JPH10306316A - Production of low yield ratio high tensile-strength steel excellent in low temperature toughness - Google Patents
Production of low yield ratio high tensile-strength steel excellent in low temperature toughnessInfo
- Publication number
- JPH10306316A JPH10306316A JP11152997A JP11152997A JPH10306316A JP H10306316 A JPH10306316 A JP H10306316A JP 11152997 A JP11152997 A JP 11152997A JP 11152997 A JP11152997 A JP 11152997A JP H10306316 A JPH10306316 A JP H10306316A
- Authority
- JP
- Japan
- Prior art keywords
- low
- toughness
- rolling
- cooling
- accelerated cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は溶接構造用鋼として
の十分な性能を有し、降伏比が低く塑性変形能に優れる
とともに、低温靱性にも優れた低降伏比高張力鋼材の製
造方法に関するものである。例えば、この方法で製造し
た鋼材は海洋構造物、圧力容器、造船、橋梁、建築物、
ラインパイプなどの溶接鋼構造物一般に用いることがで
きるが、低降伏比鋼であることから、特に耐震性を必要
とする建築、橋梁等の構造物用鋼材として有用である。
また、鋼材の形態としては特に問わないが、構造部材と
して用いられ、低温靭性が要求される鋼板、特に厚板、
鋼管素材、あるいは形鋼で特に有用である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength steel with a low yield ratio, which has sufficient performance as a welded structural steel, has a low yield ratio, is excellent in plastic deformability, and is also excellent in low-temperature toughness. Things. For example, steel produced in this way can be used in offshore structures, pressure vessels, shipbuilding, bridges, buildings,
Although it can be used in general for welded steel structures such as line pipes, since it is a low yield ratio steel, it is particularly useful as a structural steel material for buildings and bridges that require earthquake resistance.
Further, although the form of the steel material is not particularly limited, it is used as a structural member, and a steel sheet requiring low-temperature toughness, particularly a thick plate,
It is particularly useful for steel pipe stock or shaped steel.
【0002】[0002]
【従来の技術】従来の低降伏比鋼の製造方法は、焼入れ
と焼戻し熱処理の間にフェライト(α)+オーステナイ
ト(γ)二相域に加熱する中間熱処理を施す方法(以
下、QLT処理という)に代表されるように、基本的に
は軟質相としてのαと硬質相としてのベイナイトあるい
はマルテンサイトを混在させることを目的としている。
そして、全体の強度レベル及び降伏比はこれらの相の混
在比率を変えることによって制御されてきた。この軟質
相と硬質相の混合組織を得るための製造方法は従来から
種々提案されており、例えば、特開昭53−23817
号公報には鋼板を再加熱焼入れした後、Ac1 変態点と
Ac3 変態点の間に再加熱してγとαの二相としてから
空冷する方法が示されており、また、特開平4−314
824号公報には同様に二相域に再加熱した後、焼入れ
る方法が開示されている。また、再加熱処理を施さずに
オンラインで製造する方法としては、例えば、特開昭6
3−286517号公報にはγ域から二相域にかけて熱
間圧延を施した後、Ar3 変態点より20〜100℃低
い温度まで空冷してα相を生成させ、その後、急冷する
方法が開示されている。2. Description of the Related Art A conventional method for producing a low yield ratio steel is a method of performing an intermediate heat treatment for heating a ferrite (α) + austenite (γ) two-phase region between quenching and tempering heat treatment (hereinafter referred to as QLT treatment). Basically, the purpose is to mix α as a soft phase and bainite or martensite as a hard phase.
The overall strength level and yield ratio have been controlled by changing the mixture ratio of these phases. Various production methods for obtaining a mixed structure of the soft phase and the hard phase have been conventionally proposed, for example, Japanese Patent Application Laid-Open No. 53-23817.
Japanese Patent Application Laid-Open Publication No. Hei 4 (1994) discloses a method in which a steel sheet is reheated and quenched, then reheated between an Ac 1 transformation point and an Ac 3 transformation point to form two phases of γ and α and then air-cooled. -314
No. 824 also discloses a method of quenching after reheating to a two-phase region. In addition, as a method of online production without performing reheating treatment, for example, Japanese Unexamined Patent Publication No.
Japanese Patent Application Laid-Open No. 3-286517 discloses a method in which after hot rolling is performed from the γ region to the two-phase region, air cooling is performed to a temperature 20 to 100 ° C. lower than the Ar 3 transformation point to generate an α phase, and then quenching is performed. Have been.
【0003】再加熱焼入れした後、さらにAc1 変態点
とAc3 変態点の間に再加熱してγとαの二相としてか
ら空冷または水冷する、QLT処理は組織制御が比較的
容易であるが、工程が複雑であるため、生産性の低下が
大きいという問題を解決できない。After reheating and quenching, the material is reheated between the Ac 1 transformation point and the Ac 3 transformation point to form two phases of γ and α and then air-cooled or water-cooled. The QLT processing is relatively easy to control the structure. However, since the process is complicated, the problem of a large decrease in productivity cannot be solved.
【0004】一方、生産性の向上を図った、特開昭63
−286517号公報に示されているような、γ域から
二相域にかけて熱間圧延を施した後、Ar3 変態点より
20〜100℃低い温度まで空冷してα相を生成させ、
その後、急冷する、いわゆるDLT処理の場合は、QL
T処理で必須の中間熱処理は省略できるため、生産性は
改善されるが、圧延から焼入れまでの待ち時間が長くな
るため、通常の熱間圧延や加工熱処理(TMCP)プロ
セスに比べれば、未だ生産性は低い。また、α相生成の
ための待ち時間が長いため板内の温度不均一が生じやす
く、そのため、材質の板内変動が大きくなりがちであ
る。さらに、このようなプロセスで生じるαや硬質第二
相は粗大になりやすく、靭性の確保が困難である。On the other hand, Japanese Patent Application Laid-Open No.
After performing hot rolling from the γ region to the two-phase region, as shown in -286517, air cooling to a temperature lower by 20 to 100 ° C. than the Ar 3 transformation point to generate an α phase,
Then, in the case of the so-called DLT processing,
The productivity can be improved because the intermediate heat treatment indispensable in the T treatment can be omitted, but the waiting time from rolling to quenching becomes longer, so that the productivity is still higher than that of the normal hot rolling and thermomechanical processing (TMCP) process. Sex is low. Further, since the waiting time for the generation of the α phase is long, the temperature in the plate is likely to be non-uniform, so that the variation of the material in the plate tends to increase. Further, α and the hard second phase generated in such a process tend to be coarse, and it is difficult to secure toughness.
【0005】[0005]
【発明が解決しようとする課題】本発明は、現状の低降
伏比鋼の有している問題点に鑑み、QLT処理における
低生産性の問題と、DLT処理における靱性確保の問題
とを同時に解決する方法を提案するものであり、具体的
には、二相域への再加熱処理を施さない、熱間圧延工程
で製造する方法において、従来熱間圧延後の冷却工程で
軟質相であるαを十分生成させるための緩冷却工程のた
めに、αや硬質相のサイズが粗大化し、生産性が低下す
るという問題を解決することを課題とする。SUMMARY OF THE INVENTION In view of the problems of current low yield ratio steels, the present invention simultaneously solves the problem of low productivity in QLT processing and the problem of ensuring toughness in DLT processing. Specifically, in a method of manufacturing in a hot rolling step without performing reheating treatment to a two-phase region, a soft phase α is conventionally used in a cooling step after hot rolling. It is an object of the present invention to solve the problem that α and the size of the hard phase are coarsened and the productivity is reduced due to the slow cooling step for sufficiently generating the.
【0006】[0006]
【課題を解決するための手段】熱間圧延後の冷却工程で
軟質相であるαを十分生成させるためには、従来の方法
では熱間圧延後、放冷程度の遅い冷却速度で二相域温度
まで冷却し、塊状のαを一定量生成させた後、硬質相で
あるマルテンサイトあるいはベイナイトを生成させるた
めに加速冷却する。このαを生成させるための緩冷却工
程のために、αや硬質相のサイズが粗大化し、生産性が
低下するという問題があった。In order to sufficiently produce α, which is a soft phase, in the cooling step after hot rolling, in the conventional method, after the hot rolling, the two-phase region is cooled at a slow cooling rate such as cooling. After cooling to a temperature to generate a certain amount of bulk α, accelerated cooling is performed to generate martensite or bainite which is a hard phase. Due to the slow cooling step for generating α, there was a problem that the size of α and the hard phase became coarse, and the productivity was reduced.
【0007】本発明者らは、熱間圧延後に生成させるα
の微細化を図るための方法を縷々検討し、αの微細化と
生産性の向上とを同時に満足できる全く新しい手段を見
いだした。即ち、γ域〜変態温度域にかけて適正な冷却
速度で加速冷却することによりγ相を過冷した上で、過
冷されたγに適正な熱間圧延を加えることにより過冷さ
れたγから微細なαが生成して、低降伏比と低温靱性と
を両立できる組織が形成される。加えてこの方法によれ
ば、通常徐冷される温度域を加速冷却するため、生産性
の向上も同時に達成される。[0007] The present inventors have developed α which is formed after hot rolling.
Investigating the methods for miniaturization of α, we have found a completely new means that can simultaneously satisfy the miniaturization of α and the improvement of productivity. That is, the γ phase is subcooled by accelerated cooling at an appropriate cooling rate from the γ region to the transformation temperature region, and then the supercooled γ is subjected to appropriate hot rolling to obtain a fine from the supercooled γ. Is generated, and a structure capable of achieving both a low yield ratio and low-temperature toughness is formed. In addition, according to this method, the temperature range where cooling is normally performed is accelerated, so that productivity can be improved at the same time.
【0008】本発明は上記の新しい組織制御方法に基づ
いてなされたものであり、その要旨とするところは以下
の通りである。 (1)重量%で、 C :0.01〜0.20% Si:0.01〜1.0% Mn:0.1〜2.0% Al:0.001〜0.1% N :0.001〜0.010%を含有し、 不純物としてのP、Sの含有量が P :0.025%以下 S :0.015%以下で、 残部鉄及び不可避不純物からなる鋼片をAc3 変態点以
上、1250℃以下の温度に加熱し、加熱温度〜900
℃の範囲で累積圧下率が10〜80%の粗圧延を行った
後、冷却速度が2〜40℃/sの加速冷却を該冷却速度
におけるAr3 変態点+50℃〜Ar3 変態点−50℃
まで行ってγ相を過冷せしめ、加速冷却後、累積圧下率
30〜90%の仕上げ圧延を650℃以上で終了し、さ
らに仕上げ圧延終了後、5〜40℃/sの冷却速度で2
0℃〜450℃まで再び加速冷却することを特徴とする
低温靭性に優れた低降伏比高張力鋼材の製造方法。 (2)圧延後に、450℃以上、Ac1 変態点以下で焼
戻しを行うことを特徴とする前記(1)に記載の低温靭
性に優れた低降伏比高張力鋼材の製造方法。 (3)重量%で、 Cr:0.01〜1.0% Ni:0.01〜3.0% Mo:0.01〜1.0% Cu:0.01〜1.5% Ti:0.003〜0.10% V :0.005〜0.50% Nb:0.003〜0.10% Zr:0.003〜0.10% Ta:0.005〜0.20% W :0.01〜2.0% B :0.0003〜0.0020% の1種または2種以上を含有することを特徴とする前記
(1)または(2)に記載の低温靭性に優れた低降伏比
高張力鋼材の製造方法。 (4)重量%で、 Mg:0.0005〜0.01% Ca:0.0005〜0.01% REM:0.005〜0.10% のうち1種または2種以上を含有することを特徴とする
前記(1)〜(3)のいずれかに記載の低温靭性に優れ
た低降伏比高張力鋼材の製造方法。The present invention has been made based on the above-described new tissue control method, and the gist thereof is as follows. (1) By weight%, C: 0.01 to 0.20% Si: 0.01 to 1.0% Mn: 0.1 to 2.0% Al: 0.001 to 0.1% N: 0 0.001 to 0.010%, the content of P and S as impurities is P: 0.025% or less, S: 0.015% or less, and the steel slab composed of the balance of iron and unavoidable impurities is transformed into Ac 3 To a temperature of not less than 1250 ° C.
After performing rough rolling at a cumulative reduction rate of 10 to 80% in the range of ° C, accelerated cooling at a cooling rate of 2 to 40 ° C / s is performed at the cooling rate at the Ar 3 transformation point + 50 ° C to the Ar 3 transformation point -50. ° C
To accelerate the supercooling of the γ phase. After accelerated cooling, finish rolling at a cumulative rolling reduction of 30 to 90% is completed at 650 ° C. or higher, and after finishing rolling is completed, cooling is performed at a cooling rate of 5 to 40 ° C./s.
A method for producing a low-yield-ratio high-strength steel excellent in low-temperature toughness, characterized by accelerated cooling to 0 ° C to 450 ° C again. (2) The method for producing a low-yield-ratio high-strength steel excellent in low-temperature toughness according to (1), wherein tempering is performed at a temperature of 450 ° C. or more and an Ac 1 transformation point after rolling. (3) By weight%: Cr: 0.01 to 1.0% Ni: 0.01 to 3.0% Mo: 0.01 to 1.0% Cu: 0.01 to 1.5% Ti: 0 0.003 to 0.10% V: 0.005 to 0.50% Nb: 0.003 to 0.10% Zr: 0.003 to 0.10% Ta: 0.005 to 0.20% W: 0 Low yielding excellent in low temperature toughness as described in (1) or (2) above, wherein one or more of B: 0.0003% to 0.0020% is contained. Manufacturing method for high tensile strength steel. (4) By weight%, Mg: 0.0005 to 0.01% Ca: 0.0005 to 0.01% REM: 0.005 to 0.10% The method for producing a low-yield-ratio high-tensile steel excellent in low-temperature toughness according to any one of the above (1) to (3).
【0009】[0009]
【発明の実施の形態】本発明の最も重要な要件は、γ域
〜変態温度域にかけて適正な冷却速度で加速冷却するこ
とによりγ相を過冷した上で、過冷されたγに適正な熱
間圧延を加えることにより過冷されたγから微細なαを
生成させることにある。所望の特性を満足するためには
化学組成と製造方法の両方を適正化する必要があるが、
靱性と降伏比とを両立させるために最も重要なαの微細
化には製造方法の適正化が最も重要である。そこで、そ
のための製造条件の限定理由を先ず述べる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The most important requirement of the present invention is that the γ phase is supercooled by accelerated cooling at an appropriate cooling rate from the γ range to the transformation temperature range, It is to generate fine α from supercooled γ by adding hot rolling. In order to satisfy the desired properties, it is necessary to optimize both the chemical composition and the manufacturing method,
For miniaturization of α, which is the most important for achieving both toughness and yield ratio, optimization of the manufacturing method is most important. Therefore, reasons for limiting the manufacturing conditions for that purpose will be described first.
【0010】本発明の製造方法に関する第1の要件は、
粗圧延の後に加速冷却を行ってγを過冷した上で、αの
変態を促進するための仕上げ圧延を行い、さらに仕上げ
圧延後に加速冷却を行うことで軟質相であるαの微細化
と軟質相と硬質相の比率を適切に制御して靱性と低降伏
比化とを両立させることにある。The first requirement for the production method of the present invention is as follows.
After coarse cooling, accelerated cooling is performed to supercool γ, then finish rolling is performed to promote the transformation of α, and further accelerated cooling is performed after finish rolling to make the soft phase finer and softer. An object of the present invention is to appropriately control the ratio of the phase to the hard phase to achieve both toughness and a low yield ratio.
【0011】粗圧延後の加速冷却条件としては、2〜4
0℃/sの冷却速度で該冷却速度におけるAr3 変態点
+50℃〜Ar3 変態点−50℃まで行うが、これはγ
を過冷して後の仕上げ圧延で所望の割合でかつ微細なα
を生成させるために必要であり、冷却速度が2℃/s未
満では過冷が十分でなく、40℃/s超では鋼材の表面
と内部の温度差が過大となり組織の不均一が生じる上
に、α生成量の制御が困難となるため、加速冷却速度は
2〜40℃/sに限定する。The accelerated cooling conditions after the rough rolling are 2 to 4
The cooling is performed at a cooling rate of 0 ° C./s from the Ar 3 transformation point at the cooling rate + 50 ° C. to the Ar 3 transformation point −50 ° C.
At the desired ratio and fine α
When the cooling rate is less than 2 ° C./s, the supercooling is not sufficient, and when the cooling rate is more than 40 ° C./s, the temperature difference between the surface and the inside of the steel material becomes excessive and the structure becomes uneven. , Α production amount is difficult to control, so the accelerated cooling rate is limited to 2 to 40 ° C./s.
【0012】該冷却速度範囲でγを過冷却するが、後の
仕上げ圧延により所望の割合でかつ微細なαを生成させ
るためには、該粗圧延後の加速冷却は該冷却速度におけ
る変態開始温度をAr3 変態点として、Ar3 変態点+
50℃〜Ar3 変態点−50℃まで行う必要がある。こ
れは、加速冷却をAr3 変態点+50℃より高い温度で
終了すると加速冷却によるγ過冷却が十分でなく、Ar
3 変態点−50℃未満の低温まで加速冷却を行うと、該
加速冷却の後の仕上げ圧延を開始する前に変態の大半が
終了してしまい、αの微細化やαと硬質相との硬度差が
小さくなって靱性、低降伏比化がともに達成できなくな
るためである。While γ is supercooled in the cooling rate range, in order to generate a desired ratio and fine α by the subsequent finish rolling, accelerated cooling after the rough rolling is performed at the transformation starting temperature at the cooling rate. Is the Ar 3 transformation point, and the Ar 3 transformation point +
It is necessary to carry out from 50 ° C. to the Ar 3 transformation point −50 ° C. This is because, when accelerated cooling is completed at a temperature higher than the Ar 3 transformation point + 50 ° C, γ supercooling due to accelerated cooling is not sufficient, and
(3) Transformation point: When accelerated cooling to a low temperature of less than −50 ° C., most of the transformation is completed before starting the finish rolling after the accelerated cooling, so that α becomes finer and the hardness of α and the hard phase becomes smaller. This is because the difference becomes so small that both toughness and a low yield ratio cannot be achieved.
【0013】該粗圧延・加速冷却後仕上げ圧延を行い、
微細なαを生成させるが、そのためには、加速冷却後、
累積圧下率30〜90%の仕上げ圧延を650℃以上で
終了する必要がある。累積圧下率が30%未満である
と、αの微細化が十分でなく、90%超ではαの微細化
程度が飽和する一方で、圧延中の温度低下のために仕上
げ圧延後の加速冷却前に変態が生じ、硬質相の硬さ、割
合が不十分となり低降伏比化が不十分となる。同様の理
由により仕上げ圧延は650℃以上で終了する必要があ
る。即ち、仕上げ圧延の終了が650℃未満では硬質相
となるべき未変態γが仕上げ圧延後の加速冷却前に変態
を生じ、硬さが低く、靱性の劣る粗大なベイナイト相と
なる可能性が大となる。また、変態終了後の圧延による
靱性劣化も生じる。After the rough rolling and accelerated cooling, finish rolling is performed.
To generate fine α, for that purpose, after accelerated cooling,
Finish rolling at a cumulative rolling reduction of 30 to 90% needs to be completed at 650 ° C. or higher. If the cumulative rolling reduction is less than 30%, the refinement of α is insufficient, and if it exceeds 90%, the degree of refinement of α saturates, but the temperature decreases during rolling before accelerated cooling after finish rolling due to a decrease in temperature during rolling. Transformation occurs, and the hardness and ratio of the hard phase become insufficient, and the reduction of the yield ratio becomes insufficient. For the same reason, finish rolling needs to be completed at 650 ° C. or higher. That is, if the finish of the finish rolling is less than 650 ° C., the untransformed γ that should become a hard phase undergoes transformation before accelerated cooling after the finish rolling, and is likely to become a coarse bainite phase with low hardness and poor toughness. Becomes In addition, toughness is deteriorated by rolling after the transformation.
【0014】仕上げ圧延の後に加速冷却を行いγをマル
テンサイト主体の硬質相に変態させる。その際、5〜4
0℃/sの冷却速度で20℃〜450℃まで加速冷却す
る。冷却速度が5℃/s未満では硬質相の硬さ、靱性が
十分でない。冷却速度は高いほど硬質相の硬さは高くな
るが、全面マルテンサイト相になればそれ以上冷却速度
を高めても硬さは増加せず、むしろ残留応力等の問題を
生じやすいため、低降伏比化に必要な硬質相を得るに十
分な冷却速度として40℃/sを上限とする。該加速冷
却は20℃〜450℃まで行う。即ち、20℃未満まで
加速冷却しても組織の変化は起こらず、工業的にも20
℃未満まで冷却することは困難であるためであり、上限
を450℃としたのは450℃超で加速冷却を停止する
と、硬さや靱性が十分でない粗大なベイナイト相が生成
するためである。なお、加速冷却は仕上げ圧延後なるべ
く速やかに開始すべきであるが、過冷却γからαが生成
した後の未変態γにはCが濃縮して比較的安定している
ため、仕上げ圧延と加速冷却との間隔は60s〜150
s程度が上限となる。より確実に加速冷却前の変態を抑
制するためには仕上げ圧延と加速冷却との間隔は60s
以下とすることが好ましい。After finish rolling, accelerated cooling is performed to transform γ into a hard phase mainly composed of martensite. At that time, 5-4
It accelerates and cools from 20 ° C to 450 ° C at a cooling rate of 0 ° C / s. If the cooling rate is less than 5 ° C./s, the hardness and toughness of the hard phase are not sufficient. The higher the cooling rate, the higher the hardness of the hard phase.However, if the entire martensite phase is used, the hardness does not increase even if the cooling rate is further increased. An upper limit of 40 ° C./s is set as a cooling rate sufficient to obtain a hard phase required for the ratio. The accelerated cooling is performed from 20 ° C to 450 ° C. That is, even if accelerated cooling to less than 20 ° C., no structural change occurs,
The reason why it is difficult to cool the temperature to less than ° C is that the upper limit is set to 450 ° C because when accelerated cooling is stopped at a temperature exceeding 450 ° C, a coarse bainite phase having insufficient hardness and toughness is generated. Accelerated cooling should be started as soon as possible after finish rolling. However, since untransformed γ after α is generated from supercooled γ, C is concentrated and relatively stable. Interval between cooling and 60s-150
s is the upper limit. In order to more reliably suppress the transformation before accelerated cooling, the interval between finish rolling and accelerated cooling is 60 seconds.
It is preferable to set the following.
【0015】以上が本発明における製造方法に関する主
要な要件の限定理由であるが、その他の製造条件の限定
理由を以下に述べる。先ず、圧延に先立つ鋼片の加熱温
度はAc3 変態点以上、1250℃以下とする。加熱温
度がAc3 変態点未満では溶体化が不十分で、粗大な組
織が圧延後も残存するため、下限をAc3 変態点とす
る。また、加熱温度が1250℃超の場合、加熱γ粒径
が過剰に粗大となるため、その後の圧延によっても組織
の微細化が不十分となる可能性があるため、加熱温度の
上限は1250℃とする。The above is the main reason for limiting the main requirements relating to the manufacturing method in the present invention. Other reasons for limiting the manufacturing conditions will be described below. First, the heating temperature of the steel slab prior to rolling is set to be higher than the Ac 3 transformation point and lower than or equal to 1250 ° C. If the heating temperature is lower than the Ac 3 transformation point, the solution becomes insufficient and a coarse structure remains after rolling, so the lower limit is defined as the Ac 3 transformation point. If the heating temperature is higher than 1250 ° C., the heating γ particle size becomes excessively coarse, and the microstructure may not be sufficiently refined by subsequent rolling. Therefore, the upper limit of the heating temperature is 1250 ° C. And
【0016】γ相を過冷せしめるための加速冷却の前に
粗圧延を行う。粗圧延の主目的は加速冷却、仕上げ圧延
前の板厚を調整して、板厚中心まで所望の冷却速度で冷
却できるようにするためであり、補助的にはγの細粒化
を行って最終組織をより微細にするためである。粗圧延
の温度範囲は加熱温度〜900℃とするが、これは粗圧
延の終了が900℃未満になると、後の加速冷却、仕上
げ圧延までの温度確保が難しくなる懸念があるためであ
る。圧下率は鋼片厚みと仕上げ圧下率、仕上げ板厚から
定まるものであるが、板厚中心部まで加速冷却の効果を
発揮せしめるためには累積圧下率として10%以上必要
である。また、粗圧延での累積圧下率は大きいほど、板
厚中心まで加速冷却の効果をゆきわたらせられる点、組
織が微細化できる点で好ましいが、仕上げ圧延の累積圧
下率が確保できない点で不利であり、仕上げ圧延の累積
圧下率が確保できる範囲として上限を80%とする。Rough rolling is performed before accelerated cooling for supercooling the γ phase. The main purpose of rough rolling is accelerated cooling, adjusting the sheet thickness before finish rolling, so that it can be cooled at the desired cooling rate to the center of the sheet thickness, and auxiliary γ is refined. This is for making the final structure finer. The temperature range of the rough rolling is from the heating temperature to 900 ° C., because if the end of the rough rolling is lower than 900 ° C., there is a concern that it becomes difficult to secure the temperature until the subsequent accelerated cooling and finish rolling. The rolling reduction is determined by the thickness of the steel slab, the finishing rolling reduction, and the finished plate thickness. In order to exert the effect of accelerated cooling to the center of the plate thickness, a cumulative rolling reduction of 10% or more is required. Also, as the cumulative rolling reduction in rough rolling is larger, the effect of accelerated cooling can be extended to the center of the sheet thickness and the structure can be refined, which is preferable, but disadvantageous in that the cumulative rolling reduction of finish rolling cannot be secured. The upper limit is set to 80% as a range in which the cumulative rolling reduction of the finish rolling can be secured.
【0017】本発明においては、強度・靱性、降伏比の
調整のために、必要に応じて熱間圧延後に焼戻し処理を
行うことができる。その場合、焼戻し温度が450℃未
満であると、焼戻しの効果が明確でなく,Ac1 変態点
超ではαが粗大となり強度・靱性が劣化するため、焼戻
し温度は450℃〜Ac1 変態点の範囲に限定する。In the present invention, a tempering treatment can be performed after hot rolling, if necessary, for adjusting strength, toughness and yield ratio. In this case, if the tempering temperature is lower than 450 ° C., the effect of the tempering is not clear, and if the temperature exceeds the Ac 1 transformation point, α becomes coarse and the strength and toughness deteriorate, so the tempering temperature is from 450 ° C. to the Ac 1 transformation point. Limit to the range.
【0018】以上が製造方法に関わる本発明の限定理由
であるが、溶接構造用鋼として十分な製造を発揮し、低
降伏比が低く塑性変形能に優れた低降伏比高張力鋼板を
製造するためには、化学成分も併せて規定する必要があ
る。以下に、それぞれの化学成分の限定理由を述べる。The reasons for the limitation of the present invention relating to the production method are as follows. The production of a steel for welded structures is demonstrated, and a low yield ratio high tensile strength steel sheet having a low low yield ratio and excellent plastic deformability is produced. Therefore, it is necessary to define the chemical components as well. The reasons for limiting each chemical component are described below.
【0019】先ず、Cは鋼の強度を向上させる有効な成
分として添加するもので、0.01%未満では構造用鋼
に必要な強度の確保が困難であり、また、0.20%を
超える過剰の添加は靭性や耐溶接割れ性などを著しく低
下させるので、0.01〜0.20%の範囲とした。First, C is added as an effective component for improving the strength of steel. If it is less than 0.01%, it is difficult to secure the strength required for structural steel, and more than 0.20%. Excessive addition significantly reduces toughness, weld cracking resistance, etc., and is therefore in the range of 0.01 to 0.20%.
【0020】次に、Siは脱酸元素として、また、母材
の強度確保に有効な元素である。0.01%未満の添加
では脱酸が不十分となり、また強度確保に不利である。
逆に1.0%を超える過剰の添加は粗大な酸化物を形成
して延性や靭性劣化を招く。そこで、Siの範囲は0.
01〜1.0%とした。Next, Si is an element effective as a deoxidizing element and for securing the strength of the base material. Addition of less than 0.01% results in insufficient deoxidation and is disadvantageous for securing strength.
Conversely, an excessive addition exceeding 1.0% forms a coarse oxide and causes deterioration in ductility and toughness. Therefore, the range of Si is 0.
01 to 1.0%.
【0021】また、Mnは母材の強度、靭性の確保に必
要な元素であり、最低限0.1%以上添加する必要があ
るが、溶接部の靭性、割れ性など材質上許容できる範囲
で上限を2.0%とした。Mn is an element necessary for securing the strength and toughness of the base material, and it is necessary to add at least 0.1% or more. The upper limit was 2.0%.
【0022】Alは脱酸、γ粒径の細粒化等に有効な元
素であり、効果を発揮するためには0.001%以上含
有する必要があるが、0.1%を超えて過剰に添加する
と、粗大な酸化物を形成して延性を極端に劣化させるた
め、0.001%〜0.1%の範囲に限定する必要があ
る。Al is an element effective for deoxidation, grain refinement of the γ particle size, etc., and it is necessary to contain 0.001% or more in order to exhibit the effect. , A coarse oxide is formed and the ductility is extremely deteriorated, so it is necessary to limit the range to 0.001% to 0.1%.
【0023】NはAlやTiと結びついてγ粒微細化に
有効に働くが、その効果が明確になるためには0.00
1%以上含有させる必要がある一方、過剰に添加すると
固溶Nが増加して降伏比の増加や靭性の劣化につなが
る。溶接熱影響部の靭性確保の観点から許容できる範囲
として上限を0.01%とする。N works effectively with Al and Ti to reduce the size of γ grains.
On the other hand, it is necessary to contain 1% or more. On the other hand, if it is added excessively, the amount of dissolved N increases, leading to an increase in yield ratio and deterioration in toughness. The upper limit is set to 0.01% as an allowable range from the viewpoint of securing the toughness of the weld heat affected zone.
【0024】Pは不純物元素であり、極力低減すること
が好ましいが、溶接熱影響部の靭性確保の点から許容で
きる量として上限を0.025%とした。P is an impurity element and is preferably reduced as much as possible, but the upper limit is set to 0.025% as an allowable amount from the viewpoint of securing the toughness of the heat affected zone.
【0025】SはMnSを形成して延性値を劣化せるた
め、本発明が対象としているような、塑性変形能を確保
する必要のある鋼板では特に低減が必要な元素である。
ただし、延性の劣化が大きくなく、実用的に許容できる
上限として、その含有量を0.015%以下とする。Since S forms MnS and degrades the ductility value, S is an element that needs to be particularly reduced in a steel sheet that is required to ensure plastic deformability, as the object of the present invention.
However, the content is set to 0.015% or less as a practically allowable upper limit where ductility is not significantly deteriorated.
【0026】以上が本発明鋼の基本成分であるが、所望
の強度レベルに応じて母材強度の上昇の目的で、必要に
応じてCr、Ni、Mo、Cu、Ti、V、Nb、Z
r,Ta,W,Bの1種または2種以上を含有すること
ができる。The basic components of the steel according to the present invention have been described above, but Cr, Ni, Mo, Cu, Ti, V, Nb, Z
One, two or more of r, Ta, W, and B can be contained.
【0027】先ず、Cr及びMoはいずれも母材の強度
向上に有効な元素であるが、明瞭な効果を生じるために
は0.1%以上必要であり、一方、1.0%を超えて添
加すると、靭性が劣化する傾向を有するため、0.01
〜1.0%の範囲とする。First, Cr and Mo are both effective elements for improving the strength of the base material. However, in order to produce a clear effect, 0.1% or more is required. When added, the toughness tends to deteriorate.
1.01.0%.
【0028】また、Niは母材の強度と靭性を同時に向
上でき、非常に有効な元素であるが、効果を発揮させる
ためには0.01%以上含有させる必要がある。含有量
が多くなると強度、靭性は向上するが3.0%を超えて
添加しても効果が飽和するため、経済性も考慮して、上
限を3.0%とする。Ni is a very effective element that can simultaneously improve the strength and toughness of the base material, but must be contained at 0.01% or more in order to exert its effect. When the content is increased, the strength and toughness are improved, but the effect is saturated even if added over 3.0%. Therefore, the upper limit is set to 3.0% in consideration of economy.
【0029】次に、CuもほぼNiと同様の効果を有す
るが、1.5%超の添加では熱間加工性に問題を生じる
ため、0.01〜1.5%の範囲に限定する。Next, Cu has almost the same effect as Ni, but if added in excess of 1.5%, causes a problem in hot workability, so it is limited to the range of 0.01 to 1.5%.
【0030】TiはTiNの形成によりγ粒を微細化し
て靭性向上に有効な元素であるが、効果を発揮できるた
めには0.003%以上の添加が必要である。一方、
0.10%を超えると、Alと同様、粗大な酸化物を形
成して靭性や延性を劣化させるため、上限を0.10%
とする。Ti is an element effective for improving the toughness by refining γ grains by forming TiN. However, in order to exhibit the effect, it is necessary to add 0.003% or more. on the other hand,
If it exceeds 0.10%, as in the case of Al, a coarse oxide is formed to deteriorate toughness and ductility.
And
【0031】V及びNbはいずれも主として析出強化に
より母材の強度向上に寄与するが、過剰の添加で靭性が
劣化する。従って、靭性の劣化を招かずに、効果を発揮
できる範囲として、Vは0.005〜0.50%、Nb
は0.003〜0.10%とする。Both V and Nb mainly contribute to the improvement of the strength of the base material by precipitation strengthening, but the toughness is deteriorated by excessive addition. Therefore, V is 0.005 to 0.50% and Nb is a range in which the effect can be exhibited without inducing the toughness.
Is set to 0.003 to 0.10%.
【0032】Zrは析出強化や細粒化に効果を発揮する
元素であるが、効果を発揮するためには0.003%以
上の添加が必要である。一方,0.10%超の過剰の添
加で析出物の粗大化による靱性の劣化を生じるため,
0.003%〜0.10%の範囲に限定する。Zr is an element that exerts an effect on precipitation strengthening and grain refinement, but in order to exhibit the effect, it is necessary to add 0.003% or more. On the other hand, an excessive addition of more than 0.10% causes the deterioration of toughness due to coarsening of precipitates.
It is limited to the range of 0.003% to 0.10%.
【0033】Taも同様に析出強化や細粒化に有効であ
るが、効果を発揮するためには0.005%以上必要で
あり,0.20%超では逆に靱性劣化を生じるため、そ
の範囲を0.005%〜0.20%とする。Although Ta is also effective for precipitation strengthening and grain refinement, it must be 0.005% or more in order to exhibit its effect, and if it exceeds 0.20%, on the contrary, toughness deteriorates. The range is 0.005% to 0.20%.
【0034】Wは固溶強化、析出強化により母材の強度
向上に有効な元素である。その効果は0.01%以上の
添加で発揮され,2.0%超の添加では析出脆化や溶接
性の悪化を招くため,0.01%〜2.0%の範囲に限
定する。W is an element effective for improving the strength of the base material by solid solution strengthening and precipitation strengthening. The effect is exhibited when the addition is 0.01% or more, and since addition of more than 2.0% causes precipitation embrittlement and deterioration of weldability, it is limited to the range of 0.01% to 2.0%.
【0035】Bは0.0003%以上のごく微量添加で
鋼材の焼入性を高めて強度上昇に非常に有効であるが、
過剰に添加するとBNを形成して、逆に焼入性を落とし
たり、靭性を大きく劣化させるため、上限を0.002
0%とする。B is very effective in increasing the strength by increasing the hardenability of steel by adding a very small amount of 0.0003% or more.
If added in excess, BN is formed, and conversely, the hardenability is lowered and the toughness is greatly deteriorated.
0%.
【0036】さらに、本発明においては、溶接部の靱性
(HAZ靱性)を向上させることを目的として、Mg、
Ca、REMの1種または2種以上を含有することがで
きる。いずれも酸化物、硫化物の微細分散により溶接熱
影響部(HAZ)の組織を微細化してHAZ靱性を向上
せしめるが、その効果を発揮するためには、Mg、Ca
は0.0005%以上、REMは0.005%以上含有
させる必要がある。一方、過剰に添加すると、酸化物、
硫化物が粗大化して、それ自身が脆性破壊の起点となっ
てHAZ靱性を逆に劣化させるため、上限をMg、Ca
は0.01%、REMは0.10%に限定する。Further, in the present invention, in order to improve the toughness (HAZ toughness) of the welded portion, Mg,
One or more of Ca and REM can be contained. In any case, the microstructure of the weld heat affected zone (HAZ) is refined by the fine dispersion of oxides and sulfides to improve the HAZ toughness.
Must be contained 0.0005% or more, and REM must be contained 0.005% or more. On the other hand, if added in excess, oxides,
Since the sulfide coarsens and itself becomes a starting point of brittle fracture and deteriorates the HAZ toughness, the upper limit is set to Mg, Ca
Is limited to 0.01% and REM is limited to 0.10%.
【0037】[0037]
【実施例】次に、本発明の効果を実施例によってさらに
具体的に述べる。実施例に用いた供試鋼の化学成分を表
1に示す。各供試鋼は造塊後、分塊圧延によってか、あ
るいは連続鋳造によりスラブとなした。表1の内、鋼番
1〜15は本発明が限定する化学組成を満足しているも
のであり、鋼番16〜21は本発明の化学成分範囲を満
足していないものである。Next, the effects of the present invention will be described more specifically with reference to examples. Table 1 shows the chemical components of the test steels used in the examples. After ingot casting, each test steel was formed into a slab by slab rolling or continuous casting. In Table 1, steel numbers 1 to 15 satisfy the chemical composition defined by the present invention, and steel numbers 16 to 21 do not satisfy the chemical composition range of the present invention.
【0038】表1のスラブを表2に示す条件により鋼板
に製造し、引張特性、シャルピー衝撃特性を調査した。
試験片は全て板厚中心部から圧延方向に採取した。引張
試験は平行部径14mm、平行部長さ60mmの丸棒引張試
験片により行い、降伏応力(YP)、引張強度(T
S)、降伏比、全伸びを調査した。シャルピー衝撃試験
はJIS4号標準試験片により行い、特性は50%破面
遷移温度(vTrs)で評価した。強度、靭性の試験結
果も表2に示す。The slabs shown in Table 1 were manufactured into steel sheets under the conditions shown in Table 2, and tensile properties and Charpy impact properties were examined.
All test pieces were collected in the rolling direction from the center of the thickness. The tensile test was performed using a round bar tensile test piece having a parallel part diameter of 14 mm and a parallel part length of 60 mm, and yield stress (YP) and tensile strength (T
S), yield ratio and total elongation were investigated. The Charpy impact test was performed using a JIS No. 4 standard test piece, and the characteristics were evaluated at a 50% fracture surface transition temperature (vTrs). Table 2 also shows the strength and toughness test results.
【0039】表2において、試験No.A1〜A20は
いずれも本発明に従って製造した鋼板であり、全て良好
な伸びや靭性を備えた上で、比較例の同様の製造条件、
引張強度レベルのものに比べて降伏比の低減が図られて
いる。一方、試験No.B1〜B12は比較例であり、
いずれかの条件が本発明の限定範囲をはずれているた
め、同じ引張強度レベルで比較した場合、降伏比が高か
ったり、延性や靭性が溶接構造用鋼として必ずしも十分
でない。In Table 2, Test No. A1 to A20 are steel sheets manufactured according to the present invention, all having good elongation and toughness, and under the same manufacturing conditions as those of the comparative example,
The yield ratio is reduced as compared with that at the tensile strength level. On the other hand, Test No. B1 to B12 are comparative examples,
Since any of the conditions are out of the range of limitation of the present invention, when compared at the same tensile strength level, the yield ratio is high, and the ductility and toughness are not necessarily sufficient as steel for welded structures.
【0040】先ず、試験No.B1〜B6は化学組成が
本発明を満足していないために十分な特性が得られない
例である。即ち、試験No.B1はC量が本発明の範囲
をはずれて過剰に添加されているため、延性や靭性が劣
る。No.B2はMnが過剰なため、靱性が十分でな
い。No.B3はNが過剰なため、靱性が劣るととも
に、合金元素量が高いために変態開始温度が低く、本発
明の要点である過冷却後の加工を行おうとすると圧延仕
上げ温度の確保が困難となり,No.B3の例では仕上
げ温度を650℃以上としたために、仕上げ圧延前の加
速冷却条件が本発明の条件を満足できず低降伏比化も達
成できない。No.B4はP量が過剰なため、靱性、延
性が劣る。No.B5はS量が過剰なため、延性が劣
る。No.B6はCr及びNi量が過剰なため、靱性が
劣ると同時にNo.B3と同様、変態開始温度が低すぎ
るため、仕上げ圧延前の加速冷却条件が本発明の条件を
満足できず降伏比が高い。First, in Test No. B1 to B6 are examples in which sufficient properties cannot be obtained because the chemical composition does not satisfy the present invention. That is, the test No. B1 is inferior in ductility and toughness because the amount of C is excessively added outside the range of the present invention. No. B2 does not have sufficient toughness because Mn is excessive. No. B3 has an excessive amount of N, resulting in poor toughness and a high transformation element temperature due to a large amount of alloying elements. Therefore, it is difficult to secure a rolling finish temperature when performing the processing after supercooling, which is the main point of the present invention. No. In the example of B3, since the finishing temperature was set to 650 ° C. or higher, the accelerated cooling conditions before the finish rolling could not satisfy the conditions of the present invention, and a low yield ratio could not be achieved. No. B4 is inferior in toughness and ductility due to excessive P content. No. B5 is inferior in ductility due to an excessive amount of S. No. B6 has an excessive amount of Cr and Ni, so that the toughness is inferior and at the same time No. B6. As in B3, the transformation start temperature is too low, so that the accelerated cooling conditions before finish rolling cannot satisfy the conditions of the present invention, and the yield ratio is high.
【0041】No.B7〜B13は、化学組成は本発明
を満足しているが、製造方法に関する要件を満足してい
ないために同じ引張強度レベルで比較した場合、降伏比
が高かったり、延性や靭性が劣る例である。即ち、試験
No.B7は粗圧延と仕上げ圧延の間の加速冷却がな
く、一般のDLT処理に近い製造方法によるものであ
り、本発明と異なり、靱性が顕著に劣化している。N
o.B8は途中の加速冷却もなく、αの生成工程もない
条件で、通常のDQT処理に相当する製造方法によるも
のであり、低降伏比が達成できない。No.B9は鋼片
の加熱温度が高すぎるため、その後の製造条件が本発明
の方法によっているものの、結晶粒の微細化が達成され
ず、十分な靱性が確保できない。No.B10は仕上げ
圧延の累積圧下率が過小であるためにα粒径の微細化が
十分でなく、靱性が劣る。No.B11は粗圧延と仕上
げ圧延の間の加速冷却の停止温度が高すぎるため、仕上
げ圧延前の過冷却が不十分で、そのため、α粒径の微細
化が十分でなく、靱性が劣る。No.B12は仕上げ温
度が低すぎるため、硬質相の硬さが十分でないため、全
体の強度レベルが他の製造方法に比べて低く、低降伏比
化も十分でない。また、加工組織の発達が顕著で靱性も
劣る。No.B13は粗圧延と仕上げ圧延の間の加速冷
却は実施されているが、その冷却速度が小さく、過冷却
が十分でない。従って、靱性向上が十分に図られていな
い。No. B7 to B13 are examples in which the chemical composition satisfies the present invention, but the yield ratio is high or the ductility and toughness are inferior when compared at the same tensile strength level because the requirements for the production method are not satisfied. is there. That is, the test No. B7 does not have accelerated cooling between rough rolling and finish rolling, and is manufactured by a manufacturing method close to general DLT processing. Unlike the present invention, B7 has significantly deteriorated toughness. N
o. B8 is obtained by a production method equivalent to ordinary DQT processing under the condition that there is no accelerated cooling in the middle and there is no α generation step, and a low yield ratio cannot be achieved. No. In B9, since the heating temperature of the steel slab is too high, although the subsequent manufacturing conditions are in accordance with the method of the present invention, the refinement of the crystal grains is not achieved, and sufficient toughness cannot be secured. No. In B10, since the cumulative rolling reduction of the finish rolling is too small, the refinement of the α grain size is not sufficient, and the toughness is poor. No. In B11, since the stop temperature of the accelerated cooling between the rough rolling and the finish rolling is too high, the supercooling before the finish rolling is insufficient, so that the α grain size is not sufficiently refined and the toughness is poor. No. In B12, since the finishing temperature is too low, the hardness of the hard phase is not sufficient, so that the overall strength level is lower than in other production methods, and the yield ratio is not sufficiently reduced. Further, the development of the processed structure is remarkable and the toughness is poor. No. In B13, the accelerated cooling between the rough rolling and the finish rolling is performed, but the cooling rate is low and the supercooling is not sufficient. Therefore, the toughness is not sufficiently improved.
【0042】以上のことから、本発明によれば、同一引
張強度レベルで比較した場合、従来技術に比べて、延性
や生産性の低下を招くことなく、低降伏比化と靱性向上
とが同時に図られることが明白である。From the above, according to the present invention, when compared at the same tensile strength level, lower yield ratio and improved toughness can be simultaneously achieved without lowering ductility and productivity as compared with the prior art. It is clear that this is done.
【0043】[0043]
【表1】 [Table 1]
【0044】[0044]
【表2】 [Table 2]
【0045】[0045]
【表3】 [Table 3]
【0046】[0046]
【表4】 [Table 4]
【0047】[0047]
【発明の効果】本発明は加工熱処理(TMCP)をベー
スとして、複雑な再加熱処理を施すことなく、溶接構造
用鋼としての十分な性能を有し、靱性と低降伏比の両特
性を同時に向上させることが可能な、画期的な低降伏比
高張力鋼板の製造方法であり、製造コストの低減、構造
物としての安全性の向上等、産業上の効果は極めて大き
い。According to the present invention, based on thermomechanical treatment (TMCP), it has sufficient performance as a steel for welded structure without complicated reheating treatment, and simultaneously has both characteristics of toughness and low yield ratio. This is an epoch-making method for producing a high yield steel sheet with a low yield ratio, which can be improved. Its industrial effects are extremely large, such as reduction in production cost and improvement in safety as a structure.
Claims (4)
上、1250℃以下の温度に加熱し、加熱温度〜900
℃の範囲で累積圧下率が10〜80%の粗圧延を行った
後、冷却速度が2〜40℃/sの加速冷却を該冷却速度
におけるAr3 変態点+50℃〜Ar3 変態点−50℃
まで行ってγ相を過冷せしめ、加速冷却後、累積圧下率
30〜90%の仕上げ圧延を650℃以上で終了し、さ
らに仕上げ圧延終了後、5〜40℃/sの冷却速度で2
0℃〜450℃まで再び加速冷却することを特徴とする
低温靭性に優れた低降伏比高張力鋼材の製造方法。C: 0.01 to 0.20% Si: 0.01 to 1.0% Mn: 0.1 to 2.0% Al: 0.001 to 0.1% N by weight% : 0.001 to 0.010%, the content of P and S as impurities is P: 0.025% or less, S: 0.015% or less, and the steel slab consisting of iron and unavoidable impurities is Ac Heat to a temperature between 3 transformation point and 1250 ° C, heating temperature ~ 900
After performing rough rolling at a cumulative rolling reduction of 10 to 80% in the range of ° C, accelerated cooling at a cooling rate of 2 to 40 ° C / s is performed at the cooling rate at the Ar 3 transformation point + 50 ° C to the Ar 3 transformation point -50. ° C
To accelerate the supercooling of the γ phase. After accelerated cooling, finish rolling at a cumulative rolling reduction of 30 to 90% is completed at 650 ° C. or higher, and after finishing rolling is completed, cooling is performed at a cooling rate of 5 to 40 ° C./s.
A method for producing a low-yield-ratio high-strength steel excellent in low-temperature toughness, characterized by accelerated cooling to 0 ° C to 450 ° C again.
以下で焼戻しを行うことを特徴とする請求項1に記載の
低温靭性に優れた低降伏比高張力鋼材の製造方法。2. The method according to claim 1, wherein tempering is performed at a temperature of 450 ° C. or more and an Ac 1 transformation point after rolling.
項1または2に記載の低温靭性に優れた低降伏比高張力
鋼材の製造方法。3. In% by weight, Cr: 0.01 to 1.0% Ni: 0.01 to 3.0% Mo: 0.01 to 1.0% Cu: 0.01 to 1.5% Ti : 0.003 to 0.10% V: 0.005 to 0.50% Nb: 0.003 to 0.10% Zr: 0.003 to 0.10% Ta: 0.005 to 0.20% W : 0.01 to 2.0% B: 0.0003 to 0.0020% The low yield ratio excellent in low-temperature toughness according to claim 1 or 2, characterized by containing one or more of B: 0.0003 to 0.0020%. A method for manufacturing high-tensile steel.
請求項1〜3のいずれか1項に記載の低温靭性に優れた
低降伏比高張力鋼材の製造方法。4. The composition contains one or more of Mg: 0.0005 to 0.01% Ca: 0.0005 to 0.01% REM: 0.005 to 0.10% by weight% The method for producing a low-yield-ratio high-strength steel excellent in low-temperature toughness according to any one of claims 1 to 3, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11152997A JPH10306316A (en) | 1997-04-28 | 1997-04-28 | Production of low yield ratio high tensile-strength steel excellent in low temperature toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11152997A JPH10306316A (en) | 1997-04-28 | 1997-04-28 | Production of low yield ratio high tensile-strength steel excellent in low temperature toughness |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10306316A true JPH10306316A (en) | 1998-11-17 |
Family
ID=14563658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11152997A Withdrawn JPH10306316A (en) | 1997-04-28 | 1997-04-28 | Production of low yield ratio high tensile-strength steel excellent in low temperature toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10306316A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007092155A (en) * | 2005-09-30 | 2007-04-12 | Jfe Steel Kk | Wear resistant steel sheet having excellent low temperature toughness and its production method |
JP2008274323A (en) * | 2007-04-26 | 2008-11-13 | Jfe Steel Kk | Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristic and production method therefor |
JP2010168657A (en) * | 2008-12-26 | 2010-08-05 | Jfe Steel Corp | Steel with excellent anti-ductile crack generation characteristic in weld heat-affected zone and base material, and manufacturing method therefor |
US7824725B2 (en) | 2007-03-30 | 2010-11-02 | The Coca-Cola Company | Methods for extending the shelf life of partially solidified flowable compositions |
JP2011179122A (en) * | 2011-03-07 | 2011-09-15 | Jfe Steel Corp | Wear-resistant steel sheet excellent in low temperature toughness |
JP2012122111A (en) * | 2010-12-10 | 2012-06-28 | Jfe Steel Corp | Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht |
JP2013047392A (en) * | 2012-10-10 | 2013-03-07 | Jfe Steel Corp | Hot-rolled steel sheet excellent in surface quality and ductile crack propagation property and manufacturing method therefor |
CN103667893A (en) * | 2013-12-06 | 2014-03-26 | 武汉钢铁(集团)公司 | High-strength anti-delayed fracture steel with yield ratio of no more than 0.5 and production method thereof |
CN103774050A (en) * | 2012-10-25 | 2014-05-07 | 吴雪 | High-ductility steel with low yield ratio |
CN103773935A (en) * | 2012-10-25 | 2014-05-07 | 吴雪 | Process for rolling low yield ratio and high plasticity steel plate with thickness of 40 nm |
CN103774052A (en) * | 2012-10-25 | 2014-05-07 | 吴雪 | Method for preparing high-strength steel plate with thickness of 20 mm |
EP2130938A4 (en) * | 2007-03-27 | 2017-06-21 | Nippon Steel & Sumitomo Metal Corporation | High-strength hot rolled steel sheet being free from peeling and excelling in surface and burring properties and process for manufacturing the same |
WO2020111732A1 (en) * | 2018-11-29 | 2020-06-04 | 주식회사 포스코 | High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio, and method thereof |
JPWO2022045352A1 (en) * | 2020-08-31 | 2022-03-03 | ||
JPWO2022045350A1 (en) * | 2020-08-31 | 2022-03-03 | ||
WO2022045351A1 (en) * | 2020-08-31 | 2022-03-03 | 日本製鉄株式会社 | Steel sheet and method for manufacturing same |
-
1997
- 1997-04-28 JP JP11152997A patent/JPH10306316A/en not_active Withdrawn
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007092155A (en) * | 2005-09-30 | 2007-04-12 | Jfe Steel Kk | Wear resistant steel sheet having excellent low temperature toughness and its production method |
JP4735167B2 (en) * | 2005-09-30 | 2011-07-27 | Jfeスチール株式会社 | Method for producing wear-resistant steel sheet with excellent low-temperature toughness |
EP2130938A4 (en) * | 2007-03-27 | 2017-06-21 | Nippon Steel & Sumitomo Metal Corporation | High-strength hot rolled steel sheet being free from peeling and excelling in surface and burring properties and process for manufacturing the same |
US7824725B2 (en) | 2007-03-30 | 2010-11-02 | The Coca-Cola Company | Methods for extending the shelf life of partially solidified flowable compositions |
JP2008274323A (en) * | 2007-04-26 | 2008-11-13 | Jfe Steel Kk | Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristic and production method therefor |
JP2010168657A (en) * | 2008-12-26 | 2010-08-05 | Jfe Steel Corp | Steel with excellent anti-ductile crack generation characteristic in weld heat-affected zone and base material, and manufacturing method therefor |
JP2012122111A (en) * | 2010-12-10 | 2012-06-28 | Jfe Steel Corp | Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht |
JP2011179122A (en) * | 2011-03-07 | 2011-09-15 | Jfe Steel Corp | Wear-resistant steel sheet excellent in low temperature toughness |
JP2013047392A (en) * | 2012-10-10 | 2013-03-07 | Jfe Steel Corp | Hot-rolled steel sheet excellent in surface quality and ductile crack propagation property and manufacturing method therefor |
CN103774050A (en) * | 2012-10-25 | 2014-05-07 | 吴雪 | High-ductility steel with low yield ratio |
CN103773935A (en) * | 2012-10-25 | 2014-05-07 | 吴雪 | Process for rolling low yield ratio and high plasticity steel plate with thickness of 40 nm |
CN103774052A (en) * | 2012-10-25 | 2014-05-07 | 吴雪 | Method for preparing high-strength steel plate with thickness of 20 mm |
CN103667893A (en) * | 2013-12-06 | 2014-03-26 | 武汉钢铁(集团)公司 | High-strength anti-delayed fracture steel with yield ratio of no more than 0.5 and production method thereof |
CN103667893B (en) * | 2013-12-06 | 2015-09-16 | 武汉钢铁(集团)公司 | The high-strength steel with anti-delayed fracture of yield tensile ratio≤0.5 and production method |
WO2020111732A1 (en) * | 2018-11-29 | 2020-06-04 | 주식회사 포스코 | High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio, and method thereof |
RU2768842C1 (en) * | 2018-11-29 | 2022-03-24 | Поско | High-strength thick steel sheet for pipeline, having excellent low-temperature impact strength and ductility, as well as low ratio of yield strength to ultimate strength, and method of its production |
CN113166905A (en) * | 2018-11-29 | 2021-07-23 | Posco公司 | Steel for high-strength thick pipe line having excellent low-temperature toughness and elongation and low yield ratio, and method for producing same |
EP3889304A4 (en) * | 2018-11-29 | 2021-10-06 | Posco | High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio, and method thereof |
KR102119975B1 (en) * | 2018-11-29 | 2020-06-08 | 주식회사 포스코 | High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio |
CN113166905B (en) * | 2018-11-29 | 2023-03-24 | Posco公司 | Steel for high-strength thick pipe line having excellent low-temperature toughness and elongation and low yield ratio, and method for producing same |
JPWO2022045352A1 (en) * | 2020-08-31 | 2022-03-03 | ||
WO2022045352A1 (en) * | 2020-08-31 | 2022-03-03 | 日本製鉄株式会社 | Steel sheet and method for producing same |
JPWO2022045351A1 (en) * | 2020-08-31 | 2022-03-03 | ||
WO2022045350A1 (en) * | 2020-08-31 | 2022-03-03 | 日本製鉄株式会社 | Steel sheet and method for manufacturing same |
WO2022045351A1 (en) * | 2020-08-31 | 2022-03-03 | 日本製鉄株式会社 | Steel sheet and method for manufacturing same |
CN115362274A (en) * | 2020-08-31 | 2022-11-18 | 日本制铁株式会社 | Steel sheet and method for producing same |
CN115362276A (en) * | 2020-08-31 | 2022-11-18 | 日本制铁株式会社 | Steel sheet and method for producing same |
JPWO2022045350A1 (en) * | 2020-08-31 | 2022-03-03 | ||
CN115362276B (en) * | 2020-08-31 | 2023-11-03 | 日本制铁株式会社 | Steel sheet and method for producing same |
CN115362274B (en) * | 2020-08-31 | 2023-12-22 | 日本制铁株式会社 | Steel sheet and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4521258A (en) | Method of making wrought high tension steel having superior low temperature toughness | |
JP4071906B2 (en) | Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness | |
JP2007231312A (en) | High-tensile-strength steel and manufacturing method therefor | |
JP5741260B2 (en) | Cryogenic steel material excellent in CTOD characteristics after imparting strain and method for producing the same | |
JP7411072B2 (en) | High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same | |
JPH10306316A (en) | Production of low yield ratio high tensile-strength steel excellent in low temperature toughness | |
JP6682988B2 (en) | High-tensile steel plate with excellent ductility and method of manufacturing the same | |
JPH10168542A (en) | High strength steel excellent in low temperature toughness and fatigue strength and its production | |
JP4344073B2 (en) | High strength steel excellent in high temperature strength and method for producing the same | |
JP2008075107A (en) | Method for manufacturing high-strength/high-toughness steel | |
JP4210010B2 (en) | Manufacturing method of high toughness and high strength steel | |
JP3879440B2 (en) | Manufacturing method of high strength cold-rolled steel sheet | |
JP3383148B2 (en) | Manufacturing method of high strength steel with excellent toughness | |
JP3242303B2 (en) | High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same | |
JP3873540B2 (en) | Manufacturing method of high productivity and high strength rolled H-section steel | |
JP4926447B2 (en) | Manufacturing method of high strength steel with excellent weld crack resistance | |
JP5037204B2 (en) | Method for producing high-strength steel material having yield stress of 500 MPa or more and tensile strength of 570 MPa or more which is excellent in toughness of weld heat affected zone | |
JP2007191785A (en) | Method for manufacturing high-tensile steel material superior in weld cracking resistance | |
CN115572901B (en) | 630 MPa-grade high-tempering-stability low-carbon low-alloy steel plate and manufacturing method thereof | |
JP2017197807A (en) | Manufacturing method of thick steel sheet | |
JP2002363685A (en) | Low yield ratio high strength cold rolled steel sheet | |
JP4264296B2 (en) | Low yield ratio 570 MPa class high strength steel with excellent weld toughness and slitting characteristics and method for producing the same | |
WO2013084265A1 (en) | Steel for mechanical structures and manufacturing method therefor | |
JP7265008B2 (en) | Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method | |
JP4770415B2 (en) | High tensile steel plate excellent in weldability and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040706 |