜)を成膜するための蒸着室であり、蒸着室(E)と呼ぶ。蒸着室(E)709は排気系700gを備えている。また、蒸着室(D)708とは図示しないゲートで密閉遮断されている。本実施形態では蒸着室(E)
709として図2に示した構造の蒸着室を設けている。従って蒸着室(E)709の詳細な動作に関しては、図2の説明を参照すれば良い。
Next, reference numeral 709 denotes a vapor deposition chamber for depositing a conductive film (a metal film serving as a cathode in this embodiment) that serves as an anode or a cathode of an EL element by a vapor deposition method, and is referred to as a vapor deposition chamber (E). The vapor deposition chamber (E) 709 includes an exhaust system 700 g. Further, the deposition chamber (D) 708 is hermetically shut off by a gate (not shown). In this embodiment, the deposition chamber (E)
709 is provided with a vapor deposition chamber having the structure shown in FIG. Therefore, the detailed operation of the vapor deposition chamber (E) 709 may be referred to the description of FIG.

本実施例では、蒸着室(E)709において、EL素子の陰極となる導電膜としてAl−Li合金膜(アルミニウムとリチウムとの合金膜)を成膜する。なお、周期表の1族もしくは2族に属する元素とアルミニウムとを共蒸着することも可能である。   In this embodiment, in the vapor deposition chamber (E) 709, an Al—Li alloy film (an alloy film of aluminum and lithium) is formed as a conductive film that becomes a cathode of the EL element. Note that it is possible to co-evaporate an element belonging to Group 1 or Group 2 of the periodic table and aluminum.

次に、710は封止室であり、排気系700hを備えている。また、蒸着室(E)709とは図示しないゲートで密閉遮断されている。封止室710の説明は実施例1を参照すれば良い。また、実施例1と同様に封止室710の内部には紫外光照射機構(図示せず)が設けられている。   Next, reference numeral 710 denotes a sealing chamber, which includes an exhaust system 700h. The deposition chamber (E) 709 is hermetically shut off by a gate (not shown). The description of the sealing chamber 710 may refer to the first embodiment. Further, as in the first embodiment, an ultraviolet light irradiation mechanism (not shown) is provided inside the sealing chamber 710.

最後に、711はアンロード室であり、排気系700iを備えている。EL素子が形成された基板はここから取り出される。   Finally, reference numeral 711 denotes an unload chamber, which is provided with an exhaust system 700i. The substrate on which the EL element is formed is taken out from here.

以上のように、図7に示した成膜装置を用いることで完全にEL素子を密閉空間に封入するまで外気に晒さずに済むため、信頼性の高いEL表示装置を作製することが可能となる。また、インライン方式により高いスループットでEL表示装置を作製することができる。   As described above, by using the film formation apparatus illustrated in FIG. 7, it is not necessary to expose to the outside air until the EL element is completely enclosed in a sealed space, so that a highly reliable EL display device can be manufactured. Become. In addition, an EL display device can be manufactured with high throughput by an inline method.

本発明の成膜装置をインライン方式とした場合について図8を用いて説明する。図8において801はロード室であり、基板の搬送はここから行われる。ロード室801には排気系800aが備えられ、排気系800aは第1バルブ81、ターボ分子ポンプ82、第2バルブ83及びロータリーポンプ(油回転ポンプ)84を含んだ構成からなっている。   A case where the film forming apparatus of the present invention is an in-line method will be described with reference to FIG. In FIG. 8, reference numeral 801 denotes a load chamber from which the substrate is transferred. The load chamber 801 is provided with an exhaust system 800a, and the exhaust system 800a includes a first valve 81, a turbo molecular pump 82, a second valve 83, and a rotary pump (oil rotary pump) 84.

次に、802で示されるのはEL素子の陽極もしくは陰極(本実施例では陽極)の表面を処理する前処理室であり、前処理室802は排気系800bを備えている。また、ロード室801とは図示しないゲートで密閉遮断されている。前処理室802はEL素子の作製プロセスによって様々に変えることができるが、本実施例では透明導電膜からなる陽極の表面に酸素中で紫外光を照射しつつ100〜120℃で加熱できるようにする。   Reference numeral 802 denotes a pretreatment chamber for treating the surface of the anode or cathode (an anode in this embodiment) of the EL element, and the pretreatment chamber 802 includes an exhaust system 800b. The load chamber 801 is hermetically shut off by a gate (not shown). The pretreatment chamber 802 can be variously changed depending on the manufacturing process of the EL element. In this embodiment, the surface of the anode made of the transparent conductive film can be heated at 100 to 120 ° C. while being irradiated with ultraviolet light in oxygen. To do.

次に、803は蒸着法により有機EL材料を成膜するための蒸着室であり排気系800cを備えている。また、前処理室802とは図示しないゲートで密閉遮断されている。本実施例では蒸着室803として図2に示した構造の蒸着室を設けている。蒸着室803に搬送された基板804及び蒸着室803に備えられた蒸着源805は各々矢印の方向に向かって移動し、成膜が行われる。   Next, reference numeral 803 denotes a vapor deposition chamber for depositing an organic EL material by a vapor deposition method, and includes an exhaust system 800c. The pretreatment chamber 802 is hermetically sealed with a gate (not shown). In this embodiment, a vapor deposition chamber having the structure shown in FIG. The substrate 804 transferred to the vapor deposition chamber 803 and the vapor deposition source 805 provided in the vapor deposition chamber 803 each move in the direction of the arrow, and film formation is performed.

なお、本実施例の場合、蒸着室803において正孔注入層、赤色に発色する発光層、緑色に発色する発光層、青色に発色する発光層及び陰極となる導電膜を形成するため、成膜ごとに蒸着源803もしくはシャドーマスク(図示せず)を切り換えることが好ましい。本実施例では蒸着室803に予備室806を連結し、予備室806に蒸着源もしくはシャドーマスクを格納しておき、適宜切り換えることとする。   Note that in this embodiment, a film is formed in the vapor deposition chamber 803 to form a hole injection layer, a light emitting layer that develops red color, a light emitting layer that develops green color, a light emitting layer that develops blue color, and a conductive film that becomes a cathode. It is preferable to switch the vapor deposition source 803 or the shadow mask (not shown) every time. In this embodiment, a preliminary chamber 806 is connected to the vapor deposition chamber 803, and a vapor deposition source or a shadow mask is stored in the preliminary chamber 806, and is switched as appropriate.

次に、807は封止室であり、排気系800dを備えている。また、蒸着室803とは図示しないゲートで密閉遮断されている。封止室807の説明は実施例1を参照すれば良い。また、実施例1と同様に封止室807の内部には紫外光照射機構(図示せず)が設けられている。   Next, reference numeral 807 denotes a sealing chamber, which includes an exhaust system 800d. Further, the deposition chamber 803 is hermetically shut off by a gate (not shown). For the description of the sealing chamber 807, Embodiment 1 may be referred to. Further, as in the first embodiment, an ultraviolet light irradiation mechanism (not shown) is provided inside the sealing chamber 807.

最後に、808はアンロード室であり、排気系800eを備えている。EL素子が形成された基板はここから取り出される。   Finally, reference numeral 808 denotes an unload chamber, which is provided with an exhaust system 800e. The substrate on which the EL element is formed is taken out from here.

以上のように、図8に示した成膜装置を用いることで完全にEL素子を密閉空間に封入するまで外気に晒さずに済むため、信頼性の高い発光装置(EL表示装置)を作製することが可能となる。また、インライン方式により高いスループットでEL表示装置を作製することができる。
As described above, by using the film formation apparatus illustrated in FIG. 8, it is not necessary to expose to the outside air until the EL element is completely enclosed in a sealed space; thus, a highly reliable light-emitting device (EL display device) is manufactured. It becomes possible. In addition, an EL display device can be manufactured with high throughput by an inline method.

Claims (16)

線状に並べられた複数の蒸着セルを備え、長手方向を有する蒸着源と、蒸着室とを有するインライン方式の蒸着装置を用いた発光装置の作製方法であって、
基板を前記蒸着室に搬送し、
前記蒸着源から薄膜材料を気化させ、
前記薄膜材料を気化させている間、前記基板に対する前記蒸着源の位置を、前記蒸着源の長手方向と垂直な方向に移動させることにより、前記基板上に薄膜を成膜することを特徴とする発光装置の作製方法。
A method for producing a light-emitting device using an in-line type vapor deposition apparatus having a plurality of vapor deposition cells arranged in a line, a vapor deposition source having a longitudinal direction, and a vapor deposition chamber,
Transport the substrate to the deposition chamber;
Vaporizing the thin film material from the deposition source;
A thin film is formed on the substrate by moving the position of the vapor deposition source with respect to the substrate in a direction perpendicular to the longitudinal direction of the vapor deposition source while the thin film material is vaporized. A method for manufacturing a light-emitting device.
請求項1において、
前記薄膜材料には発光材料を含むことを特徴とする発光装置の作製方法。
In claim 1,
A method for manufacturing a light-emitting device, wherein the thin film material includes a light-emitting material.
請求項1において、
前記薄膜材料が有機材料であることを特徴とする発光装置の作製方法。
In claim 1,
A method for manufacturing a light-emitting device, wherein the thin film material is an organic material.
請求項1乃至3のうちのいずれか一項において、
前記蒸着源における長手方向の長さは、前記基板の一辺の長さよりも長いことを特徴とする発光装置の作製方法。
In any one of Claims 1 thru | or 3,
The length of the longitudinal direction in the said vapor deposition source is longer than the length of the one side of the said board | substrate, The manufacturing method of the light-emitting device characterized by the above-mentioned.
線状に並べられた複数の蒸着セルを備え、長手方向を有する第1及び第2の蒸着源と、蒸着室と、前記蒸着室に接続された予備室とを有するインライン方式の蒸着装置を用いた発光装置の作製方法であって、
前記第1の蒸着源を前記蒸着室に設置し、
前記第2の蒸着源を前記予備室に格納し、
基板を前記蒸着室に搬送し、
前記第1の蒸着源から第1の薄膜材料を気化させ、
前記第1の薄膜材料を気化させている間、前記基板に対する前記第1の蒸着源の位置を、前記第1の蒸着源の長手方向と垂直な方向に移動させることにより、前記基板上に第1の薄膜を成膜し、その後、前記予備室から前記蒸着室に前記第2の蒸着源を搬送し、
前記第2の蒸着源から第2の薄膜材料を気化させ、
前記第2の薄膜材料を気化させている間、前記基板に対する前記第2の蒸着源の位置を、前記第2の蒸着源の長手方向と垂直な方向に移動させることにより、前記蒸着室内で前記基板上に第2の薄膜を成膜することを特徴とする発光装置の作製方法。
An in-line type vapor deposition apparatus having a plurality of vapor deposition cells arranged in a line and having first and second vapor deposition sources having a longitudinal direction, a vapor deposition chamber, and a preliminary chamber connected to the vapor deposition chamber is used. A method for manufacturing a light emitting device,
Installing the first vapor deposition source in the vapor deposition chamber;
Storing the second vapor deposition source in the preliminary chamber;
Transport the substrate to the deposition chamber;
Vaporizing a first thin film material from the first deposition source;
While the first thin film material is vaporized, the position of the first vapor deposition source with respect to the substrate is moved in a direction perpendicular to the longitudinal direction of the first vapor deposition source to thereby change the first thin film material onto the substrate. 1 is deposited, and then the second deposition source is transported from the preliminary chamber to the deposition chamber,
Vaporizing a second thin film material from the second deposition source;
While the second thin film material is vaporized, the position of the second vapor deposition source with respect to the substrate is moved in a direction perpendicular to the longitudinal direction of the second vapor deposition source, thereby A method for manufacturing a light-emitting device, comprising forming a second thin film over a substrate.
請求項5において、
前記第1及び第2の薄膜材料の少なくとも一つには発光材料を含むことを特徴とする発光装置の作製方法。
In claim 5,
A method for manufacturing a light-emitting device, wherein at least one of the first and second thin film materials includes a light-emitting material.
請求項5において、
前記第1及び第2の薄膜材料の少なくとも一つが有機材料であることを特徴とする発光装置の作製方法。
In claim 5,
A method for manufacturing a light-emitting device, wherein at least one of the first and second thin film materials is an organic material.
請求項5乃至7のいずれか一項において、
前記第1の蒸着源及び前記第2の蒸着源それぞれにおける長手方向の長さは、前記基板の一辺の長さよりも長いことを特徴とする発光装置の作製方法。
In any one of Claims 5 thru | or 7,
The length of the longitudinal direction in each of the first vapor deposition source and the second vapor deposition source is longer than the length of one side of the substrate.
請求項1乃至8のうちのいずれか一項において、
前記基板をシャドーマスクと磁石との間に配置し、前記シャドーマスクを前記基板の方に前記磁石によって引き寄せ、前記シャドーマスクを通して前記基板上に薄膜を成膜することを特徴とする発光装置の作製方法。
In any one of claims 1 to 8,
Fabricating a light-emitting device, wherein the substrate is disposed between a shadow mask and a magnet, the shadow mask is attracted toward the substrate by the magnet, and a thin film is formed on the substrate through the shadow mask. Method.
請求項9において、
前記シャドーマスクは長方形または楕円形の開口部を有し、前記開口部の長手方向は前記蒸着源の長手方向に対して垂直に位置されることを特徴とする発光装置の作製方法。
In claim 9,
The method of manufacturing a light emitting device, wherein the shadow mask has a rectangular or elliptical opening, and the longitudinal direction of the opening is positioned perpendicular to the longitudinal direction of the vapor deposition source.
請求項9又は10において、
前記シャドーマスクは突起を有していることを特徴とする発光装置の作製方法。
In claim 9 or 10,
The method for manufacturing a light-emitting device, wherein the shadow mask has a protrusion.
請求項9乃至11のうちのいずれか一項において、
前記磁石は突起を有していることを特徴とする発光装置の作製方法。
In any one of claims 9 to 11,
The method for manufacturing a light-emitting device, wherein the magnet has a protrusion.
請求項1乃至12のうちのいずれか一項において、
前記基板を蒸着室に搬送する際は搬送レールが用いられることを特徴とする発光装置の作製方法。
In any one of claims 1 to 12,
A method for manufacturing a light-emitting device, wherein a transfer rail is used when the substrate is transferred to a vapor deposition chamber.
請求項1乃至13のいずれか一項において、前記基板上に薄膜を成膜後、前記蒸着室内をクリーニングすることを特徴とする発光装置の作製方法。   14. The method for manufacturing a light-emitting device according to claim 1, wherein the deposition chamber is cleaned after a thin film is formed over the substrate. 請求項14において、
前記蒸着室内はプラズマによりクリーニングされることを特徴とする発光装置の作製方法。
In claim 14,
A method for manufacturing a light-emitting device, wherein the deposition chamber is cleaned with plasma.
請求項1乃至15のうちのいずれか一項において、
前記発光装置はアクティブマトリクス型EL表示装置であることを特徴とする発光装置の作製方法。
In any one of claims 1 to 15,
A method for manufacturing a light-emitting device, wherein the light-emitting device is an active matrix EL display device.
JP2011008084A 1999-12-27 2011-01-18 Method for manufacturing light emitting device Expired - Fee Related JP5315361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011008084A JP5315361B2 (en) 1999-12-27 2011-01-18 Method for manufacturing light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP37134999 1999-12-27
JP1999371349 1999-12-27
JP2011008084A JP5315361B2 (en) 1999-12-27 2011-01-18 Method for manufacturing light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003014594A Division JP4782978B2 (en) 1999-12-27 2003-01-23 Method for manufacturing light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013091020A Division JP5589115B2 (en) 1999-12-27 2013-04-24 Film-forming method and light-emitting device manufacturing method

Publications (2)

Publication Number Publication Date
JP2011117083A JP2011117083A (en) 2011-06-16
JP5315361B2 true JP5315361B2 (en) 2013-10-16

Family

ID=18498560

Family Applications (9)

Application Number Title Priority Date Filing Date
JP2000394259A Expired - Lifetime JP3833066B2 (en) 1999-12-27 2000-12-26 Film forming apparatus, film forming method, and display device manufacturing method
JP2003014594A Expired - Fee Related JP4782978B2 (en) 1999-12-27 2003-01-23 Method for manufacturing light emitting device
JP2011008084A Expired - Fee Related JP5315361B2 (en) 1999-12-27 2011-01-18 Method for manufacturing light emitting device
JP2013091020A Expired - Fee Related JP5589115B2 (en) 1999-12-27 2013-04-24 Film-forming method and light-emitting device manufacturing method
JP2013156332A Withdrawn JP2013249543A (en) 1999-12-27 2013-07-29 Film forming apparatus
JP2013156330A Expired - Fee Related JP5856110B2 (en) 1999-12-27 2013-07-29 Deposition equipment
JP2015135869A Withdrawn JP2016000859A (en) 1999-12-27 2015-07-07 Film making method and light emitting device producing method
JP2016226685A Expired - Lifetime JP6371820B2 (en) 1999-12-27 2016-11-22 Film-forming method and light-emitting device manufacturing method
JP2018006284A Withdrawn JP2018066066A (en) 1999-12-27 2018-01-18 Film deposition method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2000394259A Expired - Lifetime JP3833066B2 (en) 1999-12-27 2000-12-26 Film forming apparatus, film forming method, and display device manufacturing method
JP2003014594A Expired - Fee Related JP4782978B2 (en) 1999-12-27 2003-01-23 Method for manufacturing light emitting device

Family Applications After (6)

Application Number Title Priority Date Filing Date
JP2013091020A Expired - Fee Related JP5589115B2 (en) 1999-12-27 2013-04-24 Film-forming method and light-emitting device manufacturing method
JP2013156332A Withdrawn JP2013249543A (en) 1999-12-27 2013-07-29 Film forming apparatus
JP2013156330A Expired - Fee Related JP5856110B2 (en) 1999-12-27 2013-07-29 Deposition equipment
JP2015135869A Withdrawn JP2016000859A (en) 1999-12-27 2015-07-07 Film making method and light emitting device producing method
JP2016226685A Expired - Lifetime JP6371820B2 (en) 1999-12-27 2016-11-22 Film-forming method and light-emitting device manufacturing method
JP2018006284A Withdrawn JP2018066066A (en) 1999-12-27 2018-01-18 Film deposition method

Country Status (6)

Country Link
US (4) US8119189B2 (en)
EP (1) EP1113087B1 (en)
JP (9) JP3833066B2 (en)
KR (2) KR100827760B1 (en)
CN (2) CN1240250C (en)
TW (1) TW490714B (en)

Families Citing this family (190)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330748A1 (en) 1999-10-25 2010-12-30 Xi Chu Method of encapsulating an environmentally sensitive device
TW490714B (en) * 1999-12-27 2002-06-11 Semiconductor Energy Lab Film formation apparatus and method for forming a film
JP4608172B2 (en) * 2000-03-22 2011-01-05 出光興産株式会社 Organic EL display device manufacturing method and organic EL display device manufacturing method using the same
TW484238B (en) * 2000-03-27 2002-04-21 Semiconductor Energy Lab Light emitting device and a method of manufacturing the same
US20020011205A1 (en) * 2000-05-02 2002-01-31 Shunpei Yamazaki Film-forming apparatus, method of cleaning the same, and method of manufacturing a light-emitting device
US7517551B2 (en) * 2000-05-12 2009-04-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a light-emitting device
JP2002175878A (en) * 2000-09-28 2002-06-21 Sanyo Electric Co Ltd Forming method of layer, and manufacturing method of color luminous device
JP4906018B2 (en) * 2001-03-12 2012-03-28 株式会社半導体エネルギー研究所 Film forming method, light emitting device manufacturing method, and film forming apparatus
DE10128091C1 (en) 2001-06-11 2002-10-02 Applied Films Gmbh & Co Kg Device for coating a flat substrate used in the production of flat TV screens with organic illuminating diodes comprises a fixed vaporizer source for vaporizing materials
JP4078813B2 (en) * 2001-06-12 2008-04-23 ソニー株式会社 Film forming apparatus and film forming method
JP4707271B2 (en) * 2001-06-29 2011-06-22 三洋電機株式会社 Method for manufacturing electroluminescence element
JP2003017254A (en) * 2001-06-29 2003-01-17 Sanyo Electric Co Ltd Manufacturing method of electroluminescent display
JP2003017255A (en) * 2001-06-29 2003-01-17 Sanyo Electric Co Ltd Manufacturing method of electroluminescent display
JP4865165B2 (en) 2001-08-29 2012-02-01 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
TW529317B (en) 2001-10-16 2003-04-21 Chi Mei Electronic Corp Method of evaporating film used in an organic electro-luminescent display
US20030101937A1 (en) * 2001-11-28 2003-06-05 Eastman Kodak Company Thermal physical vapor deposition source for making an organic light-emitting device
KR100422487B1 (en) * 2001-12-10 2004-03-11 에이엔 에스 주식회사 Evaporation Apparatus for Manufacturing Organic Electro-Luminescent Display Device using Electromagnet and Evaporation Method using the same
SG149680A1 (en) * 2001-12-12 2009-02-27 Semiconductor Energy Lab Film formation apparatus and film formation method and cleaning method
KR100637127B1 (en) * 2002-01-10 2006-10-20 삼성에스디아이 주식회사 Method of vacuum evaporation and apparatus the same
TWI262034B (en) * 2002-02-05 2006-09-11 Semiconductor Energy Lab Manufacturing system, manufacturing method, method of operating a manufacturing apparatus, and light emitting device
TWI285515B (en) * 2002-02-22 2007-08-11 Semiconductor Energy Lab Light-emitting device and method of manufacturing the same, and method of operating manufacturing apparatus
SG113448A1 (en) * 2002-02-25 2005-08-29 Semiconductor Energy Lab Fabrication system and a fabrication method of a light emitting device
JP3877613B2 (en) * 2002-03-05 2007-02-07 三洋電機株式会社 Method for manufacturing organic electroluminescence display device
TW589919B (en) * 2002-03-29 2004-06-01 Sanyo Electric Co Method for vapor deposition and method for making display device
US8808457B2 (en) 2002-04-15 2014-08-19 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US8900366B2 (en) 2002-04-15 2014-12-02 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US7309269B2 (en) * 2002-04-15 2007-12-18 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating light-emitting device and apparatus for manufacturing light-emitting device
JP2004006311A (en) * 2002-04-15 2004-01-08 Semiconductor Energy Lab Co Ltd Method and apparatus for manufacturing light-emitting device
US6749906B2 (en) * 2002-04-25 2004-06-15 Eastman Kodak Company Thermal physical vapor deposition apparatus with detachable vapor source(s) and method
JP4634698B2 (en) * 2002-05-17 2011-02-16 株式会社半導体エネルギー研究所 Vapor deposition equipment
US20040035360A1 (en) * 2002-05-17 2004-02-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
TWI336905B (en) * 2002-05-17 2011-02-01 Semiconductor Energy Lab Evaporation method, evaporation device and method of fabricating light emitting device
JP4954434B2 (en) * 2002-05-17 2012-06-13 株式会社半導体エネルギー研究所 Manufacturing equipment
KR100468792B1 (en) * 2002-05-28 2005-01-29 주식회사 야스 Apparatus for holding substrates and shadow masks
US20030221620A1 (en) * 2002-06-03 2003-12-04 Semiconductor Energy Laboratory Co., Ltd. Vapor deposition device
US6943066B2 (en) * 2002-06-05 2005-09-13 Advantech Global, Ltd Active matrix backplane for controlling controlled elements and method of manufacture thereof
US20040007183A1 (en) * 2002-07-11 2004-01-15 Ulvac, Inc. Apparatus and method for the formation of thin films
KR100471358B1 (en) * 2002-07-19 2005-03-15 엘지전자 주식회사 Device for depositing electroluminescent layer
DE60305246T2 (en) * 2002-07-19 2006-09-14 Lg Electronics Inc. Thermal PVD coating source for organic electroluminescent layers
US20040040504A1 (en) * 2002-08-01 2004-03-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
JP3690380B2 (en) * 2002-08-02 2005-08-31 セイコーエプソン株式会社 Material arrangement method, electronic device manufacturing method, electro-optical device manufacturing method
JP4515060B2 (en) * 2002-08-30 2010-07-28 株式会社半導体エネルギー研究所 Manufacturing apparatus and method for producing layer containing organic compound
TWI277363B (en) 2002-08-30 2007-03-21 Semiconductor Energy Lab Fabrication system, light-emitting device and fabricating method of organic compound-containing layer
US20040123804A1 (en) * 2002-09-20 2004-07-01 Semiconductor Energy Laboratory Co., Ltd. Fabrication system and manufacturing method of light emitting device
JP2004146369A (en) * 2002-09-20 2004-05-20 Semiconductor Energy Lab Co Ltd Manufacturing method of manufacturing device and light emitting device
US7067170B2 (en) * 2002-09-23 2006-06-27 Eastman Kodak Company Depositing layers in OLED devices using viscous flow
JP4139186B2 (en) * 2002-10-21 2008-08-27 東北パイオニア株式会社 Vacuum deposition equipment
WO2004054325A1 (en) * 2002-12-12 2004-06-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, manufacturing apparatus, film-forming method, and cleaning method
US20040144321A1 (en) * 2003-01-28 2004-07-29 Eastman Kodak Company Method of designing a thermal physical vapor deposition system
US7211461B2 (en) * 2003-02-14 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
DE10312641B4 (en) * 2003-03-21 2009-11-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for producing an OLED display
JP4346336B2 (en) * 2003-04-02 2009-10-21 三洋電機株式会社 Manufacturing method of organic EL display device
JP4463492B2 (en) * 2003-04-10 2010-05-19 株式会社半導体エネルギー研究所 Manufacturing equipment
US20040206307A1 (en) * 2003-04-16 2004-10-21 Eastman Kodak Company Method and system having at least one thermal transfer station for making OLED displays
JP4493926B2 (en) 2003-04-25 2010-06-30 株式会社半導体エネルギー研究所 Manufacturing equipment
JP2004353084A (en) 2003-05-08 2004-12-16 Sanyo Electric Co Ltd Evaporator fixation member
JP2004353082A (en) 2003-05-08 2004-12-16 Sanyo Electric Co Ltd Evaporator
JP2004353083A (en) 2003-05-08 2004-12-16 Sanyo Electric Co Ltd Evaporation apparatus
JP3915734B2 (en) * 2003-05-12 2007-05-16 ソニー株式会社 Vapor deposition mask, display device manufacturing method using the same, and display device
JP4015064B2 (en) * 2003-05-28 2007-11-28 トッキ株式会社 Vapor deposition equipment
JP4447256B2 (en) * 2003-06-27 2010-04-07 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
JP4522777B2 (en) * 2003-07-25 2010-08-11 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
US7211454B2 (en) * 2003-07-25 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of a light emitting device including moving the source of the vapor deposition parallel to the substrate
US20050022743A1 (en) * 2003-07-31 2005-02-03 Semiconductor Energy Laboratory Co., Ltd. Evaporation container and vapor deposition apparatus
US8123862B2 (en) * 2003-08-15 2012-02-28 Semiconductor Energy Laboratory Co., Ltd. Deposition apparatus and manufacturing apparatus
JP4685404B2 (en) * 2003-10-15 2011-05-18 三星モバイルディスプレイ株式會社 Organic electroluminescent element vertical vapor deposition method, apparatus thereof, and vapor deposition source used in organic electroluminescent element vertical vapor deposition apparatus
US20050244580A1 (en) * 2004-04-30 2005-11-03 Eastman Kodak Company Deposition apparatus for temperature sensitive materials
JP4545504B2 (en) * 2004-07-15 2010-09-15 株式会社半導体エネルギー研究所 Film forming method and light emitting device manufacturing method
WO2006016669A1 (en) * 2004-08-13 2006-02-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR20060018746A (en) * 2004-08-25 2006-03-02 삼성에스디아이 주식회사 Apparatus for depositing organic material
KR100700840B1 (en) 2005-01-05 2007-03-27 삼성에스디아이 주식회사 Welding method for shadow-mask
US9530968B2 (en) * 2005-02-15 2016-12-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
US7948171B2 (en) * 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
EP1715075B1 (en) * 2005-04-20 2008-04-16 Applied Materials GmbH & Co. KG Magnetic mask holder
JP4789551B2 (en) * 2005-09-06 2011-10-12 株式会社半導体エネルギー研究所 Organic EL film forming equipment
US7485580B2 (en) * 2005-09-20 2009-02-03 Air Products And Chemicals, Inc. Method for removing organic electroluminescent residues from a substrate
US7531470B2 (en) * 2005-09-27 2009-05-12 Advantech Global, Ltd Method and apparatus for electronic device manufacture using shadow masks
JP4974504B2 (en) * 2005-10-13 2012-07-11 株式会社半導体エネルギー研究所 Film forming apparatus and light emitting apparatus manufacturing method
KR20070043541A (en) * 2005-10-21 2007-04-25 삼성에스디아이 주식회사 Apparatus of thin film evaporation and method for thin film evaporation using the same
JP5064810B2 (en) * 2006-01-27 2012-10-31 キヤノン株式会社 Vapor deposition apparatus and vapor deposition method
KR100836471B1 (en) * 2006-10-27 2008-06-09 삼성에스디아이 주식회사 Mask and deposition apparatus using the same
KR100842183B1 (en) * 2006-12-29 2008-06-30 두산메카텍 주식회사 Vapordeposition source scaning appauatus
JP2008221532A (en) * 2007-03-09 2008-09-25 Oshima Denki Seisakusho:Kk Film deposition system
KR100977971B1 (en) * 2007-06-27 2010-08-24 두산메카텍 주식회사 Evaporation equipment
KR100830839B1 (en) 2008-02-12 2008-05-20 문대규 Evaporator
KR100964224B1 (en) 2008-02-28 2010-06-17 삼성모바일디스플레이주식회사 Evaporating apparatus and method for forming thin film
US20090218219A1 (en) * 2008-02-29 2009-09-03 Semiconductor Energy Laboratory Co., Ltd. Manufacturing Apparatus
JP5416987B2 (en) 2008-02-29 2014-02-12 株式会社半導体エネルギー研究所 Film forming method and light emitting device manufacturing method
JP5238544B2 (en) * 2008-03-07 2013-07-17 株式会社半導体エネルギー研究所 Film forming method and light emitting device manufacturing method
US8409672B2 (en) * 2008-04-24 2013-04-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing evaporation donor substrate and method of manufacturing light-emitting device
KR101517020B1 (en) * 2008-05-15 2015-05-04 삼성디스플레이 주식회사 Apparatus and method for fabricating Organic Light Emitting Diode Display Device
EP2135970A1 (en) * 2008-06-20 2009-12-23 Applied Materials, Inc. Processing system and method for processing a substrate
JP2010111916A (en) * 2008-11-06 2010-05-20 Ulvac Japan Ltd Vacuum deposition system, vapor deposition source, film deposition chamber and method for exchanging vapor deposition vessel
TWI475124B (en) * 2009-05-22 2015-03-01 Samsung Display Co Ltd Thin film deposition apparatus
JP5620146B2 (en) 2009-05-22 2014-11-05 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition equipment
US8882920B2 (en) * 2009-06-05 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US8882921B2 (en) * 2009-06-08 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US9174250B2 (en) 2009-06-09 2015-11-03 Samsung Display Co., Ltd. Method and apparatus for cleaning organic deposition materials
US8802200B2 (en) 2009-06-09 2014-08-12 Samsung Display Co., Ltd. Method and apparatus for cleaning organic deposition materials
KR101074792B1 (en) * 2009-06-12 2011-10-19 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101117719B1 (en) * 2009-06-24 2012-03-08 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101097311B1 (en) * 2009-06-24 2011-12-21 삼성모바일디스플레이주식회사 Organic light emitting display apparatus and apparatus for thin layer deposition for manufacturing the same
KR101117720B1 (en) * 2009-06-25 2012-03-08 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition and method of manufacturing organic light emitting device using the same
JP5244725B2 (en) * 2009-07-21 2013-07-24 株式会社日立ハイテクノロジーズ Deposition equipment
CN101962750B (en) * 2009-07-24 2013-07-03 株式会社日立高新技术 Vacuum evaporation method and device
KR20110014442A (en) * 2009-08-05 2011-02-11 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101127575B1 (en) * 2009-08-10 2012-03-23 삼성모바일디스플레이주식회사 Apparatus for thin film deposition having a deposition blade
US20110033621A1 (en) * 2009-08-10 2011-02-10 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus including deposition blade
JP5676175B2 (en) 2009-08-24 2015-02-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
KR101127578B1 (en) * 2009-08-24 2012-03-23 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
JP5328726B2 (en) 2009-08-25 2013-10-30 三星ディスプレイ株式會社 Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
US8486737B2 (en) * 2009-08-25 2013-07-16 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
JP5677785B2 (en) * 2009-08-27 2015-02-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
JP5611718B2 (en) * 2009-08-27 2014-10-22 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
US20110052795A1 (en) * 2009-09-01 2011-03-03 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8696815B2 (en) 2009-09-01 2014-04-15 Samsung Display Co., Ltd. Thin film deposition apparatus
KR20120071393A (en) * 2009-09-24 2012-07-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US8876975B2 (en) * 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
KR101146982B1 (en) 2009-11-20 2012-05-22 삼성모바일디스플레이주식회사 Aapparatus for thin layer deposition and method of manufacturing organic light emitting display apparatus
US8590338B2 (en) 2009-12-31 2013-11-26 Samsung Mobile Display Co., Ltd. Evaporator with internal restriction
KR101084184B1 (en) 2010-01-11 2011-11-17 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101174875B1 (en) * 2010-01-14 2012-08-17 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101193186B1 (en) * 2010-02-01 2012-10-19 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101156441B1 (en) 2010-03-11 2012-06-18 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101202348B1 (en) 2010-04-06 2012-11-16 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
KR101223723B1 (en) 2010-07-07 2013-01-18 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101673017B1 (en) 2010-07-30 2016-11-07 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR20120012638A (en) 2010-08-02 2012-02-10 삼성모바일디스플레이주식회사 Apparatus for forming thin film
JP5607470B2 (en) * 2010-09-14 2014-10-15 公益財団法人かずさDna研究所 Substrate surface hydrophilization treatment method and workpiece manufacturing apparatus
KR20120029166A (en) 2010-09-16 2012-03-26 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101678056B1 (en) 2010-09-16 2016-11-22 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR20120039944A (en) * 2010-10-18 2012-04-26 삼성모바일디스플레이주식회사 Depositing system for substrate and dspoiting method for the same
JP5298244B2 (en) 2010-10-19 2013-09-25 シャープ株式会社 Vapor deposition equipment
KR101723506B1 (en) 2010-10-22 2017-04-19 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101738531B1 (en) 2010-10-22 2017-05-23 삼성디스플레이 주식회사 Method for manufacturing of organic light emitting display apparatus, and organic light emitting display apparatus manufactured by the method
KR20120045865A (en) 2010-11-01 2012-05-09 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
KR20120065789A (en) 2010-12-13 2012-06-21 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
JP2012140671A (en) * 2010-12-28 2012-07-26 Canon Tokki Corp Film-forming apparatus
KR101760897B1 (en) 2011-01-12 2017-07-25 삼성디스플레이 주식회사 Deposition source and apparatus for organic layer deposition having the same
JP2012186158A (en) * 2011-02-14 2012-09-27 Semiconductor Energy Lab Co Ltd Method for manufacturing lighting system and light emitting device, and device for manufacturing the same
JP2012178278A (en) * 2011-02-25 2012-09-13 Ulvac Japan Ltd Method for forming light transmissive metal oxide film
JP5902515B2 (en) 2011-03-14 2016-04-13 株式会社半導体エネルギー研究所 Continuous film forming apparatus and continuous film forming method
WO2012126016A2 (en) * 2011-03-17 2012-09-20 Kateeva, Inc. Apparatus and methods for depositing one or more organic materials on a substrate
KR101923174B1 (en) 2011-05-11 2018-11-29 삼성디스플레이 주식회사 ESC, apparatus for thin layer deposition therewith, and method for manufacturing of organic light emitting display apparatus using the same
KR101840654B1 (en) 2011-05-25 2018-03-22 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101852517B1 (en) 2011-05-25 2018-04-27 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101857992B1 (en) 2011-05-25 2018-05-16 삼성디스플레이 주식회사 Patterning slit sheet assembly, apparatus for organic layer deposition, method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus
KR101857249B1 (en) 2011-05-27 2018-05-14 삼성디스플레이 주식회사 Patterning slit sheet assembly, apparatus for organic layer deposition, method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus
KR20130004830A (en) 2011-07-04 2013-01-14 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101826068B1 (en) 2011-07-04 2018-02-07 삼성디스플레이 주식회사 Apparatus for thin layer deposition
KR20130010730A (en) 2011-07-19 2013-01-29 삼성디스플레이 주식회사 Deposition source and deposition apparatus with the same
KR20130015144A (en) 2011-08-02 2013-02-13 삼성디스플레이 주식회사 Deposition source, apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
JP5812753B2 (en) * 2011-08-11 2015-11-17 株式会社アルバック Film forming apparatus and film forming method
KR20130069037A (en) 2011-12-16 2013-06-26 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus
US9055654B2 (en) 2011-12-22 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and film formation method
KR20130095063A (en) * 2012-02-17 2013-08-27 삼성디스플레이 주식회사 Apparatus for deposition a organic layer and the method for manufacturing of organic light emitting display apparatus using the same
JP2013216955A (en) * 2012-04-11 2013-10-24 Hitachi High-Technologies Corp Vacuum vapor deposition apparatus
KR102015872B1 (en) 2012-06-22 2019-10-22 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101959974B1 (en) 2012-07-10 2019-07-16 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR102013315B1 (en) 2012-07-10 2019-08-23 삼성디스플레이 주식회사 Method for manufacturing of organic light emitting display apparatus and organic light emitting display apparatus manufactured by the method
CN103545460B (en) 2012-07-10 2017-04-12 三星显示有限公司 Organic light-emitting display device, organic light-emitting display apparatus, and method of manufacturing organic light-emitting display apparatus
US9461277B2 (en) 2012-07-10 2016-10-04 Samsung Display Co., Ltd. Organic light emitting display apparatus
KR101632298B1 (en) 2012-07-16 2016-06-22 삼성디스플레이 주식회사 Flat panel display device and manufacturing method thereof
KR101968664B1 (en) * 2012-08-06 2019-08-14 삼성디스플레이 주식회사 Device for forming thin layer and manufacturing method of organic light emitting diode display using the same
KR102013318B1 (en) 2012-09-20 2019-08-23 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus
KR101994838B1 (en) 2012-09-24 2019-10-01 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR20140050994A (en) 2012-10-22 2014-04-30 삼성디스플레이 주식회사 Organic light emitting display apparatus and method for manufacturing the same
KR102052069B1 (en) 2012-11-09 2019-12-05 삼성디스플레이 주식회사 Apparatus for organic layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR102075525B1 (en) 2013-03-20 2020-02-11 삼성디스플레이 주식회사 Deposition apparatus for organic layer, method for manufacturing organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR20140118551A (en) 2013-03-29 2014-10-08 삼성디스플레이 주식회사 Deposition apparatus, method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus
KR102073765B1 (en) * 2013-04-04 2020-02-26 삼성디스플레이 주식회사 Method for manufacturing display and deposition apparatus for the same
KR102037376B1 (en) 2013-04-18 2019-10-29 삼성디스플레이 주식회사 Patterning slit sheet, deposition apparatus comprising the same, method for manufacturing organic light emitting display apparatus using the same, organic light emitting display apparatus manufacture by the method
KR102081284B1 (en) 2013-04-18 2020-02-26 삼성디스플레이 주식회사 Deposition apparatus, method for manufacturing organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the same
KR102086550B1 (en) * 2013-05-31 2020-03-10 삼성디스플레이 주식회사 Deposition apparatus, method for manufacturing organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the same
KR102107104B1 (en) 2013-06-17 2020-05-07 삼성디스플레이 주식회사 Apparatus for organic layer deposition, and method for manufacturing of organic light emitting display apparatus using the same
KR102108361B1 (en) 2013-06-24 2020-05-11 삼성디스플레이 주식회사 Apparatus for monitoring deposition rate, apparatus for organic layer deposition using the same, method for monitoring deposition rate, and method for manufacturing of organic light emitting display apparatus using the same
CN103726019B (en) * 2013-12-13 2015-10-28 中国科学院上海光学精密机械研究所 Improve the method for design of the baffle plate of spherical optics element plated film homogeneity
KR102162797B1 (en) 2013-12-23 2020-10-08 삼성디스플레이 주식회사 Method for manufacturing of organic light emitting display apparatus
US20170198384A1 (en) * 2014-05-30 2017-07-13 Sharp Kabushiki Kaisha Deposition apparatus and deposition method
EP2975155A1 (en) * 2014-07-15 2016-01-20 Essilor International (Compagnie Generale D'optique) A process for physical vapor deposition of a material layer on surfaces of a plurality of substrates
CN104593731B (en) * 2015-02-04 2017-05-03 深圳市华星光电技术有限公司 Vapor deposition-replacement integrated apparatus and application method thereof
CN105154832B (en) * 2015-10-15 2018-06-08 京东方科技集团股份有限公司 Evaporated device and evaporation coating method
CN105177510B (en) * 2015-10-21 2018-04-03 京东方科技集团股份有限公司 Evaporated device and evaporation coating method
US10892415B2 (en) 2016-03-10 2021-01-12 Hon Hai Precision Industry Co., Ltd. Deposition mask, vapor deposition apparatus, vapor deposition method, and method for manufacturing organic EL display apparatus
JP2017036512A (en) * 2016-11-07 2017-02-16 株式会社半導体エネルギー研究所 Deposition device
JP6580105B2 (en) * 2017-10-26 2019-09-25 キヤノントッキ株式会社 measuring device
CN109881179B (en) * 2019-04-19 2023-07-25 江苏可润光电科技有限公司 Full-wrapping parylene coating process and coating device
CN114583060A (en) * 2020-12-01 2022-06-03 杭州纤纳光电科技有限公司 Perovskite film rhythmic deposition production method and equipment
JP7362693B2 (en) * 2021-06-01 2023-10-17 キヤノントッキ株式会社 Film deposition equipment and electronic device manufacturing equipment

Family Cites Families (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2351536A (en) * 1941-04-25 1944-06-13 Spencer Lens Co Method of treating surfaces
US2435997A (en) * 1943-11-06 1948-02-17 American Optical Corp Apparatus for vapor coating of large surfaces
US3110620A (en) * 1960-06-28 1963-11-12 Ibm Method of making plural layer thin film devices
US3235647A (en) 1963-06-06 1966-02-15 Temescal Metallurgical Corp Electron bombardment heating with adjustable impact pattern
US3312190A (en) * 1964-02-25 1967-04-04 Burroughs Corp Mask and substrate alignment apparatus
US3420977A (en) 1965-06-18 1969-01-07 Air Reduction Electron beam apparatus
US3391490A (en) * 1966-02-23 1968-07-09 David H. Evans Remotely controlled vehicle system
US3543717A (en) * 1968-04-25 1970-12-01 Itek Corp Means to adjust collimator and crucible location in a vapor deposition apparatus
US3636305A (en) * 1971-03-10 1972-01-18 Gte Sylvania Inc Apparatus for metal vaporization comprising a heater and a refractory vessel
US3710072A (en) 1971-05-10 1973-01-09 Airco Inc Vapor source assembly
US3756193A (en) * 1972-05-01 1973-09-04 Battelle Memorial Institute Coating apparatus
JPS5315466B2 (en) * 1973-04-28 1978-05-25
FR2244014B1 (en) * 1973-09-17 1976-10-08 Bosch Gmbh Robert
US3971334A (en) * 1975-03-04 1976-07-27 Xerox Corporation Coating device
US4023523A (en) * 1975-04-23 1977-05-17 Xerox Corporation Coater hardware and method for obtaining uniform photoconductive layers on a xerographic photoreceptor
US4187801A (en) * 1977-12-12 1980-02-12 Commonwealth Scientific Corporation Method and apparatus for transporting workpieces
JPS5828812Y2 (en) 1978-02-26 1983-06-23 ナショナル住宅産業株式会社 Anti-warp device
JPS54127877A (en) 1978-03-28 1979-10-04 Ricoh Co Ltd Preparation of thin film
US4233937A (en) * 1978-07-20 1980-11-18 Mcdonnell Douglas Corporation Vapor deposition coating machine
DE2834806A1 (en) 1978-08-09 1980-02-14 Leybold Heraeus Gmbh & Co Kg Vacuum vapour deposition of thin films esp. aluminium on TV tubes - using evaporator boat fitted on cardan mounting so that evaporator can be tilted
US4225805A (en) * 1978-12-22 1980-09-30 Gte Products Corporation Cathode ray tube getter sealing structure
JPS6032361Y2 (en) 1980-03-17 1985-09-27 三国工業株式会社 Starter operation mechanism of multiple carburetor
JPS57123973A (en) 1981-01-22 1982-08-02 Fuji Electric Co Ltd Container for vacuum-depositing material
JPS6214379Y2 (en) 1981-01-27 1987-04-13
JPS57172060A (en) 1981-04-17 1982-10-22 Mitsui Keikinzoku Kako Upstair
JPS57172060U (en) * 1981-04-20 1982-10-29
US4446357A (en) * 1981-10-30 1984-05-01 Kennecott Corporation Resistance-heated boat for metal vaporization
US4469719A (en) * 1981-12-21 1984-09-04 Applied Magnetics-Magnetic Head Divison Corporation Method for controlling the edge gradient of a layer of deposition material
JPS58177463A (en) 1982-04-12 1983-10-18 Hitachi Ltd Method and device for formation of thin film
US4405487A (en) * 1982-04-29 1983-09-20 Harrah Larry A Combination moisture and hydrogen getter
JPS58177463U (en) 1982-05-21 1983-11-28 株式会社日本ロツク Electronic lock chain lock
CH651592A5 (en) * 1982-10-26 1985-09-30 Balzers Hochvakuum STEAM SOURCE FOR VACUUM STEAMING SYSTEMS.
DE3480243D1 (en) * 1983-03-31 1989-11-23 Matsushita Electric Ind Co Ltd Method of manufacturing thin-film integrated devices
JPS59203238A (en) * 1983-04-30 1984-11-17 Tdk Corp Magnetic recording medium and its production
JPS6032361A (en) 1983-08-03 1985-02-19 Hitachi Ltd Manufacture of electrode wiring for semiconductor device
DE3330092A1 (en) * 1983-08-20 1985-03-07 Leybold-Heraeus GmbH, 5000 Köln METHOD FOR ADJUSTING THE LOCAL EVAPORATION PERFORMANCE ON EVAPORATORS IN VACUUM EVAPORATION PROCESSES
GB8332394D0 (en) * 1983-12-05 1984-01-11 Pilkington Brothers Plc Coating apparatus
JPS60121616A (en) 1983-12-06 1985-06-29 セイコーエプソン株式会社 Method of forming transparent conductive film
JPS60121616U (en) 1984-01-25 1985-08-16 三菱電機株式会社 Tap switching device under load
US5259881A (en) * 1991-05-17 1993-11-09 Materials Research Corporation Wafer processing cluster tool batch preheating and degassing apparatus
US4672265A (en) * 1984-07-31 1987-06-09 Canon Kabushiki Kaisha Electroluminescent device
US4600160A (en) 1984-09-20 1986-07-15 Oscar Mayer Foods Corporation Chopper blade assembly
JPH0246667B2 (en) 1986-09-20 1990-10-16 Anelva Corp HAKUMAKUJOCHAKUSOCHI
US4897290A (en) * 1986-09-26 1990-01-30 Konishiroku Photo Industry Co., Ltd. Method for manufacturing the substrate for liquid crystal display
JPS6379959U (en) 1986-11-14 1988-05-26
US4951601A (en) * 1986-12-19 1990-08-28 Applied Materials, Inc. Multi-chamber integrated process system
US4885211A (en) * 1987-02-11 1989-12-05 Eastman Kodak Company Electroluminescent device with improved cathode
JPS63186763U (en) * 1987-02-16 1988-11-30
US4769292A (en) * 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
JPS63297549A (en) 1987-05-29 1988-12-05 Komatsu Ltd Vacuum deposition device
JPS6442392A (en) 1987-08-07 1989-02-14 Nec Corp Apparatus for molecular beam epitaxy
JPS6442392U (en) 1987-09-03 1989-03-14
JP2832836B2 (en) * 1988-12-26 1998-12-09 株式会社小松製作所 Vacuum deposition equipment
US5111022A (en) 1989-08-23 1992-05-05 Tfi Telemark Cooling system for electron beam gun and method
JP2672680B2 (en) * 1990-02-09 1997-11-05 沖電気工業株式会社 Method for producing thin film and evaporation source used therefor
US5310410A (en) * 1990-04-06 1994-05-10 Sputtered Films, Inc. Method for processing semi-conductor wafers in a multiple vacuum and non-vacuum chamber apparatus
JP2913745B2 (en) * 1990-04-10 1999-06-28 松下電器産業株式会社 Vacuum deposition equipment
JPH0423523A (en) * 1990-05-17 1992-01-27 Matsushita Electric Ind Co Ltd Satellite receiving tuner
JPH04116169A (en) 1990-09-05 1992-04-16 Shin Meiwa Ind Co Ltd Vacuum vapor deposition device for forming multilayered films
US5167984A (en) 1990-12-06 1992-12-01 Xerox Corporation Vacuum deposition process
US5258325A (en) * 1990-12-31 1993-11-02 Kopin Corporation Method for manufacturing a semiconductor device using a circuit transfer film
JP3181611B2 (en) 1991-02-22 2001-07-03 コニカ株式会社 Vapor deposition equipment
JP3125279B2 (en) * 1991-02-25 2001-01-15 東海カーボン株式会社 Graphite crucible for vacuum evaporation
JPH04116169U (en) 1991-03-28 1992-10-16 株式会社島津製作所 laser equipment
JP2784615B2 (en) * 1991-10-16 1998-08-06 株式会社半導体エネルギー研究所 Electro-optical display device and driving method thereof
US5429884A (en) * 1992-01-17 1995-07-04 Pioneer Electronic Corporation Organic electroluminescent element
JP2688555B2 (en) 1992-04-27 1997-12-10 株式会社日立製作所 Multi-chamber system
JP3257056B2 (en) 1992-09-04 2002-02-18 石川島播磨重工業株式会社 Vacuum deposition equipment
JP3482969B2 (en) * 1993-01-19 2004-01-06 石川島播磨重工業株式会社 Continuous vacuum deposition equipment
DE69304038T2 (en) * 1993-01-28 1996-12-19 Applied Materials Inc Device for a vacuum process with improved throughput
JP3059972B2 (en) 1993-03-12 2000-07-04 工業技術院長 Manufacturing method of organic optical thin film and its equipment
JP2821347B2 (en) * 1993-10-12 1998-11-05 日本電気株式会社 Current control type light emitting element array
JP2770299B2 (en) * 1993-10-26 1998-06-25 富士ゼロックス株式会社 Thin-film EL element, method of manufacturing the same, and sputtering target used therefor
KR100291971B1 (en) 1993-10-26 2001-10-24 야마자끼 순페이 Substrate processing apparatus and method and thin film semiconductor device manufacturing method
JP2734965B2 (en) 1993-12-20 1998-04-02 双葉電子工業株式会社 Field emission device and method of manufacturing the same
JPH07192866A (en) 1993-12-26 1995-07-28 Ricoh Co Ltd Organic thin film type electroluminescent element
JPH07216539A (en) 1994-01-28 1995-08-15 Toray Ind Inc Film forming device and production of thin film using the same
JP2599569B2 (en) 1994-03-09 1997-04-09 工業技術院長 Method and apparatus for manufacturing composite optical thin film
US5701055A (en) * 1994-03-13 1997-12-23 Pioneer Electronic Corporation Organic electoluminescent display panel and method for manufacturing the same
DE4422697C1 (en) 1994-06-29 1996-01-25 Zsw Vapour coating device for prodn. of thin filmed solar cells
US5534314A (en) * 1994-08-31 1996-07-09 University Of Virginia Patent Foundation Directed vapor deposition of electron beam evaporant
JPH08111285A (en) 1994-10-07 1996-04-30 Tdk Corp Manufacture of organic electroluminescent element and its device
US5972183A (en) * 1994-10-31 1999-10-26 Saes Getter S.P.A Getter pump module and system
US5550066A (en) * 1994-12-14 1996-08-27 Eastman Kodak Company Method of fabricating a TFT-EL pixel
US5945967A (en) * 1995-01-18 1999-08-31 I-O Display Systems, Llc Speckle depixelator
EP0732731A3 (en) * 1995-03-13 1997-10-08 Applied Materials Inc Treatment of a titanium nitride layer to improve resistance to elevated temperatures
JPH0916960A (en) * 1995-06-30 1997-01-17 Hitachi Maxell Ltd Manufacturing device for information recording medium
US5935395A (en) * 1995-11-08 1999-08-10 Mitel Corporation Substrate processing apparatus with non-evaporable getter pump
JPH09209127A (en) 1996-02-05 1997-08-12 Idemitsu Kosan Co Ltd Vacuum vapor deposition apparatus and production of organic electroluminescence element by using this vacuum vapor deposition apparatus
JPH09256142A (en) 1996-03-15 1997-09-30 Sony Corp Film forming device
TW320687B (en) * 1996-04-01 1997-11-21 Toray Industries
JP3539125B2 (en) 1996-04-18 2004-07-07 東レ株式会社 Manufacturing method of organic electroluminescent device
JPH1050478A (en) * 1996-04-19 1998-02-20 Toray Ind Inc Organic field emission element and manufacture thereof
JP3113212B2 (en) * 1996-05-09 2000-11-27 富士通株式会社 Plasma display panel phosphor layer forming apparatus and phosphor coating method
WO1997046054A1 (en) * 1996-05-29 1997-12-04 Idemitsu Kosan Co., Ltd. Organic el device
US5902688A (en) * 1996-07-16 1999-05-11 Hewlett-Packard Company Electroluminescent display device
US5817366A (en) * 1996-07-29 1998-10-06 Tdk Corporation Method for manufacturing organic electroluminescent element and apparatus therefor
US5844363A (en) * 1997-01-23 1998-12-01 The Trustees Of Princeton Univ. Vacuum deposited, non-polymeric flexible organic light emitting devices
JPH10162954A (en) 1996-11-29 1998-06-19 Hokuriku Electric Ind Co Ltd Manufacture of organic el element
JP4059946B2 (en) 1996-12-06 2008-03-12 株式会社アルバック Organic thin film forming apparatus and organic material recycling method
JP3483719B2 (en) 1997-01-09 2004-01-06 株式会社アルバック Evaporation source for organic material and organic thin film forming apparatus using the same
JP3162313B2 (en) * 1997-01-20 2001-04-25 工業技術院長 Thin film manufacturing method and thin film manufacturing apparatus
US5904961A (en) * 1997-01-24 1999-05-18 Eastman Kodak Company Method of depositing organic layers in organic light emitting devices
JPH10214682A (en) 1997-01-30 1998-08-11 Mitsubishi Chem Corp Manufacturing device and manufacture of organic electroluminescent element
US6049167A (en) * 1997-02-17 2000-04-11 Tdk Corporation Organic electroluminescent display device, and method and system for making the same
JP2848371B2 (en) * 1997-02-21 1999-01-20 日本電気株式会社 Organic EL display device and manufacturing method thereof
JP2845856B2 (en) * 1997-03-10 1999-01-13 出光興産株式会社 Method for manufacturing organic electroluminescence device
JPH10270164A (en) 1997-03-26 1998-10-09 Idemitsu Kosan Co Ltd Manufacture of organic electroluminescent element and its manufacturing device
DE29707686U1 (en) * 1997-04-28 1997-06-26 Balzers Prozess Systeme Vertriebs- und Service GmbH, 81245 München Magnetic holder for foil masks
TW411458B (en) * 1997-05-08 2000-11-11 Matsushita Electric Ind Co Ltd Apparatus and process for production of optical recording medium
US5906857A (en) * 1997-05-13 1999-05-25 Ultratherm, Inc. Apparatus, system and method for controlling emission parameters attending vaporized in a HV environment
AUPO712097A0 (en) * 1997-05-30 1997-06-26 Lintek Pty Ltd Vacuum deposition system
JPH10335062A (en) 1997-05-30 1998-12-18 Tdk Corp Device and method for manufacturing organic el element
US6011904A (en) * 1997-06-10 2000-01-04 Board Of Regents, University Of Texas Molecular beam epitaxy effusion cell
JP3508484B2 (en) * 1997-07-14 2004-03-22 松下電器産業株式会社 Method and apparatus for forming functional thin film
JPH1145779A (en) * 1997-07-25 1999-02-16 Tdk Corp Method and device for manufacturing organic el element
JPH1161386A (en) * 1997-08-22 1999-03-05 Fuji Electric Co Ltd Film forming device of organic thin film light emitting element
US6124215A (en) * 1997-10-06 2000-09-26 Chartered Semiconductor Manufacturing Ltd. Apparatus and method for planarization of spin-on materials
DE69734113T2 (en) 1997-10-15 2006-07-13 Toray Industries, Inc. METHOD FOR PRODUCING AN ORGANIC ELECTROLUMINESCENT DEVICE
IT1295340B1 (en) * 1997-10-15 1999-05-12 Getters Spa HIGH SPEED GAS ABSORPTION GETTER PUMP
JP4058149B2 (en) * 1997-12-01 2008-03-05 キヤノンアネルバ株式会社 Mask alignment method for vacuum deposition system
TW466266B (en) 1997-12-18 2001-12-01 Central Glass Co Ltd Gas for removing deposit and removal method using same
JP3014368B2 (en) 1997-12-18 2000-02-28 セントラル硝子株式会社 Cleaning gas
IT1297013B1 (en) * 1997-12-23 1999-08-03 Getters Spa GETTER SYSTEM FOR THE PURIFICATION OF THE WORKING ATMOSPHERE IN PHYSICAL STEAM DEPOSITION PROCESSES
JP3453290B2 (en) * 1997-12-26 2003-10-06 松下電器産業株式会社 Electrode structure for vapor deposition, vapor deposition apparatus, vapor deposition method, and method for manufacturing organic light emitting device
JPH11229123A (en) 1998-02-12 1999-08-24 Casio Comput Co Ltd Vapor deposition device
US6251233B1 (en) * 1998-08-03 2001-06-26 The Coca-Cola Company Plasma-enhanced vacuum vapor deposition system including systems for evaporation of a solid, producing an electric arc discharge and measuring ionization and evaporation
US6284052B2 (en) 1998-08-19 2001-09-04 Sharp Laboratories Of America, Inc. In-situ method of cleaning a metal-organic chemical vapor deposition chamber
JP2000068055A (en) * 1998-08-26 2000-03-03 Tdk Corp Evaporation source for organic el element, manufacturing device for organic el element using the same and manufacture thereof
US6132805A (en) * 1998-10-20 2000-10-17 Cvc Products, Inc. Shutter for thin-film processing equipment
JP3782245B2 (en) 1998-10-28 2006-06-07 Tdk株式会社 Manufacturing apparatus and manufacturing method of organic EL display device
US6214631B1 (en) * 1998-10-30 2001-04-10 The Trustees Of Princeton University Method for patterning light emitting devices incorporating a movable mask
WO2000027802A1 (en) * 1998-11-12 2000-05-18 Ariad Pharmaceuticals, Inc. Bicyclic signal transduction inhibitors, compositions containing them & uses thereof
JP3019095B1 (en) * 1998-12-22 2000-03-13 日本電気株式会社 Manufacturing method of organic thin film EL device
US6328815B1 (en) * 1999-02-19 2001-12-11 Taiwan Semiconductor Manufacturing Company Multiple chamber vacuum processing system configuration for improving the stability of mark shielding process
JP2000348859A (en) 1999-06-03 2000-12-15 Chisso Corp Organic electroluminescent element
US6469439B2 (en) * 1999-06-15 2002-10-22 Toray Industries, Inc. Process for producing an organic electroluminescent device
JP4472056B2 (en) * 1999-07-23 2010-06-02 株式会社半導体エネルギー研究所 Electroluminescence display device and manufacturing method thereof
TW504941B (en) * 1999-07-23 2002-10-01 Semiconductor Energy Lab Method of fabricating an EL display device, and apparatus for forming a thin film
US6660409B1 (en) * 1999-09-16 2003-12-09 Panasonic Communications Co., Ltd Electronic device and process for producing the same
JP4140674B2 (en) * 1999-09-27 2008-08-27 東京エレクトロン株式会社 Method and apparatus for observing porous amorphous film
JP4187367B2 (en) 1999-09-28 2008-11-26 三洋電機株式会社 ORGANIC LIGHT EMITTING ELEMENT, ITS MANUFACTURING DEVICE, AND ITS MANUFACTURING METHOD
TW574396B (en) 1999-10-22 2004-02-01 Kurt J Lesker Company Method and apparatus for coating a substrate in a vacuum
KR20010047128A (en) * 1999-11-18 2001-06-15 이경수 Method of vaporizing a liquid source and apparatus used therefor
US6537607B1 (en) * 1999-12-17 2003-03-25 Texas Instruments Incorporated Selective deposition of emissive layer in electroluminescent displays
TW490714B (en) * 1999-12-27 2002-06-11 Semiconductor Energy Lab Film formation apparatus and method for forming a film
US6244212B1 (en) * 1999-12-30 2001-06-12 Genvac Aerospace Corporation Electron beam evaporation assembly for high uniform thin film
US6633121B2 (en) * 2000-01-31 2003-10-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence display device and method of manufacturing same
US6237529B1 (en) * 2000-03-03 2001-05-29 Eastman Kodak Company Source for thermal physical vapor deposition of organic electroluminescent layers
JP2001279429A (en) * 2000-03-30 2001-10-10 Idemitsu Kosan Co Ltd Method for depositing thin film layer for element and organic electroluminescence element
US20020011205A1 (en) 2000-05-02 2002-01-31 Shunpei Yamazaki Film-forming apparatus, method of cleaning the same, and method of manufacturing a light-emitting device
US7517551B2 (en) * 2000-05-12 2009-04-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a light-emitting device
EP1167566B1 (en) * 2000-06-22 2011-01-26 Panasonic Electric Works Co., Ltd. Apparatus for and method of vacuum vapor deposition
JP2002075638A (en) 2000-08-29 2002-03-15 Nec Corp Vapor deposition method of mask and vapor deposition device
JP2002175878A (en) * 2000-09-28 2002-06-21 Sanyo Electric Co Ltd Forming method of layer, and manufacturing method of color luminous device
JP2002105622A (en) 2000-10-04 2002-04-10 Sony Corp Vapor deposition tool and vapor deposition method
TW463522B (en) * 2000-11-07 2001-11-11 Helix Technology Inc Manufacturing method for organic light emitting diode
US6641674B2 (en) * 2000-11-10 2003-11-04 Helix Technology Inc. Movable evaporation device
US7432116B2 (en) * 2001-02-21 2008-10-07 Semiconductor Energy Laboratory Co., Ltd. Method and apparatus for film deposition
US20030015140A1 (en) * 2001-04-26 2003-01-23 Eastman Kodak Company Physical vapor deposition of organic layers using tubular sources for making organic light-emitting devices
JP4704605B2 (en) * 2001-05-23 2011-06-15 淳二 城戸 Continuous vapor deposition apparatus, vapor deposition apparatus and vapor deposition method
JP2003002778A (en) * 2001-06-26 2003-01-08 International Manufacturing & Engineering Services Co Ltd Molecular beam cell for depositing thin film
JP4707271B2 (en) * 2001-06-29 2011-06-22 三洋電機株式会社 Method for manufacturing electroluminescence element
JP2003113466A (en) * 2001-07-31 2003-04-18 Fuji Photo Film Co Ltd Vacuum deposition apparatus
US20030101937A1 (en) * 2001-11-28 2003-06-05 Eastman Kodak Company Thermal physical vapor deposition source for making an organic light-emitting device
US7655397B2 (en) * 2002-04-25 2010-02-02 The United States Of America As Represented By The Department Of Health And Human Services Selections of genes and methods of using the same for diagnosis and for targeting the therapy of select cancers
KR100490537B1 (en) * 2002-07-23 2005-05-17 삼성에스디아이 주식회사 Heating crucible and deposit apparatus utilizing the same

Also Published As

Publication number Publication date
US20170137930A1 (en) 2017-05-18
JP2018066066A (en) 2018-04-26
US9559302B2 (en) 2017-01-31
KR20070029770A (en) 2007-03-14
JP2017045728A (en) 2017-03-02
JP6371820B2 (en) 2018-08-08
US20150171329A1 (en) 2015-06-18
US8968823B2 (en) 2015-03-03
CN1790773A (en) 2006-06-21
EP1113087A2 (en) 2001-07-04
TW490714B (en) 2002-06-11
JP2013253323A (en) 2013-12-19
US20010006827A1 (en) 2001-07-05
KR100827760B1 (en) 2008-05-07
JP2003293122A (en) 2003-10-15
KR100794292B1 (en) 2008-01-11
JP4782978B2 (en) 2011-09-28
KR20010062735A (en) 2001-07-07
JP5589115B2 (en) 2014-09-10
JP3833066B2 (en) 2006-10-11
JP2016000859A (en) 2016-01-07
US8119189B2 (en) 2012-02-21
JP2013147754A (en) 2013-08-01
CN1302173A (en) 2001-07-04
CN1240250C (en) 2006-02-01
CN100517798C (en) 2009-07-22
US20100021624A1 (en) 2010-01-28
EP1113087B1 (en) 2016-08-31
EP1113087A3 (en) 2003-11-19
JP2001247959A (en) 2001-09-14
JP2011117083A (en) 2011-06-16
JP2013249543A (en) 2013-12-12
JP5856110B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
JP6371820B2 (en) Film-forming method and light-emitting device manufacturing method
KR101167546B1 (en) Evaporation apparatus
KR100696547B1 (en) Method for depositing film
KR101003404B1 (en) Fabrication system and a fabrication method of a light emitting device
US8158012B2 (en) Film forming apparatus and method for manufacturing light emitting element
US8263174B2 (en) Light emitting device and method for manufacturing light emitting device
US8482422B2 (en) Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using thin film deposition apparatus
JP4252317B2 (en) Vapor deposition apparatus and vapor deposition method
JP4439827B2 (en) Manufacturing apparatus and light emitting device manufacturing method
JP2007328999A (en) Apparatus and method for manufacturing light emitting element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5315361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees