JP3898007B2 - Method for producing bulky paper with internal filler added with filler, which is an aggregate of inorganic particles and silica composite particles - Google Patents

Method for producing bulky paper with internal filler added with filler, which is an aggregate of inorganic particles and silica composite particles Download PDF

Info

Publication number
JP3898007B2
JP3898007B2 JP2001232086A JP2001232086A JP3898007B2 JP 3898007 B2 JP3898007 B2 JP 3898007B2 JP 2001232086 A JP2001232086 A JP 2001232086A JP 2001232086 A JP2001232086 A JP 2001232086A JP 3898007 B2 JP3898007 B2 JP 3898007B2
Authority
JP
Japan
Prior art keywords
filler
particles
inorganic fine
fine particles
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001232086A
Other languages
Japanese (ja)
Other versions
JP2003049389A (en
Inventor
敏明 南
隆 越智
圭 松本
充利 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2001232086A priority Critical patent/JP3898007B2/en
Publication of JP2003049389A publication Critical patent/JP2003049389A/en
Application granted granted Critical
Publication of JP3898007B2 publication Critical patent/JP3898007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paper (AREA)
  • Silicon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な複合填料を内添した紙の製造方法に関し、特に嵩高性、白色度、不透明度が高く、填料内添による紙力低下が少なく、填料歩留りが高い填料内添紙の製造方法に関する。
【0002】
【従来の技術】
近年、森林資源保護、省資源問題、ゴミ問題を含む環境負荷軽減の見地から紙の軽量化が必要とされている。紙の軽量化を目指す場合、特に印刷紙、包装紙等の分野では、白色度、不透明度、印刷適性を高めるために、各種の填料を内添して製造している。従来から填料内添による紙の白色度、不透明性の向上方法として、二酸化チタンのような屈折率の大きな填料を内添して散乱効率を上げる方法並びに白土、タルク、炭酸カルシウム、有機顔料等の屈折率1.5近辺の填料を内添して、パルプ繊維間の密着を抑制し散乱表面積を増加させる方法がとられている。
【0003】
また、これまでは紙の軽量化に対応するために、単に坪量を下げたり脱墨パルプの比率を上げるなどの方法が行われてきた。しかしながら、この方法では紙が薄くなり、白色度、不透明度が低下して裏抜けなどの印刷適性が悪くなる。不透明度と裏抜けは紙の厚さと密接な関係があり、これまではパルプを余分に使用したり嵩のでるパルプを使用することによって、嵩高い紙を製造してきた。
【0004】
【発明が解決しようとする課題】
しかしながら、上記のような粒子径の小さい炭酸カルシウムなどの填料は抄紙時に大部分が白水中に流出し、紙層中への保持が非常に悪いという問題があった。またこのような小さな填料粒子はパルプ繊維間に分布することによって繊維間の結合を阻害し紙力を低下させてしまう欠点がある。
【0005】
本発明の目的は、填料の歩留まりを向上し、かつ繊維間に分布する填料粒子によって繊維間結合が阻害されず、少量のパルプでも嵩を出すことができ、同時に白色度、不透明度を向上できる「軽くて厚い紙」を製造可能とする嵩高填料の製造方法および填料内添紙を提供することである。
【0006】
【課題を解決するための手段】
上記課題は、無機微粒子を珪酸アルカリ水溶液に添加・分散しスラリーを調製した後に加熱攪拌しながら、液温を60〜100℃の範囲に保持し酸を添加し、シリカゾルを生成させ、最終反応液のpHを中性〜弱アルカリ性の範囲に調整することにより、無機微粒子・シリカ複合粒子を製造し、パルプスラリーに填料として内添することにより解決された。
【0007】
【発明の実施の形態】
本発明は、珪酸ナトリウム溶液に希硫酸などの酸を添加することにより生成する数nm程度のシリカゾル微粒子を無機微粒子の表面全体に薄く付着させ、シリカゾルの結晶成長に伴い、無機微粒子表面上のシリカゾル微粒子と別の無機微粒子表面上のシリカゾル微粒子間で結合が生じ、無機微粒子・シリカ複合粒子の凝集体が形成されることを特徴とするものである。
【0008】
このために、最終反応液のpHは重要な因子でありpHは中性〜弱アルカリ性の範囲とし、反応系に水和珪酸(ホワイトカーボン)が生成しないようにpHをコントロールする必要がある。好ましいpHは8〜11の範囲である。pHが7未満の酸性条件になるまで硫酸を添加してしまうと、シリカゾルではなくホワイトカーボンが生成してしまい、ホワイトカーボンが無機微粒子の凝集体の周りを球状に取り囲んでしまうため、ホワイトカーボンの光学的特性が優先的に現れ、コアー内の無機微粒子の光学的特性が全く発揮されなくなってしまう。pHが11を超えた場合、シリカゾルの生成が不十分となり、本発明の無機微粒子・シリカ複合体の凝集体を得にくい。
【0009】
本発明で反応中に生成されるシリカゾルは、珪酸ナトリウム(水ガラス)を原料として、硫酸、塩酸、硝酸などの鉱酸の希釈液と高温下で反応させ、加水分解反応と珪酸の重合化により得られる粒子径10〜20nmのシリカゾル粒子である。
【0010】
本発明で使用される珪酸アルカリ溶液は特に限定されないが、珪酸ナトリウム溶液(3号水ガラス)が入手性の点で望ましい。珪酸アルカリ溶液の濃度は水溶液中の珪酸分(SiO2換算)で3〜10重量%が好適である。10重量%を超えると形成される複合体は無機微粒子・シリカ複合凝集体ではなく、前記の無機微粒子がホワイトカーボンでカプセル化され、コアー内の無機微粒子の光学的特性が全く発揮されなくなってしまう。また、3重量%未満では複合粒子中のシリカ成分が低下するため、凝集体粒子が形成しにくくなってしまう。
【0011】
本発明で使用される無機微粒子としては、製紙用填料である軽質炭酸カルシウム、重質炭酸カルシウム、、タルク、カオリン、クレイ、焼成カオリン、二酸化チタン、水酸化アルミニウム等が挙げられる。粒径としては、形成される複合凝集体粒子の粒径を鑑み、0.05〜50ミクロンが望ましい。
【0012】
これらの無機微粒子は、珪酸ナトリウム溶液に分散剤としての機能があるため、予め珪酸ナトリウム溶液に分散した後に使用される。しかし、分散に際して粒子の分散性が良くない場合には、分散剤を添加した水に填料を分散してから、珪酸ナトリウム溶液を後添加しても良い。特に、二酸化チタンは粒径が小さく凝集し易いので、分散剤を使用した方が望ましい。分散剤としては、ヘキサメタリン酸ソーダ、ピロリン酸ソーダ、ポリカルボン酸ソーダ等が挙げられる。
【0013】
上記の無機微粒子は、単独で使用しても良いが、二種以上の無機微粒子を併用することにより、機能性の高い複合填料を製造することもできる。
【0014】
本発明で使用される酸としては希硫酸、希塩酸、希硝酸などの鉱酸の希釈液、酢酸、二酸化炭素等が挙げられるが、価格、ハンドリングの点で希硫酸が最も望ましい。さらに、希硫酸を使用する場合の添加時の濃度は、0.2 〜1.0モル濃度が望ましい。
【0015】
本発明での無機微粒子・シリカ複合粒子の製造時の反応温度に関しては、60〜100℃の範囲が望ましい。反応温度はシリカゾルの生成、結晶成長速度及び形成された無機微粒子・シリカ複合凝集体粒子の力学的強度に影響を及ぼす。反応温度が60℃未満ではシリカゾルの生成・成長速度が遅く、形成された無機微粒子・シリカ複合凝集体粒子の結合強度が弱いため、填料内添紙の抄造時にかかるハイシェアーで凝集体が壊れ易い。100℃を超えると、水系反応であるためオートクレーブを使用しなければならないため反応工程が複雑になってしまう。最適反応温度は70〜90℃である。
【0016】
また、無機微粒子・シリカ複合粒子を製造する場合、無機微粒子を珪酸アルカリ水溶液に添加、分散しスラリーを調製するが、このスラリー濃度は、3〜35重量%が望ましい。スラリー濃度を調整することにより、形成される無機微粒子・シリカ複合凝集体粒子の粒径がコントロールされると同時に無機微粒子とシリカの組成比率が決まる。
【0017】
さらに、無機微粒子・シリカ複合凝集体粒子の平均粒径を10〜60ミクロンの大粒径にすることにより、填料の歩留りを高めることが可能である。
粒径コントロールの方法としては、次の三つの方法が挙げられる。
▲1▼珪酸分として3.61%濃度の珪酸アルカリ水溶液に無機微粒子を添加して得られる填料スラリー濃度を3.2〜9.6重量%にする。
▲2▼原料として粒子径の大きい2〜10ミクロンの無機微粒子を使用する。
▲3▼無機微粒子・シリカ複合凝集体粒子のスラリーを風乾または加熱乾燥して得られる固体を乾式または湿式粉砕する。
以上の方法で、10〜60ミクロンのサイズに粒径コントロールすることが可能である。
【0018】
本発明では、無機微粒子を珪酸アルカリ水溶液に添加・分散しスラリーを調製した後に攪拌しながら、液温を60〜100℃の範囲に保持し酸を添加し、シリカゾルを生成させ、最終反応液のpHを中性〜弱アルカリ性、好ましくは8〜11の範囲に調整することにより無機微粒子・シリカ複合粒子を製造し、スラリーをろ過・水洗するとウェットケーキが得られる。
【0019】
このウェットケーキを再度、水に分散して填料スラリーとし、これを抄造時にパルプスラリーに内添して填料内添紙が得られる。この時に無機微粒子・シリカ複合粒子のウェットケーキを風乾または加熱乾燥処理で乾燥微粒子とした後、再度、乾式粉砕機または湿式粉砕機を使用して、粒径を調整した填料スラリーを抄造時にパルプスラリーに内添して填料内添紙を得ると、本発明の効果である嵩高性を飛躍的に高めることが可能である。湿式粉砕機としては、公知のホモミキサー、ホモジナイザー、サンドグラインダー等が挙げられる。
【0020】
本発明では、本発明の効果を損ねない範囲で公知の填料としてクレー、シリカ、タルク、焼成カオリン、炭酸カルシウムなどの無機填料、あるいは塩化ビニル樹脂、ポリスチレン樹脂、尿素ホルマリン樹脂、メラミン系樹脂、スチレン/ブタジエン系共重合体系樹脂などの合成樹脂から製造される有機填料を併用することもできる。
【0021】
また、必要に応じて、ポリアクリルアミド系高分子、ポリビニルアルコール系高分子、カチオン化澱粉、尿素/ホルマリン樹脂、メラミン/ホルマリン樹脂などの紙力増強剤;アクリルアミド/アミノメチルアクリルアミドの共重合物の塩、カチオン化澱粉、ポリエチレンイミン、ポリエチレンオキサイド、アクリルアミド/アクリル酸ナトリウム共重合物などのろ水性あるいは歩留まり向上剤;硫酸アルミニウム(硫酸バンド)、耐水化剤、紫外線防止剤、退色防止剤などの助剤などを含有してもよい。
【0022】
【実施例】
以下、本発明を実施例及び比較例に従って詳細に説明するが、本発明はこれらに限定されるものではない。尚、説明中、パーセントは重量パーセントを示す。
【0023】
実施例及び比較例で製造した中性上質紙について、嵩高性、白色度、不透明度、裂断長、填料歩留りを以下に示す方法にて測定した。
・嵩高性:坪量と紙厚から紙の密度を算出した。密度が低いほど嵩高性は高いことを示す。
・白色度の測定:白色度はJIS P 8123に基づきハンター白色度計で測定した。
・不透明度の測定:不透明度はJIS P 8138に基づき、ハンター反射率計を使用して測定した。
・填料の歩留り:予め作成しておいた、填料を配合していない手抄きシート(ブランク)及び填料を配合した手抄きシートより10×10cmの紙片10枚を切り取り、105℃×3時間乾燥させた後に絶乾重量を秤りとる。次に、この絶乾紙片を電気炉にて575℃×2時間焼くことによりシート中に含まれる灰分を求める。填料歩留り(%)は下記の式より算出した。
填料歩留り={(填料入りシート灰分重量/同絶乾重量-ブランク灰分重量/同絶乾重量)}/填料配合率×100
・裂断長:JIS P 8113により次式で求めた。
裂断長=引張強さ/(試験片の幅×試験片の坪量)×1000
・灰分:JIS P 8128に基づき灰化温度は575℃とした。
・複合粒子の比率:蛍光X線分析により複合粒子の成分比を測定した。
以上の測定結果にて総合品質評価を行った。評価は次の3段階とした。
◎:非常に良い ◯:良い ×:劣る
【0024】
<合成例1>
炭酸カルシウム(奥多摩工業製 TP-121)の粉体30gを珪酸ナトリウム水溶液(珪酸分として3.61%)312gに添加して、ホモミキサーを使用して回転数3000rpmで20分間、分散処理を行い炭酸カルシウムスラリーを調製した。次に、このスラリーを攪拌機、温度センサー、還流冷却器の付いた1Lの四口フラスコに入れ、攪拌しながら油浴にて75℃に昇温した。次に容器内のスラリーを75℃に保ちながら、0.36規定の硫酸276gをマイクロチューニングポンプを使用して、滴下速度1.53ml/分で3時間かけて滴下し炭酸カルシウム・シリカ複合凝集粒子を得た。この時の反応液のpHは10.3であった。さらに、No.2ろ紙を用いてろ過・水洗し再度ろ過することにより、炭酸カルシウム・シリカ複合凝集粒子のウェットケーキが得られた。粒度分布測定装置マスターサイザーS(マルバーン社製)を使用して、レーザー回折/散乱法により50%体積平均粒子径を測定したところ、平均粒径は8ミクロンであり、炭酸カルシウムとシリカの比率は70:30であった。
【0025】
<合成例2>
合成例1において、炭酸カルシウム(奥多摩工業製 TP-121)の粉体を70gに変更した以外は合成例1と同様にして炭酸カルシウム・シリカ複合凝集粒子を得た。この時の反応液のpHは10.2であった。得られた炭酸カルシウム・シリカ複合凝集粒子の平均粒径は5.4ミクロンであり、炭酸カルシウムとシリカの比率は86:14であった。
【0026】
<合成例3>
合成例1において、得られた炭酸カルシウム・シリカ複合凝集粒子を105℃、5時間で加熱乾燥を行った。次にこの乾燥粉体をサンドグラインダーで湿式粉砕を行い平均粒径が2.0ミクロンの炭酸カルシウム・シリカ複合凝集粒子が得られた。
【0027】
<合成例4>
炭酸カルシウム(奥多摩工業製 TP-121)の粉体18gと二酸化チタン(古河機械金属製 FA-50)12gを珪酸ナトリウム水溶液(珪酸分として3.61%)312gに添加して、ホモミキサーを使用して回転数3000rpmで20分間、分散処理を行い炭酸カルシウム、二酸化チタンの混合スラリーを調製した。次に、このスラリーを攪拌機、温度センサー、還流冷却器の付いた1Lの四口フラスコに入れ、攪拌しながら油浴にて75℃に昇温した。次に容器内のスラリーを75℃に保ちながら、0.36規定の硫酸276gをマイクロチューニングポンプを使用して、滴下速度1.53ml/分で3時間かけて滴下し炭酸カルシウム・二酸化チタン・シリカ複合凝集粒子を得た。この時の反応液のpHは10.1であった。さらに、No.2ろ紙を用いてろ過・水洗し再度ろ過することにより、炭酸カルシウム・二酸化チタン・シリカ複合凝集粒子のウェットケーキが得られた。平均粒径は4.9ミクロンであり、炭酸カルシウムと二酸化チタンとシリカの比率は52:34:14であった。
【0028】
<合成例5>
カオリン(CADAM製 アマゾン88SD)の粉体30gを珪酸ナトリウム水溶液(珪酸分として3.61%)312gに添加して、ホモミキサーを使用して回転数3000rpmで20分間、分散処理を行いカオリンスラリーを調製した。次に、このスラリーを攪拌機、温度センサー、還流冷却器の付いた1Lの四口フラスコに入れ、攪拌しながら油浴にて75℃に昇温した。次に容器内のスラリーを75℃に保ちながら、0.36規定の硫酸276gをマイクロチューニングポンプを使用して、滴下速度1.53ml/分で3時間かけて滴下しカオリン・シリカ複合凝集粒子を得た。この時の反応液のpHは8.5であった。さらに、No.2ろ紙を用いてろ過・水洗し再度ろ過することにより、カオリン・シリカ複合凝集粒子のウェットケーキが得られた。平均粒径は12.7ミクロンであり、カオリンとシリカの比率は70:30であった。
【0029】
<合成例6>
合成例5において、得られたカオリン・シリカ複合凝集粒子を105℃、5時間で加熱乾燥を行った。次にこの乾燥粉体をサンドグラインダーで湿式粉砕を行い平均粒径が2.5ミクロンのカオリン・シリカ複合凝集粒子が得られた。
【0030】
<合成例7>
合成例1において、炭酸カルシウムの粉体を20gに変更した以外は合成例1と同様にして炭酸カルシウム・シリカ複合凝集粒子を得た。この時の反応液のpHは10.2であった。得られた炭酸カルシウム・シリカ複合凝集粒子の平均粒径は10.0ミクロンであり、炭酸カルシウムとシリカの比率は65:35であった。
【0031】
<合成例8>
合成例1において、炭酸カルシウムの粉体を10gに変更した以外は合成例1と同様にして炭酸カルシウム・シリカ複合凝集粒子を得た。この時の反応液のpHは10.1であった。得られた炭酸カルシウム・シリカ複合凝集粒子の平均粒径は30.5ミクロンであり、炭酸カルシウムとシリカの比率は60:40であった。
【0032】
<合成例9>
合成例5において、カオリンの粉体を20gに変更した以外は合成例5と同様にしてカオリン・シリカ複合凝集粒子を得た。この時の反応液のpHは9.8であった。得られたカオリン・シリカ複合凝集粒子の平均粒径は15.0ミクロンであり、カオリンとシリカの比率は70:30であった。
【0033】
<合成例10>
合成例5において、カオリンの粉体を10gに変更した以外は合成例5と同様にしてカオリン・シリカ複合凝集粒子を得た。この時の反応液のpHは9.6であった。得られたカオリン・シリカ複合凝集粒子の平均粒径は35.5ミクロンであり、カオリンとシリカの比率は68:32であった。
【0034】
<合成例11>
炭酸カルシウム(奥多摩工業製 TP-121)の粉体30gを珪酸ナトリウム水溶液(珪酸分として3.61%)312gに添加して、ホモミキサーを使用して回転数3000rpmで20分間、分散処理を行い炭酸カルシウムスラリーを調製した。次に、このスラリーを攪拌機、温度センサー、還流冷却器の付いた1Lの四口フラスコに入れ、攪拌しながら油浴にて75℃に昇温した。次に容器内のスラリーを75℃に保ちながら、10重量%の濃度の硫酸180gをマイクロチューニングポンプを使用して、滴下速度1.0ml/分で3時間かけて滴下し炭酸カルシウム・シリカ複合粒子を得た。この時の反応液のpHは5.7であった。さらに、No.2ろ紙を用いてろ過・水洗し再度ろ過することにより、炭酸カルシウム・シリカ複合粒子のウェットケーキが得られた。平均粒子径は9ミクロンであり、炭酸カルシウムとシリカの比率は25:75であり、シリカの比率の方が炭酸カルシウムより高かった。複合粒子を電子顕微鏡で観察したところ、粒子は球状であり炭酸カルシウムはホワイトカーボンで完全に覆われていた。
【0035】
<合成例12>
カオリン(CADAM製 アマゾン88SD)の粉体30gを珪酸ナトリウム水溶液(珪酸分として3.61%)312gに添加して、ホモミキサーを使用して回転数3000rpmで20分間、分散処理を行いカオリンスラリーを調製した。次に、このスラリーを攪拌機、温度センサー、還流冷却器の付いた1Lの四口フラスコに入れ、攪拌しながら油浴にて75℃に昇温した。次に容器内のスラリーを75℃に保ちながら、10重量%の濃度の硫酸180gをマイクロチューニングポンプを使用して、滴下速度1.0ml/分で3時間かけて滴下しカオリン・シリカ複合粒子を得た。この時の反応液のpHは6.5であった。さらに、No.2ろ紙を用いてろ過・水洗し再度ろ過することにより、カオリン・シリカ複合粒子のウェットケーキが得られた。平均粒子径は9.5ミクロンであり、カオリンとシリカの比率は20:80であり、シリカの比率の方がカオリンより高かった。複合粒子を電子顕微鏡で観察したところ、粒子は球状でありカオリンはホワイトカーボンで完全に覆われていた。
【0036】
[実施例1]
広葉樹晒パルプ(LBKP CSF407ml)のスラリー(濃度 1.00%)に、合成例1の複合凝集体粒子スラリーをパルプ絶乾重量当り10%となるように添加し、1分間攪拌後、硫酸バンドを絶乾重量当り1%添加した。さらに、1分間攪拌後、歩留向上剤として、カチオンPAM(ハイモロック DR-1500)をパルプと填料の合計絶乾重量当り100ppm 添加攪拌し、pHが8.0〜8.5になるように硫酸バンドを微量添加した。この調成したパルプスラリーを用いて、角型手抄機で目標坪量が64g/m2、紙中灰分が10重量%となるように抄造し、プレスにより脱水後、送風乾燥機(50℃、1時間)にて乾燥しシートサンプルを作製した。このシートの密度、白色度、不透明度、裂断長を測定し表1に示した。
【0037】
[実施例2]
実施例1において、合成例2の複合凝集粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。
【0038】
[実施例3]
実施例1において、合成例3の複合凝集粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。
【0039】
[実施例4]
実施例1において、合成例4の複合凝集粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。
【0040】
[比較例1]
実施例1において、炭酸カルシウム(奥多摩工業製 TP-121)の粉体を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。
【0041】
[比較例2]
実施例1において、合成例11の複合粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。
【0042】
[実施例5]
実施例1において、合成例5の複合凝集粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。
【0043】
[実施例6]
実施例1において、合成例6の複合凝集粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。
【0044】
[比較例3]
実施例1において、カオリン(CADAM製 アマゾン88SD)を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。
【0045】
[比較例4]
実施例1において、合成例12の複合粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例1と同様に物性を測定評価し、結果を表1に示した。
【0046】
以上の実施例1〜6および比較例1〜4の物性測定評価結果を表1に示した。
【0047】
[実施例7]
広葉樹晒パルプ(LBKP CSF407ml)のスラリー(濃度 1.00%)に、合成例7の複合凝集体粒子スラリーをパルプ絶乾重量当り10%となるように添加し、1分間攪拌後、硫酸バンドを絶乾重量当り1%添加した。さらに、1分間攪拌後、歩留向上剤として、カチオンPAM(ハイモロック DR-1500)をパルプと填料の合計絶乾重量当り100ppm 添加攪拌し、pHが8.0〜8.5になるように硫酸バンドを微量添加した。この調成したパルプスラリーを用いて、角型手抄機で目標坪量が64g/m2、紙中灰分が10重量%となるように抄造し、プレスにより脱水後、送風乾燥機(50℃、1時間)にて乾燥しシートサンプルを作製した。このシートの密度、白色度、不透明度、裂断長、填料歩留りを測定し表2に示した。
【0048】
[実施例8]
実施例7において、合成例8の複合凝集粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例7と同様に物性を測定評価し、結果を表2に示した。
【0049】
[実施例9]
実施例7において、合成例9の複合凝集粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例7と同様に物性を測定評価し、結果を表2に示した。
【0050】
[実施例10]
実施例7において、合成例10の複合凝集粒子を用いた以外は同一条件でシ−トを作製した。得られたシートつき実施例7と同様に物性を測定評価し、結果を表2に示した。
【0051】
以上の実施例7〜10および比較例1,2の物性測定評価結果を表2に示した。
【0052】
【表1】

Figure 0003898007
【0053】
表1に示すように、実施例1及び実施例2の炭酸カルシウムを原料として製造した炭酸カルシウム・シリカ複合粒子では、比較例1の炭酸カルシウムのみの場合に比較して、紙の密度が4〜6%低下しており嵩高性が認められた。さらに、白色度は0.8〜1.0ポイント、不透明度は0.7〜0.8ポイント上昇しており、裂断長も27%高くなり填料内添による紙力の低下が少なかった。
【0054】
実施例3の加熱乾燥した炭酸カルシウム・シリカ複合粒子をサンドグラインダーで粉砕したものでは、紙の密度が10%低下しており極めて高い嵩高性が認められた。さらに、白色度は1.6ポイント、不透明度は1.3ポイント上昇しており、裂断長も47%高くなり紙力の低下が極めて少なかった。
【0055】
実施例4の炭酸カルシウム・二酸化チタン・シリカ複合粒子では、紙の密度が6%低下しており高い嵩高性が認められた。さらに、二酸化チタンが複合化されているため、白色度、不透明度共に2.5ポイント上昇しており、裂断長も47%高くなり紙力の低下が極めて少なかった。
【0056】
また、比較例2の最終反応液のpHを5.7の酸性領域にしたものでは、炭酸カルシウムとシリカの比率が25:75で、シリカの比率の方が炭酸カルシウムより高く、炭酸カルシウムがホワイトカーボンで完全に覆われた球状体であるため、嵩高性がなく、白色度は0.4ポイント、不透明度は1.4ポイント低下した。裂断長は殆ど変化が無い。
【0057】
実施例5のカオリンを原料として製造したカオリン・シリカ複合粒子では、比較例3のカオリンのみの場合に比較して、紙の密度が8%低下しており高い嵩高性が認められた。さらに、白色度は1.2ポイント、不透明度は1.9ポイント上昇しており、裂断長も40%高くなり紙力の低下が少なかった。
【0058】
実施例6の加熱乾燥したカオリン・シリカ複合粒子をサンドグラインダーで粉砕したものでは、比較例3のカオリンのみの場合に比較して、紙の密度が12%低下しており高い嵩高性が認められた。さらに、白色度は1.5ポイント、不透明度は2.4ポイント上昇しており、裂断長も47%高くなり紙力の低下が少なかった。
【0059】
また、比較例4の最終反応液のpHを6.5の酸性領域にしたものでは、カオリンとシリカの比率が20:80であり、シリカの比率の方がカオリンより高く、カオリンがホワイトカーボンで完全に覆われた球状体であるため、嵩高性がなく、白色度は0.2ポイント、不透明度は 1.0ポイント低下した。裂断長は殆ど変化が無い。
【0060】
【表2】
Figure 0003898007
【0061】
表2に示すように、実施例7〜10の複合粒子の粒径を10ミクロン以上にすると、嵩高性、白色度、不透明度が高く、紙力の低下も少なく、填料歩留りが43〜47%で非常に高かった。
【0062】
【発明の効果】
無機微粒子を珪酸アルカリ水溶液に添加・分散しスラリーを調製した後に加熱攪拌しながら、液温を60〜100℃の範囲に保持し酸を添加し、シリカゾルを生成させ、最終反応液のpHを中性〜弱アルカリ性の範囲に調整することにより形成される無機微粒子・シリカ複合粒子を紙に内添することにより以下の特性を備えた填料内添紙が得られた。
1)軽くて厚い嵩高性の高い紙が得られる
2)白色度、不透明度などの光学特性が優れている
3)嵩高でありながら紙力(裂断長、引裂強度)が優れている
4)填料の歩留りが高い[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a paper containing a new composite filler, and in particular, production of a filler-added paper having high bulkiness, whiteness, opacity, little reduction in paper strength due to filler addition, and high filler yield. Regarding the method.
[0002]
[Prior art]
In recent years, there has been a need for lighter paper from the standpoint of environmental load reduction, including forest resource protection, resource saving problems, and garbage problems. When aiming to reduce the weight of paper, especially in the fields of printing paper and wrapping paper, various fillers are internally added to increase whiteness, opacity, and printability. Conventionally, as a method for improving the whiteness and opacity of paper by adding filler, a method of increasing scattering efficiency by internally adding a filler having a large refractive index such as titanium dioxide, white clay, talc, calcium carbonate, organic pigment, etc. A method has been adopted in which a filler having a refractive index of about 1.5 is internally added to suppress adhesion between pulp fibers and increase the scattering surface area.
[0003]
In the past, methods such as simply lowering the basis weight or increasing the deinked pulp ratio have been used in order to cope with lighter paper. However, with this method, the paper is thinned, and the whiteness and opacity are lowered, resulting in poor printability such as back-through. Opacity and strikethrough are closely related to the thickness of the paper, and so far, bulky paper has been produced by using extra pulp or using bulky pulp.
[0004]
[Problems to be solved by the invention]
However, the filler such as calcium carbonate having a small particle diameter as described above has a problem that most of the filler flows out into the white water at the time of paper making and is very poorly retained in the paper layer. Further, such small filler particles are distributed between pulp fibers, so that the bonding between the fibers is hindered and the paper strength is lowered.
[0005]
The object of the present invention is to improve the yield of the filler, and the interfiber bonding is not hindered by the filler particles distributed between the fibers, and even a small amount of pulp can be bulked, and at the same time, the whiteness and opacity can be improved. The object is to provide a bulky filler manufacturing method and a filler-added paper capable of producing “light and thick paper”.
[0006]
[Means for Solving the Problems]
The above problem is that after adding and dispersing inorganic fine particles in an alkali silicate aqueous solution to prepare a slurry, while heating and stirring, the liquid temperature is maintained in the range of 60 to 100 ° C., and an acid is added to form a silica sol. By adjusting the pH of the solution to a neutral to weakly alkaline range, inorganic fine particles / silica composite particles were produced and internally added as a filler to the pulp slurry.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, silica sol fine particles of about several nanometers formed by adding an acid such as dilute sulfuric acid to a sodium silicate solution are thinly attached to the entire surface of the inorganic fine particles. Bonding occurs between the fine particles and the silica sol fine particles on the surface of the other inorganic fine particles, and an aggregate of inorganic fine particles and silica composite particles is formed.
[0008]
For this reason, the pH of the final reaction solution is an important factor, and it is necessary to control the pH so that hydrated silicic acid (white carbon) is not generated in the reaction system, with the pH ranging from neutral to weakly alkaline. A preferred pH is in the range of 8-11. If sulfuric acid is added until the pH reaches an acidic condition of less than 7, white carbon is generated instead of silica sol, and the white carbon surrounds the aggregates of inorganic fine particles in a spherical shape. The optical characteristics appear preferentially, and the optical characteristics of the inorganic fine particles in the core are not exhibited at all. When the pH exceeds 11, the generation of silica sol becomes insufficient, and it is difficult to obtain an aggregate of the inorganic fine particles / silica composite of the present invention.
[0009]
The silica sol produced during the reaction in the present invention is prepared by reacting sodium silicate (water glass) as a raw material with a dilute solution of mineral acid such as sulfuric acid, hydrochloric acid, nitric acid, etc. at a high temperature, and by hydrolysis reaction and polymerization of silicic acid. Silica sol particles having a particle diameter of 10 to 20 nm are obtained.
[0010]
The alkali silicate solution used in the present invention is not particularly limited, but a sodium silicate solution (No. 3 water glass) is desirable from the viewpoint of availability. The concentration of the alkali silicate solution is preferably 3 to 10% by weight in terms of the silicic acid content in the aqueous solution (in terms of SiO2). When the content exceeds 10% by weight, the formed composite is not an inorganic fine particle / silica composite aggregate, but the inorganic fine particles are encapsulated with white carbon, and the optical properties of the inorganic fine particles in the core are not exhibited at all. . On the other hand, when the content is less than 3% by weight, the silica component in the composite particles is lowered, so that aggregate particles are difficult to form.
[0011]
Examples of the inorganic fine particles used in the present invention include light calcium carbonate, heavy calcium carbonate, talc, kaolin, clay, calcined kaolin, titanium dioxide, and aluminum hydroxide, which are fillers for papermaking. The particle size is preferably 0.05 to 50 microns in view of the particle size of the composite aggregate particles to be formed.
[0012]
Since these inorganic fine particles have a function as a dispersant in the sodium silicate solution, they are used after being previously dispersed in the sodium silicate solution. However, if the dispersibility of the particles is not good during dispersion, the sodium silicate solution may be added after the filler is dispersed in the water to which the dispersant has been added. In particular, since titanium dioxide has a small particle size and easily aggregates, it is desirable to use a dispersant. Examples of the dispersant include sodium hexametaphosphate, sodium pyrophosphate, and polycarboxylic acid soda.
[0013]
The above inorganic fine particles may be used alone, but a composite filler having high functionality can also be produced by using two or more kinds of inorganic fine particles in combination.
[0014]
Examples of the acid used in the present invention include dilute sulfuric acid, dilute hydrochloric acid, dilute nitric acid and other mineral acids, acetic acid, carbon dioxide, and the like, but dilute sulfuric acid is most desirable in terms of price and handling. Furthermore, the concentration when adding dilute sulfuric acid is preferably 0.2 to 1.0 molar.
[0015]
Regarding the reaction temperature during the production of the inorganic fine particles / silica composite particles in the present invention, a range of 60 to 100 ° C. is desirable. The reaction temperature affects the formation of silica sol, the crystal growth rate, and the mechanical strength of the formed inorganic fine particles / silica composite aggregate particles. When the reaction temperature is less than 60 ° C, the formation and growth rate of silica sol is slow, and the bond strength of the formed inorganic fine particles and silica composite aggregate particles is weak. . If it exceeds 100 ° C, the reaction process becomes complicated because an autoclave must be used because it is an aqueous reaction. The optimum reaction temperature is 70-90 ° C.
[0016]
In addition, when producing inorganic fine particles / silica composite particles, inorganic fine particles are added to and dispersed in an aqueous alkali silicate solution to prepare a slurry. The slurry concentration is preferably 3 to 35% by weight. By adjusting the slurry concentration, the particle size of the formed inorganic fine particles / silica composite aggregate particles is controlled, and at the same time, the composition ratio of the inorganic fine particles and silica is determined.
[0017]
Furthermore, by making the average particle size of the inorganic fine particle / silica composite aggregate particles large particles of 10 to 60 microns, it is possible to increase the yield of the filler.
The following three methods are mentioned as a method of particle size control.
(1) The filler slurry concentration obtained by adding inorganic fine particles to an aqueous solution of alkali silicate having a concentration of 3.61% as the silicic acid content is set to 3.2 to 9.6% by weight.
(2) Use inorganic fine particles having a large particle size of 2 to 10 microns as raw materials.
(3) A solid obtained by air-drying or heat-drying a slurry of inorganic fine particles / silica composite aggregate particles is dry-type or wet-ground.
By the above method, it is possible to control the particle size to a size of 10 to 60 microns.
[0018]
In the present invention, inorganic fine particles are added and dispersed in an aqueous alkali silicate solution to prepare a slurry, and while stirring, the liquid temperature is maintained in the range of 60 to 100 ° C., and an acid is added to form a silica sol. By adjusting the pH to neutral to weakly alkaline, preferably 8 to 11, inorganic fine particles / silica composite particles are produced, and the slurry is filtered and washed with water to obtain a wet cake.
[0019]
This wet cake is again dispersed in water to form a filler slurry, which is internally added to the pulp slurry at the time of papermaking to obtain a filler-added paper. At this time, the wet cake of inorganic fine particles / silica composite particles is made into fine dry particles by air drying or heat drying treatment, and then again using a dry pulverizer or wet pulverizer to adjust the particle size of the filler slurry during pulping. When the filler-added paper is obtained by internally adding to the above, it is possible to dramatically increase the bulkiness that is the effect of the present invention. Examples of the wet pulverizer include known homomixers, homogenizers, and sand grinders.
[0020]
In the present invention, clay, silica, talc, calcined kaolin, calcium carbonate and other inorganic fillers, or vinyl chloride resins, polystyrene resins, urea formalin resins, melamine resins, styrene, as known fillers within a range not impairing the effects of the present invention. / Organic fillers produced from synthetic resins such as butadiene copolymer resins can also be used in combination.
[0021]
In addition, if necessary, a paper strength enhancer such as polyacrylamide polymer, polyvinyl alcohol polymer, cationized starch, urea / formalin resin, melamine / formalin resin; salt of acrylamide / aminomethylacrylamide copolymer , Cationized starch, polyethyleneimine, polyethylene oxide, acrylamide / sodium acrylate copolymer and other drainage or yield improvers; aluminum sulfate (sulfuric acid band), water-resistant agents, UV inhibitors, fading inhibitors, etc. Etc. may be contained.
[0022]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in detail according to an Example and a comparative example, this invention is not limited to these. In the description, percentage indicates weight percentage.
[0023]
The neutral high-quality paper produced in Examples and Comparative Examples was measured for bulkiness, whiteness, opacity, tear length, and filler yield by the following methods.
-Bulkiness: The density of the paper was calculated from the basis weight and the paper thickness. The lower the density, the higher the bulkiness.
Measurement of whiteness: Whiteness was measured with a Hunter whiteness meter based on JIS P 8123.
-Measurement of opacity: Opacity was measured using a hunter reflectometer based on JIS P 8138.
-Filler yield: Cut out 10x10cm pieces of paper from a hand-made sheet (blank) that has not been filled with filler and a hand-made sheet that has been filled with filler. 105 ° C x 3 hours After drying, weigh the absolute dry weight. Next, this absolutely dry paper piece is baked in an electric furnace at 575 ° C. for 2 hours to obtain ash contained in the sheet. Filler yield (%) was calculated from the following formula.
Filler yield = {(weight of sheet ash with filler / absolute dry weight-blank ash weight / absolute dry weight)} / filler compounding ratio × 100
・ Fracture length: It was calculated by the following formula according to JIS P8113.
Breaking length = Tensile strength / (Width of specimen x Basis weight of specimen) x 1000
-Ash content: Ashing temperature was 575 ° C based on JIS P 8128.
-Ratio of composite particles: The component ratio of the composite particles was measured by fluorescent X-ray analysis.
Overall quality evaluation was performed based on the above measurement results. Evaluation was made in the following three stages.
◎: Very good ◯: Good ×: Inferior [0024]
<Synthesis Example 1>
Calcium carbonate (TP-121 manufactured by Okutama Kogyo Co., Ltd.) 30 g powder is added to 312 g sodium silicate aqueous solution (3.61% as silicic acid content) and dispersed using a homomixer for 20 minutes at 3000 rpm. A slurry was prepared. Next, this slurry was put into a 1 L four-necked flask equipped with a stirrer, a temperature sensor, and a reflux condenser, and heated to 75 ° C. in an oil bath while stirring. Next, while maintaining the slurry in the container at 75 ° C., 276 g of 0.36 normal sulfuric acid was dropped over 3 hours at a dropping rate of 1.53 ml / min using a micro tuning pump to obtain calcium carbonate / silica composite aggregated particles. . The pH of the reaction solution at this time was 10.3. Furthermore, a wet cake of calcium carbonate / silica composite aggregated particles was obtained by filtering, washing with water using No. 2 filter paper, and filtering again. Using a particle size distribution analyzer Mastersizer S (Malvern), 50% volume average particle size was measured by laser diffraction / scattering method. The average particle size was 8 microns, and the ratio of calcium carbonate to silica was It was 70:30.
[0025]
<Synthesis Example 2>
Calcium carbonate / silica composite aggregated particles were obtained in the same manner as in Synthesis Example 1 except that the powder of calcium carbonate (TP-121 manufactured by Okutama Kogyo) was changed to 70 g in Synthesis Example 1. The pH of the reaction solution at this time was 10.2. The average particle diameter of the obtained calcium carbonate / silica composite agglomerated particles was 5.4 microns, and the ratio of calcium carbonate to silica was 86:14.
[0026]
<Synthesis Example 3>
In Synthesis Example 1, the obtained calcium carbonate / silica composite aggregated particles were heat-dried at 105 ° C. for 5 hours. Next, this dry powder was wet-ground with a sand grinder to obtain calcium carbonate / silica composite aggregated particles having an average particle size of 2.0 microns.
[0027]
<Synthesis Example 4>
Add 18g powder of calcium carbonate (TP-121 made by Okutama Kogyo) and 12g titanium dioxide (FA-50 made by Furukawa Kikai Metal) to 312g sodium silicate aqueous solution (3.61% as silicic acid content), and use a homomixer. Dispersion treatment was carried out at a rotational speed of 3000 rpm for 20 minutes to prepare a mixed slurry of calcium carbonate and titanium dioxide. Next, this slurry was put into a 1 L four-necked flask equipped with a stirrer, a temperature sensor, and a reflux condenser, and heated to 75 ° C. in an oil bath while stirring. Next, while maintaining the slurry in the container at 75 ° C., 276 g of 0.36 normal sulfuric acid was dropped over 3 hours at a dropping rate of 1.53 ml / min using a micro-tuning pump, and calcium carbonate / titanium dioxide / silica composite aggregated particles Got. The pH of the reaction solution at this time was 10.1. Furthermore, a wet cake of calcium carbonate / titanium dioxide / silica composite aggregated particles was obtained by filtering, washing with water using No. 2 filter paper, and filtering again. The average particle size was 4.9 microns and the ratio of calcium carbonate, titanium dioxide and silica was 52:34:14.
[0028]
<Synthesis Example 5>
A kaolin slurry was prepared by adding 30 g of powder of kaolin (Amazon 88SD made by CADAM) to 312 g of an aqueous sodium silicate solution (3.61% as silicic acid content) and dispersing for 20 minutes at 3000 rpm using a homomixer. . Next, this slurry was put into a 1 L four-necked flask equipped with a stirrer, a temperature sensor, and a reflux condenser, and heated to 75 ° C. in an oil bath while stirring. Next, while maintaining the slurry in the container at 75 ° C., 276 g of 0.36 normal sulfuric acid was added dropwise over 3 hours at a dropping rate of 1.53 ml / min using a micro tuning pump to obtain kaolin-silica composite aggregated particles. The pH of the reaction solution at this time was 8.5. Furthermore, a wet cake of kaolin-silica composite aggregated particles was obtained by filtering, washing with water and filtering again using No. 2 filter paper. The average particle size was 12.7 microns and the ratio of kaolin to silica was 70:30.
[0029]
<Synthesis Example 6>
In Synthesis Example 5, the obtained kaolin / silica composite aggregated particles were heat-dried at 105 ° C. for 5 hours. Next, the dry powder was wet pulverized with a sand grinder to obtain kaolin-silica composite aggregated particles having an average particle diameter of 2.5 microns.
[0030]
<Synthesis Example 7>
Calcium carbonate / silica composite aggregated particles were obtained in the same manner as in Synthesis Example 1 except that the calcium carbonate powder was changed to 20 g in Synthesis Example 1. The pH of the reaction solution at this time was 10.2. The obtained calcium carbonate / silica composite agglomerated particles had an average particle diameter of 10.0 microns, and the ratio of calcium carbonate to silica was 65:35.
[0031]
<Synthesis Example 8>
Calcium carbonate / silica composite aggregated particles were obtained in the same manner as in Synthesis Example 1 except that the calcium carbonate powder was changed to 10 g in Synthesis Example 1. The pH of the reaction solution at this time was 10.1. The obtained calcium carbonate / silica composite aggregated particles had an average particle diameter of 30.5 microns, and the ratio of calcium carbonate to silica was 60:40.
[0032]
<Synthesis Example 9>
In synthesis example 5, kaolin-silica composite aggregated particles were obtained in the same manner as in synthesis example 5 except that the kaolin powder was changed to 20 g. The pH of the reaction solution at this time was 9.8. The average particle diameter of the obtained kaolin-silica composite aggregated particles was 15.0 microns, and the ratio of kaolin to silica was 70:30.
[0033]
<Synthesis Example 10>
In synthesis example 5, kaolin-silica composite aggregated particles were obtained in the same manner as in synthesis example 5 except that the kaolin powder was changed to 10 g. At this time, the pH of the reaction solution was 9.6. The average particle diameter of the obtained kaolin-silica composite aggregated particles was 35.5 microns, and the ratio of kaolin to silica was 68:32.
[0034]
<Synthesis Example 11>
Calcium carbonate (TP-121 manufactured by Okutama Kogyo Co., Ltd.) 30 g powder is added to 312 g sodium silicate aqueous solution (3.61% as silicic acid content) and dispersed using a homomixer for 20 minutes at 3000 rpm. A slurry was prepared. Next, this slurry was put into a 1 L four-necked flask equipped with a stirrer, a temperature sensor, and a reflux condenser, and heated to 75 ° C. in an oil bath while stirring. Next, while maintaining the slurry in the container at 75 ° C., 180 g of sulfuric acid having a concentration of 10% by weight was dropped over 3 hours at a dropping rate of 1.0 ml / min using a micro tuning pump to obtain calcium carbonate / silica composite particles. Obtained. The pH of the reaction solution at this time was 5.7. Furthermore, a wet cake of calcium carbonate / silica composite particles was obtained by filtering, washing with water and filtering again using No. 2 filter paper. The average particle size was 9 microns, the ratio of calcium carbonate to silica was 25:75, and the silica ratio was higher than calcium carbonate. When the composite particles were observed with an electron microscope, the particles were spherical and the calcium carbonate was completely covered with white carbon.
[0035]
<Synthesis Example 12>
A kaolin slurry was prepared by adding 30 g of powder of kaolin (Amazon 88SD made by CADAM) to 312 g of an aqueous sodium silicate solution (3.61% as silicic acid content) and dispersing for 20 minutes at 3000 rpm using a homomixer. . Next, this slurry was put into a 1 L four-necked flask equipped with a stirrer, a temperature sensor, and a reflux condenser, and heated to 75 ° C. in an oil bath while stirring. Next, while maintaining the slurry in the container at 75 ° C., 180 g of sulfuric acid with a concentration of 10% by weight is dropped over 3 hours at a dropping rate of 1.0 ml / min using a micro tuning pump to obtain kaolin-silica composite particles. It was. The pH of the reaction solution at this time was 6.5. Furthermore, a wet cake of kaolin-silica composite particles was obtained by filtering, washing with water using No. 2 filter paper, and filtering again. The average particle size was 9.5 microns, the ratio of kaolin to silica was 20:80, and the silica ratio was higher than kaolin. When the composite particles were observed with an electron microscope, the particles were spherical and kaolin was completely covered with white carbon.
[0036]
[Example 1]
To the slurry (concentration 1.00%) of hardwood bleached pulp (LBKP CSF407ml), add the composite aggregate particle slurry of Synthesis Example 1 to 10% per pulp dry weight, stir for 1 minute, and then completely dry the sulfate band 1% was added per weight. Furthermore, after stirring for 1 minute, as a yield improver, cationic PAM (Himoloc DR-1500) was added and stirred at 100 ppm per total dry weight of pulp and filler, and a small amount of sulfuric acid band was added so that the pH was 8.0 to 8.5. did. Using this prepared pulp slurry, a square hand machine was used to make a paper with a target basis weight of 64 g / m 2 and an ash content of 10% by weight. ) For 1 hour) to prepare a sheet sample. The density, whiteness, opacity and tear length of this sheet were measured and shown in Table 1.
[0037]
[Example 2]
A sheet was produced under the same conditions as in Example 1 except that the composite aggregated particles of Synthesis Example 2 were used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[0038]
[Example 3]
A sheet was produced under the same conditions as in Example 1 except that the composite aggregated particles of Synthesis Example 3 were used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[0039]
[Example 4]
A sheet was produced under the same conditions as in Example 1 except that the composite aggregated particles of Synthesis Example 4 were used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[0040]
[Comparative Example 1]
A sheet was prepared under the same conditions as in Example 1 except that calcium carbonate (TP-121 manufactured by Okutama Kogyo Co., Ltd.) was used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[0041]
[Comparative Example 2]
In Example 1, a sheet was produced under the same conditions except that the composite particles of Synthesis Example 11 were used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[0042]
[Example 5]
A sheet was produced under the same conditions as in Example 1 except that the composite aggregated particles of Synthesis Example 5 were used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[0043]
[Example 6]
A sheet was produced under the same conditions as in Example 1 except that the composite aggregated particles of Synthesis Example 6 were used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[0044]
[Comparative Example 3]
A sheet was produced under the same conditions as in Example 1 except that kaolin (Amazon 88SD manufactured by CADAM) was used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[0045]
[Comparative Example 4]
In Example 1, a sheet was produced under the same conditions except that the composite particles of Synthesis Example 12 were used. The physical properties were measured and evaluated in the same manner as in Example 1 with the sheet obtained, and the results are shown in Table 1.
[0046]
The physical property measurement evaluation results of Examples 1 to 6 and Comparative Examples 1 to 4 are shown in Table 1.
[0047]
[Example 7]
To the slurry (concentration 1.00%) of hardwood bleached pulp (LBKP CSF407ml), add the composite aggregate particle slurry of Synthesis Example 7 to 10% per pulp dry weight, stir for 1 minute, and then completely dry the sulfate band 1% was added per weight. Furthermore, after stirring for 1 minute, as a yield improver, cationic PAM (Himoloc DR-1500) was added and stirred at 100 ppm per total dry weight of pulp and filler, and a small amount of sulfuric acid band was added so that the pH was 8.0 to 8.5. did. Using this prepared pulp slurry, a square hand machine was used to make a paper with a target basis weight of 64 g / m 2 and an ash content of 10% by weight. ) For 1 hour) to prepare a sheet sample. The density, whiteness, opacity, tear length, and filler yield of this sheet were measured and shown in Table 2.
[0048]
[Example 8]
In Example 7, a sheet was produced under the same conditions except that the composite aggregated particles of Synthesis Example 8 were used. The physical properties were measured and evaluated in the same manner as in Example 7 with the sheet obtained, and the results are shown in Table 2.
[0049]
[Example 9]
In Example 7, a sheet was produced under the same conditions except that the composite aggregated particles of Synthesis Example 9 were used. The physical properties were measured and evaluated in the same manner as in Example 7 with the sheet obtained, and the results are shown in Table 2.
[0050]
[Example 10]
In Example 7, a sheet was produced under the same conditions except that the composite aggregated particles of Synthesis Example 10 were used. The physical properties were measured and evaluated in the same manner as in Example 7 with the sheet obtained, and the results are shown in Table 2.
[0051]
The physical property measurement evaluation results of Examples 7 to 10 and Comparative Examples 1 and 2 are shown in Table 2.
[0052]
[Table 1]
Figure 0003898007
[0053]
As shown in Table 1, in the calcium carbonate / silica composite particles produced using the calcium carbonate of Example 1 and Example 2 as a raw material, the density of the paper is 4 to 4 in comparison with the case of only the calcium carbonate of Comparative Example 1. It was 6% lower and bulkiness was recognized. Further, the whiteness increased by 0.8 to 1.0 point, the opacity increased by 0.7 to 0.8 point, the tearing length increased by 27%, and the paper strength was less reduced by the addition of filler.
[0054]
When the heat-dried calcium carbonate / silica composite particles of Example 3 were pulverized with a sand grinder, the density of the paper was reduced by 10%, and extremely high bulkiness was observed. Furthermore, the whiteness increased by 1.6 points, the opacity increased by 1.3 points, the tear length increased by 47%, and the paper strength decreased very little.
[0055]
In the calcium carbonate / titanium dioxide / silica composite particles of Example 4, the paper density was reduced by 6%, and high bulkiness was recognized. Furthermore, since titanium dioxide was compounded, both whiteness and opacity increased by 2.5 points, the tear length increased by 47%, and the paper strength decreased very little.
[0056]
In addition, in the case where the pH of the final reaction solution of Comparative Example 2 is in the acidic region of 5.7, the ratio of calcium carbonate to silica is 25:75, the ratio of silica is higher than calcium carbonate, and the calcium carbonate is white carbon. Since it was a completely covered sphere, it was not bulky, and whiteness decreased by 0.4 points and opacity decreased by 1.4 points. The tear length is almost unchanged.
[0057]
In the kaolin-silica composite particles produced using the kaolin of Example 5 as a raw material, the paper density was reduced by 8% compared to the case of only the kaolin of Comparative Example 3, and high bulkiness was recognized. Furthermore, the whiteness increased by 1.2 points, the opacity increased by 1.9 points, the tearing length increased by 40%, and the paper strength decreased little.
[0058]
When the heat-dried kaolin-silica composite particles of Example 6 were pulverized with a sand grinder, the paper density was reduced by 12% as compared with the case of only the kaolin of Comparative Example 3, and high bulkiness was observed. It was. Furthermore, the whiteness increased by 1.5 points, the opacity increased by 2.4 points, the tear length increased by 47%, and the paper strength decreased little.
[0059]
Further, in the case where the pH of the final reaction solution of Comparative Example 4 is in the acidic region of 6.5, the ratio of kaolin to silica is 20:80, the ratio of silica is higher than kaolin, and kaolin is completely white carbon. Since it was a covered sphere, it was not bulky and the whiteness decreased by 0.2 points and the opacity decreased by 1.0 points. The tear length is almost unchanged.
[0060]
[Table 2]
Figure 0003898007
[0061]
As shown in Table 2, when the particle size of the composite particles of Examples 7 to 10 is 10 microns or more, the bulkiness, whiteness and opacity are high, the decrease in paper strength is small, and the filler yield is 43 to 47%. It was very expensive.
[0062]
【The invention's effect】
After adding and dispersing inorganic fine particles in an alkali silicate aqueous solution to prepare a slurry, while heating and stirring, the liquid temperature is kept in the range of 60 to 100 ° C., and an acid is added to form a silica sol. By adding the inorganic fine particles / silica composite particles formed by adjusting to the range of low to low alkalinity to the paper, a filler-added paper having the following characteristics was obtained.
1) Light and thick paper with high bulkiness can be obtained 2) Optical properties such as whiteness and opacity are excellent 3) Paper strength (breaking length, tear strength) is excellent while being bulky 4) High yield of filler

Claims (4)

パルプスラリーに無機微粒子・シリカ複合粒子の凝集体である填料を添加して抄造することによる填料内添嵩高紙の製造方法において、
前記填料が、下記の製造方法:
無機微粒子を珪酸アルカリ水溶液に添加・分散しスラリーを調製した後に加熱攪拌しながら、液温を60〜100℃の範囲に保持し硫酸を添加し、シリカゾルを生成させ、最終反応液のpHを8 11の範囲に調整することにより形成される、無機微粒子・シリカ複合粒子の凝集体の製造方法であって、シリカゾル微粒子を無機微粒子の表面全体に薄く付着させ、シリカゾルの結晶成長に伴い、無機微粒子表面上のシリカゾル微粒子と別の無機微粒子表面上のシリカゾル微粒子間で結合を生じさせた、無機微粒子・シリカ複合粒子の凝集体が形成されることにより特定され、及び前記複合粒子のレーザー回折/散乱光による50%体積平均粒子径が10〜60ミクロンであることにより特定される
前記填料内添嵩高紙の製造方法。
In the manufacturing method of bulk paper with internal filler added by adding a filler that is an aggregate of inorganic fine particles and silica composite particles to the pulp slurry,
The filler is the following production method:
After adding and dispersing inorganic fine particles in an alkali silicate aqueous solution to prepare a slurry, while heating and stirring, the liquid temperature is kept in the range of 60 to 100 ° C. and sulfuric acid is added to form silica sol, and the pH of the final reaction liquid is set to 8 It is formed by adjusting the range of ~ 11, a process for the preparation of the aggregate of the inorganic fine particle-silica composite particles, silica sol particles thinly adhered to the entire surface of the inorganic fine particles, with the crystal growth of the silica sol, inorganic Identified by the formation of an aggregate of inorganic fine particles / silica composite particles, in which a bond is formed between the silica sol fine particles on the fine particle surface and the silica sol fine particles on the surface of another inorganic fine particle, and laser diffraction / Specified by a 50% volume average particle size by scattered light of 10-60 microns,
The manufacturing method of the said bulky paper internally added with a filler.
前記填料が、無機微粒子・シリカ複合粒子の凝集体を乾燥処理後、粉砕機で微粉体としたものである、請求項1記載の填料内添嵩高紙の製造方法。  The method for producing a bulk paper with internal filler according to claim 1, wherein the filler is obtained by drying an aggregate of inorganic fine particles / silica composite particles and then making a fine powder with a pulverizer. 前記無機微粒子が炭酸カルシウム、タルク、クレイ、カオリン、焼成カオリン、二酸化チタン、水酸化アルミニウムの単独または2種以上の混合物である請求項1又は2いずれか記載の填料内添嵩高紙の製造方法。 The method for producing a bulk paper with internal filler according to claim 1 or 2, wherein the inorganic fine particles are calcium carbonate, talc, clay, kaolin, calcined kaolin, titanium dioxide, or aluminum hydroxide alone or in a mixture of two or more. 珪酸アルカリ水溶液の濃度が3〜10重量%(SiO2換算)である請求項1又は2いずれか記載の填料内添嵩高紙の製造方法。Concentration of 3-10% by weight of alkali silicate solution (SiO 2 equivalent) in a claim 1 or 2 filler in添嵩high paper manufacturing method according to any one.
JP2001232086A 2001-07-31 2001-07-31 Method for producing bulky paper with internal filler added with filler, which is an aggregate of inorganic particles and silica composite particles Expired - Fee Related JP3898007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001232086A JP3898007B2 (en) 2001-07-31 2001-07-31 Method for producing bulky paper with internal filler added with filler, which is an aggregate of inorganic particles and silica composite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001232086A JP3898007B2 (en) 2001-07-31 2001-07-31 Method for producing bulky paper with internal filler added with filler, which is an aggregate of inorganic particles and silica composite particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006151792A Division JP4903493B2 (en) 2006-05-31 2006-05-31 Method for producing composite particles

Publications (2)

Publication Number Publication Date
JP2003049389A JP2003049389A (en) 2003-02-21
JP3898007B2 true JP3898007B2 (en) 2007-03-28

Family

ID=19064057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001232086A Expired - Fee Related JP3898007B2 (en) 2001-07-31 2001-07-31 Method for producing bulky paper with internal filler added with filler, which is an aggregate of inorganic particles and silica composite particles

Country Status (1)

Country Link
JP (1) JP3898007B2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1658993B1 (en) 2003-08-26 2008-05-21 Nippon Paper Industries Co., Ltd. Process for producing inkjet recording medium
KR20060134095A (en) * 2004-03-30 2006-12-27 닛뽄세이시가부시끼가이샤 Low-density neutral paper
JP4802465B2 (en) * 2004-08-31 2011-10-26 日本製紙株式会社 Coated paper for printing
JP4918749B2 (en) * 2004-09-06 2012-04-18 日本製紙株式会社 Coated paper for printing
JP4561258B2 (en) * 2004-09-07 2010-10-13 日本製紙株式会社 Coated paper for printing
JP4802471B2 (en) * 2004-09-28 2011-10-26 日本製紙株式会社 Coated paper for printing
JP4802474B2 (en) * 2004-09-29 2011-10-26 日本製紙株式会社 Coated paper for printing
JP2006102954A (en) * 2004-09-30 2006-04-20 Nippon Paper Industries Co Ltd Thermal recording medium
JP4792758B2 (en) * 2005-02-02 2011-10-12 日本製紙株式会社 Low density paper
JP4514634B2 (en) * 2005-03-29 2010-07-28 日本製紙株式会社 Continuous recording paper
JP4514658B2 (en) * 2005-06-30 2010-07-28 日本製紙株式会社 Information recording paper
US8152963B2 (en) 2005-10-06 2012-04-10 Daio Paper Corporation Method for manufacturing a regenerated particle aggregate
JP5003139B2 (en) * 2006-01-19 2012-08-15 王子製紙株式会社 Porous filler for paper, its production method and porous filler slurry for paper and paper
JP4725393B2 (en) * 2006-03-31 2011-07-13 王子製紙株式会社 Offset newspaper printing paper
JP4742988B2 (en) * 2006-05-25 2011-08-10 王子製紙株式会社 Newspaper for cold offset printing
JP5076756B2 (en) * 2006-10-10 2012-11-21 王子製紙株式会社 Low density printing paper
JP4540660B2 (en) * 2006-12-22 2010-09-08 大王製紙株式会社 Book paper and manufacturing method thereof
JP2008156773A (en) * 2006-12-22 2008-07-10 Daio Paper Corp Coated paperboard and method for producing the same
JP5096028B2 (en) * 2007-03-29 2012-12-12 日本製紙株式会社 Slurry containing light calcium carbonate-silica composite and aluminum-based water-soluble inorganic compound
JP5222865B2 (en) * 2010-02-22 2013-06-26 大王製紙株式会社 Book paper and manufacturing method thereof
JP5502556B2 (en) * 2010-03-30 2014-05-28 大王製紙株式会社 Method for producing silica composite particles
JP5486377B2 (en) * 2010-03-31 2014-05-07 大王製紙株式会社 Method for producing silica composite mixed inorganic particles and silica composite mixed inorganic particles
JP5632199B2 (en) * 2010-06-01 2014-11-26 大王製紙株式会社 Method for producing silica composite particles
JP5695875B2 (en) * 2010-10-12 2015-04-08 大王製紙株式会社 COMPOSITE PARTICLES, COMPOSITE PARTICLE MANUFACTURING METHOD, COMPOSITE PARTICLE ADDITIVE PAPER AND COATING
JP5683206B2 (en) * 2010-10-20 2015-03-11 大王製紙株式会社 Paper making method and paper
JP5702590B2 (en) * 2010-12-07 2015-04-15 大王製紙株式会社 Composite particles, composite particle internal paper and coated paper
JP5587154B2 (en) * 2010-12-07 2014-09-10 大王製紙株式会社 Composite particles, composite particle internal paper and coated paper
JP5762050B2 (en) * 2011-02-28 2015-08-12 大王製紙株式会社 Printing paper
US9481797B2 (en) * 2011-08-09 2016-11-01 Cristal Usa Inc. Pigment for paper and paper laminate
JP5840943B2 (en) * 2011-12-21 2016-01-06 大王製紙株式会社 Method for producing composite particles
CN109021660A (en) * 2018-08-20 2018-12-18 江苏中科纳特环境科技有限公司 A kind of nano-TiO2The preparation method of kaolin intercalation material
CN113605139A (en) * 2021-08-13 2021-11-05 江苏硕茂苏彩新材料有限公司 Papermaking filler additive and preparation method thereof

Also Published As

Publication number Publication date
JP2003049389A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
JP3898007B2 (en) Method for producing bulky paper with internal filler added with filler, which is an aggregate of inorganic particles and silica composite particles
FI120318B (en) Silicon containing starch composites, process for making them and use in making paper and paperboard
JP4903493B2 (en) Method for producing composite particles
US6726807B1 (en) Multi-phase calcium silicate hydrates, methods for their preparation, and improved paper and pigment products produced therewith
JP4263864B2 (en) Novel composite for papermaking and method for synthesis
JP4568921B2 (en) Silica particles, method for producing the same, and silica particle-containing paper
JP3982027B2 (en) Method for producing composite particles
JP4796282B2 (en) Low density printing paper
CA2577549C (en) Paper manufacturing using agglomerated hollow particle latex
CA2382869C (en) Multi-phase calcium silicate hydrates, methods for their preparation, and improved paper and pigment products produced therewith
JP4540660B2 (en) Book paper and manufacturing method thereof
JP2005281925A (en) Neutral paper for printing newspaper
JP2007091581A (en) Porous filler, its production method and paper
JP4225929B2 (en) Light calcium carbonate-silica composite
JP5840943B2 (en) Method for producing composite particles
JP5702590B2 (en) Composite particles, composite particle internal paper and coated paper
GB2234990A (en) Fibrous sheet material
JPH09156919A (en) Complex particle of titania and silica and its production
JP4514660B2 (en) Electrophotographic transfer paper
JP5222865B2 (en) Book paper and manufacturing method thereof
EP1642873A1 (en) Method for producing paper comprising multi-phase calcium silicate hydrates
JP4339392B2 (en) Novel composite for papermaking and method for synthesis
JP4742963B2 (en) Porous filler and production method thereof, porous filler slurry and paper
JPH09176985A (en) Production of filler added paper
JP2751238B2 (en) Papermaking method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060331

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R150 Certificate of patent or registration of utility model

Ref document number: 3898007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160105

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees