JP4903493B2 - Method for producing composite particles - Google Patents
Method for producing composite particles Download PDFInfo
- Publication number
- JP4903493B2 JP4903493B2 JP2006151792A JP2006151792A JP4903493B2 JP 4903493 B2 JP4903493 B2 JP 4903493B2 JP 2006151792 A JP2006151792 A JP 2006151792A JP 2006151792 A JP2006151792 A JP 2006151792A JP 4903493 B2 JP4903493 B2 JP 4903493B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- inorganic fine
- fine particles
- silica
- calcium carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Silicon Compounds (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Paper (AREA)
Description
本発明は、新規な複合填料の製造方法に関する。 The present invention relates to a method for producing a novel composite filler.
近年、森林資源保護、省資源問題、ゴミ問題を含む環境負荷軽減の見地から紙の軽量化が必要とされている。紙の軽量化を目指す場合、特に印刷紙、包装紙等の分野では、白色度、不透明度、印刷適性を高めるために、各種の填料を内添して製造している。従来から填料内添による紙の白色度、不透明性の向上方法として、二酸化チタンのような屈折率の大きな填料を内添して散乱効率を上げる方法並びに白土、タルク、炭酸カルシウム、有機顔料等の屈折率1.5近辺の填料を内添して、パルプ繊維間の密着を抑制し散乱表面積を増加させる方法がとられている。 In recent years, there has been a need for lighter paper from the standpoint of environmental load reduction, including forest resource protection, resource saving problems, and garbage problems. When aiming to reduce the weight of paper, especially in the fields of printing paper and wrapping paper, various fillers are internally added to increase whiteness, opacity, and printability. Conventionally, as a method for improving the whiteness and opacity of paper by adding filler, a method of increasing scattering efficiency by internally adding a filler having a large refractive index such as titanium dioxide, white clay, talc, calcium carbonate, organic pigment, etc. A method has been adopted in which a filler having a refractive index of about 1.5 is internally added to suppress adhesion between pulp fibers and increase the scattering surface area.
また、これまでは紙の軽量化に対応するために、単に坪量を下げたり脱墨パルプの比率を上げるなどの方法が行われてきた。しかしながら、この方法では紙が薄くなり、白色度、不透明度が低下して裏抜けなどの印刷適性が悪くなる。不透明度と裏抜けは紙の厚さと密接な関係があり、これまではパルプを余分に使用したり嵩のでるパルプを使用することによって、嵩高い紙を製造してきた。 In the past, methods such as simply lowering the basis weight or increasing the deinked pulp ratio have been used in order to cope with lighter paper. However, with this method, the paper is thinned, and the whiteness and opacity are lowered, resulting in poor printability such as back-through. Opacity and strikethrough are closely related to the thickness of the paper, and so far, bulky paper has been produced by using extra pulp or using bulky pulp.
しかしながら、上記のような粒子径の小さい炭酸カルシウムなどの填料は抄紙時に大部分が白水中に流出し、紙層中への保持が非常に悪いという問題があった。またこのような小さな填料粒子はパルプ繊維間に分布することによって繊維間の結合を阻害し紙力を低下させてしまう欠点がある。 However, the filler such as calcium carbonate having a small particle diameter as described above has a problem that most of the filler flows out into the white water at the time of paper making and is very poorly retained in the paper layer. Further, such small filler particles are distributed between pulp fibers, so that the bonding between the fibers is hindered and the paper strength is lowered.
本発明の目的は、填料の歩留まりを向上し、かつ繊維間に分布する填料粒子によって繊維間結合が阻害されず、少量のパルプでも嵩を出すことができ、同時に白色度、不透明度を向上できる「軽くて厚い紙」を製造可能とする嵩高填料の製造方法および填料内添紙を提供することである。 The object of the present invention is to improve the yield of the filler, and the interfiber bonding is not hindered by the filler particles distributed between the fibers, and even a small amount of pulp can be bulked, and at the same time, the whiteness and opacity can be improved. The object is to provide a bulky filler manufacturing method and a filler-added paper capable of producing “light and thick paper”.
上記課題は、無機微粒子を珪酸アルカリ水溶液に添加・分散しスラリーを調製した後に加熱攪拌しながら、液温を60〜100℃の範囲に保持し酸を添加し、シリカゾルを生成させ、最終反応液のpHを中性〜弱アルカリ性の範囲に調整することにより、無機微粒子・シリカ複合粒子を製造し、パルプスラリーに填料として内添することにより解決された。 The above problem is that after adding and dispersing inorganic fine particles in an alkali silicate aqueous solution to prepare a slurry, while heating and stirring, the liquid temperature is maintained in the range of 60 to 100 ° C., and an acid is added to form a silica sol. This was solved by preparing inorganic fine particles / silica composite particles by adjusting the pH in the range of neutral to weakly alkaline and internally adding them as a filler to the pulp slurry.
本発明は、珪酸ナトリウム溶液に希硫酸などの酸を添加することにより生成する数nm程度のシリカゾル微粒子を無機微粒子の表面全体に薄く付着させ、シリカゾルの結晶成長に伴い、無機微粒子表面上のシリカゾル微粒子と別の無機微粒子表面上のシリカゾル微粒子間で結合が生じ、無機微粒子・シリカ複合粒子の凝集体が形成されることを特徴とするものである。 In the present invention, silica sol fine particles of about several nanometers formed by adding an acid such as dilute sulfuric acid to a sodium silicate solution are thinly attached to the entire surface of the inorganic fine particles. Bonding occurs between the fine particles and the silica sol fine particles on the surface of the other inorganic fine particles, and an aggregate of inorganic fine particles and silica composite particles is formed.
このために、最終反応液のpHは重要な因子でありpHは中性〜弱アルカリ性の範囲とし、反応系に水和珪酸(ホワイトカーボン)が生成しないようにpHをコントロールする必要がある。好ましいpHは8〜11の範囲である。pHが7未満の酸性条件になるまで硫酸を添加してしまうと、シリカゾルではなくホワイトカーボンが生成してしまい、ホワイトカーボンが無機微粒子の凝集体の周りを球状に取り囲んでしまうため、ホワイトカーボンの光学的特性が優先的に現れ、コアー内の無機微粒子の光学的特性が全く発揮されなくなってしまう。pHが11を超えた場合、シリカゾルの生成が不十分となり、本発明の無機微粒子・シリカ複合体の凝集体を得にくい。 For this reason, the pH of the final reaction solution is an important factor, and it is necessary to control the pH so that hydrated silicic acid (white carbon) is not generated in the reaction system, with the pH ranging from neutral to weakly alkaline. A preferred pH is in the range of 8-11. If sulfuric acid is added until the pH reaches an acidic condition of less than 7, white carbon is generated instead of silica sol, and the white carbon surrounds the aggregates of inorganic fine particles in a spherical shape. The optical characteristics appear preferentially, and the optical characteristics of the inorganic fine particles in the core are not exhibited at all. When the pH exceeds 11, the generation of silica sol becomes insufficient, and it is difficult to obtain an aggregate of the inorganic fine particles / silica composite of the present invention.
本発明で反応中に生成されるシリカゾルは、珪酸ナトリウム(水ガラス)を原料として、硫酸、塩酸、硝酸などの鉱酸の希釈液と高温下で反応させ、加水分解反応と珪酸の重合化により得られる粒子径10〜20nmのシリカゾル粒子である。 The silica sol produced during the reaction in the present invention is prepared by reacting sodium silicate (water glass) as a raw material with a dilute solution of mineral acid such as sulfuric acid, hydrochloric acid, nitric acid, etc. at a high temperature, and by hydrolysis reaction and polymerization of silicic acid. Silica sol particles having a particle diameter of 10 to 20 nm are obtained.
本発明で使用される珪酸アルカリ溶液は特に限定されないが、珪酸ナトリウム溶液(3号水ガラス)が入手性の点で望ましい。珪酸アルカリ溶液の濃度は水溶液中の珪酸分(SiO2換算)で3〜10重量%が好適である。10重量%を超えると形成される複合体は無機微粒子・シリカ複合凝集体ではなく、前記の無機微粒子がホワイトカーボンでカプセル化され、コアー内の無機微粒子の光学的特性が全く発揮されなくなってしまう。また、3重量%未満では複合粒子中のシリカ成分が低下するため、凝集体粒子が形成しにくくなってしまう。 The alkali silicate solution used in the present invention is not particularly limited, but a sodium silicate solution (No. 3 water glass) is desirable from the viewpoint of availability. The concentration of the alkali silicate solution is preferably 3 to 10% by weight in terms of the silicic acid content in the aqueous solution (in terms of SiO2). When the content exceeds 10% by weight, the formed composite is not an inorganic fine particle / silica composite aggregate, but the inorganic fine particles are encapsulated with white carbon, and the optical properties of the inorganic fine particles in the core are not exhibited at all. . On the other hand, when the content is less than 3% by weight, the silica component in the composite particles is lowered, so that aggregate particles are difficult to form.
本発明で使用される無機微粒子としては、製紙用填料である軽質炭酸カルシウム、重質炭酸カルシウム、タルク、カオリン、クレイ、焼成カオリン、二酸化チタン、水酸化アルミニウム等が挙げられる。粒径としては、形成される複合凝集体粒子の粒径を鑑み、0.05〜50ミクロンが望ましい。 Examples of the inorganic fine particles used in the present invention include light calcium carbonate, heavy calcium carbonate, talc, kaolin, clay, calcined kaolin, titanium dioxide, and aluminum hydroxide, which are fillers for papermaking. The particle size is preferably 0.05 to 50 microns in view of the particle size of the composite aggregate particles to be formed.
これらの無機微粒子は、珪酸ナトリウム溶液に分散剤としての機能があるため、予め珪酸ナトリウム溶液に分散した後に使用される。しかし、分散に際して粒子の分散性が良くない場合には、分散剤を添加した水に填料を分散してから、珪酸ナトリウム溶液を後添加しても良い。特に、二酸化チタンは粒径が小さく凝集し易いので、分散剤を使用した方が望ましい。分散剤としては、ヘキサメタリン酸ソーダ、ピロリン酸ソーダ、ポリカルボン酸ソーダ等が挙げられる。 Since these inorganic fine particles have a function as a dispersant in the sodium silicate solution, they are used after being previously dispersed in the sodium silicate solution. However, if the dispersibility of the particles is not good during dispersion, the sodium silicate solution may be added after the filler is dispersed in the water to which the dispersant has been added. In particular, since titanium dioxide has a small particle size and easily aggregates, it is desirable to use a dispersant. Examples of the dispersant include sodium hexametaphosphate, sodium pyrophosphate, and polycarboxylic acid soda.
上記の無機微粒子は、単独で使用しても良いが、二種以上の無機微粒子を併用することにより、機能性の高い複合填料を製造することもできる。 The above inorganic fine particles may be used alone, but a composite filler having high functionality can also be produced by using two or more kinds of inorganic fine particles in combination.
本発明で使用される酸としては希硫酸、希塩酸、希硝酸などの鉱酸の希釈液、酢酸、二酸化炭素等が挙げられるが、価格、ハンドリングの点で希硫酸が最も望ましい。さらに、希硫酸を使用する場合の添加時の濃度は、0.2 〜1.0モル濃度が望ましい。 Examples of the acid used in the present invention include dilute sulfuric acid, dilute hydrochloric acid, dilute nitric acid and other mineral acids, acetic acid, carbon dioxide, and the like, but dilute sulfuric acid is most desirable in terms of price and handling. Furthermore, the concentration when adding dilute sulfuric acid is preferably 0.2 to 1.0 molar.
本発明での無機微粒子・シリカ複合粒子の製造時の反応温度に関しては、60〜100℃の範囲が望ましい。反応温度はシリカゾルの生成、結晶成長速度及び形成された無機微粒子・シリカ複合凝集体粒子の力学的強度に影響を及ぼす。反応温度が60℃未満ではシリカゾルの生成・成長速度が遅く、形成された無機微粒子・シリカ複合凝集体粒子の結合強度が弱いため、填料内添紙の抄造時にかかるハイシェアーで凝集体が壊れ易い。100℃を超えると、水系反応であるためオートクレーブを使用しなければならないため反応工程が複雑になってしまう。最適反応温度は70〜90℃である。 Regarding the reaction temperature during the production of the inorganic fine particles / silica composite particles in the present invention, a range of 60 to 100 ° C. is desirable. The reaction temperature affects the formation of silica sol, the crystal growth rate, and the mechanical strength of the formed inorganic fine particles / silica composite aggregate particles. When the reaction temperature is less than 60 ° C, the formation and growth rate of silica sol is slow, and the bond strength of the formed inorganic fine particles and silica composite aggregate particles is weak. . If it exceeds 100 ° C, the reaction process becomes complicated because an autoclave must be used because it is an aqueous reaction. The optimum reaction temperature is 70-90 ° C.
また、無機微粒子・シリカ複合粒子を製造する場合、無機微粒子を珪酸アルカリ水溶液に添加、分散しスラリーを調製するが、このスラリー濃度は、3〜35重量%が望ましい。スラリー濃度を調整することにより、形成される無機微粒子・シリカ複合凝集体粒子の粒径がコントロールされると同時に無機微粒子とシリカの組成比率が決まる。 In addition, when producing inorganic fine particles / silica composite particles, inorganic fine particles are added to and dispersed in an aqueous alkali silicate solution to prepare a slurry. The slurry concentration is preferably 3 to 35% by weight. By adjusting the slurry concentration, the particle size of the formed inorganic fine particles / silica composite aggregate particles is controlled, and at the same time, the composition ratio of the inorganic fine particles and silica is determined.
さらに、無機微粒子・シリカ複合凝集体粒子の平均粒径を10〜60ミクロンの大粒径にすることにより、填料の歩留りを高めることが可能である。粒径コントロールの方法としては、次の三つの方法が挙げられる。(1)珪酸分として3.61%濃度の珪酸アルカリ水溶液に無機微粒子を添加して得られる填料スラリー濃度を3.2〜9.6重量%にする。(2)原料として粒子径の大きい2〜10ミクロンの無機微粒子を使用する。(3)無機微粒子・シリカ複合凝集体粒子のスラリーを風乾または加熱乾燥して得られる固体を乾式または湿式粉砕する。以上の方法で、10〜60ミクロンのサイズに粒径コントロールすることが可能である。 Furthermore, by making the average particle size of the inorganic fine particle / silica composite aggregate particles large particles of 10 to 60 microns, it is possible to increase the yield of the filler. The following three methods are mentioned as a method of particle size control. (1) The filler slurry concentration obtained by adding inorganic fine particles to a 3.61% concentration alkali silicate aqueous solution as the silicic acid content is set to 3.2 to 9.6% by weight. (2) Use inorganic fine particles having a large particle size of 2 to 10 microns as a raw material. (3) Dry or wet pulverize a solid obtained by air drying or heat drying a slurry of inorganic fine particles / silica composite aggregate particles. By the above method, it is possible to control the particle size to a size of 10 to 60 microns.
本発明では、無機微粒子を珪酸アルカリ水溶液に添加・分散しスラリーを調製した後に攪拌しながら、液温を60〜100℃の範囲に保持し酸を添加し、シリカゾルを生成させ、最終反応液のpHを中性〜弱アルカリ性、好ましくは8〜11の範囲に調整することにより無機微粒子・シリカ複合粒子を製造し、スラリーをろ過・水洗するとウェットケーキが得られる。 In the present invention, inorganic fine particles are added and dispersed in an aqueous alkali silicate solution to prepare a slurry, and while stirring, the liquid temperature is maintained in the range of 60 to 100 ° C., and an acid is added to form a silica sol. By adjusting the pH to neutral to weakly alkaline, preferably 8 to 11, inorganic fine particles / silica composite particles are produced, and the slurry is filtered and washed with water to obtain a wet cake.
このウェットケーキを再度、水に分散して填料スラリーとし、これを抄造時にパルプスラリーに内添して填料内添紙が得られる。この時に無機微粒子・シリカ複合粒子のウェットケーキを風乾または加熱乾燥処理で乾燥微粒子とした後、再度、乾式粉砕機または湿式粉砕機を使用して、粒径を調整した填料スラリーを抄造時にパルプスラリーに内添して填料内添紙を得ると、本発明の効果である嵩高性を飛躍的に高めることが可能である。湿式粉砕機としては、公知のホモミキサー、ホモジナイザー、サンドグラインダー等が挙げられる。 This wet cake is again dispersed in water to form a filler slurry, which is internally added to the pulp slurry at the time of papermaking to obtain a filler-added paper. At this time, the wet cake of inorganic fine particles / silica composite particles is made into fine dry particles by air drying or heat drying treatment, and then again using a dry pulverizer or wet pulverizer to adjust the particle size of the filler slurry during pulping. When the filler-added paper is obtained by internally adding to the above, it is possible to dramatically increase the bulkiness that is the effect of the present invention. Examples of the wet pulverizer include known homomixers, homogenizers, and sand grinders.
本発明では、本発明の効果を損ねない範囲で公知の填料としてクレー、シリカ、タルク、焼成カオリン、炭酸カルシウムなどの無機填料、あるいは塩化ビニル樹脂、ポリスチレン樹脂、尿素ホルマリン樹脂、メラミン系樹脂、スチレン/ブタジエン系共重合体系樹脂などの合成樹脂から製造される有機填料を併用することもできる。 In the present invention, clay, silica, talc, calcined kaolin, calcium carbonate and other inorganic fillers, or vinyl chloride resins, polystyrene resins, urea formalin resins, melamine resins, styrene, as known fillers within a range not impairing the effects of the present invention. / Organic fillers produced from synthetic resins such as butadiene copolymer resins can also be used in combination.
また、必要に応じて、ポリアクリルアミド系高分子、ポリビニルアルコール系高分子、カチオン化澱粉、尿素/ホルマリン樹脂、メラミン/ホルマリン樹脂などの紙力増強剤;アクリルアミド/アミノメチルアクリルアミドの共重合物の塩、カチオン化澱粉、ポリエチレンイミン、ポリエチレンオキサイド、アクリルアミド/アクリル酸ナトリウム共重合物などのろ水性あるいは歩留まり向上剤;硫酸アルミニウム(硫酸バンド)、耐水化剤、紫外線防止剤、退色防止剤などの助剤などを含有してもよい。 In addition, if necessary, a paper strength enhancer such as polyacrylamide polymer, polyvinyl alcohol polymer, cationized starch, urea / formalin resin, melamine / formalin resin; salt of acrylamide / aminomethylacrylamide copolymer , Cationized starch, polyethyleneimine, polyethylene oxide, acrylamide / sodium acrylate copolymer and other drainage or yield improvers; aluminum sulfate (sulfuric acid band), water-resistant agents, UV inhibitors, fading inhibitors, etc. Etc. may be contained.
以下、本発明を実施例及び比較例に従って詳細に説明するが、本発明はこれらに限定されるものではない。尚、説明中、パーセントは重量パーセントを示す。 EXAMPLES Hereinafter, although this invention is demonstrated in detail according to an Example and a comparative example, this invention is not limited to these. In the description, percentage indicates weight percentage.
実施例及び比較例で製造した中性上質紙について、嵩高性、白色度、不透明度、裂断長、填料歩留りを以下に示す方法にて測定した。
・嵩高性:坪量と紙厚から紙の密度を算出した。密度が低いほど嵩高性は高いことを示す。
・白色度の測定:白色度はJIS P 8123に基づきハンター白色度計で測定した。
・不透明度の測定:不透明度はJIS P 8138に基づき、ハンター反射率計を使用して測定した。
・填料の歩留り:予め作成しておいた、填料を配合していない手抄きシート(ブランク)及び填料を配合した手抄きシートより10×10cmの紙片10枚を切り取り、105℃×3時間乾燥させた後に絶乾重量を秤りとる。次に、この絶乾紙片を電気炉にて575℃×2時間焼くことによりシート中に含まれる灰分を求める。填料歩留り(%)は下記の式より算出した。
填料歩留り={(填料入りシート灰分重量/同絶乾重量-ブランク灰分重量/同絶乾重量)}/填料配合率×100・裂断長:JIS P 8113により次式で求めた。
裂断長=引張強さ/(試験片の幅×試験片の坪量)×1000・灰分:JIS P 8128に基づき灰化温度は575℃とした。
・複合粒子の比率:蛍光X線分析により複合粒子の成分比を測定した。
以上の測定結果にて総合品質評価を行った。評価は次の3段階とした。
◎:非常に良い、 ○:良い、 ×:劣る
The neutral high-quality paper produced in Examples and Comparative Examples was measured for bulkiness, whiteness, opacity, tear length, and filler yield by the following methods.
-Bulkiness: The density of the paper was calculated from the basis weight and the paper thickness. The lower the density, the higher the bulkiness.
Measurement of whiteness: Whiteness was measured with a Hunter whiteness meter based on JIS P 8123.
-Measurement of opacity: Opacity was measured using a hunter reflectometer based on JIS P 8138.
-Filler yield: Cut out 10x10cm pieces of paper from a hand-made sheet (blank) that has not been filled with filler and a hand-made sheet that has been filled with filler. 105 ° C x 3 hours After drying, weigh the absolute dry weight. Next, this absolutely dry paper piece is baked in an electric furnace at 575 ° C. for 2 hours to obtain ash contained in the sheet. Filler yield (%) was calculated from the following formula.
Yield of filler = {(weight of sheet ash with filler / absolute dry weight−weight of blank ash / absolute dry weight)} / filler blending ratio × 100 / breaking length: JIS P 8113 was obtained by the following formula.
Breaking length = tensile strength / (test piece width × test piece basis weight) × 1000 ash: Ashing temperature was 575 ° C. based on JIS P 8128.
-Ratio of composite particles: The component ratio of the composite particles was measured by fluorescent X-ray analysis.
Overall quality evaluation was performed based on the above measurement results. Evaluation was made in the following three stages.
◎: Very good, ○: Good, ×: Inferior
<合成例1>炭酸カルシウム(奥多摩工業製 TP-121)の粉体30gを珪酸ナトリウム水溶液(珪酸分として3.61%)312gに添加して、ホモミキサーを使用して回転数3000rpmで20分間、分散処理を行い炭酸カルシウムスラリーを調製した。次に、このスラリーを攪拌機、温度センサー、還流冷却器の付いた1Lの四口フラスコに入れ、攪拌しながら油浴にて75℃に昇温した。次に容器内のスラリーを75℃に保ちながら、0.36規定の硫酸276gをマイクロチューニングポンプを使用して、滴下速度1.53ml/分で3時間かけて滴下し炭酸カルシウム・シリカ複合凝集粒子を得た。この時の反応液のpHは10.3であった。さらに、No.2ろ紙を用いてろ過・水洗し再度ろ過することにより、炭酸カルシウム・シリカ複合凝集粒子のウェットケーキが得られた。粒度分布測定装置マスターサイザーS(マルバーン社製)を使用して、レーザー回折/散乱法により50%体積平均粒子径を測定したところ、平均粒径は8ミクロンであり、炭酸カルシウムとシリカの比率は70:30であった。 <Synthesis Example 1> 30 g of calcium carbonate powder (TP-121 manufactured by Okutama Kogyo Co., Ltd.) is added to 312 g of an aqueous sodium silicate solution (3.61% as silicic acid content), and dispersed for 20 minutes at 3000 rpm using a homomixer. Treatment was carried out to prepare a calcium carbonate slurry. Next, this slurry was put into a 1 L four-necked flask equipped with a stirrer, a temperature sensor, and a reflux condenser, and heated to 75 ° C. in an oil bath while stirring. Next, while maintaining the slurry in the container at 75 ° C., 276 g of 0.36 normal sulfuric acid was dropped over 3 hours at a dropping rate of 1.53 ml / min using a micro tuning pump to obtain calcium carbonate / silica composite aggregated particles. . The pH of the reaction solution at this time was 10.3. Furthermore, a wet cake of calcium carbonate / silica composite aggregated particles was obtained by filtering, washing with water using No. 2 filter paper, and filtering again. Using a particle size distribution analyzer Mastersizer S (Malvern), 50% volume average particle size was measured by laser diffraction / scattering method. The average particle size was 8 microns, and the ratio of calcium carbonate to silica was It was 70:30.
<合成例2>合成例1において、炭酸カルシウム(奥多摩工業製 TP-121)の粉体を70gに変更した以外は合成例1と同様にして炭酸カルシウム・シリカ複合凝集粒子を得た。この時の反応液のpHは10.2であった。得られた炭酸カルシウム・シリカ複合凝集粒子の平均粒径は5.4ミクロンであり、炭酸カルシウムとシリカの比率は86:14であった。 <Synthesis Example 2> Calcium carbonate / silica composite aggregated particles were obtained in the same manner as in Synthesis Example 1 except that the powder of calcium carbonate (TP-121 manufactured by Okutama Kogyo Co., Ltd.) was changed to 70 g. The pH of the reaction solution at this time was 10.2. The average particle diameter of the obtained calcium carbonate / silica composite agglomerated particles was 5.4 microns, and the ratio of calcium carbonate to silica was 86:14.
<合成例3>合成例1において、得られた炭酸カルシウム・シリカ複合凝集粒子を105℃、5時間で加熱乾燥を行った。次にこの乾燥粉体をサンドグラインダーで湿式粉砕を行い平均粒径が2.0ミクロンの炭酸カルシウム・シリカ複合凝集粒子が得られた。 <Synthesis Example 3> In Synthesis Example 1, the obtained calcium carbonate / silica composite aggregated particles were heat-dried at 105 ° C. for 5 hours. Next, this dry powder was wet-ground with a sand grinder to obtain calcium carbonate / silica composite aggregated particles having an average particle size of 2.0 microns.
<合成例4>炭酸カルシウム(奥多摩工業製 TP-121)の粉体18gと二酸化チタン(古河機械金属製 FA-50)12gを珪酸ナトリウム水溶液(珪酸分として3.61%)312gに添加して、ホモミキサーを使用して回転数3000rpmで20分間、分散処理を行い炭酸カルシウム、二酸化チタンの混合スラリーを調製した。次に、このスラリーを攪拌機、温度センサー、還流冷却器の付いた1Lの四口フラスコに入れ、攪拌しながら油浴にて75℃に昇温した。次に容器内のスラリーを75℃に保ちながら、0.36規定の硫酸276gをマイクロチューニングポンプを使用して、滴下速度1.53ml/分で3時間かけて滴下し炭酸カルシウム・二酸化チタン・シリカ複合凝集粒子を得た。この時の反応液のpHは10.1であった。さらに、No.2ろ紙を用いてろ過・水洗し再度ろ過することにより、炭酸カルシウム・二酸化チタン・シリカ複合凝集粒子のウェットケーキが得られた。平均粒径は4.9ミクロンであり、炭酸カルシウムと二酸化チタンとシリカの比率は52:34:14であった。 <Synthesis Example 4> 18 g of powder of calcium carbonate (TP-121 manufactured by Okutama Kogyo Co., Ltd.) and 12 g of titanium dioxide (FA-50 manufactured by Furukawa Machine Metal) are added to 312 g of sodium silicate aqueous solution (3.61% as silicic acid content). Using a mixer, dispersion treatment was performed at 3000 rpm for 20 minutes to prepare a mixed slurry of calcium carbonate and titanium dioxide. Next, this slurry was put into a 1 L four-necked flask equipped with a stirrer, a temperature sensor, and a reflux condenser, and heated to 75 ° C. in an oil bath while stirring. Next, while maintaining the slurry in the container at 75 ° C., 276 g of 0.36 normal sulfuric acid was dropped over 3 hours at a dropping rate of 1.53 ml / min using a micro-tuning pump, and calcium carbonate / titanium dioxide / silica composite aggregated particles Got. The pH of the reaction solution at this time was 10.1. Furthermore, a wet cake of calcium carbonate / titanium dioxide / silica composite aggregated particles was obtained by filtering, washing with water using No. 2 filter paper, and filtering again. The average particle size was 4.9 microns and the ratio of calcium carbonate, titanium dioxide and silica was 52:34:14.
<合成例5>カオリン(CADAM製 アマゾン88SD)の粉体30gを珪酸ナトリウム水溶液(珪酸分として3.61%)312gに添加して、ホモミキサーを使用して回転数3000rpmで20分間、分散処理を行いカオリンスラリーを調製した。次に、このスラリーを攪拌機、温度センサー、還流冷却器の付いた1Lの四口フラスコに入れ、攪拌しながら油浴にて75℃に昇温した。次に容器内のスラリーを75℃に保ちながら、0.36規定の硫酸276gをマイクロチューニングポンプを使用して、滴下速度1.53ml/分で3時間かけて滴下しカオリン・シリカ複合凝集粒子を得た。この時の反応液のpHは8.5であった。さらに、No.2ろ紙を用いてろ過・水洗し再度ろ過することにより、カオリン・シリカ複合凝集粒子のウェットケーキが得られた。平均粒径は12.7ミクロンであり、カオリンとシリカの比率は70:30であった。 <Synthesis Example 5> 30 g of kaolin (Amazon 88SD made by CADAM) powder is added to 312 g of an aqueous sodium silicate solution (3.61% as silicic acid content), and dispersed using a homomixer for 20 minutes at 3000 rpm. A kaolin slurry was prepared. Next, this slurry was put into a 1 L four-necked flask equipped with a stirrer, a temperature sensor, and a reflux condenser, and heated to 75 ° C. in an oil bath while stirring. Next, while maintaining the slurry in the container at 75 ° C., 276 g of 0.36 normal sulfuric acid was added dropwise over 3 hours at a dropping rate of 1.53 ml / min using a micro tuning pump to obtain kaolin-silica composite aggregated particles. The pH of the reaction solution at this time was 8.5. Furthermore, a wet cake of kaolin-silica composite aggregated particles was obtained by filtering, washing with water and filtering again using No. 2 filter paper. The average particle size was 12.7 microns and the ratio of kaolin to silica was 70:30.
<合成例6>合成例5において、得られたカオリン・シリカ複合凝集粒子を105℃、5時間で加熱乾燥を行った。次にこの乾燥粉体をサンドグラインダーで湿式粉砕を行い平均粒径が2.5ミクロンのカオリン・シリカ複合凝集粒子が得られた。 <Synthesis Example 6> In Synthesis Example 5, the obtained kaolin-silica composite aggregated particles were heat-dried at 105 ° C. for 5 hours. Next, the dry powder was wet pulverized with a sand grinder to obtain kaolin-silica composite aggregated particles having an average particle diameter of 2.5 microns.
<合成例7>合成例1において、炭酸カルシウムの粉体を20gに変更した以外は合成例1と同様にして炭酸カルシウム・シリカ複合凝集粒子を得た。この時の反応液のpHは10.2であった。得られた炭酸カルシウム・シリカ複合凝集粒子の平均粒径は10.0ミクロンであり、炭酸カルシウムとシリカの比率は65:35であった。 <Synthesis Example 7> Calcium carbonate / silica composite aggregated particles were obtained in the same manner as in Synthesis Example 1, except that the calcium carbonate powder was changed to 20 g in Synthesis Example 1. The pH of the reaction solution at this time was 10.2. The obtained calcium carbonate / silica composite agglomerated particles had an average particle diameter of 10.0 microns, and the ratio of calcium carbonate to silica was 65:35.
<合成例8>合成例1において、炭酸カルシウムの粉体を10gに変更した以外は合成例1と同様にして炭酸カルシウム・シリカ複合凝集粒子を得た。この時の反応液のpHは10.1であった。得られた炭酸カルシウム・シリカ複合凝集粒子の平均粒径は30.5ミクロンであり、炭酸カルシウムとシリカの比率は60:40であった。 <Synthesis Example 8> Calcium carbonate / silica composite aggregated particles were obtained in the same manner as in Synthesis Example 1 except that the calcium carbonate powder was changed to 10 g in Synthesis Example 1. The pH of the reaction solution at this time was 10.1. The obtained calcium carbonate / silica composite aggregated particles had an average particle diameter of 30.5 microns, and the ratio of calcium carbonate to silica was 60:40.
<合成例9>合成例5において、カオリンの粉体を20gに変更した以外は合成例5と同様にしてカオリン・シリカ複合凝集粒子を得た。この時の反応液のpHは9.8であった。得られたカオリン・シリカ複合凝集粒子の平均粒径は15.0ミクロンであり、カオリンとシリカの比率は70:30であった。 <Synthesis Example 9> Kaolin-silica composite aggregated particles were obtained in the same manner as in Synthesis Example 5, except that the powder of kaolin in Synthesis Example 5 was changed to 20 g. The pH of the reaction solution at this time was 9.8. The average particle diameter of the obtained kaolin-silica composite aggregated particles was 15.0 microns, and the ratio of kaolin to silica was 70:30.
<合成例10>合成例5において、カオリンの粉体を10gに変更した以外は合成例5と同様にしてカオリン・シリカ複合凝集粒子を得た。この時の反応液のpHは9.6であった。得られたカオリン・シリカ複合凝集粒子の平均粒径は35.5ミクロンであり、カオリンとシリカの比率は68:32であった。 <Synthesis Example 10> Kaolin-silica composite aggregated particles were obtained in the same manner as in Synthesis Example 5 except that the kaolin powder was changed to 10 g in Synthesis Example 5. At this time, the pH of the reaction solution was 9.6. The average particle diameter of the obtained kaolin-silica composite aggregated particles was 35.5 microns, and the ratio of kaolin to silica was 68:32.
<合成例11>炭酸カルシウム(奥多摩工業製 TP-121)の粉体30gを珪酸ナトリウム水溶液(珪酸分として3.61%)312gに添加して、ホモミキサーを使用して回転数3000rpmで20分間、分散処理を行い炭酸カルシウムスラリーを調製した。次に、このスラリーを攪拌機、温度センサー、還流冷却器の付いた1Lの四口フラスコに入れ、攪拌しながら油浴にて75℃に昇温した。次に容器内のスラリーを75℃に保ちながら、10重量%の濃度の硫酸180gをマイクロチューニングポンプを使用して、滴下速度1.0ml/分で3時間かけて滴下し炭酸カルシウム・シリカ複合粒子を得た。この時の反応液のpHは5.7であった。さらに、No.2ろ紙を用いてろ過・水洗し再度ろ過することにより、炭酸カルシウム・シリカ複合粒子のウェットケーキが得られた。平均粒子径は9ミクロンであり、炭酸カルシウムとシリカの比率は25:75であり、シリカの比率の方が炭酸カルシウムより高かった。複合粒子を電子顕微鏡で観察したところ、粒子は球状であり炭酸カルシウムはホワイトカーボンで完全に覆われていた。 <Synthesis Example 11> 30 g of calcium carbonate powder (TP-121 manufactured by Okutama Kogyo Co., Ltd.) was added to 312 g of an aqueous sodium silicate solution (3.61% as silicic acid content), and dispersed for 20 minutes at 3000 rpm using a homomixer. Treatment was carried out to prepare a calcium carbonate slurry. Next, this slurry was put into a 1 L four-necked flask equipped with a stirrer, a temperature sensor, and a reflux condenser, and heated to 75 ° C. in an oil bath while stirring. Next, while maintaining the slurry in the container at 75 ° C., 180 g of sulfuric acid having a concentration of 10% by weight was dropped over 3 hours at a dropping rate of 1.0 ml / min using a micro tuning pump to obtain calcium carbonate / silica composite particles. Obtained. The pH of the reaction solution at this time was 5.7. Furthermore, a wet cake of calcium carbonate / silica composite particles was obtained by filtering, washing with water and filtering again using No. 2 filter paper. The average particle size was 9 microns, the ratio of calcium carbonate to silica was 25:75, and the silica ratio was higher than calcium carbonate. When the composite particles were observed with an electron microscope, the particles were spherical and the calcium carbonate was completely covered with white carbon.
<合成例12>カオリン(CADAM製 アマゾン88SD)の粉体30gを珪酸ナトリウム水溶液(珪酸分として3.61%)312gに添加して、ホモミキサーを使用して回転数3000rpmで20分間、分散処理を行いカオリンスラリーを調製した。次に、このスラリーを攪拌機、温度センサー、還流冷却器の付いた1Lの四口フラスコに入れ、攪拌しながら油浴にて75℃に昇温した。次に容器内のスラリーを75℃に保ちながら、10重量%の濃度の硫酸180gをマイクロチューニングポンプを使用して、滴下速度1.0ml/分で3時間かけて滴下しカオリン・シリカ複合粒子を得た。この時の反応液のpHは6.5であった。さらに、No.2ろ紙を用いてろ過・水洗し再度ろ過することにより、カオリン・シリカ複合粒子のウェットケーキが得られた。平均粒子径は9.5ミクロンであり、カオリンとシリカの比率は20:80であり、シリカの比率の方がカオリンより高かった。複合粒子を電子顕微鏡で観察したところ、粒子は球状でありカオリンはホワイトカーボンで完全に覆われていた。 <Synthesis Example 12> 30 g of kaolin (Amazon 88SD made by CADAM) powder is added to 312 g of an aqueous solution of sodium silicate (3.61% as silicic acid), and dispersed using a homomixer at a rotational speed of 3000 rpm for 20 minutes. A kaolin slurry was prepared. Next, this slurry was put into a 1 L four-necked flask equipped with a stirrer, a temperature sensor, and a reflux condenser, and heated to 75 ° C. in an oil bath while stirring. Next, while maintaining the slurry in the container at 75 ° C., 180 g of sulfuric acid with a concentration of 10% by weight is dropped over 3 hours at a dropping rate of 1.0 ml / min using a micro tuning pump to obtain kaolin-silica composite particles. It was. The pH of the reaction solution at this time was 6.5. Furthermore, a wet cake of kaolin-silica composite particles was obtained by filtering, washing with water using No. 2 filter paper, and filtering again. The average particle size was 9.5 microns, the ratio of kaolin to silica was 20:80, and the silica ratio was higher than kaolin. When the composite particles were observed with an electron microscope, the particles were spherical and kaolin was completely covered with white carbon.
[実施例1]広葉樹晒パルプ(LBKP CSF407ml)のスラリー(濃度 1.00%)に、合成例1の複合凝集体粒子スラリーをパルプ絶乾重量当り10%となるように添加し、1分間攪拌後、硫酸バンドを絶乾重量当り1%添加した。さらに、1分間攪拌後、歩留向上剤として、カチオンPAM(ハイモロック DR-1500)をパルプと填料の合計絶乾重量当り100ppm 添加攪拌し、pHが8.0〜8.5になるように硫酸バンドを微量添加した。この調成したパルプスラリーを用いて、角型手抄機で目標坪量が64g/m2、紙中灰分が10重量%となるように抄造し、プレスにより脱水後、送風乾燥機(50℃、1時間)にて乾燥しシートサンプルを作製した。このシートの密度、白色度、不透明度、裂断長を測定し表1に示した。 [Example 1] To a slurry (concentration: 1.00%) of hardwood bleached pulp (LBKP CSF407ml), the composite aggregate particle slurry of Synthesis Example 1 was added to 10% per pulp dry weight, stirred for 1 minute, A 1% sulfuric acid band was added per dry weight. Furthermore, after stirring for 1 minute, as a yield improver, cationic PAM (Himoloc DR-1500) was added and stirred at 100 ppm per total dry weight of pulp and filler, and a small amount of sulfuric acid band was added so that the pH was 8.0 to 8.5. did. Using this prepared pulp slurry, a square hand machine was used to make a paper with a target basis weight of 64 g / m 2 and an ash content of 10% by weight. ) For 1 hour) to prepare a sheet sample. The density, whiteness, opacity and tear length of this sheet were measured and shown in Table 1.
[実施例2]実施例1において、合成例2の複合凝集粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。 [Example 2] A sheet was prepared under the same conditions as in Example 1 except that the composite aggregated particles of Synthesis Example 2 were used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[実施例3]実施例1において、合成例3の複合凝集粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。 [Example 3] A sheet was prepared under the same conditions as in Example 1 except that the composite aggregated particles of Synthesis Example 3 were used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[実施例4]実施例1において、合成例4の複合凝集粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。 [Example 4] A sheet was prepared under the same conditions as in Example 1 except that the composite aggregated particles of Synthesis Example 4 were used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[比較例1]実施例1において、炭酸カルシウム(奥多摩工業製 TP-121)の粉体を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。 [Comparative Example 1] A sheet was prepared under the same conditions as in Example 1, except that calcium carbonate (TP-121 manufactured by Okutama Kogyo) was used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[比較例2]実施例1において、合成例11の複合粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。 [Comparative Example 2] A sheet was prepared under the same conditions as in Example 1 except that the composite particles of Synthesis Example 11 were used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[実施例5]実施例1において、合成例5の複合凝集粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。 [Example 5] A sheet was prepared under the same conditions as in Example 1 except that the composite aggregated particles of Synthesis Example 5 were used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[実施例6]実施例1において、合成例6の複合凝集粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。 [Example 6] A sheet was prepared under the same conditions as in Example 1 except that the composite aggregated particles of Synthesis Example 6 were used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[比較例3]実施例1において、カオリン(CADAM製 アマゾン88SD)を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。 [Comparative Example 3] A sheet was prepared under the same conditions as in Example 1 except that kaolin (Amazon 88SD manufactured by CADAM) was used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[比較例4]実施例1において、合成例12の複合粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。 [Comparative Example 4] A sheet was prepared under the same conditions as in Example 1 except that the composite particles of Synthesis Example 12 were used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
以上の実施例1〜6および比較例1〜4の物性測定評価結果を表1に示した。 The physical property measurement evaluation results of Examples 1 to 6 and Comparative Examples 1 to 4 are shown in Table 1.
[実施例7]広葉樹晒パルプ(LBKP CSF407ml)のスラリー(濃度 1.00%)に、合成例7の複合凝集体粒子スラリーをパルプ絶乾重量当り10%となるように添加し、1分間攪拌後、硫酸バンドを絶乾重量当り1%添加した。さらに、1分間攪拌後、歩留向上剤として、カチオンPAM(ハイモロック DR-1500)をパルプと填料の合計絶乾重量当り100ppm 添加攪拌し、pHが8.0〜8.5になるように硫酸バンドを微量添加した。この調成したパルプスラリーを用いて、角型手抄機で目標坪量が64g/m2、紙中灰分が10重量%となるように抄造し、プレスにより脱水後、送風乾燥機(50℃、1時間)にて乾燥しシートサンプルを作製した。このシートの密度、白色度、不透明度、裂断長、填料歩留りを測定し表2に示した。 [Example 7] To a slurry of hardwood bleached pulp (LBKP CSF407 ml) (concentration 1.00%), the composite aggregate particle slurry of Synthesis Example 7 was added to 10% per pulp dry weight, and stirred for 1 minute. A 1% sulfuric acid band was added per dry weight. Furthermore, after stirring for 1 minute, as a yield improver, cationic PAM (Himoloc DR-1500) was added and stirred at 100 ppm per total dry weight of pulp and filler, and a small amount of sulfuric acid band was added so that the pH was 8.0 to 8.5. did. Using this prepared pulp slurry, a square hand machine was used to make a paper with a target basis weight of 64 g / m 2 and an ash content of 10% by weight. ) For 1 hour) to prepare a sheet sample. The density, whiteness, opacity, tear length, and filler yield of this sheet were measured and shown in Table 2.
[実施例8]実施例7において、合成例8の複合凝集粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例7と同様に物性を測定評価し、結果を表2に示した。 [Example 8] A sheet was prepared under the same conditions as in Example 7 except that the composite aggregated particles of Synthesis Example 8 were used. The physical properties were measured and evaluated in the same manner as in Example 7 with the sheet obtained, and the results are shown in Table 2.
[実施例9]実施例7において、合成例9の複合凝集粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例7と同様に物性を測定評価し、結果を表2に示した。 [Example 9] A sheet was prepared under the same conditions as in Example 7 except that the composite aggregated particles of Synthesis Example 9 were used. The physical properties were measured and evaluated in the same manner as in Example 7 with the sheet obtained, and the results are shown in Table 2.
[実施例10]実施例7において、合成例10の複合凝集粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例7と同様に物性を測定評価し、結果を表2に示した。 [Example 10] A sheet was prepared under the same conditions as in Example 7 except that the composite aggregated particles of Synthesis Example 10 were used. The physical properties were measured and evaluated in the same manner as in Example 7 with the sheet obtained, and the results are shown in Table 2.
以上の実施例7〜10および比較例1,2の物性測定評価結果を表2に示した。 The physical property measurement evaluation results of Examples 7 to 10 and Comparative Examples 1 and 2 are shown in Table 2.
表1に示すように、実施例1及び実施例2の炭酸カルシウムを原料として製造した炭酸カルシウム・シリカ複合粒子では、比較例1の炭酸カルシウムのみの場合に比較して、紙の密度が4〜6%低下しており嵩高性が認められた。さらに、白色度は0.8〜1.0ホ゜イント、不透明度は0.7〜0.8ポイント上昇しており、裂断長も27%高くなり填料内添による紙力の低下が少なかった。 As shown in Table 1, in the calcium carbonate / silica composite particles produced using the calcium carbonate of Example 1 and Example 2 as a raw material, the density of the paper is 4 to 4 in comparison with the case of only the calcium carbonate of Comparative Example 1. It was 6% lower and bulkiness was recognized. Further, the whiteness increased by 0.8 to 1.0 point, the opacity increased by 0.7 to 0.8 points, the breaking length increased by 27%, and the decrease in paper strength due to the addition of filler was small.
実施例3の加熱乾燥した炭酸カルシウム・シリカ複合粒子をサンドグラインダーで粉砕したものでは、紙の密度が10%低下しており極めて高い嵩高性が認められた。さらに、白色度は1.6ポイント、不透明度は1.3ポイント上昇しており、裂断長も47%高くなり紙力の低下が極めて少なかった。 When the heat-dried calcium carbonate / silica composite particles of Example 3 were pulverized with a sand grinder, the density of the paper was reduced by 10%, and extremely high bulkiness was observed. Furthermore, the whiteness increased by 1.6 points, the opacity increased by 1.3 points, the tear length increased by 47%, and the paper strength decreased very little.
実施例4の炭酸カルシウム・二酸化チタン・シリカ複合粒子では、紙の密度が6%低下しており高い嵩高性が認められた。さらに、二酸化チタンが複合化されているため、白色度、不透明度共に2.5ポイント上昇しており、裂断長も47%高くなり紙力の低下が極めて少なかった。 In the calcium carbonate / titanium dioxide / silica composite particles of Example 4, the paper density was reduced by 6%, and high bulkiness was recognized. Furthermore, since titanium dioxide was compounded, both whiteness and opacity increased by 2.5 points, the tear length increased by 47%, and the paper strength decreased very little.
また、比較例2の最終反応液のpHを5.7の酸性領域にしたものでは、炭酸カルシウムとシリカの比率が25:75で、シリカの比率の方が炭酸カルシウムより高く、炭酸カルシウムがホワイトカーボンで完全に覆われた球状体であるため、嵩高性がなく、白色度は0.4ポイント、不透明度は1.4ポイント低下した。裂断長は殆ど変化が無い。 In addition, in the case where the pH of the final reaction solution of Comparative Example 2 is in the acidic region of 5.7, the ratio of calcium carbonate to silica is 25:75, the ratio of silica is higher than calcium carbonate, and the calcium carbonate is white carbon. Since it was a completely covered sphere, it was not bulky, and whiteness decreased by 0.4 points and opacity decreased by 1.4 points. The tear length is almost unchanged.
実施例5のカオリンを原料として製造したカオリン・シリカ複合粒子では、比較例3のカオリンのみの場合に比較して、紙の密度が8%低下しており高い嵩高性が認められた。さらに、白色度は1.2ポイント、不透明度は1.9ポイント上昇しており、裂断長も40%高くなり紙力の低下が少なかった。 In the kaolin-silica composite particles produced using the kaolin of Example 5 as a raw material, the paper density was reduced by 8% compared to the case of only the kaolin of Comparative Example 3, and high bulkiness was recognized. Furthermore, the whiteness increased by 1.2 points, the opacity increased by 1.9 points, the tearing length increased by 40%, and the paper strength decreased little.
実施例6の加熱乾燥したカオリン・シリカ複合粒子をサンドグラインダーで粉砕したものでは、比較例3のカオリンのみの場合に比較して、紙の密度が12%低下しており高い嵩高性が認められた。さらに、白色度は1.5ポイント、不透明度は2.4ポイント上昇しており、裂断長も47%高くなり紙力の低下が少なかった。 When the heat-dried kaolin-silica composite particles of Example 6 were pulverized with a sand grinder, the paper density was reduced by 12% as compared with the case of only the kaolin of Comparative Example 3, and high bulkiness was observed. It was. Furthermore, the whiteness increased by 1.5 points, the opacity increased by 2.4 points, the tear length increased by 47%, and the paper strength decreased little.
また、比較例4の最終反応液のpHを6.5の酸性領域にしたものでは、カオリンとシリカの比率が20:80であり、シリカの比率の方がカオリンより高く、カオリンがホワイトカーボンで完全に覆われた球状体であるため、嵩高性がなく、白色度は0.2ポイント、不透明度は 1.0ポイント低下した。裂断長は殆ど変化が無い。 Further, in the case where the pH of the final reaction solution of Comparative Example 4 is in the acidic region of 6.5, the ratio of kaolin to silica is 20:80, the ratio of silica is higher than kaolin, and kaolin is completely white carbon. Since it was a covered sphere, it was not bulky and the whiteness decreased by 0.2 points and the opacity decreased by 1.0 points. The tear length is almost unchanged.
表2に示すように、実施例7〜10の複合粒子の粒径を10ミクロン以上にすると、嵩高性、白色度、不透明度が高く、紙力の低下も少なく、填料歩留りが43〜47%で非常に高かった。
[発明の効果]
As shown in Table 2, when the particle size of the composite particles of Examples 7 to 10 is 10 microns or more, the bulkiness, whiteness and opacity are high, the decrease in paper strength is small, and the filler yield is 43 to 47%. It was very expensive.
[Effect of the invention]
無機微粒子を珪酸アルカリ水溶液に添加・分散しスラリーを調製した後に加熱攪拌しながら、液温を60〜100℃の範囲に保持し酸を添加し、シリカゾルを生成させ、最終反応液のpHを中性〜弱アルカリ性の範囲に調整することにより形成される無機微粒子・シリカ複合粒子を紙に内添することにより以下の特性を備えた填料内添紙が得られた。
1)軽くて厚い嵩高性の高い紙が得られる2)白色度、不透明度などの光学特性が優れている3)嵩高でありながら紙力(裂断長、引裂強度)が優れている4)填料の歩留りが高い。
After adding and dispersing inorganic fine particles in an alkali silicate aqueous solution to prepare a slurry, while heating and stirring, the liquid temperature is kept in the range of 60 to 100 ° C., and an acid is added to form a silica sol. By adding the inorganic fine particles / silica composite particles formed by adjusting to the range of low to low alkalinity to the paper, a filler-added paper having the following characteristics was obtained.
1) Light and thick paper with high bulkiness can be obtained 2) Optical properties such as whiteness and opacity are excellent 3) Paper strength (breaking length, tear strength) is excellent while being bulky 4) High yield of filler.
Claims (3)
を含む、無機微粒子・シリカ複合粒子の凝集体の製造方法であって、
該凝集体が、前記シリカゾルを無機微粒子の表面全体に薄く付着させ、シリカゾルの結晶成長に伴い、無機微粒子表面上のシリカゾル微粒子と別の無機微粒子表面上のシリカゾル微粒子間で結合を生じさせることにより形成され、レーザー回折/散乱光により測定した前記凝集体の50%体積平均粒子径が10〜60ミクロンである、上記方法。 After adding inorganic fine particles to the alkali silicate aqueous solution and dispersed to prepare a slurry, stirring under heat, and the liquid temperature kept in the range of 60 to 100 [° C. to produce a silica sol by the addition of sulfuric acid, pH of the final reaction mixture To a range of 8-11 ,
A method for producing an aggregate of inorganic fine particles and silica composite particles , comprising:
The aggregates are, the silica sol Le thinly adhered to the entire surface of the inorganic fine particles, with the crystal growth of the silica sol, that allow binding to occur between the silica sol particles in the silica sol particles and other inorganic fine particle surface on the surface of the inorganic fine particles is formed by a 50% volume average particle diameter of the aggregates was measured by a laser diffraction / scattering light is 10 to 60 microns, the method described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006151792A JP4903493B2 (en) | 2006-05-31 | 2006-05-31 | Method for producing composite particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006151792A JP4903493B2 (en) | 2006-05-31 | 2006-05-31 | Method for producing composite particles |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001232086A Division JP3898007B2 (en) | 2001-07-31 | 2001-07-31 | Method for producing bulky paper with internal filler added with filler, which is an aggregate of inorganic particles and silica composite particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006307229A JP2006307229A (en) | 2006-11-09 |
JP4903493B2 true JP4903493B2 (en) | 2012-03-28 |
Family
ID=37474447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006151792A Expired - Fee Related JP4903493B2 (en) | 2006-05-31 | 2006-05-31 | Method for producing composite particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4903493B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5230135B2 (en) * | 2007-08-06 | 2013-07-10 | 株式会社トクヤマ | Calcium carbonate-silica composite material and method for producing the same |
JP5268611B2 (en) * | 2008-12-10 | 2013-08-21 | 株式会社トクヤマ | Method for producing calcium carbonate-silica composite |
JP5632199B2 (en) * | 2010-06-01 | 2014-11-26 | 大王製紙株式会社 | Method for producing silica composite particles |
US9481797B2 (en) * | 2011-08-09 | 2016-11-01 | Cristal Usa Inc. | Pigment for paper and paper laminate |
TWI812835B (en) * | 2019-01-30 | 2023-08-21 | 德商夸茲沃克公司 | Sequestering of crystalline silicon dioxide |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5910705B2 (en) * | 1979-04-17 | 1984-03-10 | 東邦顔料工業株式会社 | Method for producing stable inorganic pigment composition |
JPH09286609A (en) * | 1996-04-25 | 1997-11-04 | Oji Paper Co Ltd | Production of blended particles of titania and silica |
JPH1081507A (en) * | 1996-09-05 | 1998-03-31 | Mizusawa Ind Chem Ltd | Magnetic substance-amorphous silica composite particle and its production |
JP4063421B2 (en) * | 1997-09-30 | 2008-03-19 | Agcエスアイテック株式会社 | Silica-metal oxide fine particle composite and method for producing silica aggregate particles used therefor |
JP3982027B2 (en) * | 1997-10-06 | 2007-09-26 | 王子製紙株式会社 | Method for producing composite particles |
JPH11302011A (en) * | 1998-04-22 | 1999-11-02 | Dokai Kagaku Kogyo Kk | Amorphous nonporous silica fine particle and composition with metal oxide |
-
2006
- 2006-05-31 JP JP2006151792A patent/JP4903493B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006307229A (en) | 2006-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3898007B2 (en) | Method for producing bulky paper with internal filler added with filler, which is an aggregate of inorganic particles and silica composite particles | |
JP4903493B2 (en) | Method for producing composite particles | |
FI120318B (en) | Silicon containing starch composites, process for making them and use in making paper and paperboard | |
US6726807B1 (en) | Multi-phase calcium silicate hydrates, methods for their preparation, and improved paper and pigment products produced therewith | |
JP2003212539A (en) | Novel composite for paper making and method for producing the same | |
JP3982027B2 (en) | Method for producing composite particles | |
JP4796282B2 (en) | Low density printing paper | |
CA2577549C (en) | Paper manufacturing using agglomerated hollow particle latex | |
JP4540660B2 (en) | Book paper and manufacturing method thereof | |
CA2382869C (en) | Multi-phase calcium silicate hydrates, methods for their preparation, and improved paper and pigment products produced therewith | |
JP2007091581A (en) | Porous filler, its production method and paper | |
JP4225929B2 (en) | Light calcium carbonate-silica composite | |
JP5840943B2 (en) | Method for producing composite particles | |
JP5702590B2 (en) | Composite particles, composite particle internal paper and coated paper | |
JPH09156919A (en) | Complex particle of titania and silica and its production | |
GB2234990A (en) | Fibrous sheet material | |
JP2013108195A (en) | Coated paper | |
JP2960002B2 (en) | Manufacturing method of filler-filled paper | |
JP4514660B2 (en) | Electrophotographic transfer paper | |
JP4742963B2 (en) | Porous filler and production method thereof, porous filler slurry and paper | |
JP5222865B2 (en) | Book paper and manufacturing method thereof | |
JP6189026B2 (en) | Printing paper | |
EP1642873A1 (en) | Method for producing paper comprising multi-phase calcium silicate hydrates | |
JP4339392B2 (en) | Novel composite for papermaking and method for synthesis | |
JP6018410B2 (en) | Coated paper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110331 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110517 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110817 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111207 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120105 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150113 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |