JP2007091581A - Porous filler, its production method and paper - Google Patents
Porous filler, its production method and paper Download PDFInfo
- Publication number
- JP2007091581A JP2007091581A JP2006233932A JP2006233932A JP2007091581A JP 2007091581 A JP2007091581 A JP 2007091581A JP 2006233932 A JP2006233932 A JP 2006233932A JP 2006233932 A JP2006233932 A JP 2006233932A JP 2007091581 A JP2007091581 A JP 2007091581A
- Authority
- JP
- Japan
- Prior art keywords
- porous filler
- alkali
- paper
- silicon
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Silicon Compounds (AREA)
- Paper (AREA)
Abstract
Description
本発明は、紙の嵩高化に用いられる多孔性填料ならびにその製造方法に関する。また、多孔性填料が配合された紙に関する。 The present invention relates to a porous filler used for increasing the bulk of paper and a method for producing the same. The present invention also relates to a paper containing a porous filler.
紙は省資源や物流費の削減といった観点、環境保護運動の高まりといった社会的要求等から軽量化が望まれている。しかし、紙を軽量化すると紙厚が減少し、不透明度が下がって裏側の印刷が透けてしまうため、読みにくくなるだけでなく紙の高級感も損なわれるという問題があった。そのため、紙の厚さを維持した上での軽量化、すなわち嵩高化が要求されている。 Paper is desired to be reduced in weight from the viewpoints of resource saving and logistics cost reduction, and social demands such as an increasing environmental protection movement. However, when the paper is lightened, the paper thickness is reduced, the opacity is lowered, and the printing on the back side is transparent. Thus, there is a problem that not only it is difficult to read but also the high quality of the paper is impaired. Therefore, it is required to reduce the weight while maintaining the thickness of the paper, that is, to increase the bulk.
紙の嵩高化方法としては、例えば、紙の主原料である木材パルプを適宜選択する方法、パルプを叩解、マーセル化処理や酵素処理する方法、抄紙時にかかるウェットプレス圧または平滑化処理の圧力を緩和する方法、界面活性剤などの嵩高剤をパルプに添加する方法などが知られている。
しかしながら、これらの方法では、紙を充分に嵩高にできない上に、嵩高剤を用いた場合には抄紙時に発泡するという問題があった。
Examples of methods for increasing the bulk of the paper include, for example, a method of appropriately selecting wood pulp, which is the main raw material of paper, a method of beating pulp, a mercerization treatment or an enzyme treatment, and a wet press pressure or a smoothing treatment pressure applied during papermaking. A method of relaxing, a method of adding a bulking agent such as a surfactant to the pulp, and the like are known.
However, in these methods, there is a problem that the paper cannot be made sufficiently bulky, and when a bulking agent is used, foaming occurs during paper making.
そこで、嵩比重が小さい填料を添加する方法が提案されている。例えば、針状、柱状、イガグリ状炭酸カルシウム等のアスペクト比の高い填料を配合する方法(特許文献1参照)、中空の合成有機物カプセルを配合する方法(特許文献2参照)、無定形シリカや無定形シリケート、ゼオライト等の多孔性填料を配合する方法(特許文献3参照)などが提案されている。
しかしながら、針状、柱状、イガグリ状炭酸カルシウム等の様にアスペクト比の高い填料は粒子径が大きくなるほど嵩比重は小さくなるが、このような填料を紙に配合した場合には、抄紙時のシェアや、ロールニップなどの機械的な負荷により凝集構造が破壊されてしまい、充分な嵩高化効果が得られないのが実情である。
また、中空プラスチックピグメントなどの中空粒子は優れた嵩高化効果を示すものの、高価であることから汎用性のある印刷用紙への適用は難しい。
Therefore, a method of adding a filler having a small bulk specific gravity has been proposed. For example, a method of blending a filler having a high aspect ratio such as needle-like, columnar, or squirrel-like calcium carbonate (see Patent Document 1), a method of blending a hollow synthetic organic capsule (see Patent Document 2), amorphous silica or A method of blending a porous filler such as regular silicate and zeolite (see Patent Document 3) has been proposed.
However, fillers with a high aspect ratio, such as needle-like, columnar, and tiger-like calcium carbonate, have a lower bulk specific gravity as the particle size increases. However, when such fillers are added to paper, the share at the time of papermaking is reduced. In fact, the aggregate structure is destroyed by a mechanical load such as a roll nip, and a sufficient bulking effect cannot be obtained.
In addition, hollow particles such as hollow plastic pigments have an excellent bulking effect, but are expensive and difficult to apply to versatile printing paper.
多孔性填料は、紙の嵩高化効果に優れる上に、印刷時のインキ成分を吸収する能力が他の填料よりも優れているが、炭酸カルシウムやタルクに比べて紙の不透明性を高める能力が低かった。また、粒子径が大きく、かつ、粒度分布がブロードであるため、表面強度が乏しく、粗大粒子に起因する印刷時のパイリングや粉落ちといった問題が生じると共に、微細粒子に起因する繊維間結合強度(内部結合強度)の低下といった問題が生じた。
そこで、紙の不透明性を高める方法として、二酸化チタンなどの高屈折率の填料を配合することが提案されている。二酸化チタンは粒子径が0.2〜0.3μmと微小であり、歩留が低くなるため、特許文献4では、二酸化チタンと炭酸カルシウムやホワイトカーボンなどとを複合化した複合粒子が提案されている。また、特許文献5には、二酸化ケイ素またはケイ酸塩と軽質炭酸カルシウムとからなり、二酸化ケイ素またはケイ酸塩より軽質炭酸カルシウムが多い複合粒子が提案されている。特許文献6には、二酸化ケイ素またはケイ酸塩と軽質炭酸カルシウムとからなり、ケイ酸と軽質炭酸カルシウムとの重量割合が特定された複合粒子が提案されている。
また、粗大粒子を除去する方法としては、振動スクリーン等を用いた分級処理や、反応終了後のスラリーを湿式粉砕する方法(特許文献7参照)が提案されている。
また、多孔性填料の製造工程中に徹底的に粉砕処理を施すことで、粗大粒子を減らして平均粒子径を小さくしつつ、1μm以下の微細粒子の生成を少なくする方法が開示されている(特許文献8参照)。
Therefore, as a method for increasing the opacity of paper, it has been proposed to blend a high refractive index filler such as titanium dioxide. Titanium dioxide has a particle size as small as 0.2 to 0.3 μm and has a low yield. Therefore, Patent Document 4 proposes composite particles in which titanium dioxide is combined with calcium carbonate, white carbon, or the like. Yes. Patent Document 5 proposes composite particles composed of silicon dioxide or silicate and light calcium carbonate, and containing light calcium carbonate more than silicon dioxide or silicate. Patent Document 6 proposes composite particles composed of silicon dioxide or silicate and light calcium carbonate, in which the weight ratio of silicic acid and light calcium carbonate is specified.
Further, as a method for removing coarse particles, a classification process using a vibrating screen or a method of wet pulverizing the slurry after the reaction has been proposed (see Patent Document 7).
In addition, a method of reducing the generation of fine particles of 1 μm or less while reducing the average particle size by reducing coarse particles by thoroughly pulverizing during the manufacturing process of the porous filler is disclosed ( (See Patent Document 8).
しかしながら、特許文献4に記載の複合粒子では、二酸化チタンが他の填料に比べて高価であるため、汎用性の高い印刷用紙ではコスト面から二酸化チタンの使用量に限界があり、白紙の不透明性を十分に確保できなかった。特許文献5,6に記載の複合粒子は、紙の嵩高化を目的とした填料であるにもかかわらず、紙の嵩高化効果が不充分であった。
また、分級処理では、粗大粒子を除去できるものの、無駄が多くなった。また、特許文献7に記載の湿式粉砕では、粉砕処理によって微細粒子が増加するため、得られた多孔性填料を紙に配合した場合に内部結合強度を確保できなかった。しかも、粉砕によって凝集構造が破壊され、多孔性填料の嵩高性が低下した。
特許文献8に記載の方法によれば、嵩高化効果を保持したまま粗大粒子を少なくできるが、湿式粉砕ほどではないにしても、製造工程中の徹底的な粉砕処理により、微細粒子量が増加した。そのため、紙に配合した際の繊維間結合(内部結合強度)が低下した上に、多孔性填料を含む液の粘性が増加した。
本発明は、紙に配合した際の嵩高化効果が高い上に、白紙の不透明性を高くでき、しかも適切な平均粒子径および狭い粒度分布を有し、紙の表面強度および内部結合強度を高くできる多孔性填料とその製造方法を提供することを目的とする。また、嵩高であり、不透明性、表面強度および内部結合強度が高い紙を提供することを目的とする。
However, in the composite particles described in Patent Document 4, since titanium dioxide is more expensive than other fillers, the amount of titanium dioxide used is limited in terms of cost in printing paper with high versatility, and the opaqueness of white paper Could not be secured sufficiently. Although the composite particles described in Patent Documents 5 and 6 are fillers for the purpose of increasing the bulk of the paper, the effect of increasing the bulk of the paper is insufficient.
In the classification process, although coarse particles can be removed, waste is increased. Further, in the wet pulverization described in Patent Document 7, since fine particles are increased by the pulverization treatment, the internal bond strength cannot be ensured when the obtained porous filler is blended with paper. Moreover, the aggregated structure was destroyed by pulverization, and the bulkiness of the porous filler was reduced.
According to the method described in Patent Document 8, coarse particles can be reduced while maintaining the bulking effect, but the amount of fine particles is increased by thorough pulverization during the manufacturing process, even if not as much as wet pulverization. did. For this reason, the fiber-to-fiber bond (internal bond strength) when blended with paper was lowered, and the viscosity of the liquid containing the porous filler was increased.
The present invention has a high bulking effect when blended with paper, can increase the opacity of white paper, has an appropriate average particle size and narrow particle size distribution, and has high surface strength and internal bond strength of paper. An object of the present invention is to provide a porous filler that can be produced and a method for producing the same. Another object of the present invention is to provide a paper which is bulky and has high opacity, surface strength and internal bond strength.
本発明の多孔性填料は、二酸化ケイ素および/またはケイ酸塩から形成されたケイ素含有粒子と、該ケイ素含有粒子100質量部に対して0.1〜24質量部の耐アルカリ性微小粒子とを含有することを特徴とする。
本発明の多孔性填料においては、耐アルカリ性微小粒子の平均粒子径が0.2〜10μmであることが好ましい。
本発明の多孔性填料の製造方法は、ケイ酸アルカリ水溶液中に耐アルカリ性微小粒子を添加した後、鉱酸溶液および/または鉱酸の金属塩溶液を添加し、中和してケイ素含有粒子を析出させる多孔性填料の製造方法であって、
耐アルカリ性微小粒子の添加量が、ケイ素含有粒子100質量部に対して0.5〜30質量部であることを特徴とする。
本発明の多孔性填料の製造方法においては、耐アルカリ性微小粒子の平均粒子径が0.2〜10μmであることが好ましい。
本発明の多孔性填料の製造方法においては、鉱酸溶液および/または鉱酸の金属塩溶液を2段以上で添加することが好ましい。
その場合には、1段目の鉱酸溶液および/または鉱酸の金属塩溶液の添加では、ケイ酸アルカリ水溶液の温度を20〜60℃とし、2段目以降では70℃以上とすることが好ましい。
本発明の紙は、上述した多孔性填料を含有することを特徴とする。
The porous filler of the present invention contains silicon-containing particles formed from silicon dioxide and / or silicate, and 0.1 to 24 parts by mass of alkali-resistant microparticles with respect to 100 parts by mass of the silicon-containing particles. It is characterized by doing.
In the porous filler of this invention, it is preferable that the average particle diameter of an alkali-resistant microparticle is 0.2-10 micrometers.
In the method for producing a porous filler of the present invention, after adding alkali-resistant microparticles to an aqueous alkali silicate solution, a mineral acid solution and / or a metal salt solution of a mineral acid is added and neutralized to obtain silicon-containing particles. A method for producing a porous filler to be deposited,
The addition amount of the alkali-resistant fine particles is 0.5 to 30 parts by mass with respect to 100 parts by mass of the silicon-containing particles.
In the manufacturing method of the porous filler of this invention, it is preferable that the average particle diameter of an alkali-resistant microparticle is 0.2-10 micrometers.
In the method for producing a porous filler of the present invention, it is preferable to add a mineral acid solution and / or a metal salt solution of a mineral acid in two or more stages.
In that case, in the addition of the first stage mineral acid solution and / or the metal salt solution of the mineral acid, the temperature of the alkali silicate aqueous solution may be 20 to 60 ° C., and the second and subsequent stages may be 70 ° C. or higher. preferable.
The paper of the present invention is characterized by containing the porous filler described above.
本発明の多孔性填料は、紙に配合した際の嵩高化効果が高い上に、白紙の不透明性を高くでき、しかも適切な平均粒子径および狭い粒度分布を有し、紙の表面強度および内部結合強度を高くできる。
本発明の多孔性填料の製造方法によれば、紙に配合した際の嵩高化効果が高い上に、白紙の不透明性を高くでき、しかも適切な平均粒子径および狭い粒度分布を有し、紙の表面強度および内部結合強度を高くできる多孔性填料を製造できる。
また、本発明の紙は、嵩高であり、不透明性、表面強度および内部結合強度が高い。
The porous filler of the present invention has a high bulking effect when blended with paper, and can increase the opacity of white paper, and has an appropriate average particle size and narrow particle size distribution, and has a surface strength and internal strength of the paper. Bond strength can be increased.
According to the method for producing a porous filler of the present invention, the bulking effect when blended with paper is high, the opacity of white paper can be increased, and the paper has an appropriate average particle size and narrow particle size distribution, It is possible to produce a porous filler that can increase the surface strength and internal bond strength.
The paper of the present invention is bulky and has high opacity, surface strength and internal bond strength.
(多孔性填料)
本発明の多孔性填料は、二酸化ケイ素および/またはケイ酸塩から形成されたケイ素含有粒子と、耐アルカリ性微小粒子とを含有するものである。
ここで、ケイ素含有粒子を形成するケイ酸塩とは、一般式xM2O・ySiO2、xMO・ySiO2、xM2O3・ySiO2で表される化合物であって、MがAl,Fe,Ca,Mg,Na,K,Ti,Znのいずれかのものである(x,yは任意の正の数値である。)。
(Porous filler)
The porous filler of the present invention contains silicon-containing particles formed from silicon dioxide and / or silicate and alkali-resistant fine particles.
Here, the silicate forming the silicon-containing particles is a compound represented by the general formula xM 2 O · ySiO 2 , xMO · ySiO 2 , xM 2 O 3 · ySiO 2 , wherein M is Al, Fe , Ca, Mg, Na, K, Ti, Zn (x and y are arbitrary positive numerical values).
耐アルカリ性微小粒子としては、例えば、カオリン、焼成カオリン、炭酸カルシウム、硫酸バリウム、二酸化チタン、タルク、アルミナ、炭酸マグネシウム、酸化マグネシウム、水酸化マグネシウムなどが挙げられる。これらの中でも、コスト的にも優位であることから、炭酸カルシウム、カオリン、タルクが好ましい。 Examples of the alkali-resistant fine particles include kaolin, calcined kaolin, calcium carbonate, barium sulfate, titanium dioxide, talc, alumina, magnesium carbonate, magnesium oxide, and magnesium hydroxide. Among these, calcium carbonate, kaolin, and talc are preferable because of cost advantage.
耐アルカリ性微小粒子の含有量は、ケイ素含有粒子100質量部に対して0.1〜24質量部であり、好ましい下限は1.0質量部である。耐アルカリ性微小粒子の含有量が前記範囲であることにより、紙の嵩高化に適したものであって、適切な平均粒子径および狭い粒度分布を有する多孔性填料が得られる。耐アルカリ性微小粒子の含有量が0.1質量部未満であると、適切な平均粒子径および狭い粒度分布が得られず、24質量部を超えると、多孔性填料の紙の嵩高化効果が不充分になる。
なお、耐アルカリ性微小粒子の含有量は、多孔性填料の粉末サンプルを錠剤化した後、蛍光X線分析装置を用いて各元素の酸化物量として測定することにより求められる。
The content of the alkali-resistant fine particles is 0.1 to 24 parts by mass with respect to 100 parts by mass of the silicon-containing particles, and a preferable lower limit is 1.0 part by mass. When the content of the alkali-resistant fine particles is within the above range, a porous filler having an appropriate average particle diameter and a narrow particle size distribution can be obtained which is suitable for increasing the bulk of the paper. If the content of the alkali-resistant microparticles is less than 0.1 parts by mass, an appropriate average particle diameter and a narrow particle size distribution cannot be obtained. If the content exceeds 24 parts by mass, the effect of increasing the bulk of the paper of the porous filler is ineffective. It will be enough.
The content of the alkali-resistant fine particles is obtained by tableting a powder sample of the porous filler and then measuring the amount of oxide of each element using a fluorescent X-ray analyzer.
耐アルカリ性微小粒子の平均粒子径は0.2〜10μmであることが好ましい。平均粒子径が0.2μm未満まで小さくするとコストがかかり、10μmを超えると、粒径分布を狭くする効果が低下し、印刷時のパイリングや粉落ちといった問題が生じることがある。
耐アルカリ性微小粒子の平均粒子径は、サンドグラインダ等の粉砕設備を用いることにより調整できる。その際、ポリアクリル酸塩、ポリカルボン酸塩、ヘキサメタリン酸塩、ピロリン酸塩などの分散剤を用いることができる。
The average particle diameter of the alkali-resistant fine particles is preferably 0.2 to 10 μm. If the average particle size is reduced to less than 0.2 μm, the cost is increased. If the average particle size is more than 10 μm, the effect of narrowing the particle size distribution is reduced, and problems such as piling and powder falling during printing may occur.
The average particle diameter of the alkali-resistant fine particles can be adjusted by using a grinding equipment such as a sand grinder. At that time, a dispersant such as polyacrylate, polycarboxylate, hexametaphosphate, pyrophosphate can be used.
本発明の多孔性填料は平均粒子径が10〜25μmであることが好ましい。多孔性填料の平均粒子径が10μm未満であると、紙に配合した際の内部結合強度の低下が大きく、印刷時に紙粉が生じたり、ブリスターが発生したりすることがある。また、多孔性填料の平均粒子径が25μmを超える場合には、粗大粒子が増加するため、紙に配合した場合に紙の平滑性が低下する上に、紙面に存在する粗大粒子の脱落に起因してパイリングといった印刷トラブルが生じることがある。なお、本発明における平均粒子径とは、SALD2000J((株)島津製作所製)を用いて、レーザー回折法により測定し、体積積算で50%となる値のことである。
また、多孔性填料の粒度分布としては、25%および75%体積積算値での粒子径と平均粒子径の差分が平均粒子径の±35%の範囲内になる分布であることが好ましい。このような粒度分布であれば、粗大粒子および微細粒子が共により少なくなり、分布がより狭くなるため、紙に配合した際に、より優れた表面強度および内部結合強度が得られる。
The porous filler of the present invention preferably has an average particle size of 10 to 25 μm. When the average particle size of the porous filler is less than 10 μm, the internal bond strength is greatly reduced when blended with paper, and paper dust or blisters may be generated during printing. In addition, when the average particle diameter of the porous filler exceeds 25 μm, the coarse particles increase. Therefore, when blended with paper, the smoothness of the paper is lowered, and the coarse particles present on the paper surface fall off. As a result, printing troubles such as piling may occur. In addition, the average particle diameter in the present invention is a value that is measured by a laser diffraction method using SALD2000J (manufactured by Shimadzu Corporation) and is 50% in volume integration.
The particle size distribution of the porous filler is preferably a distribution in which the difference between the particle diameter and the average particle diameter at 25% and 75% volume integrated values is within a range of ± 35% of the average particle diameter. With such a particle size distribution, both coarse particles and fine particles are reduced, and the distribution becomes narrower. Therefore, when blended in paper, better surface strength and internal bond strength can be obtained.
本発明の多孔性填料は、細孔体積が2.0〜5.0mL/gであることが好ましい。
多孔性填料の細孔体積が2.0mL/g未満であると、紙に配合しても充分に嵩高化できないことがあり、5.0mL/gを超えると、多孔性填料製造の際のスラリー粘度が上昇したり、紙に配合した際の乾燥性を低下させたりすることがある。ここで、細孔体積は、ポアサイザ9230((株)島津製作所製)を用いて、水銀圧入法により測定し、細孔直径0.01〜10μmで積算した際の値である。
The porous filler of the present invention preferably has a pore volume of 2.0 to 5.0 mL / g.
If the pore volume of the porous filler is less than 2.0 mL / g, it may not be sufficiently bulky even if blended with paper. If it exceeds 5.0 mL / g, the slurry during the production of the porous filler Viscosity may increase or drying properties may decrease when blended into paper. Here, the pore volume is a value when measured by a mercury intrusion method using a pore sizer 9230 (manufactured by Shimadzu Corporation) and integrated with a pore diameter of 0.01 to 10 μm.
また、多孔性填料の比表面積は50〜200m2/gであることが好ましい。多孔性填料の比表面積が50m2/g未満であると、紙の嵩高化効果が不足することがあり、200m2/gを超えると、紙の不透明性向上効果が不足することがある。比表面積は水銀圧入法で測定した値であって、細孔形状が幾何学的な円筒であると仮定した全細孔の表面積で、測定範囲における圧力と圧入された水銀量の関係から求めた値である。 Moreover, it is preferable that the specific surface area of a porous filler is 50-200 m < 2 > / g. If the specific surface area of the porous filler is less than 50 m 2 / g, the effect of increasing the paper bulk may be insufficient, and if it exceeds 200 m 2 / g, the effect of improving the opacity of the paper may be insufficient. The specific surface area is a value measured by the mercury intrusion method, and is the surface area of all pores assuming that the pore shape is a geometric cylinder, and was obtained from the relationship between the pressure in the measurement range and the amount of mercury injected. Value.
上記多孔性填料は、ケイ素含有粒子とケイ素含有粒子より少ない特定量の耐アルカリ性微小粒子とを含有しているため、適切な平均粒子径となっている上に、粗大粒子と微細粒子とが共に少ない狭い粒度分布を有する。また、この多孔性填料を紙に配合した際には、嵩高化効果が高く、しかも白紙の不透明性、表面強度および内部結合強度を高くできる。 Since the porous filler contains silicon-containing particles and a specific amount of alkali-resistant microparticles smaller than silicon-containing particles, it has an appropriate average particle size, and both coarse particles and fine particles are Has a small narrow particle size distribution. Further, when this porous filler is added to paper, the effect of increasing the bulk is high, and the opacity, surface strength and internal bond strength of the white paper can be increased.
(多孔性填料の製造方法)
本発明の多孔性填料の製造方法について説明する。
本発明の多孔性填料の製造方法は、ケイ酸アルカリ水溶液中に耐アルカリ性微小粒子を添加した後、鉱酸溶液および/または鉱酸の金属塩溶液を添加し、ケイ酸アルカリ水溶液を中和してケイ素含有粒子を析出させる方法である。
ここで、ケイ酸アルカリ水溶液としては特に制限されないが、ケイ酸ナトリウム水溶液またはケイ酸カリウム水溶液が好ましい。ケイ酸アルカリ水溶液の濃度は、多孔性填料が効率的に製造できることから、3〜15%であることが好ましく、ケイ酸アルカリ水溶液がケイ酸ナトリウム水溶液の場合には、SiO2/Na2Oモル比が2.0〜3.4であることが好ましい。
(Method for producing porous filler)
The manufacturing method of the porous filler of this invention is demonstrated.
In the method for producing a porous filler of the present invention, after adding alkali-resistant microparticles to an alkali silicate aqueous solution, a mineral acid solution and / or a metal salt solution of a mineral acid is added to neutralize the alkali silicate aqueous solution. This is a method for precipitating silicon-containing particles.
Here, the alkali silicate aqueous solution is not particularly limited, but a sodium silicate aqueous solution or a potassium silicate aqueous solution is preferable. The concentration of the alkali silicate aqueous solution is preferably 3 to 15% because the porous filler can be produced efficiently. When the alkali silicate aqueous solution is a sodium silicate aqueous solution, the SiO 2 / Na 2 O mole The ratio is preferably 2.0 to 3.4.
耐アルカリ性微小粒子の添加量は、生成するケイ素含有粒子100質量部に対して0.5〜30質量部、好ましくは1〜25質量部である。耐アルカリ性微小粒子の添加量が前記範囲であることにより、耐アルカリ性微小粒子含有量が0.1〜24質量部の多孔性填料を容易に製造できる。したがって、紙の嵩高化に適したものであって、適切な平均粒子径および狭い粒度分布を有する多孔性填料が得られる。この理由については定かではないが、ケイ素含有粒子を析出する際に耐アルカリ性微小粒子が存在することにより、耐アルカリ性微小粒子を包含しながらケイ素含有粒子の析出が進むものと思われる。そして、耐アルカリ性微小粒子を包含するケイ素含有粒子は粒子径が小さくなる上に、析出時の攪拌によって狭い粒度分布を形成するものと考えられる。なお、耐アルカリ性微小粒子の添加量が0.5質量部未満であると、析出時にケイ素含有粒子の核として充分に機能せず、24質量部を超えるとケイ素含有粒子の嵩高性が損なわれる。 The addition amount of the alkali-resistant fine particles is 0.5 to 30 parts by mass, preferably 1 to 25 parts by mass with respect to 100 parts by mass of the silicon-containing particles to be generated. When the addition amount of the alkali-resistant fine particles is within the above range, a porous filler having an alkali-resistant fine particle content of 0.1 to 24 parts by mass can be easily produced. Therefore, a porous filler suitable for increasing the bulk of the paper and having an appropriate average particle diameter and narrow particle size distribution can be obtained. Although the reason for this is not clear, it is considered that the precipitation of silicon-containing particles proceeds while including alkali-resistant microparticles due to the presence of alkali-resistant microparticles when silicon-containing particles are deposited. The silicon-containing particles including alkali-resistant fine particles are considered to have a small particle size and form a narrow particle size distribution by stirring during precipitation. When the addition amount of the alkali-resistant microparticles is less than 0.5 parts by mass, it does not function sufficiently as the core of the silicon-containing particles during precipitation, and when it exceeds 24 parts by mass, the bulkiness of the silicon-containing particles is impaired.
耐アルカリ性微小粒子のケイ酸アルカリ水溶液への添加は、ケイ酸アルカリ水溶液を攪拌しながら、その中に耐アルカリ性微小粒子を添加することが好ましいが、耐アルカリ性微小粒子の水性スラリーに、ケイ酸アルカリ水溶液を添加しても差しつかえない。
また、耐アルカリ性微小粒子は、鉱酸溶液および/または鉱酸の金属塩溶液の添加前に全部を一括してケイ酸アルカリ水溶液中に添加してもよいし、複数に分けて添加してもよい。
The alkali-resistant microparticles are preferably added to the alkali silicate aqueous solution while the alkali silicate aqueous solution is stirred while the alkali-resistant microparticles are added to the aqueous solution of the alkali-resistant microparticles. An aqueous solution can be added.
In addition, the alkali-resistant fine particles may be added all at once to the alkali silicate aqueous solution before the addition of the mineral acid solution and / or the metal salt solution of the mineral acid, or may be added in multiple portions. Good.
本発明で用いる鉱酸溶液および/または鉱酸の金属塩溶液において、鉱酸としては、例えば、塩酸、硫酸、硝酸などが挙げられ、鉱酸の金属塩としては、前記鉱酸のナトリウム塩、カリウム塩、カルシウム塩、アルミニウム塩などが挙げられる。これらの中でも、価格、ハンドリングの点で、硫酸、硫酸アルミニウムが好ましく、また、水溶液であることが好ましい。 In the mineral acid solution and / or the metal salt solution of the mineral acid used in the present invention, examples of the mineral acid include hydrochloric acid, sulfuric acid, nitric acid and the like, and the metal salt of the mineral acid includes a sodium salt of the mineral acid, A potassium salt, a calcium salt, an aluminum salt, etc. are mentioned. Among these, sulfuric acid and aluminum sulfate are preferable from the viewpoint of cost and handling, and an aqueous solution is preferable.
鉱酸溶液および/または鉱酸の金属塩溶液の添加量は、理論必要中和量の95〜100%の範囲であり、得られるスラリーのpHを6.5超10以下の範囲に調整する量であることが好ましい。鉱酸溶液および/または鉱酸の金属塩溶液の添加量が理論必要中和量の95%未満あるいは得られるスラリーのpHが10を超える量である場合には、原料であるケイ酸アルカリ水溶液の無駄が多くなる。一方、理論必要中和量の100%超あるいは得られるスラリーのpHが6.5以下になる量である場合には、耐アルカリ性微小粒子が鉱酸溶液および/または鉱酸の金属塩溶液に溶解して多孔性填料の収率が低下することがある。また、耐アルカリ性微小粒子が鉱酸溶液および/または鉱酸の金属塩溶液に溶解した場合には、スラリーから分離して得たろ液を再利用しにくくなる。 The addition amount of the mineral acid solution and / or the metal salt solution of the mineral acid is in the range of 95 to 100% of the theoretically required neutralization amount, and the amount for adjusting the pH of the resulting slurry to be in the range of more than 6.5 and 10 or less It is preferable that When the addition amount of the mineral acid solution and / or the metal salt solution of the mineral acid is less than 95% of the theoretically required neutralization amount or the pH of the resulting slurry exceeds 10, the alkaline silicate aqueous solution as the raw material There is a lot of waste. On the other hand, when the neutralization amount exceeds 100% of the theoretically necessary neutralization amount or the pH of the resulting slurry is 6.5 or less, the alkali-resistant fine particles are dissolved in the mineral acid solution and / or the metal salt solution of the mineral acid. As a result, the yield of the porous filler may decrease. In addition, when the alkali-resistant fine particles are dissolved in the mineral acid solution and / or the metal salt solution of the mineral acid, it is difficult to reuse the filtrate obtained by separating from the slurry.
ケイ素含有粒子の析出時には、攪拌装置により、周速として5〜15m/秒で攪拌することが好ましい。ここで、周速は剪断力の指標となり、周速が速ければ剪断力が大きくなる。周速が5m/秒未満である場合は、剪断力が小さすぎて、耐アルカリ性微小粒子を包含させても、適切な平均粒子径および狭い粒度分布を得ることが困難になることがある。
一方、析出時の周速が15m/秒を超える場合には、剪断力が大きくなりすぎて、多孔性填料の粒子径が小さくなり、紙に配合した際に内部結合強度が低くなることがある上に、負荷電力の増加、設備費の高額化を招く。
攪拌装置としては、アジテータ、ホモミキサ、パイプラインミキサなどの装置が好ましい。なお、ボールミルやサンドグラインダ等の粉砕機を用いることも可能ではあるが、微細粒子の増加やスラリーの増粘といった問題が生じる傾向があるため好ましくない。
At the time of precipitation of the silicon-containing particles, it is preferable to stir at a speed of 5 to 15 m / sec with a stirring device. Here, the peripheral speed is an index of the shearing force, and the shearing force increases as the peripheral speed increases. When the peripheral speed is less than 5 m / sec, the shear force is too small, and it may be difficult to obtain an appropriate average particle size and narrow particle size distribution even if alkali-resistant fine particles are included.
On the other hand, when the peripheral speed at the time of precipitation exceeds 15 m / sec, the shearing force becomes too large, the particle size of the porous filler becomes small, and the internal bond strength may be lowered when blended in paper. In addition, the load power increases and the equipment costs increase.
As the stirring device, an agitator, a homomixer, a pipeline mixer or the like is preferable. Although it is possible to use a pulverizer such as a ball mill or a sand grinder, it is not preferable because problems such as an increase in fine particles and a thickening of the slurry tend to occur.
鉱酸溶液および/または鉱酸の金属塩溶液は1段で一括してケイ酸アルカリ水溶液中に添加してもよいが、より良好な粒径分布になることから、2段以上に分割して添加することが好ましい。
鉱酸溶液および/または鉱酸の金属塩溶液を2段以上で添加する場合には、特に良好な粒度分布になることから、1段目のケイ酸アルカリ水溶液の温度を20〜60℃にし、2段目以降では70℃以上にすることが好ましい。また、1段目では、鉱酸溶液および/または鉱酸の金属塩溶液の添加量を理論必要中和量の10〜50%の範囲にすることが好ましい。
The mineral acid solution and / or the metal salt solution of the mineral acid may be added to the alkali silicate aqueous solution all at once, but since it has a better particle size distribution, it is divided into two or more stages. It is preferable to add.
When adding a mineral acid solution and / or a metal salt solution of a mineral acid in two or more stages, since the particle size distribution is particularly good, the temperature of the first stage alkali silicate aqueous solution is set to 20 to 60 ° C., It is preferable to set it to 70 degreeC or more after the 2nd step | paragraph. In the first stage, it is preferable that the addition amount of the mineral acid solution and / or the metal salt solution of the mineral acid is in the range of 10 to 50% of the theoretically required neutralization amount.
1段目および2段目以降共に、鉱酸溶液および/または鉱酸の金属塩溶液の添加は、ケイ酸アルカリ水溶液に一括してまたは連続的に添加することができる。
鉱酸溶液および/または鉱酸の金属塩溶液の添加が終了した後には、必要に応じて、添加時の温度を維持したまま攪拌する熟成工程を有してもよい。
In both the first and second stages, the mineral acid solution and / or the metal salt solution of the mineral acid can be added all at once or continuously to the alkali silicate aqueous solution.
After completion of the addition of the mineral acid solution and / or the metal salt solution of the mineral acid, an aging step of stirring while maintaining the temperature at the time of addition may be included as necessary.
鉱酸溶液および/または鉱酸の金属塩溶液を1段で添加する場合には、ケイ酸アルカリ水溶液の温度を60℃〜当該溶液の沸点にすることが好ましく、75℃〜当該溶液の沸点にすることがより好ましい。鉱酸溶液および/または鉱酸の金属塩溶液の添加は、ケイ酸アルカリ水溶液に一括してまたは連続的に添加することができる。 When adding the mineral acid solution and / or the metal salt solution of the mineral acid in one stage, the temperature of the alkali silicate aqueous solution is preferably 60 ° C. to the boiling point of the solution, and 75 ° C. to the boiling point of the solution. More preferably. The mineral acid solution and / or the metal salt solution of the mineral acid can be added to the alkali silicate aqueous solution all at once or continuously.
本発明の製造方法では、得られた多孔性填料のスラリーの粘性を低く維持して安定化させるために、硫酸ナトリウムなどの電解質物質を適宜添加してもよい。 In the production method of the present invention, an electrolyte substance such as sodium sulfate may be appropriately added in order to maintain and stabilize the viscosity of the obtained porous filler slurry.
上述したような、ケイ酸ナトリウム水溶液に特定量の耐アルカリ性微小粒子を添加した上で、鉱酸溶液および/または鉱酸の金属塩溶液を添加する本発明の多孔性填料の製造方法では、耐アルカリ性微小粒子を包含しながらケイ素含有粒子を析出させることができる。このようにして得られた多孔性填料は、適切な平均粒子径となる上に、粗大粒子と微細粒子とが共に少ない、狭い粒度分布を有するため、紙の表面強度および内部結合強度を高くできる。また、このような多孔性填料を紙に配合した際には、嵩高化効果が高く、しかも白紙の不透明性を高くできる。 In the method for producing a porous filler according to the present invention in which a mineral acid solution and / or a metal salt solution of a mineral acid is added to a sodium silicate aqueous solution as described above after adding a specific amount of alkali-resistant fine particles, Silicon-containing particles can be deposited while including alkaline microparticles. The porous filler obtained in this way has an appropriate average particle size, and has a narrow particle size distribution in which both coarse particles and fine particles are small, so that the surface strength and internal bond strength of paper can be increased. . Further, when such a porous filler is added to paper, the effect of increasing the bulk is high and the opacity of the white paper can be increased.
(紙)
本発明の紙は、上記多孔性填料が含まれるものである。また、上記多孔性填料の他にも、必要に応じて、一般に紙に用いられる各種の顔料、例えば、カオリン、焼成カオリン、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、二酸化チタン、タルク、酸化亜鉛、アルミナ、炭酸マグネシウム、酸化マグネシウム、無定形シリケート、ベントナイト、ゼオライト、セリサイト、スメクタイト等の鉱物質顔料や、スチレン系樹脂、尿素系樹脂、メラミン系樹脂、アクリル系樹脂、塩化ビニリデン系樹脂並びにそれらの微小中空粒子等の有機顔料が含まれていてもよい。
(paper)
The paper of the present invention contains the above porous filler. In addition to the above porous filler, various pigments generally used for paper as required, such as kaolin, calcined kaolin, calcium carbonate, calcium sulfate, barium sulfate, titanium dioxide, talc, zinc oxide, alumina , Magnesium carbonate, magnesium oxide, amorphous silicate, bentonite, zeolite, sericite, smectite and other mineral pigments, styrene resins, urea resins, melamine resins, acrylic resins, vinylidene chloride resins and their fine particles Organic pigments such as hollow particles may be included.
紙を形成するセルロース繊維原料としては、例えば、クラフトパルプ(KP)、サルファイトパルプ(SP)、ソーダパルプ(AP)等の化学パルプ、セミケミカルパルプ(SCP)、ケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)、サーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ、あるいは、楮、三椏、麻、ケナフ等を原料とする非木材パルプ、古紙を原料とする脱墨パルプが挙げられる。
これら単独で用いてもよいし、2種以上混合して用いてもよい。
Examples of cellulose fiber raw materials for forming paper include chemical pulps such as kraft pulp (KP), sulfite pulp (SP) and soda pulp (AP), semi-chemical pulp (SCP), and chemiground wood pulp (CGP). Semi-chemical pulp, ground pulp (GP), thermo-mechanical pulp (TMP, BCTMP) and other mechanical pulp, non-wood pulp made from cocoon, coconut, hemp, kenaf, etc., deinked pulp made from waste paper Is mentioned.
These may be used alone or in combination of two or more.
本発明の紙は、セルロース繊維原料および上記多孔性填料を含む紙料を調製し、その紙料を抄紙することにより得られる。その際使用される抄紙機としては、例えば、長網式、円網式、短網式、ツインワイヤー式抄紙機などが挙げられる。
紙料中には、必要に応じて、各種のアニオン性、ノニオン性、カチオン性あるいは両性の歩留向上剤、濾水性向上剤、紙力増強剤や内添サイズ剤等の各種抄紙用内添助剤、染料、蛍光増白剤、pH調整剤、消泡剤、ピッチコントロール剤、スライムコントロール剤等の抄紙用内添助剤を適宜添加できる。
The paper of the present invention is obtained by preparing a stock containing a cellulose fiber raw material and the above porous filler, and papermaking the stock. Examples of the paper machine used at that time include a long net type, a circular net type, a short net type, and a twin wire type paper machine.
In the paper stock, various anionic, nonionic, cationic or amphoteric yield improvers, drainage improvers, paper strength enhancers, internal sizing agents, etc. Auxiliary additives for paper making such as auxiliary agents, dyes, fluorescent brighteners, pH adjusters, antifoaming agents, pitch control agents, slime control agents and the like can be appropriately added.
本発明の紙には、澱粉、ポリビニルアルコール、ポリアクリルアマイド等の各種表面バインダーや、ロジン系サイズ剤、合成サイズ剤、石油樹脂系サイズ剤、中性サイズ剤等の表面サイズ剤、塩化ナトリウムや硫酸ナトリウム等の導電剤が塗布または含浸されていてもよい。 The paper of the present invention includes various surface binders such as starch, polyvinyl alcohol, and polyacrylamide, surface sizing agents such as rosin sizing agents, synthetic sizing agents, petroleum resin sizing agents, neutral sizing agents, sodium chloride, A conductive agent such as sodium sulfate may be applied or impregnated.
上述した本発明の紙は、上記多孔性填料が含まれるものであるから、嵩高であり、不透明性、表面強度および内部結合強度が高い。このような紙は印刷用紙や上質系塗工紙に好適に用いられる。 Since the paper of the present invention described above contains the above porous filler, it is bulky and has high opacity, surface strength and internal bond strength. Such paper is suitably used for printing paper and high-quality coated paper.
以下に実施例を挙げて、本発明を具体的に説明するが、本発明はそれらの実施例に限定されるものではない。また、例中の「部」及び「%」は特に断らない限り、「質量部」及び「質量%」のことである。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the examples, “parts” and “%” mean “parts by mass” and “% by mass” unless otherwise specified.
合成例1
市販の3号ケイ酸ナトリウム水溶液330g(固形分濃度38%)を水道水900gで希釈した後、5%硫酸ナトリウム水溶液を160g加えた。さらに、耐アルカリ性微小粒子として、サンドグラインダにて平均粒子径が0.6μmになるように調整した炭酸カルシウムの分散液A(TP−121、奥多摩工業製、固形分濃度9.5%、表中では「炭カルA」と表記する。)100g(ケイ素含有粒子100部に対し10部)をスリーワンモータ(ピッチドタービン翼使用、表中では「攪拌機A」と表記する。)で攪拌しながら温度50℃において添加した。その後、攪拌翼の周速を10m/秒に調整し、硫酸(濃度20%)75gを15分間で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、このままの温度で硫酸168gを40分かけて添加し、2段目の中和を行って多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは8であった。
得られた多孔性填料を前記レーザー回折式粒度分布計で測定したところ、25%、50%、75%質量積算値の粒子径は、それぞれ12.6、17.0、21.5μmであった。
填料スラリーはろ過・洗浄した後、水に再分散させ、手抄き評価に用いた。また、ろ過・洗浄後のケーキの一部を105℃にて乾燥し、細孔体積、比表面積測定、および、蛍光X線分析装置による耐アルカリ微細粒子含有量の測定に供した。合成例1で得られた多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し9部であった。
Synthesis example 1
After diluting 330 g of commercially available No. 3 sodium silicate aqueous solution (solid content concentration 38%) with 900 g of tap water, 160 g of 5% aqueous sodium sulfate solution was added. Further, as alkali-resistant microparticles, a calcium carbonate dispersion A (TP-121, manufactured by Okutama Kogyo Co., Ltd., solid content concentration of 9.5%, adjusted to have an average particle size of 0.6 μm with a sand grinder, in the table) Is expressed as “charcoal A”.) 100 g (10 parts with respect to 100 parts of silicon-containing particles) is stirred with a three-one motor (pitched turbine blades, referred to as “stirrer A” in the table) while stirring. Added at 50 ° C. Thereafter, the peripheral speed of the stirring blade was adjusted to 10 m / second, 75 g of sulfuric acid (concentration 20%) was added in 15 minutes to neutralize the first stage, and then the temperature was increased to 90 ° C. at the above peripheral speed. Warm up. Subsequently, 168 g of sulfuric acid was added over 40 minutes at the same temperature, and the second stage neutralization was performed to obtain a porous filler. The total amount of sulfuric acid added was 98% of the theoretical neutralized amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 8.
When the obtained porous filler was measured with the laser diffraction particle size distribution analyzer, the particle diameters of the 25%, 50%, and 75% mass integrated values were 12.6, 17.0, and 21.5 μm, respectively. .
The filler slurry was filtered and washed, then redispersed in water, and used for handsheet evaluation. In addition, a part of the cake after filtration and washing was dried at 105 ° C. and subjected to measurement of pore volume, specific surface area, and measurement of alkali-resistant fine particle content using a fluorescent X-ray analyzer. The content of alkali-resistant fine particles in the porous filler obtained in Synthesis Example 1 was 9 parts with respect to 100 parts of silicon-containing particles.
合成例2 市販の3号ケイ酸ナトリウム水溶液330g(固形分濃度38%)を水道水820gで希釈した後、5%硫酸ナトリウム水溶液を240g加えた。さらに、耐アルカリ性微小粒子として、炭酸カルシウムの分散液A15g(ケイ素含有粒子100部に対し1.5部)を攪拌機Aで攪拌しながら温度50℃において添加した。その後、攪拌翼の周速を12m/秒に調整し、硫酸(濃度20%)60gを15分間で添加して1段目の中和を行った後、上記周速の状態で90℃まで昇温した。次いで、このままの温度で硫酸183gを40分かけて添加し、2段目の中和を行って多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは7.5であった。
得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ10.5、14.8、19.7μmであった。多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し1.2部であった。
Synthesis Example 2 After diluting 330 g of commercially available No. 3 sodium silicate aqueous solution (solid content concentration 38%) with 820 g of tap water, 240 g of 5% aqueous sodium sulfate solution was added. Further, 15 g of calcium carbonate dispersion A (1.5 parts with respect to 100 parts of silicon-containing particles) was added as alkali-resistant fine particles at a temperature of 50 ° C. while stirring with a stirrer A. Thereafter, the peripheral speed of the stirring blade was adjusted to 12 m / second, 60 g of sulfuric acid (concentration 20%) was added in 15 minutes to neutralize the first stage, and then the temperature was increased to 90 ° C. at the above peripheral speed. Warm up. Subsequently, 183 g of sulfuric acid was added over 40 minutes at the same temperature, and the second stage neutralization was performed to obtain a porous filler. The total amount of sulfuric acid added was 98% of the theoretical neutralized amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 7.5.
The particle diameters of 25%, 50% and 75% mass integrated values of the obtained porous filler measured with a laser diffraction particle size meter were 10.5, 14.8 and 19.7 μm, respectively. The content of alkali-resistant fine particles in the porous filler was 1.2 parts with respect to 100 parts of silicon-containing particles.
合成例3
合成例1において、水道水量を800gに、炭酸カルシウム分散液Aの量を200g(ケイ素含有粒子100部に対し20部)に変更した以外は合成例1と同様にして、多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは8.5であった。また、得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ11.4、14.3、18.0μmであった。多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し17部であった。
Synthesis example 3
In Synthesis Example 1, a porous filler was obtained in the same manner as in Synthesis Example 1 except that the amount of tap water was changed to 800 g and the amount of calcium carbonate dispersion A was changed to 200 g (20 parts relative to 100 parts of silicon-containing particles). . The total addition amount of sulfuric acid was 98% of the theoretical neutralization amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 8.5. Moreover, the particle diameters of 25%, 50% and 75% mass integrated values of the obtained porous filler measured by a laser diffraction particle size meter were 11.4, 14.3 and 18.0 μm, respectively. The content of alkali-resistant microparticles in the porous filler was 17 parts with respect to 100 parts of silicon-containing particles.
合成例4
合成例1において、水道水量を750gに、炭酸カルシウム分散液Aを、耐アルカリ性微小粒子として平均粒子径を2μmに調整した炭酸カルシウムの分散液B(固形分濃度9.5%、表中では「炭カルB」と表記する。)150g(ケイ素含有粒子100部に対し15部)に変更した以外は、合成例1と同様にして、多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは8であった。また、得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ14.0、19.0、24.3μmであった。多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し13部であった。
Synthesis example 4
In Synthesis Example 1, the amount of tap water was 750 g, the calcium carbonate dispersion A was a calcium carbonate dispersion B adjusted to have an average particle diameter of 2 μm as alkali-resistant microparticles (solid content concentration 9.5%, in the table “ It is expressed as “Carbon Cal B”.) A porous filler was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 150 g (15 parts relative to 100 parts of silicon-containing particles). The total amount of sulfuric acid added was 98% of the theoretical neutralized amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 8. Moreover, the particle diameters of the 25%, 50% and 75% mass integrated values of the obtained porous filler measured by a laser diffraction particle size meter were 14.0, 19.0 and 24.3 μm, respectively. The content of alkali-resistant fine particles in the porous filler was 13 parts with respect to 100 parts of silicon-containing particles.
合成例5
合成例1において、耐アルカリ性微小粒子を平均粒子径4μmの炭酸カルシウムの分散液(カルライトSA、白石工業製、固形分濃度9.5%、表中では「炭カルC」と表記する。)100g(ケイ素含有粒子100部に対し10部)に変更した以外は合成例1と同様にして、多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは8であった。また、得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ13.4、19.6、25.8μmであった。多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し9部であった。
Synthesis example 5
In Synthesis Example 1, 100 g of alkali-resistant fine particles were dispersed in calcium carbonate having an average particle diameter of 4 μm (Callite SA, manufactured by Shiroishi Kogyo Co., Ltd., solid content concentration: 9.5%, “charcoal cal C” in the table). A porous filler was obtained in the same manner as in Synthesis Example 1 except that it was changed to (10 parts with respect to 100 parts of silicon-containing particles). The total amount of sulfuric acid added was 98% of the theoretical neutralized amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 8. Moreover, the particle diameters of 25%, 50% and 75% mass integrated values of the obtained porous filler measured by a laser diffraction particle size meter were 13.4, 19.6 and 25.8 μm, respectively. The content of alkali-resistant fine particles in the porous filler was 9 parts with respect to 100 parts of silicon-containing particles.
合成例6
合成例1において、炭酸カルシウム分散液Aを、平均粒子径を0.6μmに調整したカオリンの分散液(UW90、エンゲルハード製、固形分濃度9.5%)100g(ケイ素含有粒子100部に対し10部)に変更した以外は、合成例1と同様にして、多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは7であった。また、得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ12.5、15.9、20.1μmであった。多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し9.5部であった。
Synthesis Example 6
In Synthesis Example 1, 100 g of a calcium carbonate dispersion A (UW90, manufactured by Engelhard, solid content concentration of 9.5%) with an average particle diameter adjusted to 0.6 μm (based on 100 parts of silicon-containing particles) Except for changing to 10 parts), a porous filler was obtained in the same manner as in Synthesis Example 1. The total amount of sulfuric acid added was 98% of the theoretical neutralized amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 7. Moreover, the particle diameters of the 25%, 50%, and 75% mass integrated values measured with a laser diffraction particle size meter of the obtained porous filler were 12.5, 15.9, and 20.1 μm, respectively. The content of alkali-resistant fine particles in the porous filler was 9.5 parts with respect to 100 parts of silicon-containing particles.
合成例7
合成例1において、水道水を840g、耐アルカリ性微小粒子を炭酸カルシウムの分散液(ブリリアント15、白石工業製、平均粒子径0.7μm、固形分濃度9.5%、表中では「炭カルD」と表記する。)60g(ケイ素含有粒子100部に対し6部)に変更した以外は、合成例1と同様にして、多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは8であった。また、得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ15.1、22.7、30.1μmであった。多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し5.1部であった。
Synthesis example 7
In Synthesis Example 1, 840 g of tap water and alkali-resistant fine particles were dispersed in calcium carbonate (Brilliant 15, manufactured by Shiroishi Kogyo Co., Ltd., average particle size 0.7 μm, solid content concentration 9.5%. The porous filler was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 60 g (6 parts with respect to 100 parts of silicon-containing particles). The total amount of sulfuric acid added was 98% of the theoretical neutralized amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 8. Moreover, the particle diameters of 25%, 50% and 75% mass integrated values measured by a laser diffraction particle size meter of the obtained porous filler were 15.1, 22.7 and 30.1 μm, respectively. The content of alkali-resistant fine particles in the porous filler was 5.1 parts with respect to 100 parts of silicon-containing particles.
合成例8
市販の3号ケイ酸ソーダ水溶液330gを水道水820gで希釈した後、5%硫酸ナトリウム水溶液を240g加えた。さらに、耐アルカリ性微小粒子として、炭酸カルシウムの分散液A100g(ケイ素含有粒子100部に対し10部)をホモミキサ(表中では「攪拌機B」と表記する。)で攪拌しながら温度50℃において添加した後、攪拌翼の周速を10m/秒に調整し、硫酸(濃度20%)60gを15分間で添加した。硫酸の添加後、上記周速の状態で90℃まで昇温した。次いで、このままの温度で硫酸183gを40分かけて添加し、多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは8であった。また、得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ13.0、17.3、22.5μmであった。多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し9部であった。
Synthesis example 8
After diluting 330 g of commercially available No. 3 sodium silicate aqueous solution with 820 g of tap water, 240 g of 5% aqueous sodium sulfate solution was added. Further, 100 g of calcium carbonate dispersion A (10 parts with respect to 100 parts of silicon-containing particles) was added as alkali-resistant microparticles at a temperature of 50 ° C. while stirring with a homomixer (shown as “stirrer B” in the table). Thereafter, the peripheral speed of the stirring blade was adjusted to 10 m / second, and 60 g of sulfuric acid (concentration 20%) was added over 15 minutes. After the addition of sulfuric acid, the temperature was raised to 90 ° C. at the above peripheral speed. Next, 183 g of sulfuric acid was added over 40 minutes at the same temperature to obtain a porous filler. The total amount of sulfuric acid added was 98% of the theoretical neutralized amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 8. Moreover, the particle diameters of 25%, 50% and 75% mass integrated values of the obtained porous filler measured by a laser diffraction particle size meter were 13.0, 17.3 and 22.5 μm, respectively. The content of alkali-resistant fine particles in the porous filler was 9 parts with respect to 100 parts of silicon-containing particles.
合成例9
合成例1において、攪拌機Bで攪拌翼の周速を14m/秒に調整して硫酸を添加した以外は、合成例1と同様にして、多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは8であった。また、得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ8.7、11.4、14.8μmであった。多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し9.5部であった。
Synthesis Example 9
In Synthesis Example 1, a porous filler was obtained in the same manner as in Synthesis Example 1 except that the peripheral speed of the stirring blade was adjusted to 14 m / sec with the stirrer B and sulfuric acid was added. The total amount of sulfuric acid added was 98% of the theoretical neutralized amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 8. Moreover, the particle diameters of 25%, 50%, and 75% mass integrated values measured by a laser diffraction particle size meter of the obtained porous filler were 8.7, 11.4, and 14.8 μm, respectively. The content of alkali-resistant fine particles in the porous filler was 9.5 parts with respect to 100 parts of silicon-containing particles.
合成例10
市販の3号ケイ酸ナトリウム330g(固形分濃度38%)を水道水820gで希釈した後、5%硫酸ナトリウム水溶液を240g加えた。さらに、耐アルカリ性微小粒子として、炭酸カルシウムの分散液A100g(ケイ素含有粒子100部に対し10部)を攪拌機Aで攪拌しながら温度50℃において添加した後、攪拌翼の周速を6m/秒に調整し、硫酸(濃度20%)60gを15分間で添加した。硫酸の添加後、上記周速の状態で90℃まで昇温した。次いで、このままの温度で硫酸183gを40分かけて添加し、多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは8であった。また、得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ19.0、27.8、36.0μmであった。多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し8部であった。
Synthesis Example 10
After diluting 330 g of commercially available sodium silicate No. 3 (solid content concentration 38%) with 820 g of tap water, 240 g of 5% aqueous sodium sulfate solution was added. Furthermore, after adding 100 g of calcium carbonate dispersion A (10 parts with respect to 100 parts of silicon-containing particles) at 50 ° C. while stirring with a stirrer A as alkali-resistant fine particles, the peripheral speed of the stirring blade was set to 6 m / second. After adjustment, 60 g of sulfuric acid (concentration 20%) was added over 15 minutes. After the addition of sulfuric acid, the temperature was raised to 90 ° C. at the above peripheral speed. Next, 183 g of sulfuric acid was added over 40 minutes at the same temperature to obtain a porous filler. The total amount of sulfuric acid added was 98% of the theoretical neutralized amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 8. Moreover, the particle diameters of 25%, 50%, and 75% mass integrated values measured by a laser diffraction particle size meter of the obtained porous filler were 19.0, 27.8, and 36.0 μm, respectively. The content of alkali-resistant microparticles in the porous filler was 8 parts with respect to 100 parts of silicon-containing particles.
合成例11
合成例1において、90℃に昇温した後に添加する硫酸の代わりに、硫酸アルミニウム水溶液(濃度20%)86gを添加した後に硫酸を106g添加した以外は、合成例1と同様にして、多孔性填料を得た。全硫酸、硫酸塩添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは8であった。また、得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ13.0、18.0、23.5μmであった。多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し8部であった。
Synthesis Example 11
In Synthesis Example 1, in the same manner as in Synthesis Example 1 except that 86 g of sulfuric acid was added after adding 86 g of an aqueous aluminum sulfate solution (concentration 20%) instead of sulfuric acid added after the temperature was raised to 90 ° C. I got a filler. The total addition amount of sulfuric acid and sulfate was 98% of the theoretical neutralization amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 8. Moreover, the particle diameters of 25%, 50%, and 75% mass integrated values of the obtained porous filler measured by a laser diffraction particle size meter were 13.0, 18.0, and 23.5 μm, respectively. The content of alkali-resistant microparticles in the porous filler was 8 parts with respect to 100 parts of silicon-containing particles.
合成例12
市販の3号ケイ酸ソーダ水溶液330gを水道水740gで希釈した後、5%硫酸ナトリウム水溶液を320g加えた。耐アルカリ性微小粒子を添加せず、スリーワンモータで攪拌しながら攪拌翼の周速を10m/秒に調整し、温度50℃において硫酸(濃度20%)87gを15分間で添加した。硫酸の添加後、上記周速の状態で90℃まで昇温した。
次いで、このままの温度で硫酸156gを40分かけて添加し、多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは7.5であった。また、得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ11.5、22.0、32.8μmであった。
Synthesis Example 12
After diluting 330 g of commercially available No. 3 sodium silicate aqueous solution with 740 g of tap water, 320 g of 5% aqueous sodium sulfate solution was added. Without adding the alkali-resistant fine particles, the peripheral speed of the stirring blade was adjusted to 10 m / sec while stirring with a three-one motor, and 87 g of sulfuric acid (concentration 20%) was added at a temperature of 50 ° C. over 15 minutes. After the addition of sulfuric acid, the temperature was raised to 90 ° C. at the above peripheral speed.
Subsequently, 156 g of sulfuric acid was added over 40 minutes at this temperature to obtain a porous filler. The total amount of sulfuric acid added was 98% of the theoretical neutralized amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 7.5. Moreover, the particle diameters of the 25%, 50%, and 75% mass integrated values measured with a laser diffraction particle size meter of the obtained porous filler were 11.5, 22.0, and 32.8 μm, respectively.
合成例13
合成例1において、炭酸カルシウム分散液Aの量を0.6g(ケイ素含有粒子100部に対し0.06部)に変更した以外は合成例1と同様にして、多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは7.5であった。また、得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ14.9、24.6、34.6μmであった。多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し0.05部であった。
Synthesis Example 13
A porous filler was obtained in the same manner as in Synthesis Example 1 except that the amount of the calcium carbonate dispersion liquid A was changed to 0.6 g (0.06 parts with respect to 100 parts of silicon-containing particles) in Synthesis Example 1. The total amount of sulfuric acid added was 98% of the theoretical neutralized amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 7.5. Moreover, the particle diameters of the 25%, 50%, and 75% mass integrated values measured by a laser diffraction particle size meter of the obtained porous filler were 14.9, 24.6, and 34.6 μm, respectively. The content of alkali-resistant microparticles in the porous filler was 0.05 parts with respect to 100 parts of silicon-containing particles.
合成例14
合成例1において、水道水量を400g、炭酸カルシウム分散液Aの量を600g(ケイ素含有粒子100部に対し60部)に変更した以外は合成例1と同様にして、多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは9であった。また、得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ6.1、8.8、11.8μmであった。多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し55部であった。
Synthesis Example 14
A porous filler was obtained in the same manner as in Synthesis Example 1 except that the amount of tap water was changed to 400 g and the amount of the calcium carbonate dispersion liquid A was changed to 600 g (60 parts relative to 100 parts of silicon-containing particles). The total sulfuric acid addition amount was 98% of the theoretical neutralization amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 9. Moreover, the particle diameters of 25%, 50%, and 75% mass integrated value of the obtained porous filler measured by a laser diffraction particle size meter were 6.1, 8.8, and 11.8 μm, respectively. The content of alkali-resistant fine particles in the porous filler was 55 parts with respect to 100 parts of silicon-containing particles.
合成例15
合成例1において、炭酸カルシウム分散液Aを炭酸カルシウムの分散液E(平均粒子径11μm、固形分濃度9.5%、表中では「炭カルE」と表記する。)100g(ケイ素含有粒子100部に対し10部)に変更した以外は合成例1と同様にして、多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは8であった。また、得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ15.6、26.6、37.8μmであった。多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し9部であった。
Synthesis Example 15
In Synthesis Example 1, 100 g of calcium carbonate dispersion A (dispersion of calcium carbonate E) (average particle diameter 11 μm, solid content concentration 9.5%, indicated as “charcoal cal E” in the table) 100 A porous filler was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 10 parts). The total amount of sulfuric acid added was 98% of the theoretical neutralized amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 8. Moreover, the particle diameters of the 25%, 50%, and 75% mass integrated values measured with a laser diffraction particle size meter of the obtained porous filler were 15.6, 26.6, and 37.8 μm, respectively. The content of alkali-resistant fine particles in the porous filler was 9 parts with respect to 100 parts of silicon-containing particles.
合成例16
合成例6において、攪拌機Bで攪拌翼の周速を20m/秒に調整して硫酸を添加した以外は、合成例1と同様にして、多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは8であった。また、得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ5.3、7.6、9.8μmであった。多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し9.5部であった。
Synthesis Example 16
In Synthesis Example 6, a porous filler was obtained in the same manner as in Synthesis Example 1 except that the peripheral speed of the stirring blade was adjusted to 20 m / sec with the stirrer B and sulfuric acid was added. The total amount of sulfuric acid added was 98% of the theoretical neutralized amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 8. Moreover, the particle diameters of 25%, 50%, and 75% mass integrated values measured by a laser diffraction particle size meter of the obtained porous filler were 5.3, 7.6, and 9.8 μm, respectively. The content of alkali-resistant fine particles in the porous filler was 9.5 parts with respect to 100 parts of silicon-containing particles.
合成例17
合成例1において、水道水量を950gに、炭酸カルシウム分散液Aの量を5.0g(ケイ素含有粒子100部に対し0.5部)に、攪拌機Aの攪拌翼の周速を4m/秒に調整して硫酸を添加した以外は、合成例1と同様にして、多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは8であった。また、得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ18.8、37.8、55.4μmであった。多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し0.4部であった。
Synthesis Example 17
In Synthesis Example 1, the amount of tap water is 950 g, the amount of the calcium carbonate dispersion A is 5.0 g (0.5 part with respect to 100 parts of silicon-containing particles), and the peripheral speed of the stirring blade of the stirrer A is 4 m / second. A porous filler was obtained in the same manner as in Synthesis Example 1 except that sulfuric acid was added after adjustment. The total amount of sulfuric acid added was 98% of the theoretical neutralized amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 8. Moreover, the particle diameters of 25%, 50%, and 75% mass integrated values measured with a laser diffraction particle size meter of the obtained porous filler were 18.8, 37.8, and 55.4 μm, respectively. The content of alkali-resistant microparticles in the porous filler was 0.4 parts with respect to 100 parts of silicon-containing particles.
合成例18
合成例1において、50℃で添加する硫酸を113g、90℃まで昇温した後に添加する硫酸を131gに変更した以外は、合成例1と同様にして、多孔性填料を得た。全硫酸添加量はケイ酸ナトリウムの理論中和量の98%であり、硫酸添加後の反応液のpHは8であった。また、得られた多孔性填料のレーザー回折式粒度計で測定した25%、50%、75%質量積算値の粒子径は、それぞれ21.6、35.3、53.0μmであった。
多孔性填料中の耐アルカリ性微小粒子の含有量はケイ素含有粒子100部に対し9.7部であった。
Synthesis Example 18
In Synthesis Example 1, a porous filler was obtained in the same manner as in Synthesis Example 1, except that 113 g of sulfuric acid added at 50 ° C. and 131 g of sulfuric acid added after raising the temperature to 90 ° C. were changed to 131 g. The total amount of sulfuric acid added was 98% of the theoretical neutralized amount of sodium silicate, and the pH of the reaction solution after addition of sulfuric acid was 8. Moreover, the particle diameters of the 25%, 50%, and 75% mass integrated values measured by a laser diffraction particle size meter of the obtained porous filler were 21.6, 35.3, and 53.0 μm, respectively.
The content of alkali-resistant fine particles in the porous filler was 9.7 parts with respect to 100 parts of silicon-containing particles.
上記合成例1〜18の条件を表1,2にまとめた。 The conditions of the synthesis examples 1 to 18 are summarized in Tables 1 and 2.
製造例1
カナダ標準濾水度(CSF)が450mLある晒化学パルプ(BKP)スラリーに、合成例1で得られた多孔性填料を紙質量当たり8部になるよう添加し、さらに絶乾パルプ量100部当たり、澱粉1.0部、アルキルケテンダイマー0.03部、及び硫酸バンドを0.5部、歩留向上剤0.02部(DR−1500、ハイモ社製)となるように添加して紙料を調製した。その紙料を、角型手抄き装置を用いて目標坪量が風乾で70g/m2となるように抄造し、プレスにより脱水後、シリンダードライヤーを用いて乾燥しシートを作製した。その後、線圧10kg/cmでキャレンダー処理を施して成紙を得た。
Production Example 1
To the bleached chemical pulp (BKP) slurry having a Canadian standard freeness (CSF) of 450 mL, the porous filler obtained in Synthesis Example 1 is added to 8 parts per mass of paper, and further per 100 parts of absolute dry pulp quantity. 1.0 parts of starch, 0.03 parts of alkyl ketene dimer, and 0.5 parts of sulfuric acid band and 0.02 parts of yield improver (DR-1500, manufactured by Hymo Co., Ltd.) Was prepared. The stock was made using a square handmaking device so that the target basis weight was 70 g / m 2 when air-dried, dehydrated by a press, and then dried using a cylinder dryer to produce a sheet. Thereafter, a calendering treatment was performed at a linear pressure of 10 kg / cm to obtain a synthetic paper.
製造例2〜18
製造例1における合成例1で得られた多孔性填料を、表1または表2に示すような合成例2〜18で得られたものに各々変更したこと以外は、製造例1と同一条件で成紙を得た。
Production Examples 2-18
Except that the porous filler obtained in Synthesis Example 1 in Production Example 1 was changed to those obtained in Synthesis Examples 2 to 18 as shown in Table 1 or Table 2, respectively, under the same conditions as in Production Example 1. An adult paper was obtained.
各製造例の紙について、以下のように評価した。評価結果を表3または表4に示す。
・紙の密度:JIS P 8118により測定した。
・灰分:JIS P 8251に基づき525℃で灰化した。
・不透明度:JIS P 8149に従って測定した。
・平滑度:TAPPI No.5 王研式平滑度試験機によって測定した。
・内部結合強度:J.TAPPI No.18−2に従い測定した。
・印刷強度:RI印刷機(明製作所製)にてオフセットインキT13を用いて測定し、その結果を評価表示した。
◎:強度が高く、実用上問題なく、品質も優れている。
○:強度が高く、実用上問題ない。
△:強度がやや劣り、実用上問題ある。
×:強度が著しく劣り、実用上問題であり、品質も著しく劣っている。
The paper of each production example was evaluated as follows. The evaluation results are shown in Table 3 or Table 4.
-Paper density: Measured according to JIS P 8118.
Ash content: Ashed at 525 ° C. based on JIS P 8251.
Opacity: Measured according to JIS P 8149.
Smoothness: TAPPI No. 5 Measured with Oken type smoothness tester.
-Internal bond strength: TAPPI No. It measured according to 18-2.
Printing strength: Measured using an offset ink T13 with an RI printing machine (Made Seisakusho), and the result was evaluated and displayed.
A: High in strength, practically satisfactory, and excellent in quality.
○: Strength is high and there is no practical problem.
Δ: The strength is slightly inferior, and there is a problem in practical use.
X: Strength is remarkably inferior, it is a problem in practical use, and quality is remarkably inferior.
ケイ素含有粒子と特定量の耐アルカリ性微小粒子とを含有し、特定の製法で製造された製造例1〜11の多孔性填料は、紙に配合した際の嵩高化効果が高い上に、白紙での不透明性を高くできた。また、適切な平均粒子径および狭い粒度分布を有し、紙の表面強度および内部結合強度を高くできた。
これに対し、耐アルカリ性微小粒子を全く含まない製造例12の多孔性填料は、白紙の不透明性、内部結合強度、表面強度で満足する結果が得られなかった。
耐アルカリ性微小粒子が0.1質量部未満の製造例13の多孔性填料は、内部結合強度、表面強度が不足していた。
耐アルカリ性微小粒子の含有量が24質量部を超えていた製造例14の多孔性填料は、満足する嵩高化効果が得られなかった。
耐アルカリ性微小粒子の粒子径が10μmを超えていた製造例15の多孔性填料は、平滑性を高くできない傾向にあった。
析出時の攪拌の周速が20m/秒であり、平均粒子径が10μm未満であった製造例16の多孔性填料は、嵩高化効果が不足した上に、紙の内部結合強度、表面強度が低下する傾向にあった。
析出時の攪拌の周速が4m/秒であり、平均粒子径が25μmを超えていた製造例17の多孔性填料は、白紙の不透明性、紙の表面強度が低下し、平滑性も不足する傾向にあった。
多孔性填料の細孔表面積が200m2/gを超えており、粒子径が30μmよりも大きく、粒度分布が広い製造例18の多孔性填料は、白紙の不透明性、紙の表面強度が低下する傾向にあった。また、紙の平滑性も低下傾向であった。
The porous fillers of Production Examples 1 to 11 containing silicon-containing particles and a specific amount of alkali-resistant microparticles and produced by a specific production method have a high bulking effect when blended with paper, and are white paper. The opacity of can be increased. Moreover, it had an appropriate average particle diameter and narrow particle size distribution, and was able to increase the surface strength and internal bond strength of paper.
On the other hand, the porous filler of Production Example 12 containing no alkali-resistant microparticles did not give satisfactory results in the white paper opacity, internal bond strength, and surface strength.
The porous filler of Production Example 13 in which the alkali-resistant fine particles were less than 0.1 parts by mass had insufficient internal bond strength and surface strength.
The porous filler of Production Example 14 in which the content of the alkali-resistant fine particles exceeded 24 parts by mass did not provide a satisfactory bulking effect.
The porous filler of Production Example 15 in which the particle diameter of the alkali-resistant microparticles exceeded 10 μm tended to be unable to increase the smoothness.
The porous filler of Production Example 16 in which the peripheral speed of stirring at the time of precipitation was 20 m / second and the average particle diameter was less than 10 μm was insufficient in bulking effect, and had an internal bond strength and surface strength of paper. There was a tendency to decrease.
The porous filler of Production Example 17 in which the peripheral speed of stirring during precipitation was 4 m / sec and the average particle diameter exceeded 25 μm decreased the opacity of the white paper, the surface strength of the paper, and the smoothness was insufficient. There was a trend.
The porous filler of Production Example 18 in which the pore surface area of the porous filler exceeds 200 m 2 / g, the particle diameter is larger than 30 μm, and the particle size distribution is wide decreases the opacity of the white paper and the surface strength of the paper. There was a trend. Further, the smoothness of the paper also tended to decrease.
Claims (7)
耐アルカリ性微小粒子の添加量が、ケイ素含有粒子100質量部に対して0.5〜30質量部であることを特徴とする多孔性填料の製造方法。 A method for producing a porous filler in which after adding alkali-resistant microparticles in an aqueous alkali silicate solution, a mineral acid solution and / or a metal salt solution of a mineral acid is added and neutralized to precipitate silicon-containing particles. ,
The method for producing a porous filler, wherein the addition amount of the alkali-resistant fine particles is 0.5 to 30 parts by mass with respect to 100 parts by mass of the silicon-containing particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006233932A JP2007091581A (en) | 2005-08-31 | 2006-08-30 | Porous filler, its production method and paper |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005250857 | 2005-08-31 | ||
JP2006233932A JP2007091581A (en) | 2005-08-31 | 2006-08-30 | Porous filler, its production method and paper |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007091581A true JP2007091581A (en) | 2007-04-12 |
Family
ID=37977708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006233932A Withdrawn JP2007091581A (en) | 2005-08-31 | 2006-08-30 | Porous filler, its production method and paper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007091581A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007217267A (en) * | 2006-01-19 | 2007-08-30 | Oji Paper Co Ltd | Porous filler, its production method, porous filler slurry and paper |
JP2009001953A (en) * | 2007-05-24 | 2009-01-08 | Oji Paper Co Ltd | Coated paper for printing |
JP2011207662A (en) * | 2010-03-30 | 2011-10-20 | Daio Paper Corp | Method for producing silica composite particle, and silica composite particle |
JP2011213504A (en) * | 2010-03-31 | 2011-10-27 | Daio Paper Corp | Process for producing silica composited mixed inorganic particle and silica composited mixed inorganic particle |
CN115478447A (en) * | 2022-08-11 | 2022-12-16 | 浙江夏王纸业有限公司 | High-quantitative coating digital printing facing base paper and preparation method thereof |
-
2006
- 2006-08-30 JP JP2006233932A patent/JP2007091581A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007217267A (en) * | 2006-01-19 | 2007-08-30 | Oji Paper Co Ltd | Porous filler, its production method, porous filler slurry and paper |
JP2009001953A (en) * | 2007-05-24 | 2009-01-08 | Oji Paper Co Ltd | Coated paper for printing |
JP2011207662A (en) * | 2010-03-30 | 2011-10-20 | Daio Paper Corp | Method for producing silica composite particle, and silica composite particle |
JP2011213504A (en) * | 2010-03-31 | 2011-10-27 | Daio Paper Corp | Process for producing silica composited mixed inorganic particle and silica composited mixed inorganic particle |
CN115478447A (en) * | 2022-08-11 | 2022-12-16 | 浙江夏王纸业有限公司 | High-quantitative coating digital printing facing base paper and preparation method thereof |
CN115478447B (en) * | 2022-08-11 | 2023-06-13 | 浙江夏王纸业有限公司 | High-quantitative coated digital printing facing base paper and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA3019443C (en) | Paper and paperboard products | |
JP3898007B2 (en) | Method for producing bulky paper with internal filler added with filler, which is an aggregate of inorganic particles and silica composite particles | |
JP2009270206A (en) | Porous filler and method for producing the same | |
JP2007091581A (en) | Porous filler, its production method and paper | |
JP4568921B2 (en) | Silica particles, method for producing the same, and silica particle-containing paper | |
US6264907B1 (en) | Process for producing silica particles suitable for use as filler for paper | |
JP4796282B2 (en) | Low density printing paper | |
JP5003139B2 (en) | Porous filler for paper, its production method and porous filler slurry for paper and paper | |
JP4903493B2 (en) | Method for producing composite particles | |
JP2005281925A (en) | Neutral paper for printing newspaper | |
JP4834958B2 (en) | Silica particles and silica particle-containing paper | |
JP5422884B2 (en) | Method for producing hydrated silicic acid and paper | |
JP4742963B2 (en) | Porous filler and production method thereof, porous filler slurry and paper | |
JP5122872B2 (en) | Neutral paper and method for producing neutral paper | |
JP2005219945A (en) | Light precipitated calcium carbonate-silica composite | |
JP4792758B2 (en) | Low density paper | |
JP2960002B2 (en) | Manufacturing method of filler-filled paper | |
JP4514634B2 (en) | Continuous recording paper | |
JP5076756B2 (en) | Low density printing paper | |
JP5762050B2 (en) | Printing paper | |
US20050269050A1 (en) | High performance natural zeolite microparticle retention aid for papermaking | |
JP2002220221A (en) | Method for manufacturing silica particles and paper internally filled with silica particles | |
JP4514660B2 (en) | Electrophotographic transfer paper | |
JP2009057412A (en) | Porous filler, method for producing the same, and paper | |
JP2010121247A (en) | Porous filler and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090302 |