JP5037204B2 - Method for producing high-strength steel material having yield stress of 500 MPa or more and tensile strength of 570 MPa or more which is excellent in toughness of weld heat affected zone - Google Patents
Method for producing high-strength steel material having yield stress of 500 MPa or more and tensile strength of 570 MPa or more which is excellent in toughness of weld heat affected zone Download PDFInfo
- Publication number
- JP5037204B2 JP5037204B2 JP2007104945A JP2007104945A JP5037204B2 JP 5037204 B2 JP5037204 B2 JP 5037204B2 JP 2007104945 A JP2007104945 A JP 2007104945A JP 2007104945 A JP2007104945 A JP 2007104945A JP 5037204 B2 JP5037204 B2 JP 5037204B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- mpa
- toughness
- strength
- affected zone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
本発明は、建築、造船、橋梁、及び土木等の各分野に用いられる、溶接熱影響部の靭性に優れる降伏応力500MPa以上引張強さ570MPa以上の高強度鋼材の製造方法に関するものである。なお、本明細書中で用いる「570MPa級」とは、570MPa以上、720MPa以下の範囲の引張強さ(TS)を有するものを指すものとする。 The present invention relates to a method for producing a high-strength steel material having a yield stress of 500 MPa or more and a tensile strength of 570 MPa or more, which is excellent in toughness of a weld heat affected zone, and is used in various fields such as construction, shipbuilding, bridges, and civil engineering. As used herein, “570 MPa class” refers to a material having a tensile strength (TS) in the range of 570 MPa to 720 MPa.
近年、船舶や建築物等の鋼構造物において使用される鋼材の高強度化が進行している。高強度鋼材を使用することで鋼材の使用量を減らすことが可能となり、構造物内の空間の拡大や重量の低減といったメリットが得られる。 In recent years, the strength of steel materials used in steel structures such as ships and buildings has been increasing. By using high-strength steel materials, it becomes possible to reduce the amount of steel materials used, and it is possible to obtain merits such as expanding the space in the structure and reducing the weight.
従来、高強度厚鋼板を製造するにあたっては、実機製造上で安定的に強度と靭性を得るために、熱間圧延、直接焼入れ、及び焼戻し熱処理を組合せたプロセスにて製造するのが一般的であった。 Conventionally, when manufacturing high-strength thick steel plates, in order to stably obtain strength and toughness in actual machine manufacturing, it is common to manufacture by a process that combines hot rolling, direct quenching, and tempering heat treatment. there were.
例えば、特許文献1、2及び3には、鋼板を熱間圧延後、オンラインで直接焼入れを行い、さらにオフラインで焼戻し熱処理を行う技術が示されている。しかし、オフラインの焼戻し熱処理を行うことは一般に製造時間の増大を招き、生産性の低下が問題となる。近年の高強度厚鋼板の需要の高まりに応えるためには、より生産性の高い製造方法が望まれる。 For example, Patent Documents 1, 2, and 3 disclose a technique in which a steel sheet is hot-rolled, directly quenched online, and then tempered offline. However, the off-line tempering heat treatment generally causes an increase in manufacturing time, and a reduction in productivity becomes a problem. In order to meet the recent increase in demand for high-strength thick steel plates, a production method with higher productivity is desired.
これに対し、従来も、高強度厚鋼板の生産性の向上を目的として、様々な技術開発がなされてきた。例えば、特許文献4、5及び6には、焼戻し熱処理を行うための加熱炉に誘導加熱方式を用いることで、焼戻し熱処理の加熱時間を短縮し、生産性を向上させる技術が示されている。 On the other hand, various technical developments have been made for the purpose of improving the productivity of high-strength thick steel plates. For example, Patent Documents 4, 5 and 6 show a technique for shortening the heating time of the tempering heat treatment and improving the productivity by using an induction heating method in a heating furnace for performing the tempering heat treatment.
一方、生産性向上のために、焼戻し熱処理自体を省略し、熱間圧延ままにて製造する方法の開発も行われている。例えば、特許文献7には、Cを0.03〜0.20%、Siを0.10〜0.60%含む鋼を熱間圧延ままにて製造する方法が示されている。また、特許文献8には、Cを0.10〜0.20%、Siを0.03〜0.60%含む鋼を熱間圧延ままにて製造する方法が示されている。また、特許文献9には、Cを0.06%以下、Siを0.1〜0.6%含む鋼を熱間圧延ままにて製造する方法が示されている。 On the other hand, in order to improve productivity, a method of manufacturing by hot rolling without omitting the tempering heat treatment itself has been developed. For example, Patent Document 7 discloses a method of manufacturing a steel containing 0.03 to 0.20% C and 0.10 to 0.60% Si as hot-rolled. Patent Document 8 discloses a method for producing a steel containing 0.10 to 0.20% C and 0.03 to 0.60% Si as hot-rolled. Patent Document 9 discloses a method for producing a steel containing 0.06% or less of C and 0.1 to 0.6% of Si as hot-rolled.
さらに、熱間圧延後に直接焼入れままで高強度厚鋼板を製造する方法も開発されている。例えば、特許文献10には、Cを0.030%以下、Siを0.60%以下含む鋼を熱間圧延した後、550℃以上の温度まで直接焼入れする製造方法が示されている。また、特許文献11には、Cを0.030%以下、Siを0.60%以下含む鋼を熱間圧延した後、550℃以上の温度まで直接焼入れする製造方法が示されている。また、特許文献12には、Cを0.04〜0.09%、Siを0.1〜0.5%含む鋼を熱間圧延した後、300〜600℃の温度範囲まで直接焼入れする製造方法が示されている。また、特許文献13には、Cを0.01〜0.03%、Siを0.05%〜1.0%含む鋼を熱間圧延した後、直接焼入れする製造方法が示されている。また、特許文献14には、Cを0.01〜0.06%含む鋼を熱間圧延した後、直接焼入れする製造方法が示されている。また、特許文献15には、Cを0.03〜0.07%、Siを0.1〜0.6%含む鋼を熱間圧延した後、600〜700℃の温度範囲まで直接焼入れする製造方法が示されている。また、特許文献16には、Cを0.01〜0.1%、Siを1.0%以下含む鋼を熱間圧延した後、直接焼入れする製造方法が示されている。また、特許文献17には、Cを0.05〜0.18%、Siを0.05〜0.5%含む鋼を熱間圧延後、620℃未満の温度まで直接焼入れする製造方法が示されている。また、特許文献18には、Cを0.03〜0.18%、Siを0.05〜0.5%含む鋼を熱間圧延後、(Ar3−300)〜(Ar3−50)℃の温度範囲まで直接焼入れする製造方法が示されている。 Furthermore, a method for producing a high-strength thick steel plate while being directly quenched after hot rolling has been developed. For example, Patent Document 10 discloses a manufacturing method in which a steel containing 0.030% or less of C and 0.60% or less of Si is hot-rolled and then directly quenched to a temperature of 550 ° C. or more. Patent Document 11 discloses a manufacturing method in which steel containing 0.030% or less of C and 0.60% or less of Si is hot-rolled and then directly quenched to a temperature of 550 ° C. or higher. In addition, Patent Document 12 describes a production in which steel containing 0.04 to 0.09% C and 0.1 to 0.5% Si is hot-rolled and then directly quenched to a temperature range of 300 to 600 ° C. The method is shown. Patent Document 13 discloses a manufacturing method in which a steel containing 0.01 to 0.03% C and 0.05 to 1.0% Si is hot-rolled and then directly quenched. Patent Document 14 discloses a manufacturing method in which steel containing 0.01 to 0.06% of C is hot-rolled and then directly quenched. In addition, Patent Document 15 discloses a method in which steel containing 0.03 to 0.07% C and 0.1 to 0.6% Si is hot-rolled and then directly quenched to a temperature range of 600 to 700 ° C. The method is shown. Patent Document 16 discloses a manufacturing method in which steel containing 0.01 to 0.1% of C and 1.0% or less of Si is hot-rolled and then directly quenched. Patent Document 17 discloses a manufacturing method in which steel containing 0.05 to 0.18% C and 0.05 to 0.5% Si is hot-rolled and then directly quenched to a temperature of less than 620 ° C. Has been. Patent Document 18 discloses that after hot rolling a steel containing 0.03 to 0.18% C and 0.05 to 0.5% Si, (Ar 3 -300) to (Ar 3 -50) A production method is shown in which quenching is directly performed up to a temperature range of ° C.
しかしながら、上記の特許文献1、2及び3に記載の方法では、鋼板の製造過程においてオフラインでの焼戻し熱処理が必要であり、そのために生産性の低下が避けられない。 However, in the methods described in Patent Documents 1, 2, and 3, offline tempering heat treatment is necessary in the manufacturing process of the steel sheet, and thus a reduction in productivity is inevitable.
また、特許文献4、5及び6に記載の方法では、誘導加熱によるオンラインでの焼戻しを行うために、強度範囲によらず生産性向上が図れる点において有利であるが、紹介されているオンライン誘導加熱炉の導入に非常に大きな設備投資が必要になるという問題がある。 The methods described in Patent Documents 4, 5 and 6 are advantageous in that productivity can be improved regardless of the strength range because online tempering is performed by induction heating. There is a problem that a very large capital investment is required to introduce a heating furnace.
また、特許文献7では、Cが0.03%以上、Siが0.10%以上と規定されており、本発明者らの検討ではこの様な成分系で熱間圧延ままで製造を行うと、降伏応力(YS)を低下させる島状MA(Martensite-Austenite constituent)が鋼材中に多量に生成することが分かっている。また、仕上温度がAr3点以下と規定されており、圧延ライン上で温度低下を待つ必要があるために生産性が著しく低下する。 Further, in Patent Document 7, C is defined as 0.03% or more and Si is defined as 0.10% or more. In the study by the present inventors, when manufacturing is performed in such a component system as hot rolling. It has been found that island MA (Martensite-Austenite constituent) that lowers the yield stress (YS) is produced in a large amount in steel. Further, the finishing temperature is defined as Ar 3 or less, and it is necessary to wait for the temperature to drop on the rolling line, so the productivity is significantly reduced.
特許文献8ではSiが0.05%以上、特許文献9の方法ではSiが0.10%以上とそれぞれ規定されており、島状MAの生成によりYSが低下すると考えられる。そのために、特許文献9では、特に降伏比80%以下の鋼を製造することを目的としている。 In Patent Document 8, Si is specified to be 0.05% or more, and in the method of Patent Document 9, Si is specified to be 0.10% or more, and it is considered that YS decreases due to generation of island-shaped MA. Therefore, Patent Document 9 aims at producing a steel having a yield ratio of 80% or less.
特許文献10及び11では、極低C成分系において、加速冷却ままで、高い降伏点を有する400MPa級以上の鋼を製造する方法が開示されている。しかし、実施例を見る限り、500MPa級以下の鋼材に関しては焼戻し熱処理を用いない非調質製造法にて製造が可能となっているが、本発明が目的とする570MPa級以上の鋼材に関しては、析出強化を得るための等温保持もしくは焼戻し熱処理が付加されており、生産性が高いとは言えない。さらに、特許文献10においては、実施例を見る限りAlの添加量が0.023%以上となっており、本発明者らの検討によれば、この多量のAlの添加が母材中の島状MAの生成を助長しYSの低下を招くため、この点においても、特に570MPa級の鋼材を加速冷却ままで製造に関して最適化されていないことが分かる。 Patent Documents 10 and 11 disclose a method of producing a steel of 400 MPa class or higher having a high yield point while maintaining accelerated cooling in an extremely low C component system. However, as far as the examples are concerned, although it is possible to produce a steel material of 500 MPa class or less by a non-tempered production method that does not use tempering heat treatment, for a steel material of 570 MPa class or more intended by the present invention, An isothermal holding or tempering heat treatment for obtaining precipitation strengthening is added, and it cannot be said that productivity is high. Furthermore, in Patent Document 10, the amount of Al added is 0.023% or more as far as the examples are seen. According to the study by the present inventors, this large amount of Al is added to the island-shaped MA in the base material. In this respect, it can be seen that a steel material of 570 MPa class is not optimized in terms of production with accelerated cooling.
特許文献12では、加速冷却を300〜600℃で停止する製造方法が示されている。しかし、Cが0.04〜0.09%且つSiが0.1〜0.5%とそれぞれ多いことにより島状MAが生成しYSが低下しやすい。また、極低C成分系では無く且つ必ずしも析出強化元素を用いることが明記されていないため、該製法では鋼材のTS及びYSの加速冷却の停止温度への依存性が大きくなり、実製造プロセス上で、鋼材の強度を安定的に570MPa級の範囲に収めることが困難であると考えられる。 In patent document 12, the manufacturing method which stops accelerated cooling at 300-600 degreeC is shown. However, when C is as high as 0.04 to 0.09% and Si is as high as 0.1 to 0.5%, island-like MA is generated and YS tends to decrease. In addition, since it is not specified that a precipitation strengthening element is used, it is not an extremely low C component system, and the manufacturing method becomes more dependent on the stop temperature of accelerated cooling of TS and YS of the steel material. Thus, it is considered difficult to stably keep the strength of the steel material in the range of 570 MPa.
特許文献13、17及び18ではSiが0.05%以上と規定されており、加速冷却ままの鋼材においてはYSを低下させる島状MAの生成量の増大を招く。そのためにこれらの製造法は降伏比80%以下の鋼材を目的としており、高いYSを得るためには合金添加量が増えるという問題がある。 Patent Documents 13, 17 and 18 stipulate that Si is 0.05% or more, and causes an increase in the amount of island-shaped MA that lowers YS in steel materials that are still accelerated. Therefore, these manufacturing methods aim at steel materials having a yield ratio of 80% or less, and there is a problem that the amount of alloy addition increases in order to obtain high YS.
特許文献14では、Cr添加が必須と規定されているが、本発明者らの検討によると、極低Cとなる様な成分系でCrを添加すると、加速冷却中のベイナイト変態開始温度と終了温度の差が大きくなり、この結果降伏比が低下するため、成分系を最適化しコスト低減を図る観点から望ましくない。また、Crの添加により溶接の際の熱影響部の靭性が大きく低下することも問題である。 Patent Document 14 stipulates that addition of Cr is essential. However, according to the study by the present inventors, when Cr is added in a component system that is extremely low C, the bainite transformation start temperature and end time during accelerated cooling are determined. The difference in temperature increases, and as a result the yield ratio decreases, which is not desirable from the viewpoint of optimizing the component system and reducing costs. Another problem is that the addition of Cr greatly reduces the toughness of the heat-affected zone during welding.
特許文献15では、Nbの析出強化を積極的に用いることで、加速冷却の停止温度に対する鋼材強度の変動を抑制する技術が示されているが、Nbの析出強化を強く利用するために、加速冷却の停止温度を600℃以上、700℃以下の狭い範囲に制限している。 Patent Document 15 discloses a technique for suppressing fluctuations in steel strength with respect to the stop temperature of accelerated cooling by positively using Nb precipitation strengthening. However, in order to make strong use of Nb precipitation strengthening, acceleration is proposed. The cooling stop temperature is limited to a narrow range of 600 ° C. or more and 700 ° C. or less.
特許文献16では、Siが実施例で0.1%以上であり、島状MAの生成を招きYSが低下することが問題である。また、Ti量が0.03%以上と規定されているため、溶接の際の熱影響部の靭性が低下すると予想される。 In Patent Document 16, Si is 0.1% or more in the embodiment, which causes a problem that YS is reduced due to generation of island-like MA. Further, since the Ti amount is specified to be 0.03% or more, it is expected that the toughness of the heat-affected zone during welding is lowered.
そこで、本発明は、上記の問題点を有利に解決することのできる、溶接熱影響部の靭性に優れる降伏応力500MPa以上引張強さ570MPa以上の高強度鋼材の製造方法を提供することを目的とする。 Then, this invention aims at providing the manufacturing method of the high strength steel materials of the yield stress 500MPa or more excellent in the toughness of a welding heat-affected zone, and the tensile strength 570MPa or more which can solve the said problem advantageously. To do.
本発明者らは、鋼板を熱間圧延した後に直接加速冷却を行う製造方法において、焼戻し熱処理を行わない、非調質製造方法で、実機における熱間圧延温度や加速冷却停止温度の不可避的な変動を考慮しても、充分に高い安定性において、YSが500MPa以上、TSが570MPa以上、720MPa以下という、高い降伏比を持つ高強度鋼材を製造する方法に関して、実験と解析を通して研究開発を重ねた。 In the production method in which accelerated cooling is performed directly after hot rolling of a steel sheet, the present inventors do not perform tempering heat treatment, and are inevitably in hot rolling temperature and accelerated cooling stop temperature in an actual machine in a non-tempered production method. Research and development are repeated through experiments and analysis on the method of manufacturing high strength steel materials with high yield ratios such as YS of 500MPa or more, TS of 570MPa or more and 720MPa or less, with sufficiently high stability even if fluctuations are taken into account. It was.
従来、570MPa級以上の高強度厚鋼板の非調質製造法では、鋼の焼入れ性を高めることを狙って合金元素の成分設計を行うのが一般的である。しかし、加速冷却を途中停止する製造方法においては、焼入れ性を高める合金元素は、特に加速冷却を500℃以上で停止する場合において、母材中の島状MAの生成を促進する傾向があり、それによりYSが低下するという問題がある。さらに、焼入れ性を高める合金元素の無差別の添加は、TSの加速冷却の停止温度への依存性を高めるという問題もある。 Conventionally, in the non-tempered manufacturing method of a high strength thick steel plate of 570 MPa class or higher, it is common to design the alloy elements with the aim of improving the hardenability of the steel. However, in the production method in which accelerated cooling is stopped halfway, alloy elements that enhance hardenability tend to promote the formation of island MA in the base material, particularly when accelerated cooling is stopped at 500 ° C. or higher. There is a problem that YS decreases. Furthermore, the indiscriminate addition of alloy elements that enhance the hardenability also raises the problem of increasing the dependency of the accelerated cooling of TS on the stop temperature.
これらの問題を解決できない場合、570MPa級以上の鋼材製品を製造するにあたり、TS及びYSを目標とする範囲内に収めるためには、加速冷却の停止温度範囲を非常に狭く取らなくてはならないという問題が生じ、実機製造の際の安定性が失われることとなる。 When these problems cannot be solved, in order to keep TS and YS within the target range when manufacturing a steel product of 570 MPa class or higher, the stop temperature range of accelerated cooling must be made very narrow. Problems arise and the stability in manufacturing the actual machine is lost.
従来、特にTSの加速冷却の冷却速度や停止温度の依存性を低減するための方法として、特許文献10及び11に開示されているように0.03%以下の極低C成分系を採用し、鋼材組織をベイナイト単相とする技術が提案されてきた。本発明者らはこの極低C成分系の利用する上で、さらに、特に500MPa以上の高いYSを確保しつつ570MPa級の高強度鋼材を安定的に製造するための条件について検討を重ねた。その結果、まず、本発明者らは、極低C成分系であっても、加速冷却の冷却速度や停止温度がTSに与える影響は合金元素の組合せによって異なることを見出し、特にC0.040%未満、Mn1.5%未満、Nb0.02%以上、B0.0005%以上、且つMo0.05%以上、という組合せを採用することで、加速冷却条件がTSに与える影響を極小化できることを実験により見出した。なお、この結果、鋼板の板厚方向の1/4位置と1/2位置のTSの差も5%以下と著しく小さくできることも分かった。 Conventionally, as a method for reducing the dependency of the cooling rate and the stop temperature of the accelerated cooling of TS in particular, an extremely low C component system of 0.03% or less has been adopted as disclosed in Patent Documents 10 and 11. A technique has been proposed in which the steel structure is a single phase of bainite. In order to utilize this extremely low C component system, the present inventors have further studied conditions for stably producing a high strength steel material of 570 MPa class while securing a high YS of 500 MPa or more. As a result, first, the present inventors have found that even in an extremely low C component system, the influence of the cooling rate and stop temperature of accelerated cooling on TS differs depending on the combination of alloy elements, and in particular C0.040% The effect of accelerated cooling conditions on TS can be minimized by adopting a combination of less than 1, less than Mn, less than 1.5%, Nb 0.02% or more, B0.0005% or more, and Mo 0.05% or more. I found it. As a result, it was also found that the difference between the TS position at the 1/4 position and the 1/2 position in the sheet thickness direction of the steel sheet can be remarkably reduced to 5% or less.
さらに、本発明の目的である、YSが500MPa以上、TSが570MPa以上、720MPa以下という、高強度鋼材の安定性の高い製造方法を実現するためには、以上の様なTSに関する追求だけでは不充分であり、YSの安定確保についても検討を重ねる必要があった。 Furthermore, in order to realize a highly stable manufacturing method of high-strength steel materials in which YS is 500 MPa or more and TS is 570 MPa or more and 720 MPa or less, which is the object of the present invention, it is not possible only by pursuing the above TS. It was sufficient, and it was necessary to repeatedly study the securing of YS stability.
一般に、加速冷却を途中停止する様な非調質製造方法で製造された鋼材は、焼戻し熱処理を適用した鋼に比べてTSの水準の割にYSが低くなる傾向があり、そのために、非調質製造方法は、降伏比の低い高強度鋼の製造方法として研究されることが多い。そのため、本発明者らは、特に、極低C系の非調質鋼材において、YSに影響を及ぼす鋼材内部の組織因子の影響を調査した上で、好ましいベイナイト組織形成と、そのために必要となる各種合金元素の組合せ、熱間圧延及び加速冷却の条件に関して、実験を繰り返し詳細に検討を重ねた。 In general, steel materials manufactured by a non-tempered manufacturing method that stops accelerated cooling in the middle tend to have a lower YS for the TS level than steels to which tempering heat treatment has been applied. Quality production methods are often studied as methods for producing high strength steels with low yield ratios. Therefore, the present inventors are particularly required for forming a preferable bainite structure after investigating the influence of the structure factor inside the steel material that affects YS in an extremely low C non-heat treated steel material. Experiments were repeated and detailed studies were repeated regarding the combination of various alloy elements, hot rolling and accelerated cooling conditions.
まず、非調質鋼材においてYSを低下させる因子の一つとして、従来から指摘されているように、鋼材中の島状MA組織の存在が上げられる。これに対しては、本発明者らの検討により、極低C成分系を採用した上でさらに極低Si及び極低Alとすることで、加速冷却の停止温度が550℃以下の範囲で島状MA組織の生成を体積分率で1%以下まで抑制できることが明らかとなった。この結果、ベイナイト単相組織において島状MAによるYS低下を防ぐことは可能となったが、この様な島状MAを持たないベイナイト単相組織においても、さらに成分系に依存してYSに違いが生じることが新たに明らかとなった。 First, as one of the factors that lower YS in non-tempered steel materials, the presence of island-like MA structures in the steel materials is raised as pointed out conventionally. In response to this, the inventors of the present invention have adopted an extremely low C component system and further made extremely low Si and extremely low Al, so that the accelerated cooling stop temperature is within a range of 550 ° C. or less. It has been clarified that the formation of the shaped MA tissue can be suppressed to 1% or less in volume fraction. As a result, it has become possible to prevent YS from being lowered by island-like MA in the bainite single-phase structure. However, even in such a bainite single-phase structure having no island-like MA, YS is different depending on the component system. It has become clear that this will occur.
本発明者らは、この島状MAを持たないベイナイト単相組織におけるYS支配因子について、実験と解析により詳しく調査を行った。その結果、ベイナイト単相鋼中において、鋼材内部の局所的なベイナイト変態温度の違いに起因して、可動転位が多く生成していることを見出した。具体的には、TEM観察や微小硬度計での測定から、高温で変態したベイナイト組織とこれに対し相対的に低温で変態したベイナイト組織との間で、ベイナイト変態の際の体積膨張に起因する歪が可動転位として残り、この結果鋼材のマクロなYSが低下していることを示唆する結果を得た。即ち、島状MAを持たないベイナイト単相組織においては、ベイナイト変態の開始温度と終了温度の差を小さくすることが肝要であるという知見に至った。さらに、ベイナイト変態温度が高いほど、C及びN原子の可動転位への固着により、YSを向上し易いことを示唆する結果も得た。 The present inventors investigated in detail about the YS control factor in the bainite single phase structure which does not have this island-like MA by experiment and analysis. As a result, it was found that a large number of mobile dislocations were generated in the bainite single-phase steel due to the difference in local bainite transformation temperature inside the steel material. Specifically, from TEM observation and measurement with a microhardness meter, the bainite structure transformed at a high temperature and the bainite structure transformed at a relatively low temperature are caused by volume expansion during the bainite transformation. The strain remained as movable dislocations, and as a result, a result suggesting that the macroscopic YS of the steel material has decreased was obtained. That is, the inventors have found that it is important to reduce the difference between the start temperature and the end temperature of the bainite transformation in a bainite single-phase structure having no island MA. Furthermore, a result suggesting that the higher the bainite transformation temperature, the easier it is to improve YS due to the fixation of C and N atoms to movable dislocations.
以上から、島状MAを持たないベイナイト単相組織において、高い降伏比を得るための最も理想的な組織形成過程とは、ベイナイト変態の開始温度と終了温度の差が小さいこと、及び、変態温度全体が少しでも高温となること、であると明らかとした。また、以上のTSとYSに関する知見から得られた成分系を採用することにより、入熱10kJ/mmに相当する大入熱溶接を施した際の溶接熱影響部の靭性も著しく改善されることが判明した。これは、上述のTS対策として冷却条件の影響を抑え、且つ、YS対策として母材のベイナイト形成温度を均一化するために設計した成分系により、溶接熱影響部のベイナイト組織も均一化されたこと、及び、母材のYS低下を防ぐためにMA量を低減させたことが溶接熱影響部の靭性向上の点でも有利になったこと、等が原因と推察される。 From the above, in the bainite single-phase structure having no island-like MA, the most ideal structure formation process for obtaining a high yield ratio is that the difference between the start temperature and the end temperature of the bainite transformation is small, and the transformation temperature. It was clarified that the whole would be hot even a little. In addition, by adopting the component system obtained from the above knowledge about TS and YS, the toughness of the heat affected zone at the time of performing large heat input welding corresponding to heat input of 10 kJ / mm is remarkably improved. There was found. This is because the bainite structure of the weld heat-affected zone is made uniform by the component system designed to suppress the influence of the cooling condition as the above-mentioned TS countermeasure and to uniformize the bainite formation temperature of the base material as the YS countermeasure. This is presumed to be due to the fact that reducing the amount of MA in order to prevent YS reduction of the base metal is also advantageous in terms of improving the toughness of the weld heat affected zone.
さらに、本発明の成分系では、溶接割れ感受性を表すPCMが0.20以下と低い水準になっており、低温環境での溶接割れも問題にならない水準となっている。 Furthermore, in the component system of the present invention, P CM representing the weld cracking sensitivity has become a low level and 0.20 or less, and has a level as not to weld cracking problems at low temperature environment.
本発明者らは、このように、570MPa級の高強度鋼材において、必要な特性を満足するための具体的要件を実験により明らかにし、さらに鋭意検討して本発明を成したものであり、その要旨は以下に述べる通りである。
(1) 質量%で、C:0.005%以上、0.040%未満、Si:0.05%未満、Mn:1.0%以上、1.5%未満、P:0.03%以下、S:0.01%以下、Mo:0.10%以上、0.50%以下、Nb:0.02%以上、0.08%以下、Ti:0.005%以上、0.020%以下、B:0.0005%以上、0.0030%以下、Al:0.001%以上、0.010%以下、N:0.0010%以上、0.0070%以下を含有し、下記式1で表されるTiとNの量の関係を満たし、残部がFe及び不可避的不純物からなる成分組成を有する鋼片を、1020℃以上、1300℃以下に加熱し、その後圧延するにあたり、1020℃以下、920℃超における累積圧下率が60%未満で、920℃以下、Ar3点超での累積圧下率が50%以上、90%以下となるように圧延し、圧延終了後60秒以内に冷却速度1℃/秒以上の加速冷却を開始し、550℃未満、300℃以上の温度範囲で加速冷却を停止し、その後放冷することを特徴とする、溶接熱影響部の靭性に優れる降伏応力500MPa以上引張強さ570MPa以上の高強度鋼材の製造方法。
なお、式1中の[ ]は各合金元素の添加量を質量%で表したものであり、以降も同様である。
式1:[B]/10.8≧[N]/14.0−[Ti]/47.9
(2) さらに、質量%で、W:0.05%以上、0.50%以下を含有することを特徴とする、上記(1)に記載の溶接熱影響部の靭性に優れる降伏応力500MPa以上引張強さ570MPa以上の高強度鋼材の製造方法。
(3) さらに、質量%で、Cu:0.01%以上、0.50%以下、Ni:0.01%以上、0.50%以下の1種または2種を含有することを特徴とする、上記(1)または(2)に記載の溶接熱影響部の靭性に優れる降伏応力500MPa以上引張強さ570MPa以上の高強度鋼材の製造方法。
(4) さらに、質量%で、Ca:0.001〜0.010%、Mg:0.001〜0.010%、Zr:0.001〜0.010%、Hf:0.001〜0.010%、REM:0.001〜0.010%の内の1種または2種以上を含有することを特徴とする、上記(1)ないし(3)のいずれか1項に記載の溶接熱影響部の靭性に優れる降伏応力500MPa以上引張強さ570MPa以上の高強度鋼材の製造方法。
In this way, the present inventors have clarified the specific requirements for satisfying the required characteristics in the high-strength steel material of 570 MPa class by experiments, and have further intensively studied to make the present invention. The summary is as follows.
(1) By mass%, C: 0.005% or more, less than 0.040%, Si: less than 0.05%, Mn: 1.0% or more, less than 1.5%, P: 0.03% or less , S: 0.01% or less, Mo: 0.10% or more, 0.50% or less, Nb: 0.02% or more, 0.08% or less, Ti: 0.005% or more, 0.020% or less B: 0.0005% or more, 0.0030% or less, Al: 0.001% or more, 0.010% or less, N: 0.0010% or more, 0.0070% or less, A steel slab that satisfies the relationship between the amount of Ti and N expressed and the balance is composed of Fe and inevitable impurities is heated to 1020 ° C or higher and 1300 ° C or lower, and then rolled to 1020 ° C or lower. less than 920 ° C. cumulative reduction ratio in excess is 60%, 920 ° C. or less, in Ar 3 point than Rolling is performed so that the rolling reduction ratio is 50% or more and 90% or less, and accelerated cooling is started at a cooling rate of 1 ° C./second or more within 60 seconds after the completion of rolling, in a temperature range of less than 550 ° C. and 300 ° C. A method for producing a high-strength steel material having a yield stress of 500 MPa or more and a tensile strength of 570 MPa or more, which is excellent in toughness of a weld heat affected zone, characterized by stopping accelerated cooling and then allowing to cool.
In addition, [] in Formula 1 represents the addition amount of each alloy element in mass%, and the same applies thereafter.
Formula 1: [B] /10.8> = [N] /14.0- [Ti] /47.9
(2) Further, the yield stress is 500 MPa or more, which is excellent in toughness of the weld heat-affected zone according to (1) above, characterized by containing, by mass%, W: 0.05% or more and 0.50% or less. A method for producing a high-strength steel material having a tensile strength of 570 MPa or more.
(3) Further, it is characterized by containing one or two of Cu: 0.01% or more and 0.50% or less, Ni: 0.01% or more and 0.50% or less in mass%. The method for producing a high strength steel material having a yield stress of 500 MPa or more and a tensile strength of 570 MPa or more, which is excellent in the toughness of the weld heat affected zone described in (1) or (2).
(4) Further, by mass%, Ca: 0.001 to 0.010%, Mg: 0.001 to 0.010%, Zr: 0.001 to 0.010%, Hf: 0.001 to 0.0. Welding heat influence according to any one of (1) to (3) above, characterized by containing one or more of 010% and REM: 0.001 to 0.010% A method for producing a high-strength steel material having a yield stress of 500 MPa or more and a tensile strength of 570 MPa or more, which is excellent in the toughness of the part.
本発明によれば、溶接熱影響部の靭性に優れる引張強さ570MPa級の高強度鋼板を、合金元素の少ない経済的成分系と生産性の高い非調質の製造方法にて得ることが可能となる。また、本発明は、実機における製造条件の変動に対しても安定的に品質が確保できる製造方法であり、その産業上の寄与は極めて大きい。 According to the present invention, it is possible to obtain a high-strength steel sheet having a tensile strength of 570 MPa, which is excellent in the toughness of the heat affected zone by an economical component system with less alloying elements and a highly productive non-tempered manufacturing method. It becomes. Further, the present invention is a manufacturing method capable of stably ensuring quality against fluctuations in manufacturing conditions in an actual machine, and its industrial contribution is extremely large.
以下に、本発明における熱間圧延条件、加速冷却条件、及び成分組成の限定理由について述べる。 Below, the hot rolling conditions in this invention, accelerated cooling conditions, and the reason for limitation of a component composition are described.
まず、本発明においては、先に述べたように、570MPa級の高強度鋼を製造するにあたり、極低Cをベースにした成分系を採用することでTSの加速冷却停止温度への依存性を低減し、且つ、島状MAの低減やベイナイト変態の均一化及び高温化を通じてYSを向上することにより、実機で想定される製造条件の大きな変化に対しても安定的に製造可能であることを実現したものであり、熱間圧延と加速冷却の条件に合わせて各種合金元素とその添加量の組合せを限定していることが特徴である。 First, in the present invention, as described above, in producing a high strength steel of 570 MPa class, by adopting a component system based on extremely low C, the dependence on the accelerated cooling stop temperature of TS is increased. It is possible to reduce the island-like MA and improve the YS through the uniform and high temperature bainite transformation, so that it can be stably manufactured even with a large change in the manufacturing conditions assumed in the actual machine. It has been realized and is characterized in that the combinations of various alloy elements and their addition amounts are limited in accordance with the conditions of hot rolling and accelerated cooling.
まず、本発明における熱間圧延条件と加速冷却の条件について述べる。 First, hot rolling conditions and accelerated cooling conditions in the present invention will be described.
本発明では、焼戻し熱処理を行わない非調質製造方法においても析出強化を利用するため、ベイナイト中での析出が最も速いNbとTiを析出強化元素としてYS向上のために利用する。この圧延段階でのNbとTiの析出は圧延歪によって促進される。しかし、高温のオーステナイト中での圧延中にNb、Tiの析出が起こると、これら析出物は急速に粗大化し、鋼板製造後の強度上昇には寄与しない無駄な析出となることが、特許文献15により明らかにされている。従って、このオーステナイト中での粗大析出によるロスを最小限に抑えるためには、920℃超、1020℃以下の温度範囲での圧延を極力行わないことが好ましい。 In the present invention, since the precipitation strengthening is used even in the non-tempered manufacturing method in which no tempering heat treatment is performed, Nb and Ti, which are the fastest precipitation in bainite, are used as a precipitation strengthening element for improving YS. The precipitation of Nb and Ti at this rolling stage is promoted by rolling strain. However, when precipitation of Nb and Ti occurs during rolling in high-temperature austenite, these precipitates are rapidly coarsened, resulting in useless precipitation that does not contribute to an increase in strength after steel sheet production. It is clarified by. Therefore, in order to minimize the loss due to coarse precipitation in the austenite, it is preferable not to perform rolling in a temperature range higher than 920 ° C. and not higher than 1020 ° C. as much as possible.
しかし、本発明では、製造安定性の向上のために特許文献15よりCの成分範囲を低く制限しており、そのためにオーステナイト中でのNb、Tiの析出が抑制されている。この結果、920℃超、1020℃以下での累積圧下量の制限を60%未満と規定する。 However, in this invention, in order to improve manufacturing stability, the component range of C is restrict | limited low from patent document 15, and the precipitation of Nb and Ti in austenite is suppressed for that reason. As a result, the limit of the cumulative reduction amount above 920 ° C. and below 1020 ° C. is defined as less than 60%.
920℃以下での圧延に関しては、Ar3点より高い温度範囲で行い、可能な限り圧下率を大きく取ることで、ベイナイト変態温度を上昇させて鋼材中の可動転位密度を減少させることや組織を細粒化することでYS向上に有効である。 Regarding rolling at 920 ° C. or lower, it is performed in a temperature range higher than the Ar 3 point, and by taking a reduction ratio as large as possible, the bainite transformation temperature is increased to reduce the movable dislocation density in the steel material and the structure. It is effective for YS improvement by making it finer.
一般に、焼戻し熱処理を省略する製造方法ではTSの水準の割にYSが低くなる傾向があり、これを補うために、組織の微細化によるYS向上の効果も含めて50%以上の圧下が必要であるが、過度な圧下は焼入れ性を低下させてTSを低下させるので、上限を90%以下に規定する。 In general, in the manufacturing method that omits the tempering heat treatment, YS tends to be lower than the TS level, and in order to compensate for this, a reduction of 50% or more is required including the effect of improving YS by refining the structure. However, excessive reduction reduces the hardenability and lowers TS, so the upper limit is defined as 90% or less.
圧延終了後の加速冷却に関しては、ベイナイト単相組織を得るために最低でも1℃/秒以上の冷却速度を必要とする。なお、TSの変動が小さくなる5〜50℃/秒の範囲がより望ましい。 With respect to accelerated cooling after the end of rolling, a cooling rate of at least 1 ° C./second or more is required to obtain a bainite single-phase structure. Note that the range of 5 to 50 ° C./second in which the fluctuation of TS is small is more desirable.
加速冷却の停止温度が300℃を下回ると、鋼材中の可動転位が著しく増加しYSが顕著に低下するので、加速冷却の停止温度は300℃以上と規定する。また、加速冷却の停止温度が550℃以上となると、鋼材中に島状MAが生成し易く、特に鋼材の厚さ方向の1/2tの位置においてYSが著しく低下するために、加速冷却の停止温度を550℃未満に規定する。 When the accelerated cooling stop temperature is lower than 300 ° C., the movable dislocation in the steel material is remarkably increased and the YS is remarkably lowered. Therefore, the accelerated cooling stop temperature is defined as 300 ° C. or more. Further, when the accelerated cooling stop temperature is 550 ° C. or higher, island-like MA is likely to be generated in the steel material, and particularly YS significantly decreases at a position of 1/2 t in the thickness direction of the steel material. The temperature is defined as less than 550 ° C.
以下に、本発明における成分組成の限定理由について述べる。 The reasons for limiting the component composition in the present invention will be described below.
Cは、鋼の組織強化に不可欠な元素であり0.005%以上の添加を行うが、本発明においては、鋼材のTSの加速冷却の停止温度への依存性の低減、鋼材中の島状MAの低減によるYS向上、及び、溶接熱影響部の靭性の向上のために、添加量を0.040%未満に抑える必要がある。なお、C添加量を0.005%未満に抑えるとオーステナイト中における固溶C量が極端に減少することで加速冷却時の組織強化が著しく小さくなり強度が低下するために、0.005%以上の添加が必要である。 C is an element indispensable for strengthening the structure of steel and is added in an amount of 0.005% or more. In the present invention, however, the dependency of the steel material TS on the accelerated cooling stop is reduced, and the island-like MA in the steel material is reduced. In order to improve YS by the reduction and to improve the toughness of the weld heat affected zone, it is necessary to suppress the addition amount to less than 0.040%. If the amount of C added is less than 0.005%, the amount of solid solution C in the austenite is extremely reduced, so that the structural strengthening during accelerated cooling is significantly reduced and the strength is lowered. Must be added.
Siは、強度上昇に有効な元素であるが、本発明においては、加速冷却の停止温度が500℃以上の領域においてYSを低下させる島状MAの生成を助長し、且つ、溶接時の熱影響部の組織においても、靭性を低下させる島状MAの生成を助長させるために、添加する場合にはその量を0.05%未満に抑制する必要がある。望ましくは積極的に添加せず、不可避不純物レベルとする。 Si is an element effective for increasing the strength. In the present invention, however, the formation of island-like MA that lowers YS is promoted in the region where the stop temperature of accelerated cooling is 500 ° C. or more, and the thermal effect during welding Also in the structure of the part, in order to promote the generation of island-like MA that lowers toughness, when added, the amount needs to be suppressed to less than 0.05%. Desirably, it is not added positively, but it is set to an inevitable impurity level.
Pは、靭性を著しく低下させるために、添加する場合にはその量を0.03%以下とし、望ましくは不可避不純物レベルとする。 In order to significantly reduce toughness, P is added in an amount of 0.03% or less, preferably at an unavoidable impurity level.
Sは、靭性を著しく低下させるために、添加する場合にはその量を0.01%以下とし、望ましくは不可避不純物レベルとする。 In order to significantly reduce toughness, S is added in an amount of 0.01% or less, preferably at an inevitable impurity level.
Mnは、強度上昇に有効な元素であるため、1.0%以上の添加を行うが、多量に添加するとベイナイト変態開始温度と終了温度の差が開きやや降伏比が低下すること、及び、溶接熱影響部の靭性がやや低下することのため、添加量を1.5%未満に限定する。 Mn is an element effective in increasing the strength, so 1.0% or more is added. However, if added in a large amount, the difference between the bainite transformation start temperature and the end temperature opens, and the yield ratio decreases slightly, and welding is performed. Since the toughness of the heat-affected zone slightly decreases, the addition amount is limited to less than 1.5%.
Nbは、フェライトまたはベイナイト中での析出が速く、非調質の製造法においても析出強化を得るために重要な元素であり、また、組織の細粒化や組織強化にも寄与するために、0.02%以上の添加を行うが、0.08%超の添加では溶接熱影響部の靭性を著しく低下させるために、0.08%以下に限定する。 Nb is a fast precipitation in ferrite or bainite, and is an important element for obtaining precipitation strengthening even in a non-tempered manufacturing method, and also contributes to refinement of the structure and strengthening of the structure. Addition of 0.02% or more is carried out. However, if over 0.08% is added, the toughness of the weld heat affected zone is remarkably lowered, so the content is limited to 0.08% or less.
Bは、本発明の成分系と圧延・冷却方法においては、オーステナイト粒界からのフェライト生成を抑制し、組織をベイナイト単相組織にするために極めて有効であり、また、溶接熱影響部の旧オーステナイト粒界上に生成するフェライトの生成の抑制やNb、Ti等の析出物を微細化を通じて靭性を著しく向上させる効果を持つため、0.0005%以上の添加を行う。しかし0.0030%を超える過剰なBは溶接熱影響部の靭性を劣化させることから、上限を0.0030%に制限する。 In the component system and rolling / cooling method of the present invention, B is extremely effective for suppressing the formation of ferrite from the austenite grain boundaries and making the structure a bainite single-phase structure. Addition of 0.0005% or more is carried out in order to suppress the formation of ferrite formed on the austenite grain boundaries and to significantly improve the toughness through refinement of precipitates such as Nb and Ti. However, excessive B exceeding 0.0030% deteriorates the toughness of the weld heat affected zone, so the upper limit is limited to 0.0030%.
Moは、本発明の成分系においてBと併用することにより、オーステナイト粒界からのフェライト生成の抑制効果を高めることができること、及び、Cと化合物を作ることでオーステナイト中の固溶C量を減らし、強度の加速冷却停止温度依存性を低減することができることのため、0.10%以上の添加を行うが、0.50%を超えて添加すると溶接熱影響部の靭性が低下するため、0.50%以下に限定する。 Mo can be used in combination with B in the component system of the present invention to increase the effect of suppressing the formation of ferrite from the austenite grain boundaries, and to reduce the amount of dissolved C in austenite by forming a compound with C. In order to reduce the dependence of the strength on the accelerated cooling stop temperature, 0.10% or more is added. However, if added over 0.50%, the toughness of the weld heat-affected zone decreases, so 0% is added. Limited to 50% or less.
Alは、脱酸及び加速冷却前のオーステナイト粒径の細粒化等に有効な元素であり、0.001%以上の添加を行うが、本発明においては、Siと同様に、母材においてはYSを低下させる島状MAの生成を助長し、且つ、溶接熱影響部においては、靭性を低下させる島状MAの生成を助長するため、添加量を0.010%以下に制限する。 Al is an element effective for deoxidation and refinement of the austenite grain size before accelerated cooling, etc., and is added in an amount of 0.001% or more. In the present invention, similarly to Si, In order to promote the formation of island-shaped MA that lowers YS and promote the formation of island-shaped MA that lowers toughness, the amount of addition is limited to 0.010% or less.
Nは、NbまたはTiと結合して、オーステナイト粒を微細化やベイナイト中での析出強化に有効な元素であるために0.0010%以上を添加するが、過剰な添加は溶接熱影響部の靭性を低下させるので、上限を0.0070%に限定する。 N is combined with Nb or Ti, and is an element effective for refining austenite grains and precipitation strengthening in bainite, so 0.0010% or more is added. Since the toughness is lowered, the upper limit is limited to 0.0070%.
Tiは、ベイナイト中での析出が速いために、本発明の非調質製造法において析出強化を得るために重要な元素であること、組織の細粒化にも寄与すること、及び、鋼中のNやOと結合し靭性を向上させること、のために0.005%以上の添加が必要である。しかし、0.020%超の添加では溶接熱影響部の靭性を著しく低下させるために、0.020%以下に限定する。さらに、本発明においてはNと結合しないBを確保することが必要であり、そのために、Nと結合させる目的でTiを利用するため、式1に表されるようにN量と連動してTi添加量を制限する必要がある。
式1:[B]/10.8≧[N]/14.0−[Ti]/47.9
Ti precipitates quickly in bainite, so it is an important element for obtaining precipitation strengthening in the non-tempered manufacturing method of the present invention, contributes to the refinement of the structure, and in the steel. In order to improve the toughness by combining with N and O, the addition of 0.005% or more is necessary. However, if over 0.020% is added, the toughness of the weld heat affected zone is remarkably lowered, so the content is limited to 0.020% or less. Furthermore, in the present invention, it is necessary to secure B that does not bond with N. For this reason, Ti is used for the purpose of bonding with N. It is necessary to limit the amount of addition.
Formula 1: [B] /10.8> = [N] /14.0- [Ti] /47.9
Wは、本発明に重要な元素であり、上記Bとの複合添加により、オーステナイト粒界からのフェライト生成の抑制効果を高めて組織強化による強度上昇に有効であり、明瞭な強度上昇を得るためには0.05%以上の添加を行うが、0.5%を超えて添加すると溶接熱影響部の靭性が低下するため、Wを添加する場合は0.05%以上、0.5%以下に限定する。 W is an important element in the present invention, and by adding together with B, the effect of suppressing the formation of ferrite from the austenite grain boundary is enhanced and effective in increasing the strength by strengthening the structure, in order to obtain a clear increase in strength. performs the addition of 0.05% or more in order to lower the toughness of the heat affected zone and the addition of more than 0.5%, when adding W 0.05% or more, 0.5% or less Limited to.
Cuは、強度上昇に有効な元素であり、明瞭な強度上昇を得るためには0.01%以上の添加が必要であるが、0.50%以上の添加では、ベイナイト変態温度を著しく低下させること、及び溶接熱影響部の靭性を低下させることのため、Cuを添加する場合は0.01%以上、0.50%以下の範囲とする。 Cu is an element effective for increasing the strength, and in order to obtain a clear increase in strength, addition of 0.01% or more is necessary. However, addition of 0.50% or more significantly reduces the bainite transformation temperature. In addition, in order to reduce the toughness of the heat affected zone, when adding Cu, the range is 0.01% or more and 0.50% or less.
Niは、強度上昇に有効な元素であり、明瞭な強度上昇を得るためには0.01%以上の添加が必要である。しかし、本発明の成分系においては、過剰な添加はベイナイト変態終了温度を著しく低下させること、及び、溶接熱影響部の靭性が著しく低下することのために、添加する場合は0.50%以下に制限する。 Ni is an element effective for increasing the strength, and in order to obtain a clear increase in strength, it is necessary to add 0.01% or more. However, in the component system of the present invention, excessive addition significantly lowers the bainite transformation end temperature and significantly reduces the toughness of the weld heat affected zone. Limit to.
Ca、Mg、Zr、Hf、及びREMに関しては、脱酸や靭性の向上のために添加を行うことができる。これらの効果を得るためには0.001%以上の添加が必要であるが、コストの問題から上限を0.010%に制限する。従って、Zr、Ca、Mg、Hf、及びREMを添加する場合は、0.001%以上、0.010%以下の範囲とする。 Regarding Ca, Mg, Zr, Hf, and REM, addition can be performed for deoxidation and improvement of toughness. In order to obtain these effects, addition of 0.001% or more is necessary, but the upper limit is limited to 0.010% due to cost problems. Therefore, when adding Zr, Ca, Mg, Hf, and REM, it is set as 0.001% or more and 0.010% or less.
なお、本発明による成分系は、溶接熱影響部の靭性についても非常に良好な結果を示す。また、下記式2で示す溶接割れ感受性指数PCMも0.20%以下の水準に抑えており、溶接割れも防止される範囲となっている。
式2: PCM=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Mo]/15+[V]/10+5[B]
なお、式2中の[ ]は各合金元素の添加量を質量%で表したものである。
In addition, the component system by this invention shows a very favorable result also about the toughness of a welding heat affected zone. Furthermore, and has a range and reduced to levels weld crack sensitivity index P CM also: 0.20% represented by the following formula 2, which also weld cracking is prevented.
Equation 2: P CM = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Mo] / 15 + [V] / 10 + 5 [B]
In addition, [] in Formula 2 represents the addition amount of each alloy element in mass%.
表1に示す成分組成の溶鋼を真空溶解炉にて作製しインゴット形に鋳造した。その鋼片を圧延または切断して、厚さ80〜500mmの鋼片を作製し、そのスラブに対して、表2に示す条件の熱間圧延、加速冷却、及び焼戻し熱処理を行い、厚さ12〜50mmの厚鋼板とした。 Molten steel having the composition shown in Table 1 was produced in a vacuum melting furnace and cast into an ingot shape. The steel slab is rolled or cut to produce a steel slab having a thickness of 80 to 500 mm. The slab is subjected to hot rolling, accelerated cooling, and tempering treatment under the conditions shown in Table 2 to obtain a thickness of 12 A thick steel plate of ˜50 mm was used.
これらの厚鋼板について、母材YS、母材TS、母材靭性、及び溶接熱影響部靭性を測定した結果を表2中に示す。 Table 2 shows the results of measuring the base material YS, base material TS, base material toughness, and weld heat affected zone toughness of these thick steel plates.
母材YS及びTSに関しては、JIS Z 2241に準拠の引張試験により測定した結果を表2中に示してある。引張試験片はJIS Z 2201に準拠の1A号全厚引張試験片もしくは4号丸棒引張試験片を用いた。 Regarding the base materials YS and TS, the results measured by a tensile test in accordance with JIS Z 2241 are shown in Table 2. As the tensile test piece, a 1A full thickness tensile test piece or No. 4 round bar tensile test piece based on JIS Z 2201 was used.
母材靭性に関しては、JIS Z 2242に規定の方法により−5℃にて測定した結果を表2中に示してある。衝撃試験片は、圧延方向に直角な方向の板厚中心部からJIS Z 2202に準拠の2mmVノッチ試験片を用いた。 Regarding the base material toughness, the results of measurement at −5 ° C. by the method defined in JIS Z 2242 are shown in Table 2. As the impact test piece, a 2 mm V notch test piece based on JIS Z 2202 was used from the center of the thickness in the direction perpendicular to the rolling direction.
溶接熱影響部靭性に関しては、JIS Z 2242に規定の方法により、−5℃にて測定した結果を表2中に示してある。衝撃試験片は、入熱10kJ/mmのサブマージアーク溶接時の熱影響部1mm位置(HAZ1)に相当する熱サイクルを与えたJIS Z 2202に準拠の2mmVノッチ試験片を用いた。 Regarding the weld heat-affected zone toughness, the results measured at −5 ° C. by the method prescribed in JIS Z 2242 are shown in Table 2. As the impact test piece, a 2 mm V notch test piece based on JIS Z 2202 to which a thermal cycle corresponding to a heat affected zone 1 mm position (HAZ1) at the time of submerged arc welding with a heat input of 10 kJ / mm was used.
各特性の目標値は、YSが500MPa、TSが570MPa、母材靭性と溶接熱影響部靭性が吸収エネルギー共に100J以上であり、目標値を満たさない数値には下線を記してある。 The target values of each characteristic are YS of 500 MPa, TS of 570 MPa, the base material toughness and the weld heat affected zone toughness are both 100 J or more in absorbed energy, and the numerical values that do not satisfy the target value are underlined.
表1、表2の結果から、本発明法に従った成分組成及び製造方法は、YS、TS、母材靭性及び溶接熱影響部靭性の全てが良好な結果を示すことがわかる。これに対し、本発明鋼の範囲を逸脱する比較鋼は、YS、TS及び溶接熱影響部靭性の基本特性が少なくとも一つ以上不充分であることが分かる。 From the results of Tables 1 and 2, it can be seen that the component composition and production method according to the method of the present invention all show good results for YS, TS, base metal toughness and weld heat affected zone toughness. On the other hand, it can be seen that the comparative steel deviating from the range of the steel of the present invention has at least one or more basic characteristics of YS, TS and weld heat affected zone toughness.
Claims (4)
C :0.005%以上、0.040%未満、
Si:0.05%未満
Mn:1.0%以上、1.5%未満、
P :0.03%以下、
S :0.01%以下、
Mo:0.10%以上、0.50%以下、
Nb:0.02%以上、0.08%以下、
Ti:0.005%以上、0.020%以下、
B :0.0005%以上、0.0030%以下、
Al:0.001%以上、0.010%以下、
N :0.0010%以上、0.0070%以下
を含有し、下記式1で表されるTiとNの量の関係を満たし、残部がFe及び不可避的不純物からなる成分組成を有する鋼片を、1020℃以上、1300℃以下に加熱し、その後圧延するにあたり、1020℃以下、920℃超における累積圧下率が60%未満で、920℃以下、Ar3点超での累積圧下率が50%以上、90%以下となるように圧延し、圧延終了後60秒以内に冷却速度1℃/秒以上の加速冷却を開始し、550℃未満、300℃以上の温度範囲で加速冷却を停止し、その後放冷することを特徴とする、溶接熱影響部の靭性に優れる降伏応力500MPa以上引張強さ570MPa以上の高強度鋼材の製造方法。
なお、式1中の[ ]は各合金元素の添加量を質量%で表したものであり、以降も同様である。
式1:[B]/10.8≧[N]/14.0−[Ti]/47.9 % By mass
C: 0.005% or more, less than 0.040%,
Si: less than 0.05% Mn: 1.0% or more, less than 1.5%,
P: 0.03% or less,
S: 0.01% or less,
Mo: 0.10% or more, 0.50% or less,
Nb: 0.02% or more, 0.08% or less,
Ti: 0.005% or more, 0.020% or less,
B: 0.0005% or more, 0.0030% or less,
Al: 0.001% or more, 0.010% or less,
N: A steel slab containing 0.0010% or more and 0.0070% or less, satisfying the relationship between the amounts of Ti and N represented by the following formula 1, and the balance having a composition composed of Fe and inevitable impurities When heated to 1020 ° C or higher and 1300 ° C or lower and then rolled, the cumulative rolling reduction at 1020 ° C or lower and above 920 ° C is less than 60%, and the cumulative rolling reduction at 920 ° C or lower and above Ar 3 point is 50%. Above, rolled to be 90% or less, started accelerated cooling at a cooling rate of 1 ° C / second or more within 60 seconds after the end of rolling, stopped accelerated cooling at a temperature range of less than 550 ° C and 300 ° C or more, A method for producing a high-strength steel material having a yield stress of 500 MPa or more and a tensile strength of 570 MPa or more that is excellent in toughness of the weld heat-affected zone.
In addition, [] in Formula 1 represents the addition amount of each alloy element in mass%, and the same applies thereafter.
Formula 1: [B] /10.8> = [N] /14.0- [Ti] /47.9
W :0.05%以上、0.50%以下
を含有することを特徴とする、請求項1に記載の溶接熱影響部の靭性に優れる降伏応力500MPa以上引張強さ570MPa以上の高強度鋼材の製造方法。 Furthermore, in mass%,
W: 0.05% or more and 0.50% or less of the high-strength steel material having a yield stress of 500 MPa or more and a tensile strength of 570 MPa or more excellent in the toughness of the weld heat affected zone according to claim 1 Production method.
Cu:0.01%以上、0.50%以下、
Ni:0.01%以上、0.50%以下
の1種または2種を含有することを特徴とする、請求項1または2に記載の溶接熱影響部の靭性に優れる降伏応力500MPa以上引張強さ570MPa以上の高強度鋼材の製造方法。 Furthermore, in mass%,
Cu: 0.01% or more, 0.50% or less,
Ni: 0.01% or more and 0.50% or less of 1 type or 2 types, The yield stress 500MPa or more tensile strength which is excellent in the toughness of the welding heat affected zone of Claim 1 or 2 characterized by the above-mentioned A method for producing a high-strength steel material having a thickness of 570 MPa or more.
Ca:0.001〜0.010%、
Mg:0.001〜0.010%、
Zr:0.001〜0.010%、
Hf:0.001〜0.010%、
REM:0.001〜0.010%
の内の1種または2種以上を含有することを特徴とする、請求項1ないし3のいずれか1項に記載の溶接熱影響部の靭性に優れる降伏応力500MPa以上引張強さ570MPa以上の高強度鋼材の製造方法。 Furthermore, in mass%,
Ca: 0.001 to 0.010%,
Mg: 0.001 to 0.010%,
Zr: 0.001 to 0.010%,
Hf: 0.001 to 0.010%,
REM: 0.001 to 0.010%
A high yield strength of 500 MPa or more and a tensile strength of 570 MPa or more excellent in the toughness of the weld heat-affected zone according to any one of claims 1 to 3, characterized by containing at least one of A manufacturing method for high strength steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007104945A JP5037204B2 (en) | 2007-04-12 | 2007-04-12 | Method for producing high-strength steel material having yield stress of 500 MPa or more and tensile strength of 570 MPa or more which is excellent in toughness of weld heat affected zone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007104945A JP5037204B2 (en) | 2007-04-12 | 2007-04-12 | Method for producing high-strength steel material having yield stress of 500 MPa or more and tensile strength of 570 MPa or more which is excellent in toughness of weld heat affected zone |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008261012A JP2008261012A (en) | 2008-10-30 |
JP5037204B2 true JP5037204B2 (en) | 2012-09-26 |
Family
ID=39983707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007104945A Expired - Fee Related JP5037204B2 (en) | 2007-04-12 | 2007-04-12 | Method for producing high-strength steel material having yield stress of 500 MPa or more and tensile strength of 570 MPa or more which is excellent in toughness of weld heat affected zone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5037204B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011202210A (en) * | 2010-03-24 | 2011-10-13 | Nippon Steel Corp | Refractory steel having excellent reheat embrittlement resistance and low temperature toughness and method for producing the same |
JP5494090B2 (en) * | 2010-03-24 | 2014-05-14 | 新日鐵住金株式会社 | Refractory steel material excellent in reheat embrittlement resistance and low temperature toughness and method for producing the same |
KR20180085791A (en) | 2015-12-04 | 2018-07-27 | 가부시키가이샤 고베 세이코쇼 | A non-tempered steel sheet having a low-temperature toughness deterioration of the weld heat-affected zone and a high yield strength which suppresses the hardness of the weld heat affected zone |
JP6579135B2 (en) * | 2017-03-10 | 2019-09-25 | Jfeスチール株式会社 | Low yield ratio steel sheet for construction and manufacturing method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6365021A (en) * | 1986-09-05 | 1988-03-23 | Kawasaki Steel Corp | Production of b-containing non-tempered high tensile steel sheet having excellent low-temperature toughness |
JP2002285238A (en) * | 2001-03-27 | 2002-10-03 | Nippon Steel Corp | Method for producing high tensile strength steel having excellent toughness and weldability |
JP2004052063A (en) * | 2002-07-23 | 2004-02-19 | Jfe Steel Kk | METHOD FOR PRODUCING 780 MPa-CLASS NON-HEAT REFINING THICK STEEL PLATE |
JP4449388B2 (en) * | 2003-09-25 | 2010-04-14 | Jfeスチール株式会社 | Manufacturing method of high-strength thick steel plates with excellent brittle crack propagation stop properties and super high heat input welding heat-affected zone toughness |
JP4926406B2 (en) * | 2004-04-08 | 2012-05-09 | 新日本製鐵株式会社 | Steel sheet with excellent fatigue crack propagation characteristics |
JP4226626B2 (en) * | 2005-11-09 | 2009-02-18 | 新日本製鐵株式会社 | High tensile strength steel sheet with low acoustic anisotropy and excellent weldability, including yield stress of 450 MPa or more and tensile strength of 570 MPa or more, including the central part of the plate thickness, and method for producing the same |
JP4469353B2 (en) * | 2006-05-15 | 2010-05-26 | 新日本製鐵株式会社 | Method for producing high strength steel material having tensile strength of 570 MPa class excellent in toughness of weld heat affected zone |
JP4469354B2 (en) * | 2006-05-15 | 2010-05-26 | 新日本製鐵株式会社 | Method for producing high strength steel material with tensile strength of 780 MPa excellent in toughness of weld heat affected zone |
-
2007
- 2007-04-12 JP JP2007104945A patent/JP5037204B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008261012A (en) | 2008-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5522084B2 (en) | Thick steel plate manufacturing method | |
JP6460292B1 (en) | High Mn steel and manufacturing method thereof | |
JP6048626B1 (en) | Thick, high toughness, high strength steel plate and method for producing the same | |
JP6149368B2 (en) | Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance | |
JP5659758B2 (en) | TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability | |
JP5867381B2 (en) | High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same | |
JP5741260B2 (en) | Cryogenic steel material excellent in CTOD characteristics after imparting strain and method for producing the same | |
JP6492862B2 (en) | Low temperature thick steel plate and method for producing the same | |
JP5630322B2 (en) | High-tensile steel plate with excellent toughness and manufacturing method thereof | |
JPH10306316A (en) | Production of low yield ratio high tensile-strength steel excellent in low temperature toughness | |
JP5037204B2 (en) | Method for producing high-strength steel material having yield stress of 500 MPa or more and tensile strength of 570 MPa or more which is excellent in toughness of weld heat affected zone | |
CN111542621B (en) | High-strength high-toughness hot-rolled steel sheet and method for producing same | |
JP2009280902A (en) | Copper-containing composite bainitic steel, and method for producing the same | |
CN111051555B (en) | Steel sheet and method for producing same | |
JP4469353B2 (en) | Method for producing high strength steel material having tensile strength of 570 MPa class excellent in toughness of weld heat affected zone | |
JP2013129885A (en) | Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property | |
JP4469354B2 (en) | Method for producing high strength steel material with tensile strength of 780 MPa excellent in toughness of weld heat affected zone | |
JP4770415B2 (en) | High tensile steel plate excellent in weldability and method for producing the same | |
KR20130075034A (en) | Method for producing thick steel plate having excellent welded zone toughness and ductility and weld structure using the same mathod | |
KR101505261B1 (en) | Steel plate and method of manufacturing the same | |
JP5037203B2 (en) | Method for producing high-strength steel material having yield stress of 470 MPa or more and tensile strength of 570 MPa or more excellent in toughness of weld heat-affected zone | |
KR101455458B1 (en) | Steel plate and method for manufacturing of the same | |
JP5151510B2 (en) | Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties | |
JP4742597B2 (en) | Production method of non-tempered high strength steel | |
JP4848651B2 (en) | High strength thin steel sheet with excellent torsional rigidity and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090916 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120612 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120704 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150713 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5037204 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150713 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150713 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150713 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |