JP4779304B2 - Solid-state image sensor, camera module, and electronic device module - Google Patents

Solid-state image sensor, camera module, and electronic device module Download PDF

Info

Publication number
JP4779304B2
JP4779304B2 JP2004081234A JP2004081234A JP4779304B2 JP 4779304 B2 JP4779304 B2 JP 4779304B2 JP 2004081234 A JP2004081234 A JP 2004081234A JP 2004081234 A JP2004081234 A JP 2004081234A JP 4779304 B2 JP4779304 B2 JP 4779304B2
Authority
JP
Japan
Prior art keywords
film
solid
light irradiation
imaging device
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004081234A
Other languages
Japanese (ja)
Other versions
JP2005268643A (en
Inventor
康 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004081234A priority Critical patent/JP4779304B2/en
Publication of JP2005268643A publication Critical patent/JP2005268643A/en
Application granted granted Critical
Publication of JP4779304B2 publication Critical patent/JP4779304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、光電変換素子で光電変換された信号電荷を電気信号に変換して出力する単位画素が複数配列されて成る固体撮像素子、この固体撮像素子を備えたカメラモジュール及び電子機器モジュールに関する。 The present invention relates to a solid-state imaging device in which a plurality of unit pixels that convert and output signal charges photoelectrically converted by a photoelectric conversion device are arranged , a camera module including the solid- state imaging device , and an electronic device module .

固体撮像素子には、CMOSイメージセンサに代表されるCMOS固体撮像素子と、CCDイメージセンサに代表されるCCD固体撮像素子が知られている。CMOS固体撮像素子を例に採って、その断面構造の一例を図9に示す。   As the solid-state imaging device, a CMOS solid-state imaging device typified by a CMOS image sensor and a CCD solid-state imaging device typified by a CCD image sensor are known. Taking a CMOS solid-state imaging device as an example, an example of the cross-sectional structure is shown in FIG.

図9は、従来の表面照射型のCMOS固体撮像素子の例である。このCMOS固体撮像素子1は、第1導電型、例えばn型のシリコン半導体基板2に、第2導電型であるp型の半導体ウェル領域3を形成し、このp型半導体ウェル領域3の画素分離領域10で区画された単位画素領域に光電変換部となるフォトダイオード5及び複数のMOSトランジスタからなるMOSトランジスタ群6を形成して成る。フォトダイオード5は、画素分離領域3及びp型半導体ウェル領域3で囲まれたn型半導体領域で形成される。すなわち、表面から深い位置にある低不純物濃度のn型半導体領域(n−半導体領域)11と表面側の高不純物濃度のn型半導体領域(n+半導体領域)12により形成される。さらにn+半導体領域12の表面側の界面に暗電流発生を抑制するための高不純物濃度のp型半導体領域からなるp+アキュミュレーション層13が形成される。このフォトダイオード5は、いわゆるHAD(Hole Accumulation Diode)センサとして構成されている。   FIG. 9 shows an example of a conventional surface irradiation type CMOS solid-state imaging device. The CMOS solid-state imaging device 1 includes a p-type semiconductor well region 3 of a second conductivity type formed on a first conductivity type, for example, an n-type silicon semiconductor substrate 2, and pixel separation of the p-type semiconductor well region 3. In a unit pixel area partitioned by the area 10, a photodiode 5 serving as a photoelectric conversion unit and a MOS transistor group 6 including a plurality of MOS transistors are formed. The photodiode 5 is formed of an n-type semiconductor region surrounded by the pixel isolation region 3 and the p-type semiconductor well region 3. That is, it is formed by a low impurity concentration n-type semiconductor region (n− semiconductor region) 11 deep from the surface and a high impurity concentration n-type semiconductor region (n + semiconductor region) 12 on the surface side. Further, a p + accumulation layer 13 made of a p-type semiconductor region having a high impurity concentration for suppressing dark current generation is formed at the surface side interface of the n + semiconductor region 12. The photodiode 5 is configured as a so-called HAD (Hole Accumulation Diode) sensor.

MOSトランジスタ群6は、フォトダイオードに接続された読出しトランジスタ7と、その他のMOSトランジスタ8で構成される。読出しトランジスタ7は、P型半導体ウェル領域3に形成されたn+ソース・ドレイン領域14と、フォトダイオード5のn+半導体領域12と、n+ソース・ドレイン領域14及びフォトダイオード5間の基板表面にゲート絶縁膜を介して形成したゲート電極18とにより形成される。他のMOSトランジスタ8は、P型半導体ウェル領域3に形成されたn+ソース・ドレイン領域15及び16と、両n+ソース・ドレイン領域15及び16間の基板表面にゲート絶縁膜を介して形成したゲート電極19とにより形成される。例えば4つのMOSトランジスタで構成される場合には、読出しトランジスタ、リセットトランジスタ、アンプトランジスタ及び垂直選択トランジスタで構成される。さらに、基板表面上には、層間絶縁膜23を介して多層の配線層25が形成される。また、図示せざるもカラーフィルタ、オンチップレンズ等も形成される。   The MOS transistor group 6 includes a read transistor 7 connected to a photodiode and other MOS transistors 8. The read transistor 7 has an n + source / drain region 14 formed in the P-type semiconductor well region 3, an n + semiconductor region 12 of the photodiode 5, and gate insulation on the substrate surface between the n + source / drain region 14 and the photodiode 5. The gate electrode 18 is formed through a film. The other MOS transistor 8 includes n + source / drain regions 15 and 16 formed in the P-type semiconductor well region 3 and a gate formed on the substrate surface between the n + source / drain regions 15 and 16 via a gate insulating film. And the electrode 19. For example, when it is composed of four MOS transistors, it is composed of a read transistor, a reset transistor, an amplifier transistor and a vertical selection transistor. Furthermore, a multilayer wiring layer 25 is formed on the substrate surface via an interlayer insulating film 23. Although not shown, a color filter, an on-chip lens, and the like are also formed.

フォトダイオード5に入射する光は、信号電荷蓄積、読出し動作を行うMOSトランジスタが形成されている基板表面側から照射される。このような表面照射型のCMOS固体撮像素子1においては、基板表面側フォトダイオード5への集光効率を上げるために反射防止膜26が形成される。表面照射型のCMOS固体撮像素子1では、フォトダイオード、MOSトランジスタ群及び配線層などの経時劣化を防止するための保護膜と、その下の層間絶縁膜などにより、通常4層以上のシリコン酸化(SiO)膜、シリコン窒化(SiN)膜がフォトダイオード5上に存在する。   Light incident on the photodiode 5 is irradiated from the surface side of the substrate on which the MOS transistors that perform signal charge accumulation and readout operations are formed. In such a front-illuminated CMOS solid-state imaging device 1, an antireflection film 26 is formed in order to increase the light collection efficiency on the substrate surface side photodiode 5. In the front-illuminated type CMOS solid-state imaging device 1, silicon oxide (typically four or more layers) is formed by a protective film for preventing deterioration over time such as a photodiode, a MOS transistor group, and a wiring layer, and an interlayer insulating film below the protective film. An SiO) film and a silicon nitride (SiN) film are present on the photodiode 5.

光照射面側に4層以上の絶縁膜を形成するのは、多層の配線層25を有するために真ん中に厚い層間絶縁膜(シリコン酸化膜23)が必要になることも要因である。図示の例では、光照射面側にシリコン酸化(SiO)膜21、シリコン窒化(SiN)膜22、シリコン酸化(SiO)膜23及びシリコン窒化(SiN)膜24の4層膜が形成されている。   The reason why four or more insulating films are formed on the light irradiation surface side is that a thick interlayer insulating film (silicon oxide film 23) is required in the middle because the multilayer wiring layer 25 is provided. In the illustrated example, a four-layer film of a silicon oxide (SiO) film 21, a silicon nitride (SiN) film 22, a silicon oxide (SiO) film 23, and a silicon nitride (SiN) film 24 is formed on the light irradiation surface side. .

一方、表面照射型のCMOS固体撮像素子では、遮光する材料で形成される配線層が存在するため、画素内の集光の最適化をして感度向上を果たすべく、オンチップレンズとが別に層内レンズを形成する場合がある。層内レンズを有する場合には、5層、6層の屈折率の異なる絶縁膜がシリコン基板上に存在する。   On the other hand, in a front-illuminated CMOS solid-state imaging device, there is a wiring layer formed of a light-shielding material. An inner lens may be formed. In the case of having an in-layer lens, five or six layers of insulating films having different refractive indexes are present on the silicon substrate.

CCD固体撮像素子においても、層内レンズを有する場合もあり、光照射面側に同様の4層以上のシリコン酸化(SiO)膜、シリコン窒化(SiN)膜が形成される。   The CCD solid-state imaging device may also have an in-layer lens, and the same four or more layers of silicon oxide (SiO) film and silicon nitride (SiN) film are formed on the light irradiation surface side.

特許文献1には、表面側の光照射面上に4層以上の絶縁膜を形成した表面照射型のCMOS固体撮像素子の例が提案されている。
特開2003−224249号公報
Patent Document 1 proposes an example of a surface irradiation type CMOS solid-state imaging device in which four or more insulating films are formed on a light irradiation surface on the surface side.
JP 2003-224249 A

ところで、4層以上のシリコン酸化膜、シリコン窒化膜で反射防止膜を構成する場合、屈折率の膜での干渉により、短い周期で上下する所謂リップルのある分光特性となり、撮像素子の感度を損失している。図5は、光照射面上の反射防止膜の膜構成の違いによる、光電変換率の波長依存性を示すグラフである。図5の横軸は照射光の波長をある。縦軸は、光の透過率とシリコン中での光の吸収率の積(透過率×Si吸収率)、つまり光電変換効率に比例し、感度に相当する。
図5の曲線Cは、膜厚500nmのプラズマシリコン窒化(PSiN)膜と、膜厚5000nmのシリコン酸化(SiO)膜と、膜厚50nmのシリコン窒化(SiN)膜と、膜厚15nmのシリコン酸化(SiO)膜を順次下から堆積した4層膜構造の反射防止膜の分光特性を示す。曲線Cから分かるように、4層膜による反射防止膜の分光特性は、短い周期で上下するリップルのある分光特性となり、その積分値(光電変換効率の積分値)が感度になることから、感度をみると下方にシフトする。
図5の曲線Bは、膜厚500nmのプラズマシリコン窒化(PSiN)膜と、膜厚50nmのシリコン窒化(SiN)膜と、膜厚15nmのシリコン酸化(SiO)膜を下から順次堆積した3層膜構造の反射防止膜の分光特性である。これは、4層膜による反射防止膜より粗い周期で上下する分光特性となっている。
By the way, when an anti-reflection film is composed of four or more layers of silicon oxide film and silicon nitride film, it has spectral characteristics with so-called ripples that rise and fall in a short period due to interference with the film of refractive index, and the sensitivity of the image sensor is lost. is doing. FIG. 5 is a graph showing the wavelength dependence of the photoelectric conversion rate due to the difference in the film configuration of the antireflection film on the light irradiation surface. The horizontal axis in FIG. 5 represents the wavelength of the irradiation light. The vertical axis is proportional to the product of the light transmittance and the light absorptance in silicon (transmittance × Si absorptance), that is, the photoelectric conversion efficiency, and corresponds to the sensitivity.
Curve C in FIG. 5 shows a plasma silicon nitride (PSiN) film having a thickness of 500 nm, a silicon oxide (SiO) film having a thickness of 5000 nm, a silicon nitride (SiN) film having a thickness of 50 nm, and a silicon oxide having a thickness of 15 nm. The spectral characteristics of an antireflection film having a four-layer film structure in which (SiO) films are sequentially deposited from below are shown. As can be seen from the curve C, the spectral characteristic of the antireflection film by the four-layer film is a spectral characteristic with a ripple that rises and falls in a short cycle, and its integrated value (integrated value of photoelectric conversion efficiency) becomes sensitivity. If you look at it, it will shift downward.
Curve B in FIG. 5 shows three layers in which a plasma silicon nitride (PSiN) film having a thickness of 500 nm, a silicon nitride (SiN) film having a thickness of 50 nm, and a silicon oxide (SiO) film having a thickness of 15 nm are sequentially deposited from below. It is a spectral characteristic of the antireflection film of a film structure. This is a spectral characteristic that rises and falls with a coarser period than the antireflection film of the four-layer film.

また、表面照射型の固体撮像素子において、感度を向上するために層内レンズを形成した固体撮像素子の場合、5層または6層の屈折率の異なる膜がシリコン基板上に存在するため、上述の感度損失はより顕著になる。但し、層内レンズを形成した場合には、多層膜による反射防止膜の効果より、層内レンズによる集光効率の方が大きく作用していた。反射防止膜の構成としては、膜の層数が多いほど撮像素子の感度を低下させる。   Further, in the case of a surface irradiation type solid-state imaging device, in the case of a solid-state imaging device in which an in-layer lens is formed in order to improve sensitivity, five or six layers of films having different refractive indexes exist on the silicon substrate. The sensitivity loss becomes more prominent. However, when an intralayer lens is formed, the condensing efficiency by the intralayer lens is more effective than the effect of the antireflection film by the multilayer film. As the structure of the antireflection film, the sensitivity of the image sensor is lowered as the number of layers of the film increases.

本発明は、上述の点に鑑み、反射防止効率を向上してより感度向上を可能にした固体撮像素子及びこの固体撮像素子を備えたカメラモジュール、電子機器モジュールを提供するものである。
本発明は、併せて、シェーディング、隣接画素への光学的な混色を低減した固体撮像素子、小型のセンサとレンズモジュールの実現を可能にした固体撮像素子、カメラモジュール及び電子機器モジュールを提供するものである。
In view of the above, the present invention provides a solid-state imaging device that improves the antireflection efficiency and enables higher sensitivity, and a camera module and an electronic device module including the solid-state imaging device.
The invention, together, which provides shading, the solid-state imaging device having a reduced optical color mixing to adjacent pixel, the solid-state imaging device made it possible to achieve the small sensor and a lens module, a camera module and an electronics module It is.

本発明に係る固体撮像素子は、光電変換部と複数のトランジスタからなる画素を複数有する。複数のトランジスタは、半導体基板の表面側に形成される。光電変換部は、半導体基板の表面側から裏面側に延在して形成される。半導体基板の光照射面となる裏面に、半導体基板と屈折率を異にし、且つ光照射面から屈折率の小さい膜の順に堆積された2層膜による反射防止膜が形成され、反射防止膜上に、該反射防止膜に接触してカラーフィルタまたはオンチップレンズが形成される。固体撮像素子は、裏面照射型に構成されている。 The solid-state imaging device according to the present invention includes a plurality of pixels each including a photoelectric conversion unit and a plurality of transistors. The plurality of transistors are formed on the surface side of the semiconductor substrate. The photoelectric conversion part is formed extending from the front surface side to the back surface side of the semiconductor substrate. An antireflection film is formed on the back surface, which is the light irradiation surface of the semiconductor substrate, by a two-layer film having a refractive index different from that of the semiconductor substrate and deposited in order from the light irradiation surface to a film having a low refractive index. In addition, a color filter or an on-chip lens is formed in contact with the antireflection film . The solid-state imaging device is configured as a backside illumination type.

本発明に係るカメラモジュールは、固体撮像素子と光学レンズ系を備える。固体撮像素子は、光電変換部と複数のトランジスタからなる画素を複数有する。複数のトランジスタは、半導体基板の表面側に形成される。光電変換部は、半導体基板の表面側から裏面側に延在して形成される。半導体基板の光照射面となる裏面に、半導体基板と屈折率を異にし、且つ光照射面から屈折率の小さい膜の順に堆積された2層膜による反射防止膜が形成され、反射防止膜上に、該反射防止膜に接触してカラーフィルタまたはオンチップレンズが形成される。固体撮像素子は、裏面照射型に構成されている。 The camera module according to the present invention includes a solid-state imaging device and an optical lens system. The solid-state imaging device has a plurality of pixels including a photoelectric conversion unit and a plurality of transistors. The plurality of transistors are formed on the surface side of the semiconductor substrate. The photoelectric conversion part is formed extending from the front surface side to the back surface side of the semiconductor substrate. An antireflection film is formed on the back surface, which is the light irradiation surface of the semiconductor substrate, by a two-layer film having a refractive index different from that of the semiconductor substrate and deposited in order from the light irradiation surface to a film having a low refractive index. In addition, a color filter or an on-chip lens is formed in contact with the antireflection film . The solid-state imaging device is configured as a backside illumination type.

本発明に係る電子機器モジュルールは、固体撮像素子と光学レンズ系と信号処理手段を備える。固体撮像素子は、光電変換部と複数のトランジスタからなる画素を複数有する。複数のトランジスタは、半導体基板の表面側に形成される。光電変換部は、半導体基板の表面側から裏面側に延在して形成される。半導体基板の光照射面となる裏面に、半導体基板と屈折率を異にし、且つ光照射面から屈折率の小さい膜の順に堆積された2層膜による反射防止膜が形成され、反射防止膜上に、該反射防止膜に接触してカラーフィルタまたはオンチップレンズが形成される。固体撮像素子は、裏面照射型に構成されている。 The electronic apparatus module according to the present invention includes a solid-state imaging device, an optical lens system, and signal processing means. The solid-state imaging device has a plurality of pixels including a photoelectric conversion unit and a plurality of transistors. The plurality of transistors are formed on the surface side of the semiconductor substrate. The photoelectric conversion part is formed extending from the front surface side to the back surface side of the semiconductor substrate. An antireflection film is formed on the back surface, which is the light irradiation surface of the semiconductor substrate, by a two-layer film having a refractive index different from that of the semiconductor substrate and deposited in order from the light irradiation surface to a film having a low refractive index. In addition, a color filter or an on-chip lens is formed in contact with the antireflection film . The solid-state imaging device is configured as a backside illumination type.

上述の本発明における固体撮像素子では、裏面照射型に構成され、半導体基板の光照射面となる裏面に、半導体基板と屈折率を異にし、且つ光照射面から屈折率の小さい膜の順に堆積された2層膜による反射防止膜を形成し、反射防止膜上に、該反射防止膜に接触してカラーフィルタまたはオンチップレンズを形成することにより、反射防止効率が向上し光電変換効率が向上する。また、オンチップレンズと光電変換する半導体基板面が近づくので、画面内の入射角の違いに起因するシェーディングと、隣接画素への光学的な混色が低減される。 The above-described solid-state imaging device according to the present invention is configured as a back-illuminated type, and is deposited on the back surface serving as the light irradiation surface of the semiconductor substrate in the order of a film having a refractive index different from that of the semiconductor substrate and having a low refractive index from the light irradiation surface. By forming an antireflection film by the two-layered film and forming a color filter or an on-chip lens on the antireflection film in contact with the antireflection film, the antireflection efficiency is improved and the photoelectric conversion efficiency is improved. To do. In addition, since the on-chip lens and the semiconductor substrate surface that performs photoelectric conversion are close to each other, shading due to a difference in incident angle in the screen and optical color mixture to adjacent pixels are reduced.

本発明の固体撮像素子によれば、裏面照射型固体撮像素子の裏面の光照射面に、半導体基板と屈折率を異にし、且つ光照射面から屈折率の小さい膜の順に堆積された2層膜の反射防止膜を形成し、この反射防止膜上に、該反射防止膜に接触してカラーフィルタまたはオンチップレンズを形成することにより、光電変換効率が向上し、裏面照射型固体撮像素子の感度をより向上することができる。 According to the solid-state imaging device of the present invention, two layers are deposited on the light irradiation surface on the back surface of the back-illuminated solid-state imaging device in the order of a film having a refractive index different from that of the semiconductor substrate and having a low refractive index from the light irradiation surface. By forming an antireflection film on the film and forming a color filter or an on-chip lens on the antireflection film in contact with the antireflection film, the photoelectric conversion efficiency is improved, and the back-illuminated solid-state imaging device Sensitivity can be further improved.

また、オンチップレンズと光電変換する半導体基板面が近づくので、画面内の入射角の違いに起因するシェーディングと、隣接画素への光学的な混色を低減することができる。また、シェーディングと、光学的な混色を従来の表面照射型固体撮像素子と同等まで許容すれ、撮像領域周辺での入射角を大きくとることができ、すなわち射出瞳距離を短くすることができ、固体撮像素子とレンズを一体化して1つのデバイスとして構成した小型モジュール(例えばカメラモジュール、電子モジュール等)の実現を可能にする。さらに、反射防止膜を2層膜とするときは、工程数の削減が可能になり、コスト低減を図ることができる。 In addition, since the on-chip lens and the semiconductor substrate surface that performs photoelectric conversion are close to each other, shading caused by a difference in incident angle in the screen and optical color mixing to adjacent pixels can be reduced. Further, a shading, if allowed optical color mixing to equivalent conventional front-illuminated solid-state imaging device, it is possible to increase the angle of incidence around the imaging region, that it is possible to shorten the exit pupil distance, It is possible to realize a small module (for example, a camera module, an electronic module, etc.) configured as a single device by integrating a solid-state imaging device and a lens. Furthermore, when the antireflection film is a two-layer film, the number of steps can be reduced, and the cost can be reduced.

本発明に係るカメラモジュールによれば、上記固体撮像素子を備えることにより、感度向上し、シェーディング、隣接画素への光学的な混色を低減し、さらに小型のカメラモジュールを実現することができる。
本発明に係る電子機器モジュールによれば、上記固体撮像素子を備えることにより、感度向上し、シェーディング、隣接画素への光学的な混色を低減し、さらに小型の電子機器モジュールを実現することができる。
According to the camera module of the present invention, by providing the solid-state imaging device, it is possible to improve sensitivity, reduce shading and optical color mixing to adjacent pixels, and realize a more compact camera module.
According to the electronic device module of the present invention, by providing the solid-state imaging device, sensitivity can be improved, shading and optical color mixing to adjacent pixels can be reduced, and a more compact electronic device module can be realized. .

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明に係る固体撮像素子を、裏面照射型のCMOS固体撮像素子に適用した一実施の形態を示す画素部分の概略構成図である。図2は、その1画素の詳細断面図である。
本実施の形態に係る裏面照射型のCMOS固体撮像素子31は、図1に示すように、第1導電型のシリコン半導体基板32に第2導電型の半導体領域からなる画素分離領域33を形成し、この画素分離領域33で区画された各画素領域内に第2導電型半導体領域で囲われるように、光電変換部となるフォトダイオード34と、このフォトダイオード34に蓄積された信号電荷を読み出すための所要数のMOSトランジスタ35を形成して構成さる。画素分離領域33は、基板32の表面から裏面に至ように深さ方向に形成される。MOSトランジスタ35は基板32の表面側に形成され、フォトダイオード34は一部MOSトランジスタ35の下方に延びるように基板32の裏面側に延在して形成される。
FIG. 1 is a schematic configuration diagram of a pixel portion showing an embodiment in which a solid-state imaging device according to the present invention is applied to a back-illuminated CMOS solid-state imaging device. FIG. 2 is a detailed sectional view of the one pixel.
As shown in FIG. 1, the backside illumination type CMOS solid-state imaging device 31 according to the present embodiment forms a pixel isolation region 33 including a second conductivity type semiconductor region on a first conductivity type silicon semiconductor substrate 32. In order to read out the photodiode 34 serving as a photoelectric conversion unit and the signal charge accumulated in the photodiode 34 so that each pixel region partitioned by the pixel isolation region 33 is surrounded by the second conductivity type semiconductor region. The required number of MOS transistors 35 are formed. The pixel isolation region 33 is formed in the depth direction so as to reach the back surface from the front surface of the substrate 32. The MOS transistor 35 is formed on the front surface side of the substrate 32, and the photodiode 34 is formed so as to extend partially on the back surface side of the substrate 32 so as to extend below the MOS transistor 35.

基板32の表面上には、MOSトランジスタ35のゲート電極37が形成されると共に、その上に層間絶縁膜38を介して多層の配線層39が形成され、さらに層間絶縁膜38上に支持基板40が形成される。支持基板40としては、例えばシリコン基板を用いることができる。一方、半導体基板32の裏面上に後述する本発明に係る反射防止膜41を介してオンチップカラーフィルタ42が形成され、このカラーフィルタ42上に各画素に対応するようにオンチップレンズ43が形成される。このCMOS固体撮像素子31においては、基板裏面よりオンチップレンズ43を通してフォトダイオード34に対して光Lが照射されるようになされる。   A gate electrode 37 of the MOS transistor 35 is formed on the surface of the substrate 32, a multilayer wiring layer 39 is formed thereon via an interlayer insulating film 38, and a support substrate 40 is further formed on the interlayer insulating film 38. Is formed. As the support substrate 40, for example, a silicon substrate can be used. On the other hand, an on-chip color filter 42 is formed on the back surface of the semiconductor substrate 32 via an antireflection film 41 according to the present invention described later, and an on-chip lens 43 is formed on the color filter 42 so as to correspond to each pixel. Is done. In the CMOS solid-state imaging device 31, light L is irradiated to the photodiode 34 from the back surface of the substrate through the on-chip lens 43.

この固体撮像素子31の単位画素の具体的構成の一例を図2に示す。この例では、第1導電型であるn型のシリコン半導体基板32に各画素領域101を区画するように第2導電型であるp型の半導体領域からなる画素分離領域33が形成される。この画素分離領域33は比較的低濃度のp型半導体領域で形成される。画素領域101のn型半導体基板32には、その表面にp型画素分離領域33に接続して一部画素領域101内に延在するようにp型半導体ウェル領域51が形成される。光電変換部となるフォトダイオード34は、p型画素分離領域33及びp型半導体ウェル領域51により囲まれたn型半導体基板32で形成される。すなわち、フォトダイオード34は、n半導体領域32Aとその表面側の高不純物濃度のn+半導体領域32Bとにより形成される。n+半導体領域32Bの表面側の界面には、暗電流発生を抑制するための高不純物濃度のp型半導体領域からなるp+アキュミュレーション層53が形成される。さらに、各画素領域に共通に、n型半導体基板32の裏面、すなわちn半導体領域32Aの裏面側の界面に暗電流発生を抑制するための高不純物濃度のp型半導体領域からなるp+アキュミュレーション層54が形成される。   An example of a specific configuration of the unit pixel of the solid-state image sensor 31 is shown in FIG. In this example, a pixel isolation region 33 made of a p-type semiconductor region of the second conductivity type is formed so as to partition each pixel region 101 on an n-type silicon semiconductor substrate 32 of the first conductivity type. The pixel isolation region 33 is formed of a relatively low concentration p-type semiconductor region. A p-type semiconductor well region 51 is formed on the surface of the n-type semiconductor substrate 32 in the pixel region 101 so as to connect to the p-type pixel isolation region 33 and partially extend into the pixel region 101. The photodiode 34 serving as a photoelectric conversion unit is formed of an n-type semiconductor substrate 32 surrounded by a p-type pixel isolation region 33 and a p-type semiconductor well region 51. That is, the photodiode 34 is formed by the n semiconductor region 32A and the high impurity concentration n + semiconductor region 32B on the surface side thereof. A p + accumulation layer 53 made of a high impurity concentration p-type semiconductor region for suppressing dark current generation is formed at the interface on the surface side of the n + semiconductor region 32B. Further, in common to each pixel region, p + accumulation comprising a high impurity concentration p-type semiconductor region for suppressing dark current generation on the back surface of the n-type semiconductor substrate 32, that is, the interface on the back surface side of the n semiconductor region 32A. Layer 54 is formed.

このフォトダイオード34は、n+半導体領域32Bの表面及びn半導体領域32Aの裏面にp+アキュミュレーション層53及び54を有するので、いわゆるHADセンサとして構成される。また、フォトダイオード34は、n半導体領域32Aがp型半導体ウェル領域51の下方に延在するので、画素領域の全体にわたるように大面積で形成される。   The photodiode 34 is configured as a so-called HAD sensor because it has p + accumulation layers 53 and 54 on the front surface of the n + semiconductor region 32B and the back surface of the n semiconductor region 32A. Further, since the n semiconductor region 32A extends below the p-type semiconductor well region 51, the photodiode 34 is formed in a large area so as to cover the entire pixel region.

一方、MOSトランジスタ35は、p型半導体ウェル領域51に形成される。すなわち、例えば1画素を1フォトダイオードと4つのMOSトランジスタで構成するときは、MOSトランジスタ35は、読出しトランジスタ、リセットトランジスタ、アンプトランジスタ及び垂直選択トランジスタを有する。図2では、p型半導体ウェル領域51内にフォトダイオード34に近接して一方n+ソース・ドレイン領域61が形成され、この一方のn+ソース・ドレイン領域61と他方のソース・ドレイン領域を兼ねるフォトダイオード34のn+半導体領域52間のp型半導体ウェル領域51上にゲート絶縁膜を介してゲート電極37が形成されて読出しトランジスタTr1 が形成される。   On the other hand, the MOS transistor 35 is formed in the p-type semiconductor well region 51. That is, for example, when one pixel is composed of one photodiode and four MOS transistors, the MOS transistor 35 includes a read transistor, a reset transistor, an amplifier transistor, and a vertical selection transistor. In FIG. 2, one n + source / drain region 61 is formed in the p-type semiconductor well region 51 in the vicinity of the photodiode 34, and the one n + source / drain region 61 and the other source / drain region serve as the photodiode. A gate electrode 37 is formed on the p-type semiconductor well region 51 between the n + semiconductor regions 52 of 34 via a gate insulating film to form the read transistor Tr1.

そして、p型半導体ウェル領域51の他部に、各対応したn+ソース・ドレイン領域62、63が形成され、両n+ソース・ドレイン領域62及び63間のp型半導体ウェル領域51上にゲート絶縁膜を介してゲート電極37が形成されて、他のMOSトランジスタ、すなわちリセットトランジスタTr2、アンプトランジスタTr3、垂直選択トランジスタTr4が形成される。
半導体基板の表面上には、例えばシリコン酸化膜等による層間絶縁膜38を介して多層の配線層39が形成され、層間絶縁膜38上に例えばシリコン基板による支持基板40が接合される。半導体基板の裏面の光照射面56には、本発明の反射防止膜41が形成され、の反射防止膜41上にオンチップカラーフィルタ42を介してオンチップレンズ43が形成される。
Further, corresponding n + source / drain regions 62 and 63 are formed in the other part of the p-type semiconductor well region 51, and a gate insulating film is formed on the p-type semiconductor well region 51 between the n + source / drain regions 62 and 63. The gate electrode 37 is formed through the other transistors, and other MOS transistors, that is, the reset transistor Tr2, the amplifier transistor Tr3, and the vertical selection transistor Tr4 are formed.
A multilayer wiring layer 39 is formed on the surface of the semiconductor substrate via an interlayer insulating film 38 made of, for example, a silicon oxide film, and a support substrate 40 made of, for example, a silicon substrate is bonded onto the interlayer insulating film 38. An antireflection film 41 of the present invention is formed on the light irradiation surface 56 on the back surface of the semiconductor substrate, and an on-chip lens 43 is formed on the antireflection film 41 via an on-chip color filter 42.

そして、本実施の形態においては、特に図3に示すように、基板裏面側の光照射面56上の反射防止膜41が、シリコン基板32と屈折率の異なる2層の膜66、67による反射防止膜411によって形成される。なお、図3では反射防止膜411の構成を明瞭にするため、反射防止膜411以外の部分は図1及び図2と同様であるので、フォトダイオード、MOSトランジスタ及び配線層等を省略した。この2層膜の反射防止膜411は、シリコン酸化(SiO)膜、シリコン窒化(SiN)膜、シリコン酸化窒化(SiON)膜、多結晶シリコンから選ばれた2層の膜66、67で形成することができる。図4は反射防止膜411の構成例を示している。   In the present embodiment, as particularly shown in FIG. 3, the antireflection film 41 on the light irradiation surface 56 on the back surface side of the substrate is reflected by two layers of films 66 and 67 having a refractive index different from that of the silicon substrate 32. It is formed by the prevention film 411. In FIG. 3, in order to clarify the configuration of the antireflection film 411, the portions other than the antireflection film 411 are the same as those in FIGS. 1 and 2, so that the photodiode, the MOS transistor, the wiring layer, and the like are omitted. The two-layer antireflection film 411 is formed of a two-layer film 66 or 67 selected from a silicon oxide (SiO) film, a silicon nitride (SiN) film, a silicon oxynitride (SiON) film, and polycrystalline silicon. be able to. FIG. 4 shows a configuration example of the antireflection film 411.

図4Aでは、シリコン基板裏面の光照射面56上にシリコン酸化(SiO)膜66、シリコン窒化(SiN)膜67を順次堆積させて2層膜の反射防止膜411を構成する。
図4Bでは、シリコン基板裏面の光照射面56上にシリコン酸化(SiO)膜66、シリコン酸化窒化(SiON)膜67を順次堆積させて2層膜の反射防止膜411を構成する。
図4Cでは、シリコン基板裏面の光照射面56上にシリコン酸化窒化(SiON)膜66、シリコン窒化(SiN)膜67を順次堆積させて2層膜の反射防止膜411を構成する。
シリコン酸化窒化膜は、窒素Nの組成比で屈折率が変わり、窒素Nの組成比が多くなるにつれて屈折率が大きくなる。膜66、67は、光照射面56から屈折率の小さい膜の順に堆積される。
In FIG. 4A, a silicon oxide (SiO) film 66 and a silicon nitride (SiN) film 67 are sequentially deposited on the light irradiation surface 56 on the back surface of the silicon substrate to form a two-layer antireflection film 411.
In FIG. 4B, a silicon oxide (SiO) film 66 and a silicon oxynitride (SiON) film 67 are sequentially deposited on the light irradiation surface 56 on the back surface of the silicon substrate to form a two-layer antireflection film 411.
In FIG. 4C, a silicon oxynitride (SiON) film 66 and a silicon nitride (SiN) film 67 are sequentially deposited on the light irradiation surface 56 on the back surface of the silicon substrate to form a two-layer antireflection film 411.
The refractive index of the silicon oxynitride film varies with the composition ratio of nitrogen N, and the refractive index increases as the composition ratio of nitrogen N increases. The films 66 and 67 are deposited in order from the light irradiation surface 56 to a film having a small refractive index.

反射防止膜411としては、シリコン酸化(SiO)膜66とシリコン窒化(SiN)膜67の組み合わせが好ましい。このとき、シリコン酸化(SiO)膜66の膜厚としては、25nm以下(0を含まず)とすることが好ましい。シリコン酸化膜の膜厚は、1nm程度でも可能であり、限りなく薄くても可能である。また、シリコン窒化膜67の膜厚は、40nm〜60nmの範囲とするこが好ましい。シリコン酸化膜66の膜厚が25nm以下であれば、後述する図5の曲線Aで示す本発明に係る分光特性が、4層膜(曲線C参照)の平均的な分光特性よりも高くなり、光電変換効率の向上が図れる。シリコン窒化膜67の膜厚が40nm〜60nmの範囲であれば、上記と同様の理由により光電変換効率の向上が図れる。   As the antireflection film 411, a combination of a silicon oxide (SiO) film 66 and a silicon nitride (SiN) film 67 is preferable. At this time, the film thickness of the silicon oxide (SiO) film 66 is preferably 25 nm or less (not including 0). The thickness of the silicon oxide film can be about 1 nm, and can be as thin as possible. The thickness of the silicon nitride film 67 is preferably in the range of 40 nm to 60 nm. If the thickness of the silicon oxide film 66 is 25 nm or less, the spectral characteristics according to the present invention indicated by the curve A in FIG. 5 described later are higher than the average spectral characteristics of the four-layer film (see the curve C). The photoelectric conversion efficiency can be improved. When the thickness of the silicon nitride film 67 is in the range of 40 nm to 60 nm, the photoelectric conversion efficiency can be improved for the same reason as described above.

図5において、曲線Aは本実施の形態に係るシリコン酸化膜66とシリコン窒化膜67の2層膜による反射防止膜411の光電変換効率の波長依存性を示す分光特性である。この曲線Aは、シリコン酸化膜66の膜厚15nm程度、シリコン窒化膜67の膜厚を50nm程度としたときの特性である。4層膜(曲線C参照)、3層膜(曲線B)に比べて光電変換効率が向上し、撮像素子の感度が向上している。   In FIG. 5, a curve A is a spectral characteristic showing the wavelength dependence of the photoelectric conversion efficiency of the antireflection film 411 by the two-layer film of the silicon oxide film 66 and the silicon nitride film 67 according to the present embodiment. This curve A is a characteristic when the thickness of the silicon oxide film 66 is about 15 nm and the thickness of the silicon nitride film 67 is about 50 nm. The photoelectric conversion efficiency is improved and the sensitivity of the imaging device is improved as compared with the four-layer film (see curve C) and the three-layer film (curve B).

本実施の形態に係る裏面照射型のCMOS固体撮像素子31によれば、基板裏面の光照射面に2層膜による反射防止膜411、好ましくはシリコン酸化膜とシリコン窒化膜の2層膜の反射防止膜を形成することにより、入射光の反射防止効率が向上し、撮像素子の感度を向上することができる。
2層膜による反射防止膜411の形成は、特に裏面照射型のCMOS固体撮像素子であるために、多層の配線層の制約を受けずに形成可能となる。
本実施の形態の固体撮像素子31では、基板裏面に臨むフォトダイオード34が画素領域全体に形成されるので、フォトダイオード34の開口が100%になり、光電変換効率の更なる向上が得られ、高感度の固体撮像素子が得られる。
According to the backside illuminating type CMOS solid-state imaging device 31 according to the present embodiment, the reflection of the antireflection film 411 by the two-layer film on the light irradiation surface on the backside of the substrate, preferably the reflection of the two-layer film of the silicon oxide film and the silicon nitride film. By forming the prevention film, the antireflection efficiency of incident light can be improved and the sensitivity of the image sensor can be improved.
The antireflection film 411 formed of the two-layer film is a back-illuminated CMOS solid-state imaging device, and thus can be formed without being restricted by a multilayer wiring layer.
In the solid-state imaging device 31 of the present embodiment, since the photodiode 34 facing the back surface of the substrate is formed in the entire pixel region, the opening of the photodiode 34 becomes 100%, and further improvement in photoelectric conversion efficiency is obtained. A highly sensitive solid-state imaging device can be obtained.

また、2層膜の反射防止膜411を有するので、光照射面の最上層であるオンチップレンズ43と光電変換するシリコン面が近づくことにより、撮像面内の入射角の違いに起因するシェーディングと、隣接画素への光学的な混色を低減することができる。
また、シェーディングと光学的混色を従来の表面照射型のCMOS固体撮像素子と同等まで許容すれば、撮像領域周辺での入射角を大きくとることができ、いわゆる出射瞳距離を短くすることができ、固体撮像素子とレンズを一体化して1つのデバイスとして構成した小型モジュール(例えばカメラモジュール、電子モジュール等)の実現を可能にする。 さらに2層膜による反射防止膜411を有することで、製造工程の削減、及び工程削減によるコストダウンを図ることができる。
In addition, since the antireflection film 411 of the two-layer film is provided, the on-chip lens 43 that is the uppermost layer of the light irradiation surface and the silicon surface that performs photoelectric conversion approach each other, thereby causing shading caused by a difference in incident angle in the imaging surface. , Optical color mixing to adjacent pixels can be reduced.
In addition, if the shading and optical color mixing are allowed to the same extent as the conventional surface irradiation type CMOS solid-state imaging device, the incident angle around the imaging region can be increased, and the so-called exit pupil distance can be shortened, It is possible to realize a small module (for example, a camera module, an electronic module, etc.) configured as a single device by integrating a solid-state imaging device and a lens. Furthermore, by providing the antireflection film 411 with a two-layer film, it is possible to reduce the manufacturing process and the cost by reducing the process.

図1で示す本発明に係る反射防止膜41として、図4では、2層膜の反射防止膜411を構成したが、その他、図6に示すように、1層膜による反射防止膜422を構成することができる。この場合の1層膜の反射防止膜412は、膜厚方向で屈折率がステップ的に異なるように形成する。例えばシリコン酸化窒化(SiON)膜を用い、その窒素組成比を膜厚方向で変えて1層膜の反射防止膜を形成することができる。   As the antireflection film 41 according to the present invention shown in FIG. 1, a two-layer antireflection film 411 is configured in FIG. 4. In addition, as shown in FIG. 6, an antireflection film 422 using a single layer film is configured. can do. In this case, the single-layer antireflection film 412 is formed so that the refractive index varies stepwise in the film thickness direction. For example, a silicon oxynitride (SiON) film can be used, and the nitrogen composition ratio can be changed in the film thickness direction to form a single-layer antireflection film.

本発明に係る反射防止膜41〔411〜413〕、422は、裏面照射型のCCD固体撮像素子に適用することができる。本例の裏面照射型のCCD固体撮像素子は、図示せざるも、半導体基板の表面側に光電変換部(フォトダイオード)における高不純物濃度の電荷蓄積領域と、この光電変換部からの信号電荷を読み出すための垂直転送レジスタが形成され、半導体基板の裏面側に臨む光電変換部の界面に暗電流発生を抑制するための高不純物濃度のアキュミュレーション層が形成される。この裏面側のアキュミュレーション層上にカラーフィルタを介してオンチップレンズが形成される。また、表面側では補強用の支持基板が貼り合わされる。
そして、本例においては、裏面側のアキュミュレーション層の面、すなわち裏面側の光照射面87に前述した本発明に係る例えば2層膜の反射防止膜411、あるいは1層膜の反射防止膜422が形成される。
The antireflection films 41 [411 to 413] and 422 according to the present invention can be applied to a back-illuminated CCD solid-state imaging device. Although not shown, the back-illuminated CCD solid-state imaging device of this example has a charge storage region with a high impurity concentration in a photoelectric conversion unit (photodiode) on the surface side of a semiconductor substrate and a signal charge from the photoelectric conversion unit. A vertical transfer register for reading is formed, and an accumulation layer having a high impurity concentration for suppressing dark current generation is formed at the interface of the photoelectric conversion portion facing the back side of the semiconductor substrate. An on-chip lens is formed on this backside accumulation layer via a color filter. Further, a reinforcing support substrate is bonded to the front side.
In this example , for example, the two-layer antireflection film 411 or the one-layer antireflection film according to the present invention described above is applied to the surface of the accumulation layer on the back surface side, that is, the light irradiation surface 87 on the back surface side. 422 is formed.

本例に係る裏面照射型のCCD固体撮像素子においても、前述の裏面照射型のCMOS固体撮像素子と同様に、入射光の反射防止効率が向上し、撮像素子の感度を向上することができる。また、基板裏面に臨む光電変換部(フォトダイオード)が画素領域全体に形成可能であるので、フォトダイオード74の開口が100%になり、光電変換効率の更なる向上が得られ、高感度の固体撮像素子が得られる。
光照射面の最上層であるオンチップレンズと光電変換するシリコン面が近づくことにより、撮像面内の入射角の違いに起因するシェーディングと、隣接画素への光学的な混色を低減することができる。
また、シェーディングと光学的混色を従来の表面照射型のCMOS固体撮像素子と同等まで許容すれば、撮像領域周辺での入射角を大きくとることができ、いわゆる出射瞳距離を短くすることができ、固体撮像素子とレンズを一体化して1つのデバイスとして構成した小型モジュール(例えばカメラモジュール、電子モジュール等)の実現を可能にする。
Also in the back-illuminated CCD solid-state image sensor according to this example , the antireflection efficiency of incident light can be improved and the sensitivity of the image sensor can be improved, as in the above-described back-illuminated CMOS solid-state image sensor. Further, since the photoelectric conversion portion (photodiode) facing the back surface of the substrate can be formed in the entire pixel region, the opening of the photodiode 74 becomes 100%, and further improvement in photoelectric conversion efficiency is obtained, and a highly sensitive solid state is obtained. An image sensor is obtained.
By approaching the on-chip lens, which is the uppermost layer of the light irradiation surface, and the silicon surface to be photoelectrically converted, shading caused by the difference in the incident angle in the imaging surface and optical color mixing to adjacent pixels can be reduced. .
In addition, if the shading and optical color mixing are allowed to the same extent as the conventional surface irradiation type CMOS solid-state imaging device, the incident angle around the imaging region can be increased, and the so-called exit pupil distance can be shortened, It is possible to realize a small module (for example, a camera module, an electronic module, etc.) configured as a single device by integrating a solid-state imaging device and a lens.

なお、上例では、本発明に係る反射防止膜41を裏面照射型の固体撮像素子に適用したが、その他、表面照射型のCMOS固体撮像素子あるいはCCD固体撮像素子に適用することができる。表面照射型のCMOS固体撮像素子、CCD固体撮像素子に適用する場合には、例えば、シリコン直上の配線層間絶縁膜を除去し、ここに本発明の反射防止膜のみを形成することができる。若しくは反射防止膜及びオンチップカラーフィルタ、オンチップレンズの構成とすることもできる。   In the above example, the antireflection film 41 according to the present invention is applied to a back-illuminated solid-state image sensor. However, it can be applied to a front-illuminated CMOS solid-state image sensor or a CCD solid-state image sensor. When applied to a front-illuminated CMOS solid-state imaging device or a CCD solid-state imaging device, for example, the wiring interlayer insulating film immediately above the silicon can be removed, and only the antireflection film of the present invention can be formed here. Or it can also be set as the structure of an anti-reflective film, an on-chip color filter, and an on-chip lens.

本発明は、上述した実施の形態固体撮像素子を組み込んで撮像カメラ、各種モジュールを構成することができる。図7は、裏面の光照射面に2層膜または1層膜の反射防止膜41を形成した、上述の裏面照射型のCMOS固体撮像素子31と光学レンズ系85の部分の実施の形態を示す。カラーフィルタは、反射防止膜41とオンチップレンズ43(または89)との間に配置することもでき、または撮像カメラ、モジュールの機種に応じて図7に示すように、光学レンズ系85側において、その固体撮像素子に対抗する側またはその反対側に配置することもできる。 The present invention can constitute an imaging camera and various modules by incorporating the above-described solid-state imaging device. FIG. 7 shows an embodiment of the back-illuminated CMOS solid-state imaging device 31 and the optical lens system 85 described above, in which a two-layer film or a single-layer antireflection film 41 is formed on the light irradiation surface on the back surface. . The color filter can be arranged between the antireflection film 41 and the on-chip lens 43 (or 89), or on the optical lens system 85 side as shown in FIG. It can also be arranged on the side opposite to the solid-state imaging device or on the opposite side.

図8は、本発明に係る電子機器モジュール、カメラモジュールの実施の形態を示す概略構成を示す。図8のモジュール構成は、電子機器モジュール、カメラモジュールの双方に適用可能である。本実施の形態のモジュール110は、上述した実施の形態のいずれかの裏面照射型固体撮像素子31、光学レンズ系111、入出力部112信号処理装置(Digital Signal Processors)113、光学レンズ系制御用の中央演算装置(CPU)114を1つに組み込んでモジュールを形成する。また、電子機器モジュール、あるいはカメラモジュール115としては、例えば裏面照射型固体撮像素子31あるいは71、光学レンズ系111及び入出力部112のみでモジュールを形成することもできる。また、例えば裏面照射型固体撮像素子31あるいは71、光学レンズ系111、入出力部112及び信号処理装置(Digital Signal Processors)113を備えたモジュール116を構成することもできる。 FIG. 8 shows a schematic configuration showing an embodiment of an electronic device module and a camera module according to the present invention. The module configuration of FIG. 8 can be applied to both an electronic device module and a camera module. Module 110 of the present embodiment, one of the back surface radiation type solid-state imaging device 31 of the above-described embodiment, the optical lens system 111, input-output unit 112 signal processing apparatus (Digital Signal Processors) 113, an optical lens system control A central processing unit (CPU) 114 is integrated into one to form a module. In addition, as the electronic device module or the camera module 115, for example, a module can be formed by only the back-illuminated solid-state imaging device 31 or 71, the optical lens system 111, and the input / output unit 112. Further, for example, a module 116 including a back-illuminated solid-state imaging device 31 or 71, an optical lens system 111, an input / output unit 112, and a signal processing device (Digital Signal Processors) 113 can be configured.

本実施の形態に係るカメラモジュール、電子機器モジュールによれば、固体撮像素子への入射光の反射防止効率が向上し、モジュールおける固体撮像素子の感度を向上することができる。また、撮像面内の入射角の違いに起因するシェーディングと、隣接画素への光学的な混色が低減する。シェーディングと光学的混色を従来の表面照射型の固体撮像素子と同等まで許容すれば、出射瞳距離を短くすることができ、より小型のモジュールを実現することができる。   According to the camera module and the electronic device module according to the present embodiment, the antireflection efficiency of incident light on the solid-state image sensor can be improved, and the sensitivity of the solid-state image sensor in the module can be improved. In addition, shading caused by the difference in incident angle in the imaging surface and optical color mixing to adjacent pixels are reduced. If shading and optical color mixing are allowed to the same extent as a conventional surface irradiation type solid-state imaging device, the exit pupil distance can be shortened, and a smaller module can be realized.

なお、本発明の固体撮像素子、特に裏面照射型の固体撮像素子を撮像カメラに適用した場合にも、固体撮像素子への入射光の反射防止効率が向上し、撮像カメラの感度を向上することができる。また、撮像面内の入射角の違いに起因するシェーディングと、隣接画素への光学的な混色が低減する。シェーディングと光学的混色を従来の表面照射型の固体撮像素子と同等まで許容すれば、出射瞳距離を短くすることができ、より小型の撮像カメラを実現することができる。   In addition, even when the solid-state imaging device of the present invention, particularly the back-illuminated solid-state imaging device, is applied to an imaging camera, the antireflection efficiency of incident light to the solid-state imaging device is improved and the sensitivity of the imaging camera is improved. Can do. In addition, shading caused by the difference in incident angle in the imaging surface and optical color mixing to adjacent pixels are reduced. If shading and optical color mixing are allowed to the same extent as those of a conventional surface irradiation type solid-state imaging device, the exit pupil distance can be shortened, and a more compact imaging camera can be realized.

本発明に係る裏面照射型のCMOS固体撮像素子の実施の形態を示す概略構成図である。It is a schematic block diagram which shows embodiment of the backside illumination type CMOS solid-state image sensor concerning this invention. 図1に示す実施の形態のCMOS固体撮像素子における1画素の断面構造の一例を示す断面図である。It is sectional drawing which shows an example of the cross-sectional structure of 1 pixel in the CMOS solid-state image sensor of embodiment shown in FIG. 図1に示す実施の形態のCMOS固体撮像素子における反射防止膜の実施の形態を示す模式図である。It is a schematic diagram which shows embodiment of the anti-reflective film in the CMOS solid-state image sensor of embodiment shown in FIG. A〜C 本発明に係る2層膜の反射防止膜の例を示す断面図である。AC is a cross-sectional view showing an example of a two-layer antireflection film according to the present invention. 光照射面上の膜構造の違いによる光電変換率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the photoelectric conversion rate by the difference in the film | membrane structure on a light irradiation surface. 本発明に係る反射防止膜の他の実施の形態を示す構成図である。It is a block diagram which shows other embodiment of the antireflection film concerning this invention. 本発明を固体撮像素子と光学レンズ系を備えたモジュール、あるいは撮像カメラに適用した場合の、カラーフィルタの配置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of arrangement | positioning of a color filter at the time of applying this invention to the module provided with the solid-state image sensor and the optical lens system, or an imaging camera. 本発明に係るモジュールの実施の形態を示す概略構成図である。It is a schematic block diagram which shows embodiment of the module which concerns on this invention. 従来の表面照射型のCMOS固体撮像素子の構成図である。It is a block diagram of the conventional surface irradiation type CMOS solid-state image sensor.

31・・裏面照射型のCMOS固体撮像素子、32・・半導体基板、32A・・n半導体領域、33・・画素分離領域、34・・フォトダイオード、35・・MOSトランジスタ、Tr1 ・・読み出しトランジスタ、37・・ゲート電極、38・・層間絶縁膜、39・・多層の配線層、40・・支持基板、41〔411〜413〕、422・・反射防止膜、42・・カラーフィルタ、43・・オンチップレンズ、51・・p型半導体ウェル領域、52・・n+半導体領域、53、54・・p+アキュミュレーション層、56・・光照射面、66、67・・絶縁膜   31..Back-illuminated CMOS solid-state imaging device, 32..Semiconductor substrate, 32A..n semiconductor region, 33..Pixel isolation region, 34..Photodiode, 35..MOS transistor, Tr1..readout transistor, 37 .... Gate electrode, 38 ... Interlayer insulation film, 39 ... Multi-layer wiring layer, 40 ... Support substrate, 41 [411 to 413], 422 ... Antireflection film, 42 ... Color filter, 43 ... On-chip lens, 51 ·· p-type semiconductor well region, 52 ·· n + semiconductor region, 53, 54 ·· p + accumulation layer, 56 ·· Light irradiation surface, 66, 67 ·· Insulating film

Claims (12)

光電変換部と複数のトランジスタからなる画素を複数有し、
前記複数のトランジスタは、半導体基板の表面側に形成され、
前記光電変換部は、前記半導体基板の表面側から裏面側に延在して形成され、
前記半導体基板の光照射面となる裏面に、前記半導体基板と屈折率を異にし、且つ光照射面から屈折率の小さい膜の順に堆積された2層膜による反射防止膜が形成され、
前記反射防止膜上に、該反射防止膜に接触してカラーフィルタまたはオンチップレンズが形成され、
裏面照射型に構成されている
ことを特徴とする固体撮像素子。
Having a plurality of pixels consisting of a photoelectric conversion unit and a plurality of transistors,
The plurality of transistors are formed on a surface side of a semiconductor substrate,
The photoelectric conversion portion is formed to extend from the front surface side to the back surface side of the semiconductor substrate,
On the back surface, which is the light irradiation surface of the semiconductor substrate, an antireflection film is formed by a two-layer film that has a refractive index different from that of the semiconductor substrate and is deposited in the order of a film having a small refractive index from the light irradiation surface,
On the antireflection film, a color filter or an on-chip lens is formed in contact with the antireflection film ,
A solid-state imaging device characterized by being configured as a back-illuminated type.
前記反射防止膜が、前記光照射面からシリコン酸化膜、シリコン酸化窒化膜を順に堆積させた2層膜で形成されている
ことを特徴とする請求項1記載の固体撮像素子。
The solid-state imaging device according to claim 1, wherein the antireflection film is formed of a two-layer film in which a silicon oxide film and a silicon oxynitride film are sequentially deposited from the light irradiation surface.
前記反射防止膜が、前記光照射面からシリコン酸化窒化膜、シリコン窒化膜を順に堆積させた2層膜で形成されている
ことを特徴とする請求項1記載の固体撮像素子。
The solid-state imaging device according to claim 1, wherein the antireflection film is formed of a two-layer film in which a silicon oxynitride film and a silicon nitride film are sequentially deposited from the light irradiation surface.
前記反射防止膜が、前記光照射面からシリコン酸化膜、シリコン窒化膜を順に堆積させた2層膜で形成され、
前記シリコン酸化膜の膜厚を25nm以下(0を含まず)とし、前記シリコン窒化膜の膜厚を40nm〜60nmとした
ことを特徴とする請求項1記載の固体撮像素子。
The antireflection film is formed of a two-layer film in which a silicon oxide film and a silicon nitride film are sequentially deposited from the light irradiation surface,
2. The solid-state imaging device according to claim 1, wherein the silicon oxide film has a thickness of 25 nm or less (not including 0), and the silicon nitride film has a thickness of 40 nm to 60 nm.
固体撮像素子と光学レンズ系を備え、
前記固体撮像素子は、
光電変換部と複数のトランジスタからなる画素を複数有し、
前記複数のトランジスタは、半導体基板の表面側に形成され、
前記光電変換部は、前記半導体基板の表面側から裏面側に延在して形成され、
前記半導体基板の光照射面となる裏面に、前記半導体基板と屈折率を異にし、且つ光照射面から屈折率の小さい膜の順に堆積された2層膜による反射防止膜が形成され、
前記反射防止膜上に、該反射防止膜に接触してカラーフィルタまたはオンチップレンズが形成され、
裏面照射型に構成されている
ことを特徴とするカメラモジュール。
It has a solid-state image sensor and an optical lens system,
The solid-state imaging device is
Having a plurality of pixels consisting of a photoelectric conversion unit and a plurality of transistors,
The plurality of transistors are formed on a surface side of a semiconductor substrate,
The photoelectric conversion portion is formed to extend from the front surface side to the back surface side of the semiconductor substrate,
On the back surface, which is the light irradiation surface of the semiconductor substrate, an antireflection film is formed by a two-layer film that has a refractive index different from that of the semiconductor substrate and is deposited in the order of a film having a small refractive index from the light irradiation surface,
On the antireflection film, a color filter or an on-chip lens is formed in contact with the antireflection film ,
A camera module characterized by being configured as a back-illuminated type.
前記反射防止膜が、前記光照射面からシリコン酸化膜、シリコン酸化窒化膜を順に堆積させた2層膜で形成されている
ことを特徴とする請求項5記載のカメラモジュール。
The camera module according to claim 5, wherein the antireflection film is formed of a two-layer film in which a silicon oxide film and a silicon oxynitride film are sequentially deposited from the light irradiation surface.
前記反射防止膜が、前記光照射面からシリコン酸化窒化膜、シリコン窒化膜を順に堆積させた2層膜で形成されている
ことを特徴とする請求項5記載のカメラモジュール。
The camera module according to claim 5, wherein the antireflection film is formed of a two-layer film in which a silicon oxynitride film and a silicon nitride film are sequentially deposited from the light irradiation surface.
前記反射防止膜が、前記光照射面からシリコン酸化膜、シリコン窒化膜を順に堆積させた2層膜で形成され、
前記シリコン酸化膜の膜厚を25nm以下(0を含まず)とし、前記シリコン窒化膜の膜厚を40nm〜60nmとした
ことを特徴とする請求項5記載のカメラモジュール。
The antireflection film is formed of a two-layer film in which a silicon oxide film and a silicon nitride film are sequentially deposited from the light irradiation surface,
The camera module according to claim 5, wherein the silicon oxide film has a thickness of 25 nm or less (excluding 0), and the silicon nitride film has a thickness of 40 nm to 60 nm.
固体撮像素子と光学レンズ系と信号処理手段を備え、
前記固体撮像素子は、
光電変換部と複数のトランジスタからなる画素を複数有し、
前記複数のトランジスタは、半導体基板の表面側に形成され、
前記光電変換部は、前記半導体基板の表面側から裏面側に延在して形成され、
前記半導体基板の光照射面となる裏面に、前記半導体基板と屈折率を異にし、且つ光照射面から屈折率の小さい膜の順に堆積された2層膜による反射防止膜が形成され、
前記反射防止膜上に、該反射防止膜に接触してカラーフィルタまたはオンチップレンズが形成され、
裏面照射型に構成されている
ことを特徴とする電子機器モジュール。
A solid-state imaging device, an optical lens system, and signal processing means;
The solid-state imaging device is
Having a plurality of pixels consisting of a photoelectric conversion unit and a plurality of transistors,
The plurality of transistors are formed on a surface side of a semiconductor substrate,
The photoelectric conversion portion is formed to extend from the front surface side to the back surface side of the semiconductor substrate,
On the back surface, which is the light irradiation surface of the semiconductor substrate, an antireflection film is formed by a two-layer film that has a refractive index different from that of the semiconductor substrate and is deposited in the order of a film having a small refractive index from the light irradiation surface,
On the antireflection film, a color filter or an on-chip lens is formed in contact with the antireflection film ,
An electronic device module characterized by being configured as a back-illuminated type.
前記反射防止膜が、前記光照射面からシリコン酸化膜、シリコン酸化窒化膜を順に堆積させた2層膜で形成されている
ことを特徴とする請求項9記載の電子機器モジュール。
The electronic device module according to claim 9, wherein the antireflection film is formed of a two-layer film in which a silicon oxide film and a silicon oxynitride film are sequentially deposited from the light irradiation surface.
前記反射防止膜が、前記光照射面からシリコン酸化窒化膜、シリコン窒化膜を順に堆積させた2層膜で形成されている
ことを特徴とする請求項9記載の電子機器モジュール。
The electronic device module according to claim 9, wherein the antireflection film is formed of a two-layer film in which a silicon oxynitride film and a silicon nitride film are sequentially deposited from the light irradiation surface.
前記反射防止膜が、前記光照射面からシリコン酸化膜、シリコン窒化膜を順に堆積させた2層膜で形成され、
前記シリコン酸化膜の膜厚を25nm以下(0を含まず)とし、前記シリコン窒化膜の膜厚を40nm〜60nmとした
ことを特徴とする請求項9記載の電子機器モジュール。
The antireflection film is formed of a two-layer film in which a silicon oxide film and a silicon nitride film are sequentially deposited from the light irradiation surface,
10. The electronic device module according to claim 9, wherein the thickness of the silicon oxide film is 25 nm or less (not including 0), and the thickness of the silicon nitride film is 40 nm to 60 nm.
JP2004081234A 2004-03-19 2004-03-19 Solid-state image sensor, camera module, and electronic device module Expired - Fee Related JP4779304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081234A JP4779304B2 (en) 2004-03-19 2004-03-19 Solid-state image sensor, camera module, and electronic device module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081234A JP4779304B2 (en) 2004-03-19 2004-03-19 Solid-state image sensor, camera module, and electronic device module

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2010226430A Division JP2011040774A (en) 2010-10-06 2010-10-06 Solid-state imaging element, camera module, and electronic apparatus module
JP2011026202A Division JP5429208B2 (en) 2011-02-09 2011-02-09 Solid-state image sensor, camera module, and electronic device module

Publications (2)

Publication Number Publication Date
JP2005268643A JP2005268643A (en) 2005-09-29
JP4779304B2 true JP4779304B2 (en) 2011-09-28

Family

ID=35092846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081234A Expired - Fee Related JP4779304B2 (en) 2004-03-19 2004-03-19 Solid-state image sensor, camera module, and electronic device module

Country Status (1)

Country Link
JP (1) JP4779304B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4992446B2 (en) 2006-02-24 2012-08-08 ソニー株式会社 Solid-state imaging device, manufacturing method thereof, and camera
CN101079967B (en) * 2006-02-24 2013-07-10 索尼株式会社 Solid-state imaging device, method for producing same, and camera
JP2008177362A (en) * 2007-01-18 2008-07-31 Matsushita Electric Ind Co Ltd Solid-state imaging apparatus and camera
JP4696104B2 (en) * 2007-09-28 2011-06-08 富士フイルム株式会社 Back-illuminated solid-state imaging device and manufacturing method thereof
JP5061915B2 (en) * 2008-01-18 2012-10-31 ソニー株式会社 Solid-state imaging device and imaging apparatus
US8101978B2 (en) * 2008-02-08 2012-01-24 Omnivision Technologies, Inc. Circuit and photo sensor overlap for backside illumination image sensor
JP5269454B2 (en) * 2008-03-25 2013-08-21 株式会社東芝 Solid-state image sensor
JP2010040733A (en) 2008-08-05 2010-02-18 Toshiba Corp Semiconductor device
KR101547327B1 (en) * 2009-01-15 2015-09-07 삼성전자주식회사 Optical image modulator and optical apparatus comprising the same and methods of manufacturing and operating optical image modulator
JP2010232387A (en) 2009-03-26 2010-10-14 Panasonic Corp Solid-state imaging element
JP2011077410A (en) 2009-09-30 2011-04-14 Toshiba Corp Solid-state imaging device
JP5566093B2 (en) * 2009-12-18 2014-08-06 キヤノン株式会社 Solid-state imaging device
JP6708464B2 (en) 2016-04-01 2020-06-10 ラピスセミコンダクタ株式会社 Semiconductor device and method of manufacturing semiconductor device
JP7040907B2 (en) * 2017-08-30 2022-03-23 ラピスセミコンダクタ株式会社 Semiconductor devices and methods for manufacturing semiconductor devices

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314466A (en) * 1986-07-07 1988-01-21 Hitachi Ltd Solid-state imaging device
JPS6371801A (en) * 1986-09-16 1988-04-01 Hitachi Ltd Antireflection film
JPH04223371A (en) * 1990-12-25 1992-08-13 Sony Corp Solid-state image sensing device
JPH07235684A (en) * 1994-02-23 1995-09-05 Hitachi Cable Ltd Solar cell
JP3677159B2 (en) * 1997-11-13 2005-07-27 松下電器産業株式会社 Manufacturing method of solid-state imaging device
JP2002151729A (en) * 2000-11-13 2002-05-24 Sony Corp Semiconductor device and its manufacturing method
JP3759435B2 (en) * 2001-07-11 2006-03-22 ソニー株式会社 XY address type solid-state imaging device
JP4235787B2 (en) * 2001-10-03 2009-03-11 ソニー株式会社 Manufacturing method of solid-state imaging device
JP2003197949A (en) * 2001-12-26 2003-07-11 Sharp Corp Photodetector, circuit built-in photodetection device, and optical disk device
JP3722367B2 (en) * 2002-03-19 2005-11-30 ソニー株式会社 Manufacturing method of solid-state imaging device
JP4123415B2 (en) * 2002-05-20 2008-07-23 ソニー株式会社 Solid-state imaging device

Also Published As

Publication number Publication date
JP2005268643A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP4826111B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and image photographing apparatus
US7545423B2 (en) Image sensor having a passivation layer exposing at least a main pixel array region and methods of fabricating the same
KR101899595B1 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic equipment
KR100962449B1 (en) Photoelectric-conversion-layer-stack-type color solid-state imaging device
JP5810575B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
TWI390722B (en) Solid-state imaging devices and electronic devices
US20130267058A1 (en) Anti-reflective image sensor
JP5429208B2 (en) Solid-state image sensor, camera module, and electronic device module
US20080036022A1 (en) Image sensor and method of manufacturing the same
JP4779304B2 (en) Solid-state image sensor, camera module, and electronic device module
JP2014130890A (en) Photoelectric conversion device
US7612318B2 (en) Complementary metal oxide semiconductor image sensor having cross talk prevention and method for fabricating the same
JP5287923B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and image photographing apparatus
CN108847418A (en) A kind of image sensor structure and forming method enhancing near-infrared quantum efficiency
JP3959734B2 (en) Solid-state imaging device and manufacturing method thereof
JP2009088261A (en) Back irradiation type solid-state imaging element, and manufacturing method thereof
CN109509763B (en) Image sensor pixel unit structure for improving quantum efficiency and forming method
JP2005353626A (en) Photoelectric conversion film laminated solid state imaging element and its manufacturing method
JP2002110953A (en) Solid-state imaging device
JP4419264B2 (en) Solid-state imaging device
JP5282797B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and image photographing apparatus
JP2011040774A (en) Solid-state imaging element, camera module, and electronic apparatus module
JPH06163863A (en) Solid-state image pickup device
JP6663887B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic device
JP2011023455A (en) Solid-state image-capture device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees