JP4430444B2 - Low yield ratio type high strength hot-rolled steel sheet with excellent shape freezing property and manufacturing method thereof - Google Patents

Low yield ratio type high strength hot-rolled steel sheet with excellent shape freezing property and manufacturing method thereof Download PDF

Info

Publication number
JP4430444B2
JP4430444B2 JP2004092280A JP2004092280A JP4430444B2 JP 4430444 B2 JP4430444 B2 JP 4430444B2 JP 2004092280 A JP2004092280 A JP 2004092280A JP 2004092280 A JP2004092280 A JP 2004092280A JP 4430444 B2 JP4430444 B2 JP 4430444B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolling
shape freezing
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004092280A
Other languages
Japanese (ja)
Other versions
JP2005272988A (en
Inventor
夏子 杉浦
謙 木村
直樹 吉永
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004092280A priority Critical patent/JP4430444B2/en
Priority to TW093118280A priority patent/TWI248977B/en
Priority to PCT/JP2004/009465 priority patent/WO2005005670A1/en
Priority to DE602004008917T priority patent/DE602004008917T2/en
Priority to KR1020057024886A priority patent/KR100754035B1/en
Priority to EP04746934A priority patent/EP1636392B1/en
Priority to PL04746934T priority patent/PL1636392T3/en
Priority to ES04746934T priority patent/ES2293299T3/en
Priority to CA2530008A priority patent/CA2530008C/en
Priority to AT04746934T priority patent/ATE373110T1/en
Priority to US10/561,133 priority patent/US7485195B2/en
Publication of JP2005272988A publication Critical patent/JP2005272988A/en
Application granted granted Critical
Publication of JP4430444B2 publication Critical patent/JP4430444B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車部材等に使用され、効率よく自動車部材の軽量化を達成することのできる形状凍結性に優れた低降伏比型高強度熱延鋼板とその製造方法に関するものである。   The present invention relates to a low-yield ratio type high-strength hot-rolled steel sheet excellent in shape freezing property that can be used in automobile members and the like and can efficiently reduce the weight of automobile members, and a method for producing the same.

自動車からの炭酸ガスの排出量を抑えるために、高強度鋼板を使用して、自動車車体の軽量化が進められている。また、搭乗者の安全性確保のためにも、自動車車体には軟鋼板の他に、高強度鋼板が多く使用されるようになってきている。さらに、自動車車体の軽量化を今後進めていくために、従来以上に高強度鋼板の使用強度レベルを高めたいという新たな要請が非常に高まりつつある。   In order to reduce the amount of carbon dioxide emitted from automobiles, the weight reduction of automobile bodies has been promoted using high-strength steel sheets. In addition, in order to ensure the safety of passengers, high strength steel plates are often used in automobile bodies in addition to mild steel plates. Furthermore, in order to reduce the weight of automobile bodies in the future, new demands for increasing the strength level of use of high-strength steel sheets are increasing.

しかしながら、高強度鋼板に曲げ変形を加えると、加工後の形状は、その高強度ゆえに、加工冶具の形状から離れて加工前の形状の方向に戻りやすくなるスプリング・バック現象や、成形中の曲げ−曲げ戻しからの弾性回復により側壁部の平面が曲率を持った面になってしまう壁そり現象が起こり、狙いとする加工部品の形状が得られないという寸法精度不良が生じる。   However, when bending deformation is applied to a high-strength steel sheet, the shape after processing tends to return to the direction of the shape before processing away from the shape of the processing jig because of its high strength, or bending during forming -A wall warp phenomenon in which the side wall portion becomes a curved surface due to elastic recovery from bending back, resulting in a poor dimensional accuracy in which the desired shape of the processed part cannot be obtained.

従って、従来の自動車の車体では、主として、440MPa以下の高強度鋼板に限って使用されてきた。自動車車体にとっては、490MPa以上の高強度鋼板を使用して車体の軽量化を進めていく必要があるにもかかわらず、スプリング・バックや壁そりが少なく形状凍結性の良い高強度鋼板が存在しないのが実状である。   Therefore, the conventional automobile body has been mainly used only for high-strength steel sheets of 440 MPa or less. For automobile bodies, there is no high-strength steel sheet with low spring back and wall warpage and good shape freezing, despite the need to reduce the weight of the body using high-strength steel sheets of 490 MPa or higher. This is the actual situation.

付け加えるまでもなく、440MPa以下の高強度鋼板や軟鋼板の加工後の形状凍結性を高めることは、自動車や家電製品などの製品の形状精度を高める上で極めて重要なことである。   Needless to say, increasing the shape freezing property after processing of a high-strength steel plate or mild steel plate of 440 MPa or less is extremely important for improving the shape accuracy of products such as automobiles and home appliances.

本発明者らの一部は、特許文献1にて、形状凍結性の向上を目的として、{100}面と{111}面の比が1以上であるフェライト系薄鋼板を開示したが、特許文献1に、壁そりの低減に関しては何ら記載がなく、したがって、{100}<011>〜{223}<110>方位群および{100}<110>方位のX線ランダム強度比の値についても記載されていない。   A part of the inventors disclosed a ferritic thin steel sheet having a ratio of {100} face to {111} face of 1 or more in Patent Document 1 for the purpose of improving shape freezing property. Reference 1 does not describe anything about the reduction of wall warp. Therefore, the values of the X-ray random intensity ratio of {100} <011> to {223} <110> orientation group and {100} <110> orientation are also described. Not listed.

また、本発明者らの一部は、特許文献2にて、スプリングバック量を小さくする技術として、板面に平行な{100}面の反射X線強度比が3以上である冷延鋼板を開示したが、この冷延鋼板は、板厚最表面でのX線強度比の規定を特徴とするもので、本発明とは、全く異なる鋼板である。   Further, some of the inventors of the present invention in Japanese Patent Application Laid-Open No. H11-228561, as a technique for reducing the amount of springback, employs a cold-rolled steel sheet in which the reflected X-ray intensity ratio of the {100} plane parallel to the plate surface is 3 or more. Although disclosed, this cold-rolled steel sheet is characterized by the definition of the X-ray intensity ratio at the outermost surface of the plate thickness, and is a completely different steel sheet from the present invention.

また、本発明者らの一部は、特許文献3および特許文献4において、形状凍結性に優れた低降伏比型高強度鋼板およびその製造方法を開示したが、本発明は、これらの発明に比較して、より優れた形状凍結性を発現できるよう製造条件を、さらに検討したものである。   Further, some of the present inventors disclosed a low yield ratio type high strength steel sheet excellent in shape freezing property and a manufacturing method thereof in Patent Document 3 and Patent Document 4, but the present invention relates to these inventions. In comparison, the production conditions were further examined so that more excellent shape freezing property could be expressed.

WO00/06791号WO00 / 066791 特開2001−64750号公報JP 2001-64750 A 特開2002−363695号公報JP 2002-363695 A 特願2002−286838号公報Japanese Patent Application No. 2002-286838

曲げ加工を施す自動車用部材に適用する鋼板の強度を増すと、鋼板強度の上昇にしたがってスプリング・バックの量が増大し、形状不良が発生するので、高強度鋼板の適用が制限されているのが現状である。また、良好なプレス成形性と高い衝撃エネルギー吸収能は、高強度鋼板が自動車部品等に適用されるためには欠くことの出来ない特性である。   Increasing the strength of steel plates applied to automobile parts subjected to bending increases the amount of spring back as the strength of the steel plate increases, resulting in shape defects, limiting the application of high strength steel plates. Is the current situation. In addition, good press formability and high impact energy absorption capability are indispensable characteristics for applying high-strength steel sheets to automobile parts and the like.

本発明は、この問題を抜本的に解決して、良好な形状凍結性を有する低降伏比型高強度熱延鋼板およびその製造方法を提供するものである。   The present invention drastically solves this problem and provides a low yield ratio type high-strength hot-rolled steel sheet having a good shape freezing property and a method for producing the same.

従来の知見によれば、形状凍結不良を抑えるための方策としては、鋼板の降伏点を低くすることが、とりあえず重要であると考えられていた。そして、降伏点を低くするためには、引張強さの低い鋼板を使用せざるをえなかった。しかし、これだけでは、鋼板の曲げ加工性を向上させ、形状凍結不良を少なくするための根本的な解決にはならない。   According to the conventional knowledge, as a measure for suppressing the shape freezing failure, it was considered to be important to lower the yield point of the steel plate for the time being. In order to lower the yield point, a steel plate having a low tensile strength has to be used. However, this alone is not the fundamental solution for improving the bending workability of the steel sheet and reducing the shape freezing failure.

そこで、本発明者らは、曲げ加工性を向上させて形状凍結不良発生を根本的に解決するために、新たに、鋼板の集合組織の曲げ加工性への影響に着目して、その作用効果を詳細に調査、研究した。そして、曲げ加工性に優れた鋼板を見いだした。   Therefore, in order to improve the bending workability and fundamentally solve the occurrence of defective shape freezing, the present inventors newly paid attention to the influence on the bending workability of the texture of the steel sheet, and its effect Were investigated and studied in detail. And the steel plate excellent in bending workability was found.

その結果、{100}<011>〜{223}<110>方位群、その中でも、特に、{100}<011>方位、さらに、{554}<225>、{111}<112>、{111}<110>の各方位のX線ランダム強度比を制御すること、さらには、圧延方向のr値および圧延方向と直角方向のr値のうち少なくとも1つをできるだけ低い値にすること、局部伸びの異方性を2%以上にすることで、曲げ加工性が飛躍的に向上することを明らかにした。   As a result, {100} <011> to {223} <110> azimuth group, among them, in particular, {100} <011> azimuth, {554} <225>, {111} <112>, {111 } Controlling the X-ray random intensity ratio of each orientation of <110>, and further setting at least one of the r value in the rolling direction and the r value in the direction perpendicular to the rolling direction as low as possible, local elongation It has been clarified that bending workability is remarkably improved by making the anisotropy of 2% or more.

また、種々の部品を成形するためのブランク採取方向を限定しないことは、鋼材の歩留まり向上に大きく貢献するが、このためには、延性の異方性、とりわけ、均一伸びの異方性を小さくすることが重要な意味を持つ。   In addition, not restricting the blank sampling direction for forming various parts greatly contributes to the improvement of the yield of steel, but for this purpose, the anisotropy of ductility, especially the anisotropy of uniform elongation, is reduced. It has an important meaning.

本発明者らは、実験によって、鋼板の仕上げ熱間圧延の開始温度と終了温度を制御することによって、{100}<011>方位が主方位として発達し、それによって、上記形状凍結性と加工性を確保しつつ、均一伸びの異方性を小さくすることが可能であることを見出した。   The inventors have experimentally controlled the start temperature and the end temperature of finish hot rolling of the steel sheet to develop the {100} <011> orientation as the main orientation, thereby improving the shape freezing property and processing. It has been found that the anisotropy of uniform elongation can be reduced while securing the properties.

本発明は、前述の知見に基づいて構成されており、その主旨とするところは、以下の通りである。   The present invention is configured based on the above-mentioned knowledge, and the main points thereof are as follows.

(1) 質量%で、
C;0.02%以上0.3%以下、
Mn;0.05%以上3%以下、
P;0.2%以下
を含み、
Ni;3%以下、
Cr;3%以下、
Cu;3%以下、
Mo;1%以下、
Co;3%以下、
Sn;0.2%以下
でかつこれらの1種または2種以上を合計で0.1%以上3.5%以下含み、
Si;3%以下、
Al;3%以下
でかつこれらの一方または双方を合計で0.02%以上3%以下含み、
残部がFeおよび不可避的不純物からなり、
ミクロ組織が、フェライトまたはベイナイトを体積分率最大の相とし、体積分率で1%以上25%以下のマルテンサイトを含む複合組織鋼であり、少なくとも1/2板厚における板面の、
(1){100}<011>〜{223}<110>方位群のX線ランダム強度比の平 均値が2.5以上、
(2){554}<225>、{111}<112>および{111}<110>の3 つの結晶方位のX線ランダム強度比の平均値が3.5以下、
(3){100}<011>X線反射ランダム強度比が{211}<011>X線ラン ダム強度比以上、および、
(4){100}<011>X線反射ランダム強度比が2.5以上
の全てを満足し、かつ、圧延方向のr値および圧延方向と直角方向のr値のうち少なくとも1つが0.7以下であり、さらに、均一伸びの異方性ΔuElが4%以下、局部伸びの異方性△LElが2%以上、かつ、ΔuElがΔLEl以下であることを特徴とする形状凍結性に優れた低降伏比型高強度熱延鋼板。
(1) In mass%,
C: 0.02% to 0.3%,
Mn: 0.05% or more and 3% or less,
P: 0.2% or less
Including
Ni: 3% or less,
Cr: 3% or less,
Cu: 3% or less,
Mo; 1% or less,
Co: 3% or less,
Sn: 0.2% or less
And including one or more of these in a total of 0.1% to 3.5%,
Si: 3% or less,
Al: 3% or less
And including one or both of these in a total of 0.02% to 3%,
The balance consists of Fe and inevitable impurities,
The microstructure is a steel having a microstructure with ferrite or bainite having a maximum volume fraction and containing martensite in a volume fraction of 1% or more and 25% or less.
(1) The average value of the X-ray random intensity ratio of {100} <011> to {223} <110> orientation group is 2.5 or more,
(2) The average value of the X-ray random intensity ratio of the three crystal orientations of {554} <225>, {111} <112> and {111} <110> is 3.5 or less,
(3) {100} <011> X-ray reflection random intensity ratio is equal to or greater than {211} <011> X-ray random intensity ratio; and
(4) {100} <011> The X-ray reflection random intensity ratio satisfies all of 2.5 or more, and at least one of the r value in the rolling direction and the r value in the direction perpendicular to the rolling direction is 0.7. Further, the shape elongating anisotropy ΔuE1 is 4% or less, the local elongation anisotropy ΔLE1 is 2% or more, and the ΔuE1 is ΔLE1 or less, and the shape freezing property is excellent. Low yield ratio type high strength hot rolled steel sheet.

ただし、△uEl={|uEl(L)−uEl(45°)|+|uEl(C)−
uEl(45°)|}/2
△LEl={|LEl(L)−LEl(45°)|+|LEl(C)−
LEl(45°)|}/2
圧延方向と平行(L方向)、垂直(C方向)、および、45°方向の均一伸びを、それぞれ、uEl(L)、uEl(C)、および、uEl(45°)とし、圧延方向と平行(L方向)、垂直(C方向)、および、45°方向の局部伸びを、それぞれ、LEl(L)、LEl(C)、および、LEl(45°)とする。
However, ΔuEl = {| uEl (L) −uEl (45 °) | + | uEl (C) −
uEl (45 °) |} / 2
ΔLEl = {| LEl (L) −LEl (45 °) | + | LEl (C) −
LEl (45 °) |} / 2
The uniform elongation in the direction parallel to the rolling direction (L direction), vertical (C direction), and 45 ° is uEl (L), uEl (C), and uEl (45 °), respectively, and parallel to the rolling direction. The local elongations in the (L direction), vertical (C direction), and 45 ° directions are denoted by LEl (L), LEl (C), and LEl (45 °), respectively.

) 質量%で、Nb、Ti、Vの1種または2種以上を合計で0.001%以上0.8%以下含むことを特徴とする前記(1)記載の形状凍結性に優れた低降伏比型高強度熱延鋼板。 ( 2 ) Excellent in shape freezing property according to (1) , characterized in that it contains 0.001% or more and 0.8% or less of Nb, Ti, and V in total by mass of 1 type or 2 types or more. Low yield ratio type high strength hot rolled steel sheet.

) 質量%で、Bを0.01%以下含むことを特徴とする前記(1)または(2)記載の形状凍結性に優れた低降伏比型高強度熱延鋼板。 ( 3 ) The low yield ratio type high-strength hot-rolled steel sheet having excellent shape freezing properties according to the above (1) or (2), wherein B is 0.01% or less by mass.

) 質量%で、Ca:0.0005〜0.005%、Rem:0.001〜0.02%の1種または2種を含むことを特徴とする前記(1)〜()のいずれかに記載の形状凍結性に優れた低降伏比型高強度熱延鋼板。 ( 4 ) By the mass%, it contains 1 type or 2 types of Ca: 0.0005-0.005%, Rem: 0.001-0.02% of said (1)-( 3 ) characterized by the above-mentioned. A low yield ratio type high-strength hot-rolled steel sheet excellent in shape freezing properties according to any one of the above.

) 前記(1)〜()のいずれかに記載の形状凍結性に優れた低降伏比型高強度熱延鋼板に、めっきを施したことを特徴とする形状凍結性に優れた低降伏比型高強度熱延鋼板。 ( 5 ) The low yield ratio high-strength hot-rolled steel sheet having excellent shape freezing properties according to any one of the above (1) to ( 4 ), and having low shape freezing properties, characterized by being plated. Yield ratio type high strength hot rolled steel sheet.

) 前記(1)〜()のいずれかに記載の形状凍結性に優れた低降伏比型高強度熱延鋼板を製造するにあたり、前記()〜()のいずれか1項に記載の成分を有する鋳造スラブを、鋳造まままたは一旦冷却した後に1000〜1300℃の範囲に再度加熱し、熱間圧延をする際、Ar3〜(Ar3+150)℃の温度範囲における圧下率の合計が25%以上となるように制御し、仕上げ熱延開始温度TFSと仕上げ熱延完了温度TFE、および、仕上げ熱延完了時の計算残留歪△εが、下記(1)〜(4)式を全て同時に満足するように熱間圧延を終了し、熱間圧延後冷却して、下記(5)式に示す鋼の化学成分で決まる臨界温度To(℃)以下で、かつ、400℃以下室温以上の温度で巻き取ることを特徴とする形状凍結性に優れた低降伏比型高強度熱延鋼板の製造方法。 ( 6 ) In producing the low yield ratio type high-strength hot-rolled steel sheet having excellent shape freezing properties according to any one of (1) to ( 5 ), any one of ( 1 ) to ( 4 ) above. When the cast slab having the components described in the above is cast as it is or once cooled to 1000 to 1300 ° C. and hot-rolled, the total rolling reduction in the temperature range of Ar 3 to (Ar 3 +150) ° C. is The finish hot rolling start temperature TFS, the finish hot rolling completion temperature TFE, and the calculated residual strain Δε upon completion of the finishing hot rolling are all controlled by the following formulas (1) to (4). At the same time, the hot rolling is finished so as to be satisfied, and after the hot rolling, cooling is performed, and the critical temperature To (° C.) or less determined by the chemical composition of the steel shown in the following formula (5) is not more than 400 ° C. Excellent shape freezing property, characterized by winding at temperature Method for producing a low yield ratio high-strength hot-rolled steel sheet was.

TFE≧Ar(℃) (1)
TFS≦1100℃ (2)
△ε ≧(TFS−TFE)/375 (3)
20℃≦(TFS−TFE)≦120℃ (4)
To=−650.4×{C%/(1.82×C%−0.001)}+B (5)
ここで、Bは質量%で表現した鋼の成分より求まる。
TFE ≧ Ar 3 (° C.) (1)
TFS ≦ 1100 ° C (2)
Δε ≧ (TFS−TFE) / 375 (3)
20 ° C. ≦ (TFS-TFE) ≦ 120 ° C. (4)
To = −650.4 × {C% / (1.82 × C% −0.001)} + B (5)
Here, B is obtained from the steel component expressed in mass%.

B=−50.6×Mneq+894.3
Mneq=Mn%+0.24×Ni%+0.13×Si%+0.38×Mo%
+0.55×Cr%+0.16×Cu%−0.50×Al%
−0.45×Co%+0.90×V%
ただし、
Ar=901−325×C%+33×Si%+287×P%+40×Al%
−92×(Mn%+Mo%+Cu%)−46×(Cr%+Ni%)
△εは、圧延を行うn段の仕上げ圧延の各スタンドで与えられる相当歪εi(iは1〜n)と各スタンド間の時間ti(秒)(i=1〜n−1)、最終スタンドから冷却開始までの時間tn(秒)、各スタンドでの圧延温度Ti(K)(i=1〜n)、および、常数R=1.987により求まる。
B = −50.6 × Mneq + 894.3
Mneq = Mn% + 0.24 × Ni% + 0.13 × Si% + 0.38 × Mo%
+ 0.55 × Cr% + 0.16 × Cu% −0.50 × Al%
-0.45 x Co% + 0.90 x V%
However,
Ar 3 = 901-325 × C% + 33 × Si% + 287 × P% + 40 × Al%
−92 × (Mn% + Mo% + Cu%) − 46 × (Cr% + Ni%)
.DELTA..epsilon. Is equivalent strain .epsilon.i (i is 1 to n) given at each stand of n-stage finish rolling for rolling, time ti (seconds) between each stand (i = 1 to n-1), and final stand. From the time tn (seconds) until the start of cooling, the rolling temperature Ti (K) (i = 1 to n) at each stand, and the constant R = 1.987.

ε=△ε1+△ε2+・・+△εn
ただし △εi=εi×exp{−(ti*/τn)2/3
τi=8.46×10-9×exp{43800/R/Ti}
ti*=τn×{ti/τi+t(i+1)/τ(i+1)+・・+tn/τn}
ε = △ ε1 + △ ε2 + ・ ・ + △ εn
Where Δεi = εi × exp {− (ti * / τn) 2/3 }
τi = 8.46 × 10 −9 × exp {43800 / R / Ti}
ti * = τn × {ti / τi + t (i + 1) / τ (i + 1) +. + tn / τn}

) Ar〜(Ar+150)℃の温度範囲における熱間圧延の内少なくとも1パス以上において、摩擦係数が0.2以下となるように制御することを特徴とする前記()記載の形状凍結性に優れた低降伏比型高強度熱延鋼板の製造方法。 (7) Ar 3 ~ (Ar 3 +150) at ℃ least one pass or more of hot rolling in the temperature range of the (6), wherein the friction coefficient and controls such that 0.2 or less Of low yield ratio type high strength hot-rolled steel sheet with excellent shape freezing property.

(8) 前記()または()に記載の形状凍結性に優れた低降伏比型高強度熱延鋼板の製造方法で製造された熱延鋼板に、0.1%以上5%以下のスキンパス圧延を施すことを特徴とする形状凍結性に優れた低降伏比型高強度熱延鋼板の製造方法。 (8) 0.1% or more and 5% or less of the hot-rolled steel sheet produced by the method for producing a low yield ratio type high-strength hot-rolled steel sheet excellent in shape freezing property described in ( 6 ) or ( 7 ). A method for producing a low-yield-ratio type high-strength hot-rolled steel sheet excellent in shape freezing, characterized by performing skin pass rolling.

本発明によって、スプリング・バック量が少なく、形状凍結性に優れると同時に異方性が少ない良好なプレス成形性を有する薄鋼板を提供できるようになり、従来は形状不良の問題から高強度鋼板の適用が難しかった部品にも、高強度鋼板が使用できるようになると同時に、効率的に自動車の安全性と車体の軽量化を両立することが可能となり、CO排出削減等の環境・社会からの要請に応える自動車製造に大きく貢献することが出来る。 According to the present invention, it is possible to provide a thin steel sheet having a good press formability with a small amount of spring back and excellent shape freezing property and at the same time low anisotropy. applied to difficult parts-at the same time so that high-strength steel sheet can be used efficiently it is possible to achieve both safety and vehicle weight reduction of the automobile, from the environment and society such as CO 2 emission reduction It can greatly contribute to automobile manufacturing that meets the demand.

以下に、本発明の内容を詳細に説明する。   The contents of the present invention will be described in detail below.

1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値:
板厚中心位置での板面のX線回折を行い、ランダム試料に対する各方位の強度比を求めたときの、{100}<011>〜{223}<110>方位群の平均値が2.5以上でなくてはならない。この平均値が2.5未満では、形状凍結性が劣悪となる。
Average value of X-ray random intensity ratio of {100} <011> to {223} <110> orientation group on the plate surface at 1/2 plate thickness:
The average value of {100} <011> to {223} <110> orientation groups when the X-ray diffraction of the plate surface at the plate thickness center position and the intensity ratio of each orientation with respect to the random sample is obtained is 2. Must be 5 or more. When this average value is less than 2.5, the shape freezing property is poor.

この方位群に含まれる主な方位は、{100}<011>、{116}<110>、{114}<110>、{113}<110>、{112}<110>、{335}<110>および{223}<110>である。   The main orientations included in this orientation group are {100} <011>, {116} <110>, {114} <110>, {113} <110>, {112} <110>, {335} < 110> and {223} <110>.

これら各方位のX線ランダム強度比は、{110}極点図に基づきベクトル法により計算した3次元集合組織や、{110}、{100}、{211}、{310}の極点図のうち複数の極点図(好ましくは3つ以上)を用いて級数展開法で計算した3次元集合組織から求めればよい。   The X-ray random intensity ratio in each of these directions may be a three-dimensional texture calculated by a vector method based on a {110} pole figure, or a plurality of pole figures of {110}, {100}, {211}, {310}. It may be obtained from the three-dimensional texture calculated by the series expansion method using the pole figure (preferably three or more).

例えば、後者の方法における上記各結晶方位のX線ランダム強度比には、3次元集合組織のφ2=45゜断面における(001)[1−10]、(116)[1−10]、(114)[1−10]、(113)[1−10]、(112)[1−10]、(335)[1−10]、(223)[1−10]の強度を、そのまま用いればよい。   For example, the X-ray random intensity ratio of each crystal orientation in the latter method includes (001) [1-10], (116) [1-10], (114 in the φ2 = 45 ° cross section of the three-dimensional texture. ) [1-10], (113) [1-10], (112) [1-10], (335) [1-10], (223) [1-10] strengths may be used as they are. .

{100}<011>〜{223}<110>方位群の平均値とは、上記の各方位の相加平均である。上記の全ての方位の強度を得ることができない場合には、{100}<011>、{116}<110>、{114}<110>、{112}<110>、{223}<110>の各方位の相加平均で代替してもよい。さらに、望ましくは、{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値は4.0以上である。   The average value of {100} <011> to {223} <110> orientation group is an arithmetic average of each of the above-mentioned orientations. When the strengths of all the above directions cannot be obtained, {100} <011>, {116} <110>, {114} <110>, {112} <110>, {223} <110> Alternatively, an arithmetic average of each direction may be substituted. Furthermore, desirably, the average value of the X-ray random intensity ratio of the {100} <011> to {223} <110> orientation groups is 4.0 or more.

1/2板厚における板面の{554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値:
1/2板厚における板面の{554}<225>、{111}<112>および{111}<110>の3つの結晶方位のX線ランダム強度比の平均値は3.5以下でなくてはならない。この平均値が3.5超であると、{100}<011>〜{223}<110>方位群の強度が適正であっても、良好な形状凍結性を得ることが困難となる。
Average value of X-ray random intensity ratio of three crystal orientations of {554} <225>, {111} <112> and {111} <110> on the plate surface at 1/2 plate thickness:
The average value of the X-ray random intensity ratio of the three crystal orientations of {554} <225>, {111} <112> and {111} <110> on the plate surface at 1/2 plate thickness is not less than 3.5. must not. When this average value exceeds 3.5, it is difficult to obtain good shape freezing property even if the strengths of the {100} <011> to {223} <110> orientation groups are appropriate.

{554}<225>、{111}<112>および{111}<110>のX線ランダム強度比も、上記の方法に従って計算した3次元集合組織から求めればよい。さらに、望ましくは、{554}<225>、{111}<112>および{111}<110>のX線ランダム強度比の相加平均値が2.5未満である。   The X-ray random intensity ratio of {554} <225>, {111} <112>, and {111} <110> may be obtained from the three-dimensional texture calculated according to the above method. Further, desirably, the arithmetic average value of the X-ray random intensity ratios of {554} <225>, {111} <112> and {111} <110> is less than 2.5.

1/2板厚における板面の{100}<011>および{211}<011>X線ランダム強度比:
1/2板厚における板面の{100}<011>X線ランダム強度比は、{211}<011>X線ランダム強度比以上でなければならない。{211}<011>方位のX線ランダム強度比が{100}<011>X線ランダム強度比より大きくなると、均一伸びの異方性が大きくなり、加工性が劣化する。
{100} <011> and {211} <011> X-ray random intensity ratio of the plate surface at 1/2 plate thickness:
The {100} <011> X-ray random intensity ratio of the plate surface at 1/2 plate thickness must be greater than or equal to {211} <011> X-ray random intensity ratio. When the X-ray random intensity ratio in the {211} <011> orientation is larger than the {100} <011> X-ray random intensity ratio, the anisotropy of uniform elongation increases and the workability deteriorates.

また、{100}<011>X線反射ランダム強度比は、2.5以上でなければならない。この強度比が2.5未満になると、良好な形状凍結性を得ることができない。   The {100} <011> X-ray reflection random intensity ratio must be 2.5 or more. When the strength ratio is less than 2.5, good shape freezing property cannot be obtained.

なお、ここで述べる{100}<011>および{211}<011>は、それぞれ、同様の効果を有する方位の範囲として、圧延方向に対して直角な方向(Transverse direction)を回転軸として、±12°を許容する。さらに、望ましくは±6°とする。   In addition, {100} <011> and {211} <011> described here are respectively ± ranges having a direction perpendicular to the rolling direction (Transverse direction) as a rotation axis as a range of orientations having the same effect. Allow 12 °. Furthermore, it is desirably ± 6 °.

以上述べた結晶方位のX線強度が曲げ加工時の形状凍結性や伸びの異方性に対して重要であることの理由は、必ずしも明らかではないが、曲げ変形時の結晶のすべり挙動と関係があるものと推測される。   The reason why the X-ray intensity of the crystal orientation described above is important for the shape freezeability and elongation anisotropy during bending is not necessarily clear, but it is related to the sliding behavior of the crystal during bending deformation. It is assumed that there is.

X線回折に供する試料は、機械研磨などによって鋼板を所定の板厚まで減厚し、次いで、化学研磨や電解研磨などによって歪みを除去すると同時に、板厚1/2面が測定面となるように作製する。   The sample to be subjected to X-ray diffraction is thinned to a predetermined plate thickness by mechanical polishing or the like, and then the distortion is removed by chemical polishing or electrolytic polishing, and at the same time, the 1/2 plate thickness becomes the measurement surface. To make.

鋼板の板厚中心層に偏析帯や欠陥などが存在し、測定上不都合が生ずる場合には、板厚の3/8〜5/8の範囲で、適当な面が測定面となるように、上述の方法に従って試料を調整して測定すればよい。   When there is a segregation zone or a defect in the thickness center layer of the steel plate, and inconvenience occurs in measurement, an appropriate surface becomes a measurement surface in the range of 3/8 to 5/8 of the plate thickness. What is necessary is just to adjust and measure a sample according to the above-mentioned method.

当然のことであるが、上述のX線強度の限定が、板厚1/2近傍だけでなく、なるべく多くの厚み(特に、最表層〜板厚の1/4)について満たされることで、より一層、形状凍結性が良好になる。   As a matter of course, the above-mentioned limitation of the X-ray intensity is satisfied not only in the vicinity of the plate thickness ½ but also as much as possible (especially, the outermost layer to ¼ of the plate thickness). Furthermore, the shape freezing property is improved.

なお、{hkl}<uvw>で表される結晶方位とは、板面の法線方向が<hkl>に平行で、圧延方向が<uvw>と平行であることを示している。   The crystal orientation represented by {hkl} <uvw> indicates that the normal direction of the plate surface is parallel to <hkl> and the rolling direction is parallel to <uvw>.

圧延方向のr値(rL)および圧延方向と直角方向のr値(rC):
上記いずれのr値も、本発明において重要である。すなわち、本発明者らが鋭意検討の結果、上述した種々の結晶方位のX線強度が適正であっても、必ずしも良好な形状凍結性が得られないことが判明した。
R value (rL) in the rolling direction and r value (rC) in the direction perpendicular to the rolling direction:
Any of the above r values is important in the present invention. That is, as a result of intensive studies by the present inventors, it has been found that even if the X-ray intensities of the various crystal orientations described above are appropriate, good shape freezing properties cannot always be obtained.

上記のX線強度と同時に、rLおよびrCのうち少なくとも1つが0.7以下であることが必須である。より好ましくは0.55以下である。   At the same time as the above X-ray intensity, it is essential that at least one of rL and rC is 0.7 or less. More preferably, it is 0.55 or less.

rLおよびrCの下限は特に定めることなく本発明の効果を得ることができるが、r値は、JIS5号引張試験片を用いた引張試験により評価する。   Although the lower limit of rL and rC is not particularly defined, the effect of the present invention can be obtained. The r value is evaluated by a tensile test using a JIS No. 5 tensile test piece.

引張歪みは通常15%であるが、均一伸びが15%を下回る場合には、均一伸びの範囲で、できるだけ15%に近い歪みで評価すればよい。   The tensile strain is usually 15%. However, when the uniform elongation is less than 15%, the strain may be evaluated as close to 15% as possible within the range of uniform elongation.

なお、曲げ加工を施す方向は加工部品によって異なるので、特に限定するものではないが、r値が小さい方向に対して垂直または垂直に近い方向に折り曲げる加工を主とすることが好ましい。   The direction in which the bending process is performed differs depending on the processed part, and is not particularly limited. However, it is preferable that the bending process is mainly performed in a direction perpendicular to or near to the direction where the r value is small.

ところで、一般に、集合組織とr値とは相関があることが知られているが、本発明においては、既述の結晶方位のX線強度比に関する限定と、r値に関する限定とは互いに同義ではなく、両方の限定が同時に満たされなくては、良好な形状凍結性を得ることはできない。   Incidentally, it is generally known that there is a correlation between the texture and the r value. However, in the present invention, the above-described limitation on the X-ray intensity ratio of the crystal orientation and the limitation on the r value are synonymous with each other. No good shape freezing property can be obtained unless both limitations are satisfied at the same time.

延性の異方性:
鋼板をプレス成形する場合には、鋼板の均一伸び、すなわち、n値が重要な意味を持つ。特に、張りだし成形が主となる高強度鋼板においては、この均一伸び(n値)が異方性を持つ場合には、部品によって、ブランク切りだし方向を注意深く選定することが必要となり、生産性の劣化や鋼板歩留まりの低下を招く。
Ductile anisotropy:
In the case of press forming a steel plate, the uniform elongation of the steel plate, that is, the n value is important. Especially in the case of high-strength steel sheets that are mainly stretch-formed, if this uniform elongation (n value) has anisotropy, it is necessary to carefully select the blank cutting direction depending on the part, and productivity Deterioration of the steel sheet and the yield of the steel sheet.

また、場合によっては所望の形状に成形できない場合も生じる。   Moreover, the case where it cannot shape | mold to a desired shape depending on the case also arises.

400MPa程度以上の引張り強度(引張り試験で得られる最大強度)を持つ鋼においては、この均一伸びの異方性△uElが4%以下であれば、方向によらない良好な成形性を示すことが判明した。特に厳しい加工性が要求される場合には、異方性△uElが3%以下であることが望ましい。   In a steel having a tensile strength of about 400 MPa or more (the maximum strength obtained by a tensile test), if this uniform elongation anisotropy ΔuE1 is 4% or less, good formability independent of the direction may be exhibited. found. When particularly severe workability is required, the anisotropy ΔuE1 is desirably 3% or less.

均一伸びの異方性△uElの下限は特に限定しないが、加工性の観点からは、0%にすることが最も好ましい。   The lower limit of the uniform elongation anisotropy ΔuEl is not particularly limited, but is most preferably 0% from the viewpoint of workability.

また、局部伸びの異方性ΔLElが2%未満になると、形状凍結性が劣化することから、ΔLElの下限は2%とする。ΔLElの上限は特に設定しないが、ΔLElが大きくなりすぎると成形性が低下することから、12%以下とすることが望ましい。   Further, when the anisotropy ΔLE1 of local elongation is less than 2%, the shape freezing property deteriorates, so the lower limit of ΔLEl is set to 2%. The upper limit of ΔLEl is not particularly set, but if ΔLEl becomes too large, the moldability deteriorates, so it is desirable to set it to 12% or less.

ただし、上記の条件を満足しても、△uEl>△LElとなる場合には、良好な成形性と形状凍結性が両立しなかったので、△uElは△LEl以下とした。   However, even if the above conditions were satisfied, if ΔuE1> ΔLE1, the good moldability and the shape freezing property were not compatible, so ΔuE1 was set to ΔLE1 or less.

なお、均一伸びと局部伸びの異方性は、圧延方向と平行(L方向)、垂直(C方向)、および、45°方向の伸び(均一伸びuEl、局部伸びLEl)を用いて、以下のように定義される。
△uEl={|uEl(L)−uEl(45°)|+|uEl(C)−
uEl(45°)|}/2
△LEl={|LEl(L)−LEl(45°)|+|LEl(C)−
LEl(45°)|}/2
In addition, the anisotropy of uniform elongation and local elongation is parallel to the rolling direction (L direction), perpendicular (C direction), and 45 ° direction elongation (uniform elongation uEl, local elongation LEl), Is defined as
ΔuEl = {| uEl (L) −uEl (45 °) | + | uEl (C) −
uEl (45 °) |} / 2
ΔLEl = {| LEl (L) −LEl (45 °) | + | LEl (C) −
LEl (45 °) |} / 2

ミクロ組織:
実際の自動車部品においては、1つの部品の中で、上記のような曲げ加工に起因する形状凍結性が問題になるだけではなく、同一部品の他の部位においては、張り出し性や絞り加工性等の良好なプレス加工性が要求される場合が少なくない。従って、上述の集合組織を制御した曲げ加工時の形状凍結性の向上とともに、鋼板そのもののプレス加工性も向上させる必要がある。
Microstructure:
In an actual automobile part, not only the shape freezing property caused by the bending process as described above becomes a problem in one part, but also in other parts of the same part, overhanging property, drawing workability, etc. Often, good press workability is required. Therefore, it is necessary to improve the press workability of the steel sheet itself, in addition to the improvement of the shape freezing property during the bending process in which the texture is controlled.

本発明者らは、本発明鋼の特徴であるrLおよびrCのうち少なくとも1つが0.7以下であることを満足しつつ、張り出し成形性を高めるための方法として、鋼板中にマルテンサイトを1%以上含むことによって降伏比を低下させることが最も望ましいことを見いだした。   As a method for improving the stretch formability while satisfying that at least one of rL and rC, which is a feature of the steel of the present invention, is 0.7 or less, the present inventors have added martensite to the steel sheet. It has been found that it is most desirable to reduce the yield ratio by including more than%.

この時、マルテンサイト体積分率が25%を越える場合には、鋼板の強度が必要以上に向上するばかりでなく、ネットワーク状に連結したマルテンサイトの割合が増加し、鋼板の加工性を著しく劣化させるので、25%をマルテンサイト体積分率の最大値とした。   At this time, if the martensite volume fraction exceeds 25%, not only the strength of the steel sheet is improved more than necessary, but also the ratio of martensite connected in a network is increased, and the workability of the steel sheet is remarkably deteriorated. Therefore, 25% was set as the maximum value of the martensite volume fraction.

また、マルテンサイトによる降伏比低下の効果を得るためには、体積分率最大の相がフェライトの場合には3%以上、体積分率最大の相がベイナイトの場合には5%以上であることが望ましい。   Also, in order to obtain the effect of yield ratio reduction due to martensite, it should be 3% or more when the phase with the largest volume fraction is ferrite, and 5% or more when the phase with the largest volume fraction is bainite. Is desirable.

また、体積分率最大の相がフェライトまたはベイナイト以外の場合には、鋼材の強度を必要以上に向上させてその加工性を劣化させたり、不必要な炭化物析出によって必要な量のマルテンサイトが確保されないことで、鋼板の加工性を著しく劣化させたりすることから、体積分率最大の相はフェライトまたはベイナイトに限定する。   In addition, when the phase with the largest volume fraction is other than ferrite or bainite, the strength of the steel is increased more than necessary to deteriorate its workability, or the necessary amount of martensite is secured by unnecessary carbide precipitation. Otherwise, the workability of the steel sheet is remarkably deteriorated, so the phase with the largest volume fraction is limited to ferrite or bainite.

なお、ここで述べるベイナイトは、ミクロ組織中に鉄炭化物粒子を含んでも含まなくてもよい。また、変態後に加工をうけ、内部の転位密度が非常に高くなったフェライト(加工フェライト)は、延性が著しく劣化し部品加工には適さないことから、本発明に規定するフェライトとは区別する。   Note that the bainite described here may or may not contain iron carbide particles in the microstructure. In addition, ferrite (processed ferrite) that has been processed after transformation and has an extremely high internal dislocation density is significantly different in ductility and is not suitable for parts processing. Therefore, it is distinguished from ferrite defined in the present invention.

また、室温まで冷却した際に変態を完了していない残留オーステナイトを含有していても、本発明の効果に大きな影響は及ぼさない。ただし、反射X線法などによって求められる残留オーステナイトの体積分率が増加すると、降伏比が上昇することから、残留オーステナイト体積分率は、マルテンサイト体積分率の2倍以下であることが望ましく、マルテンサイト体積分率以下とすることが、さらに好ましい。   Further, even if it contains residual austenite that has not been transformed when cooled to room temperature, the effect of the present invention is not greatly affected. However, since the yield ratio increases when the volume fraction of retained austenite obtained by a reflection X-ray method or the like increases, the retained austenite volume fraction is preferably less than or equal to twice the martensite volume fraction. More preferably, it is less than or equal to the martensite volume fraction.

以下に本発明の好ましい化学成分について述べる。なお、単位は質量%である。   The preferred chemical components of the present invention are described below. The unit is mass%.

C:
Cは、鋼材の強度を決める最も重要な元素の一つである。鋼板中に含まれるマルテンサイトの体積分率は、鋼板中のC濃度の上昇と共に増加する傾向にある。ここで、Cの添加量が0.02%未満の場合には、硬質のマルテンサイトを得ることが困難となるので、0.02%をC添加量の下限とした。
C:
C is one of the most important elements that determines the strength of steel. The volume fraction of martensite contained in the steel sheet tends to increase as the C concentration in the steel sheet increases. Here, when the amount of addition of C is less than 0.02%, it becomes difficult to obtain hard martensite, so 0.02% was made the lower limit of the amount of addition of C.

また、Cの添加量が0.3%を越える場合には、必要以上に鋼板強度が上昇するのみならず、自動車用鋼材として重要な特性である溶接性が顕著に劣化するため、0.3%をC添加量の上限とした。   Further, if the amount of addition of C exceeds 0.3%, not only the strength of the steel sheet is increased more than necessary, but also the weldability, which is an important characteristic as a steel material for automobiles, is significantly deteriorated. % Was the upper limit of the C addition amount.

Mn、Ni、Cr、Cu、Mo、Co、Sn:
Mn、Ni、Cr、Cu、Mo、Co、Snは、全て鋼材のミクロ組織を調整するために添加される。特に、溶接性の観点からCの添加量が制限される場合には、これらの元素を適量添加することによって、効果的に鋼の焼入性を調整することが有効である。
Mn, Ni, Cr, Cu, Mo, Co, Sn:
Mn, Ni, Cr, Cu, Mo, Co, and Sn are all added to adjust the microstructure of the steel material. In particular, when the amount of addition of C is limited from the viewpoint of weldability, it is effective to effectively adjust the hardenability of steel by adding appropriate amounts of these elements.

また、これらの元素は、AlやSi程ではないが、セメンタイトの生成を抑制する効果があり、効果的にマルテンサイト体積分率を制御することができる。さらに、これらの元素は、Al、Siと共に、マトリックスであるフェライトやベイナイトを固溶強化することによって、高速での動的変形抵抗を高める働きも持つ。   Moreover, although these elements are not as much as Al and Si, they have the effect of suppressing the formation of cementite and can effectively control the martensite volume fraction. Furthermore, these elements, together with Al and Si, have the function of increasing dynamic deformation resistance at high speed by solid solution strengthening of ferrite and bainite which are matrices.

しかしながら、これらの元素の1種または2種以上の添加量の合計が0.1%未満、または、Mnの含有量が0.05%未満の場合には、必要な体積分率のマルテンサイトの確保が出来なくなるとともに、鋼材の強度が低くなり、有効な車体軽量化が達成できなくなるので、Mn含有量の下限を0.05%とし、上記元素の1種または2種以上の添加量の合計の下限を0.1%とした。   However, if the total amount of one or more of these elements added is less than 0.1%, or if the Mn content is less than 0.05%, the required volume fraction of martensite As the steel cannot be secured and the strength of the steel material becomes low and effective weight reduction of the vehicle body cannot be achieved, the lower limit of the Mn content is set to 0.05%, and the total amount of one or more of the above elements is added. Was set to 0.1%.

一方、上記添加量の合計が3.5%を越える場合、Mn、Ni、Cr、Cu、Coのいずれかの含有量が3%を超える場合、Moの含有量が1%を超える場合、または、Snの含有量が0.2%を超える場合には、母相であるフェライトまたはベイナイトの硬質化を招き、鋼材の加工性の低下、靱性の低下、さらには、鋼材コストの上昇を招くので、上記添加量の合計の上限を3.5%、Mn、Ni、Cr、CuおよびCoの含有量の上限を3%、Moの含有量の上限を1%、および、Snの含有量の上限を0.2%に規定した。   On the other hand, when the total amount of addition exceeds 3.5%, when the content of any of Mn, Ni, Cr, Cu, Co exceeds 3%, when the content of Mo exceeds 1%, or When the Sn content exceeds 0.2%, the parent phase ferrite or bainite is hardened, and the workability of the steel material is lowered, the toughness is lowered, and further, the steel material cost is increased. The upper limit of the total amount of addition is 3.5%, the upper limit of the content of Mn, Ni, Cr, Cu and Co is 3%, the upper limit of the content of Mo is 1%, and the upper limit of the content of Sn Was defined as 0.2%.

Al、Si:
AlとSiは、共にフェライトの安定化元素であり、フェライト体積率を増加させることによって、鋼材の加工性を向上させる働きがある。また、Al、Siは、共にセメンタイトの生成を抑制することから、パーライト等の炭化物を含む相の生成を抑制し、効果的にマルテンサイトを生成させることができる。
Al, Si:
Al and Si are both ferrite stabilizing elements, and have the function of improving the workability of the steel material by increasing the ferrite volume fraction. Moreover, since Al and Si both suppress the formation of cementite, the generation of a phase containing a carbide such as pearlite can be suppressed and martensite can be generated effectively.

このような機能を持つ添加元素としては、Al、Si以外に、PやCu、Cr、Mo等があげられ、このような元素を適当に添加することも、同様な効果が期待される。   Examples of the additive element having such a function include P, Cu, Cr, Mo and the like in addition to Al and Si, and the same effect can be expected by appropriately adding such an element.

しかしながら、AlとSiの合計が0.02%未満の場合には、セメンタイト生成抑制の効果が十分でなく、適正な体積分率のマルテンサイトが得られないので、AlとSiの一方または双方の合計の下限を0.02%とした。   However, when the total of Al and Si is less than 0.02%, the effect of suppressing the formation of cementite is not sufficient, and martensite having an appropriate volume fraction cannot be obtained. Therefore, one or both of Al and Si The lower limit of the total was 0.02%.

また、AlとSiの一方または双方の合計が3%を越える場合には、母相であるフェライトまたはベイナイトの硬質化や脆化を招き、鋼材の加工性の低下、靱性の低下、さらには、鋼材コストの上昇を招き、また、化成処理性等の表面処理特性が著しく劣化するので、3%をAlとSiの一方または双方の合計の上限とした。   Further, when the total of one or both of Al and Si exceeds 3%, it causes hardening and embrittlement of the ferrite or bainite as the parent phase, lowering the workability of the steel material, lowering the toughness, The steel material cost is increased, and the surface treatment characteristics such as chemical conversion properties are remarkably deteriorated. Therefore, 3% is set as the upper limit of one or both of Al and Si.

Nb、Ti、V:
これらの元素は、炭素、窒素の固定、析出強化、組織制御、細粒強化などの機構を通じて材質を改善するので、必要に応じて、1種または2種以上の合計で、0.001%以上添加することが望ましい。また、NbまたはTiを添加することによって、熱延中に形状凍結性に有利な集合組織が発達し易くなることから、積極的に活用することが望ましい。ただし、過度の添加は加工性を劣化させるので、1種または2種以上の合計で0.8%を上限とする。
Nb, Ti, V:
These elements improve the material through mechanisms such as fixation of carbon and nitrogen, precipitation strengthening, structure control, fine grain strengthening, etc., so that if necessary, one or two or more in total, 0.001% or more It is desirable to add. In addition, the addition of Nb or Ti facilitates the development of a texture that is advantageous for shape freezing during hot rolling, so it is desirable to actively utilize it. However, excessive addition deteriorates workability, so the upper limit is 0.8% in total of one or more.

P:
さらに、必要に応じて添加するPは、鋼材の高強度化や、前述のように、マルテンサイトの確保に有効ではあるが、0.2%を越えて添加された場合には、耐置き割れ性の劣化や疲労特性、靱性の劣化を招くので、0.2%をPの上限とした。ただし、Pの添加の効果を得るためには、0.005%以上含有することが好ましい。
P:
Furthermore, P added if necessary is effective in increasing the strength of the steel material and securing martensite as described above, but if added over 0.2%, it is resistant to cracking. As a result, the upper limit of P is set to 0.2%. However, in order to acquire the effect of addition of P, it is preferable to contain 0.005% or more.

B:
また、必要に応じて添加するBは、粒界の強化や鋼材の高強度化に有効ではあるが、その添加量が0.01%を越えると、その効果が飽和するばかりでなく、必要以上に鋼板強度を上昇させ、部品への加工性も低下させるので、Bの上限を0.01%とした。ただし、Bの添加効果を得るためには、0.0005%以上含有することが好ましい。
B:
In addition, B added as necessary is effective for strengthening grain boundaries and increasing the strength of steel materials, but when the added amount exceeds 0.01%, the effect is not only saturated but also more than necessary. Therefore, the upper limit of B was made 0.01%. However, in order to obtain the effect of addition of B, the content is preferably 0.0005% or more.

Ca、Rem:
必要に応じて添加するCa、Remは硫化物の形態を制御することで伸びフランジ性を改善するので、必要に応じて、それぞれ、0.0005%以上、0.001%以上添加することが望ましい。過度に添加しても格段の効果はなく、コスト高となるので、それぞれ、上限を0.005%、0.02%に設定した。
Ca, Rem:
Ca and Rem added as necessary improves the stretch flangeability by controlling the form of sulfide. Therefore, it is desirable to add 0.0005% or more and 0.001% or more, respectively, as necessary. . Even if added excessively, there is no remarkable effect and the cost is high, so the upper limits were set to 0.005% and 0.02%, respectively.

N:
Cと同様に、マルテンサイトを生成させるために有効ではあるが、同時に、鋼材の靱性や延性を劣化させる傾向があるので、0.01%以下とすることが望ましい。
N:
Similar to C, it is effective for generating martensite, but at the same time, it tends to deteriorate the toughness and ductility of the steel material, so 0.01% or less is desirable.

O:
酸化物を形成し、介在物として、鋼材の加工性、特に伸びフランジ成形性に代表されるような極限変形能や鋼材の疲労強度、靱性を劣化させるので、0.01%以下に制御することが望ましい。
O:
As oxides are formed and inclusions deteriorate the workability of steel materials, especially the ultimate deformability represented by stretch flangeability, fatigue strength and toughness of steel materials, control to 0.01% or less Is desirable.

以下に、本発明の製造方法について述べる。   Below, the manufacturing method of this invention is described.

スラブ再加熱温度:
所定の成分に調整された鋼は、鋳造後直接または一旦Ar変態温度以下まで冷却された後に再加熱され、その後に熱間圧延される。この時の再加熱温度が1000℃未満の場合には、所定の仕上げ熱延完了温度を確保することが難しくなるため、1000℃を再加熱温度の下限とした。
Slab reheating temperature:
The steel adjusted to a predetermined component is reheated directly after casting or once cooled to below the Ar 3 transformation temperature, and then hot-rolled. When the reheating temperature at this time is less than 1000 ° C., it becomes difficult to ensure a predetermined finish hot rolling completion temperature, and therefore 1000 ° C. is set as the lower limit of the reheating temperature.

また、再加熱温度が1300℃を越える場合には、加熱時のスケール生成による歩留まり劣化を招くと同時に、製造コストの上昇も招くので、1300℃を再加熱温度の上限とした。加熱後の鋼片は、熱間圧延の途中で局部的または全体を加熱されても、本発明の特性に何ら影響を及ぼさない。   In addition, when the reheating temperature exceeds 1300 ° C., the yield is deteriorated due to scale generation during heating, and at the same time, the manufacturing cost is increased. Therefore, 1300 ° C. is set as the upper limit of the reheating temperature. Even if the steel slab after heating is locally or entirely heated during hot rolling, it does not affect the characteristics of the present invention.

熱間圧延条件:
熱間圧延およびその後の冷却によって、所定のミクロ組織と集合組織に制御される。最終的に得られる鋼板の集合組織は、熱間圧延の温度領域によって大きく変化する。熱延完了温度TFEがAr℃未満になった場合には、均一伸びの異方性△uElが4%超となり、成形性を著しく劣化させるので、
TFE≧Ar(℃) (1)
とした。
Hot rolling conditions:
It is controlled to a predetermined microstructure and texture by hot rolling and subsequent cooling. The texture of the steel sheet finally obtained varies greatly depending on the temperature range of hot rolling. When the hot rolling completion temperature TFE is less than Ar 3 ° C, the uniform elongation anisotropy ΔuE1 exceeds 4%, and the formability is significantly deteriorated.
TFE ≧ Ar 3 (° C) (1)
It was.

TFEは、熱延の最終圧延を施すスタンドの後方で測定されるのが一般的であるが、必要な場合には、計算によって得られる温度を用いてもよい。   The TFE is generally measured behind the stand where the hot rolling final rolling is performed, but if necessary, a temperature obtained by calculation may be used.

また、熱延完了温度の上限は特に限定しないが、(Ar+180)℃超の場合には、鋼板の表面に生成する酸化物層により表面品位が低下することから、これ以下であることが望ましい。 Further, the upper limit of the hot rolling completion temperature is not particularly limited, but when it exceeds (Ar 3 +180) ° C., the surface quality is lowered by the oxide layer formed on the surface of the steel sheet, so that it may be lower than this. desirable.

より厳格な表面品位が求められる場合には、TFEを(Ar+150)℃以下にすることが望ましい。 When stricter surface quality is required, it is desirable to set TFE to (Ar 3 +150) ° C. or lower.

また、仕上げ熱延開始温度TFSが1100℃超の場合には、鋼板表面品位が著しく低下することから、
TFS≦1100℃ (2)
とした。
Further, when the finish hot rolling start temperature TFS is over 1100 ° C., the steel sheet surface quality is significantly lowered.
TFS ≦ 1100 ° C (2)
It was.

仕上げ熱延完了時の計算残留歪△ε、仕上熱延開始温度TFS、および、仕上熱延終了温度TFEは、下記(3)式の関係を満足するものとする。これが満足されない場合は、形状凍結性に有利な集合組織が熱延中に形成されない。   It is assumed that the calculated residual strain Δε, finishing hot rolling start temperature TFS, and finishing hot rolling end temperature TFE upon completion of finish hot rolling satisfy the relationship of the following equation (3). If this is not satisfied, a texture advantageous to shape freezing property is not formed during hot rolling.

△ε≧(TFS−TFE)/375 (3)
なお、△εは圧延を行うn段の仕上げ圧延の各スタンドで与えられる相当歪εi(iは1〜n)と各スタンド間の時間ti(秒)(i=1〜n−1)、最終スタンドから冷却開始までの時間tn(秒)、各スタンドでの圧延温度Ti(K)(i=1〜n)、および、常数R=1.987により求まる。
Δε ≧ (TFS−TFE) / 375 (3)
Δε is the equivalent strain ε i (i is 1 to n) given at each stand of the n-stage finish rolling for rolling and the time ti (seconds) between the stands (i = 1 to n−1), the final Time tn (second) from the stand to the start of cooling, rolling temperature Ti (K) (i = 1 to n) at each stand, and constant R = 1.987.

ε=△ε1+△ε2+・・+△εn
ただし △εi=εi×exp{―(ti*/τn)2/3
τi=8.46×10-9×exp{43800/R/Ti}
ti*=τn×{ti/τi+t(i+1)/τ(i+1)+・・+tn/τn}
また、TFSとTFEの差が120℃以上の場合には、集合組織の発達が十分でなく、良好な形状凍結性と低い異方性が両立せず、また、この差を20℃以下にすることは操業上困難であることから、
20℃≦(TFS−TFE)≦120℃ (4)
とした。
ε = △ ε1 + △ ε2 + ・ ・ + △ εn
Where Δεi = εi × exp {-(ti * / τn) 2/3 }
τi = 8.46 × 10 −9 × exp {43800 / R / Ti}
ti * = τn × {ti / τi + t (i + 1) / τ (i + 1) +. + tn / τn}
Further, when the difference between TFS and TFE is 120 ° C. or more, the texture is not sufficiently developed, and good shape freezing property and low anisotropy are not compatible, and this difference is set to 20 ° C. or less. Because it is difficult to operate,
20 ° C. ≦ (TFS-TFE) ≦ 120 ° C. (4)
It was.

また、熱間圧延において、Ar〜(Ar+150)℃の温度範囲における圧下率は、最終的な鋼板の集合組織形成に大きな影響を及ぼし、この温度範囲での圧延率が25%未満の場合には、集合組織の発達が十分でなく、最終的に得られる鋼板が良好な形状凍結性を示さないため、Ar〜(Ar+150)℃の温度範囲における圧下率の下限を、25%とした。 Moreover, in hot rolling, the rolling reduction in the temperature range of Ar 3 to (Ar 3 +150) ° C. has a great influence on the formation of the texture of the final steel sheet, and the rolling reduction in this temperature range is less than 25%. In this case, since the texture is not sufficiently developed and the finally obtained steel sheet does not exhibit good shape freezing property, the lower limit of the rolling reduction in the temperature range of Ar 3 to (Ar 3 +150) ° C. is 25 %.

この圧下率が高いほど所望の集合組織が発達することから、50%以上であることが好ましく、また、75%以上であれば、さらに好ましい。   Since the desired texture develops as the rolling reduction is higher, it is preferably 50% or more, and more preferably 75% or more.

圧下率の上限は特に定めないが、99%以上圧下することは、装置への負荷が大きく、特段の効果も得られないことから、99%未満とすることが好ましい。   Although the upper limit of the rolling reduction is not particularly defined, it is preferable that the rolling reduction of 99% or more is less than 99% because the load on the apparatus is large and no special effect is obtained.

ただし、
Ar=901−325×C%+33×Si%+287×P%+40×Al%
−92×(Mn%+Mo%+Cu%)−46×(Cr%+Ni%)
とする。
However,
Ar 3 = 901-325 × C% + 33 × Si% + 287 × P% + 40 × Al%
−92 × (Mn% + Mo% + Cu%) − 46 × (Cr% + Ni%)
And

この温度範囲での熱間圧延は、通常の条件で行われても、最終的な鋼板の形状凍結性は高いが、さらなる形状凍結性の向上を要する場合には、この温度範囲で行われる熱間圧延の少なくとも1パス以上において、その摩擦係数が0.2以下となるように制御する。   Even if hot rolling in this temperature range is performed under normal conditions, the shape freezing property of the final steel sheet is high, but when further improvement in shape freezing property is required, the heat performed in this temperature range is used. The friction coefficient is controlled to be 0.2 or less in at least one pass of the hot rolling.

摩擦係数が0.2超になると、通常の熱延と特段の違いが生じないことから、0.2を摩擦係数の上限とする。   When the friction coefficient exceeds 0.2, there is no particular difference from normal hot rolling, so 0.2 is set as the upper limit of the friction coefficient.

一方、摩擦係数が低いほど表層に剪断集合組織が生じにくく、形状凍結性が向上することから、摩擦係数の下限は特に設定しないが、0.05未満になると操業安定性を確保することが困難になることから、0.05以上とすることが望ましい。   On the other hand, the lower the friction coefficient, the less likely the texture to form on the surface layer and the better the shape freezing property, so the lower limit of the friction coefficient is not particularly set, but if it is less than 0.05, it is difficult to ensure operational stability. Therefore, it is desirable to set it to 0.05 or more.

また、仕上げ熱延に先立ってスケール除去を目的とした加工や高圧水噴射、微粒子噴射等が行われることは、最終鋼板の表面品位を高める効果があり、好ましい。   In addition, it is preferable that processing for removing the scale, high-pressure water injection, fine particle injection, or the like is performed prior to finish hot rolling, because there is an effect of improving the surface quality of the final steel plate.

熱間圧延後の冷却は、巻取り温度を制御することが最も重要であるが、平均の冷却速度が15℃/秒以上であることが好ましい。冷却は、熱間圧延後速やかに開始されることが望ましい。また、冷却の途中に空冷をもうけることも、最終的な鋼板の特性を劣化させない。   In the cooling after hot rolling, it is most important to control the coiling temperature, but the average cooling rate is preferably 15 ° C./second or more. It is desirable that the cooling is started immediately after hot rolling. In addition, air cooling in the middle of cooling does not deteriorate the properties of the final steel sheet.

このようにして形成されたオーステナイトの集合組織を最終的な熱延鋼板に受け継がせるためには、下記(5)式に示す臨界温度To(℃)以下で巻き取る必要がある。従って、鋼の成分で決まるTo(℃)を巻取り温度の上限とした。   In order to transfer the austenite texture thus formed to the final hot-rolled steel sheet, it is necessary to wind it at a critical temperature To (° C.) or less shown in the following equation (5). Therefore, To (° C.) determined by the steel components is set as the upper limit of the coiling temperature.

このTo温度は、オーステナイトとオーステナイトと同一成分のフェライトが同一の自由エネルギーを持つ温度として熱力学的に定義され、C以外の成分の影響も考慮して、下記(5)式を用いて簡易的に計算することができる。   This To temperature is thermodynamically defined as the temperature at which austenite and ferrite of the same component have the same free energy, and considering the influence of components other than C, it can be simplified using the following equation (5). Can be calculated.

To温度に及ぼす本発明に規定されたこれら以外の成分の影響は、それほど大きくないので、ここでは無視した。冷却が鋼材の化学成分で決まる温度To以上で完了し、そのまま巻取り処理が行われた場合には、上記の熱間圧延条件が満足されていた場合でも、最終的に得られる鋼板で、所望の集合組織が十分に発達せず、鋼板の形状凍結性が高くならない。   The influence of the other components defined in the present invention on the To temperature is not so great and was ignored here. When the cooling is completed at a temperature To determined by the chemical composition of the steel material or more and the winding process is performed as it is, the steel sheet finally obtained is desired even when the above hot rolling conditions are satisfied. The texture of the steel does not develop sufficiently, and the shape freezing property of the steel sheet does not increase.

To=−650.4×{C%/(1.82×C%−0.001)}+B (5)
ここで、Bは質量%で表現した鋼の成分より求まる。
B=−50.6×Mneq+894.3
Mneq=Mn%+0.24×Ni%+0.13×Si%+0.38×Mo%
+0.55×Cr%+0.16×Cu%−0.50×Al%
−0.45×Co%+0.90×V%
To = −650.4 × {C% / (1.82 × C% −0.001)} + B (5)
Here, B is obtained from the steel component expressed in mass%.
B = −50.6 × Mneq + 894.3
Mneq = Mn% + 0.24 × Ni% + 0.13 × Si% + 0.38 × Mo%
+ 0.55 × Cr% + 0.16 × Cu% −0.50 × Al%
-0.45 x Co% + 0.90 x V%

また、巻取り温度が400℃超になると、マルテンサイト相が形成されない。したがって、400℃を巻取り温度の上限とした。この観点から、巻取り温度の上限は望ましくは350℃、さらに望ましくは300℃とする。   Further, when the coiling temperature exceeds 400 ° C., a martensite phase is not formed. Therefore, the upper limit of the coiling temperature is set to 400 ° C. From this viewpoint, the upper limit of the coiling temperature is desirably 350 ° C., and more desirably 300 ° C.

一方、巻取り温度が室温未満とするためには、過剰な設備投資が必要なだけでなく、格段の効果が得られないことから、室温を巻取り温度の下限とした。   On the other hand, in order to make the coiling temperature below room temperature, not only excessive capital investment is required, but also a remarkable effect cannot be obtained. Therefore, room temperature is set as the lower limit of the coiling temperature.

スキンパス圧延:
以上の方法で製造された本発明鋼に出荷前にスキンパス圧延を施すことは、鋼板の形状を良好にする。この時、スキンパス圧下率が0.1%未満では、この効果が小さいことから0.1%をスキンパス圧下率の下限とした。
Skin pass rolling:
Applying skin pass rolling to the steel of the present invention produced by the above method before shipment makes the shape of the steel plate good. At this time, if the skin pass reduction ratio is less than 0.1%, this effect is small, so 0.1% was set as the lower limit of the skin pass reduction ratio.

また、5%超のスキンパス圧延を行うためには、通常のスキンパス圧延機の改造が必要となり、経済的なデメリットを生じると共に、加工性を著しく劣化させることから、5%をスキンパス圧下率の上限とした。   In addition, in order to perform skin pass rolling exceeding 5%, it is necessary to modify a normal skin pass rolling mill, resulting in economic disadvantages and significant deterioration in workability. It was.

得られた鋼板の加工性が良好であるためには、通常のJIS5号引張り試験で得られる破断強度(T/秒/MPa)と降伏強度(0.2%耐力YS)の比である降伏比(YS/TS×100)が70%以下であることが望ましい。また、降伏比が65%以下であれば、さらに、形状凍結性を向上させることができて望ましい。   For the workability of the obtained steel sheet to be good, the yield ratio, which is the ratio of the breaking strength (T / sec / MPa) and the yield strength (0.2% proof stress YS) obtained in the normal JIS No. 5 tensile test. It is desirable that (YS / TS × 100) is 70% or less. Moreover, if the yield ratio is 65% or less, it is desirable because the shape freezing property can be further improved.

めっき:
めっきの種類や方法は特に限定するものではなく、電気めっき、溶融めっき、蒸着めっき等のいずれでも、本発明の効果が得られる。
Plating:
The type and method of plating are not particularly limited, and the effects of the present invention can be obtained by any of electroplating, hot dipping, vapor deposition plating and the like.

本発明の鋼板は曲げ加工だけではなく、曲げ、張り出し、絞り等、曲げ加工を主体とする複合成形にも適用できる。   The steel sheet of the present invention can be applied not only to bending, but also to composite forming mainly composed of bending such as bending, overhanging and drawing.

(実施例1):
表1に示す化学成分のA〜Lの鋼材を1100℃から1270℃に加熱し、表2中に示す熱延条件で熱延し、2.5mm厚の熱延鋼板とした。各種測定および評価の結果を表2および表3(表2の続き)に示す。
(Example 1):
A to L steel materials having chemical components shown in Table 1 were heated from 1100 ° C. to 1270 ° C. and hot-rolled under the hot rolling conditions shown in Table 2 to obtain a hot-rolled steel sheet having a thickness of 2.5 mm. The results of various measurements and evaluations are shown in Table 2 and Table 3 (continuation of Table 2).

形状凍結性の評価は、270mm長さ×50mm幅×板厚の短冊状のサンプルを用い、パンチ幅78mm、パンチ肩R5mm、ダイ肩R5mmにて、種々のしわ押さえ厚でハット型に成形した後、壁部の反り量を曲率半径ρ(mm)として測定し、その逆数1000/ρにて行った。1000/ρが小さいほど形状凍結性は良好である。   The shape freezing property was evaluated by using a sample having a strip shape of 270 mm long × 50 mm wide × plate thickness, and after forming into a hat shape with various wrinkle holding thicknesses with a punch width of 78 mm, a punch shoulder R5 mm, and a die shoulder R5 mm The curvature of the wall was measured as the radius of curvature ρ (mm), and the reciprocal was 1000 / ρ. The smaller the 1000 / ρ, the better the shape freezing property.

一般に、鋼板の強度が上昇すると、形状凍結性が劣化することが知られている。本発明者らが実際の部品成形を行った結果から、上記方法によって測定されたしわ押さえ圧70kNでの1000/ρが0(mm−1)以上で、かつ、鋼板の引張り強度TS[MPa]に対して(0.012×TS−4.5)(mm−1)以下となる場合には、際だって形状凍結性が良好となるので、0≦1000/ρ≦(0.012×TS−4.5)を、良好な形状凍結性の条件として評価した。 In general, it is known that when the strength of a steel plate increases, the shape freezing property deteriorates. Based on the results of actual part forming by the present inventors, 1000 / ρ at a wrinkle pressure 70 kN measured by the above method is 0 (mm −1 ) or more, and the tensile strength TS [MPa] of the steel sheet. On the other hand, when it is (0.012 × TS−4.5) (mm −1 ) or less, the shape freezing property is remarkably improved, and therefore 0 ≦ 1000 / ρ ≦ (0.012 × TS− 4.5) was evaluated as a good shape freezing condition.

ここで、しわ押さえ圧を増加すると、1000/ρは減少する傾向にある。しかしながら、どのようなしわ押さえ圧を選択しても、鋼板の形状凍結性の優位性の順位は変化しない。従って、しわ押さえ圧70kNでの評価は、鋼板の形状凍結性をよく代表している。   Here, when the wrinkle pressure is increased, 1000 / ρ tends to decrease. However, no matter what wrinkle holding pressure is selected, the order of superiority of the shape freezing property of the steel sheet does not change. Therefore, the evaluation at the wrinkle holding pressure of 70 kN well represents the shape freezing property of the steel sheet.

r値、延性の異方性、YRは、JIS5号引張り試験片を用いて測定した。また、X線の測定は鋼板の代表値として板厚の7/16厚の位置で板面に平行なサンプルを調整し、実施した。   The r value, ductility anisotropy, and YR were measured using a JIS No. 5 tensile test piece. The X-ray measurement was performed by adjusting a sample parallel to the plate surface at a position of 7/16 thickness as a representative value of the steel plate.

表2および表3において、No.2、5、7、9〜11、13、15、17、18、および、21〜23は、いずれも、熱延条件および/または成分が本発明の範囲から外れているために、延性の異方性が大きく、一部は形状凍結性も十分でなく、YRも満足しなことから、結果として、形状凍結性と低異方性を兼備した低降伏比型高強度鋼板になっていない。   In Table 2 and Table 3, no. 2, 5, 7, 9-11, 13, 15, 17, 18, and 21-23 are all different in ductility because the hot rolling conditions and / or components are outside the scope of the present invention. Since the directivity is large, and part of the shape freezing property is not sufficient and YR is not satisfactory, as a result, it is not a low yield ratio type high strength steel plate having both shape freezing property and low anisotropy.

その他に示した本発明範囲内の化学成分の鋼を、本発明範囲内の熱延条件によって製造した場合には、良好な延性異方性、形状凍結性、YRが得られることがわかる。   It can be seen that, when steels having chemical components within the scope of the present invention shown in the other examples are manufactured under hot rolling conditions within the scope of the present invention, good ductility anisotropy, shape freezing property, and YR can be obtained.

Figure 0004430444
Figure 0004430444

Figure 0004430444
Figure 0004430444

Figure 0004430444
Figure 0004430444

前述したように、本発明によれば、スプリング・バック量が少なく、形状凍結性に優れると同時に異方性が少ない良好なプレス成形性を有する薄鋼板を提供できるようになり、従来は形状不良の問題から高強度鋼板の適用が難しかった部品にも、高強度鋼板が使用できるようになると同時に、効率的に自動車の安全性と車体の軽量化を両立することが可能となり、CO排出削減等の環境・社会からの要請に応える自動車製造に大きく貢献することが出来る。従って、本発明は、工業的に極めて高い価値のある発明である。 As described above, according to the present invention, it is possible to provide a thin steel sheet having a good press formability with a small amount of spring back and excellent shape freezeability and at the same time low anisotropy. This makes it possible to use high-strength steel sheets even for parts for which it was difficult to apply high-strength steel sheets. At the same time, it is possible to efficiently achieve both vehicle safety and lighter body weight, reducing CO 2 emissions. It can greatly contribute to automobile manufacturing that meets the demands of the environment and society. Therefore, the present invention is industrially extremely valuable.

Claims (8)

質量%で、
C;0.02%以上0.3%以下、
Mn;0.05%以上3%以下、
P;0.2%以下
を含み、
Ni;3%以下、
Cr;3%以下、
Cu;3%以下、
Mo;1%以下、
Co;3%以下、
Sn;0.2%以下
でかつこれらの1種または2種以上を合計で0.1%以上3.5%以下含み、
Si;3%以下、
Al;3%以下
でかつこれらの双方を合計で0.02%以上3%以下含み、
残部がFeおよび不可避的不純物からなり、
ミクロ組織が、フェライトまたはベイナイトを体積分率最大の相とし、体積分率で1%以上25%以下のマルテンサイトを含む複合組織鋼であり、少なくとも1/2板厚における板面の、
(1){100}<011>〜{223}<110>方位群のX線ランダム強度比の平 均値が2.5以上、
(2){554}<225>、{111}<112>および{111}<110>の3 つの結晶方位のX線ランダム強度比の平均値が3.5以下、
(3){100}<011>X線反射ランダム強度比が{211}<011>X線ラン ダム強度比以上、および、
(4){100}<011>X線反射ランダム強度比が2.5以上
の全てを満足し、かつ、圧延方向のr値および圧延方向と直角方向のr値のうち少なくとも1つが0.7以下であり、さらに、均一伸びの異方性ΔuElが4%以下、局部伸びの異方性△LElが2%以上、かつ、ΔuElがΔLEl以下であることを特徴とする形状凍結性に優れた低降伏比型高強度熱延鋼板。
ただし、△uEl={|uEl(L)−uEl(45°)|+|uEl(C)−
uEl(45°)|}/2
△LEl={|LEl(L)−LEl(45°)|+|LEl(C)−
LEl(45°)|}/2
圧延方向と平行(L方向)、垂直(C方向)、および、45°方向の均一伸びを、それぞれ、uEl(L)、uEl(C)、および、uEl(45°)とし、圧延方向と平行(L方向)、垂直(C方向)、および、45°方向の局部伸びを、それぞれ、LEl(L)、LEl(C)、および、LEl(45°)とする。
% By mass
C: 0.02% to 0.3%,
Mn: 0.05% or more and 3% or less,
P: 0.2% or less
Including
Ni: 3% or less,
Cr: 3% or less,
Cu: 3% or less,
Mo; 1% or less,
Co: 3% or less,
Sn: 0.2% or less
And including one or more of these in a total of 0.1% to 3.5%,
Si: 3% or less,
Al: 3% or less
And a total of 0.02% to 3% of both of these,
The balance consists of Fe and inevitable impurities,
The microstructure is a steel having a microstructure in which ferrite or bainite is a phase having the largest volume fraction and containing martensite in a volume fraction of 1% or more and 25% or less.
(1) The average value of the X-ray random intensity ratio of {100} <011> to {223} <110> orientation group is 2.5 or more,
(2) The average value of the X-ray random intensity ratio of the three crystal orientations of {554} <225>, {111} <112> and {111} <110> is 3.5 or less,
(3) {100} <011> X-ray reflection random intensity ratio is equal to or greater than {211} <011> X-ray random intensity ratio, and
(4) {100} <011> The X-ray reflection random intensity ratio satisfies all of 2.5 or more, and at least one of the r value in the rolling direction and the r value in the direction perpendicular to the rolling direction is 0.7. The shape freezing property is characterized in that the uniform elongation anisotropy ΔuE1 is 4% or less, the local elongation anisotropy ΔLE1 is 2% or more, and the ΔuEl is ΔLE1 or less. Low yield ratio type high strength hot rolled steel sheet.
However, ΔuEl = {| uEl (L) −uEl (45 °) | + | uEl (C) −
uEl (45 °) |} / 2
ΔLEl = {| LEl (L) −LEl (45 °) | + | LEl (C) −
LEl (45 °) |} / 2
The uniform elongation in the direction parallel to the rolling direction (L direction), vertical (C direction), and 45 ° is uEl (L), uEl (C), and uEl (45 °), respectively, and parallel to the rolling direction. The local elongations in the (L direction), vertical (C direction), and 45 ° directions are denoted by LEl (L), LEl (C), and LEl (45 °), respectively.
質量%で、Nb、Ti、Vの1種または2種以上を合計で0.001%以上0.8%以下含むことを特徴とする請求項1記載の形状凍結性に優れた低降伏比型高強度熱延鋼板。 By mass%, Nb, Ti, low yield ratio superior in claim 1 Symbol placement of the shape fixability characterized in that it comprises 0.8% or less than 0.001%, one or two or more kinds in total of V Type high strength hot rolled steel sheet. 質量%で、Bを0.01%以下含むことを特徴とする請求項1または2に記載の形状凍結性に優れた低降伏比型高強度熱延鋼板。 The low-yield ratio type high-strength hot-rolled steel sheet having excellent shape freezing properties according to claim 1 or 2 , wherein B is contained in an amount of 0.01% by mass or less. 質量%で、Ca:0.0005〜0.005%、Rem:0.001〜0.02%の1種または2種を含むことを特徴とする請求項1〜のいずれか1項に記載の形状凍結性に優れた低降伏比型高強度熱延鋼板。 It contains 1 type or 2 types of Ca: 0.0005-0.005% and Rem: 0.001-0.02% by mass%, The any one of Claims 1-3 characterized by the above-mentioned. Low-yield ratio type high-strength hot-rolled steel sheet with excellent shape freezing properties. 請求項1〜のいずれか1項に記載の形状凍結性に優れた低降伏比型高強度熱延鋼板に、めっきを施したことを特徴とする形状凍結性に優れた低降伏比型高強度熱延鋼板。 The low yield ratio type high excellent in shape freezing property, characterized in that the low yield ratio type high strength hot rolled steel sheet excellent in shape freezing property according to any one of claims 1 to 4 is plated. Strength hot-rolled steel sheet. 請求項1〜のいずれか1項に記載の形状凍結性に優れた低降伏比型高強度熱延鋼板を製造するにあたり、請求項のいずれか1項に記載の成分を有する鋳造スラブを、鋳造まままたは一旦冷却した後に1000〜1300℃の範囲に再度加熱し、熱間圧延をする際、Ar3〜(Ar3+150)℃の温度範囲における圧下率の合計が25%以上となるように制御し、仕上げ熱延開始温度TFSと仕上げ熱延完了温度TFE、および、仕上げ熱延完了時の計算残留歪△εが、下記(1)〜(4)式を全て同時に満足するように熱間圧延を終了し、熱間圧延後冷却して、下記(5)式に示す鋼の化学成分で決まる臨界温度To(℃)以下で、かつ、400℃以下室温以上の温度で巻き取ることを特徴とする形状凍結性に優れた低降伏比型高強度熱延鋼板の製造方法。
TFE≧Ar3(℃) (1)
TFS≦1100℃ (2)
△ε ≧(TFS−TFE)/375 (3)
20℃≦(TFS−TFE)≦120℃ (4)
To=−650.4×{C%/(1.82×C%−0.001)}+B (5)
ここで、Bは質量%で表現した鋼の成分より求まる。
B=−50.6×Mneq+894.3
Mneq=Mn%+0.24×Ni%+0.13×Si%+0.38×Mo%
+0.55×Cr%+0.16×Cu%−0.50×Al%
−0.45×Co%+0.90×V%
ただし、
Ar=901−325×C%+33×Si%+287×P%+40×Al%
−92×(Mn%+Mo%+Cu%)−46×(Cr%+Ni%)
△εは、圧延を行うn段の仕上げ圧延の各スタンドで与えられる相当歪εi(iは1〜n)と各スタンド間の時間ti(秒)(i=1〜n−1)、最終スタンドから冷却開始までの時間tn(秒)、各スタンドでの圧延温度Ti(K)(i=1〜n)、および、常数R=1.987により求まる。
ε=△ε1+△ε2+・・+△εn
ただし △εi=εi×exp{―(ti*/τn)2/3}
τi=8.46×10-9×exp{43800/R/Ti}
ti*=τn×{ti/τi+t(i+1)/τ(i+1)+・・+tn/τn}
In producing the low yield ratio type high-strength hot-rolled steel sheet excellent in shape freezing property according to any one of claims 1 to 5 , a casting having the component according to any one of claims 1 to 4. When the slab is cast or once cooled and then heated again in the range of 1000 to 1300 ° C. and hot rolled, the total reduction in the temperature range of Ar 3 to (Ar 3 +150) ° C. is 25% or more. Control and finish hot rolling start temperature TFS, finishing hot rolling completion temperature TFE, and calculated residual strain Δε at the time of finishing hot rolling completion so that all of the following equations (1) to (4) are satisfied simultaneously. Finishing rolling, cooling after hot rolling, and winding at a temperature not higher than the critical temperature To (° C) determined by the chemical composition of the steel shown in the following formula (5) and not lower than 400 ° C and room temperature Low yield ratio type high strength with excellent shape freezing Manufacturing method of hot-rolled steel sheet.
TFE ≧ Ar3 (° C) (1)
TFS ≦ 1100 ° C (2)
Δε ≧ (TFS−TFE) / 375 (3)
20 ° C. ≦ (TFS-TFE) ≦ 120 ° C. (4)
To = −650.4 × {C% / (1.82 × C% −0.001)} + B (5)
Here, B is obtained from the steel component expressed in mass%.
B = −50.6 × Mneq + 894.3
Mneq = Mn% + 0.24 × Ni% + 0.13 × Si% + 0.38 × Mo%
+ 0.55 × Cr% + 0.16 × Cu% −0.50 × Al%
-0.45 x Co% + 0.90 x V%
However,
Ar 3 = 901-325 × C% + 33 × Si% + 287 × P% + 40 × Al%
−92 × (Mn% + Mo% + Cu%) − 46 × (Cr% + Ni%)
.DELTA..epsilon. Is equivalent strain .epsilon.i (i is 1 to n) given at each stand of n-stage finish rolling for rolling, time ti (seconds) between each stand (i = 1 to n-1), and final stand. From the time tn (seconds) until the start of cooling, the rolling temperature Ti (K) (i = 1 to n) at each stand, and the constant R = 1.987.
ε = △ ε1 + △ ε2 + ・ ・ + △ εn
Where Δεi = εi × exp {-(ti * / τn) 2/3}
.tau.i = 8.46.times.10 @ -9.times.exp {43800 / R / Ti}
ti * = τn × {ti / τi + t (i + 1) / τ (i + 1) +. + tn / τn}
Ar〜(Ar+150)℃の温度範囲における熱間圧延の内少なくとも1パス以上において、摩擦係数が0.2以下となるように制御することを特徴とする請求項記載の形状凍結性に優れた低降伏比型高強度熱延鋼板の製造方法。 The shape freezing property according to claim 6 , wherein the frictional coefficient is controlled to be 0.2 or less in at least one pass or more of hot rolling in a temperature range of Ar 3 to (Ar 3 +150) ° C. A method of producing a high yield hot rolled steel sheet having a low yield ratio and excellent in strength. 請求項またはに記載の形状凍結性に優れた低降伏比型高強度熱延鋼板の製造方法で製造された熱延鋼板に、0.1%以上5%以下のスキンパス圧延を施すことを特徴とする形状凍結性に優れた低降伏比型高強度熱延鋼板の製造方法。 Applying skin pass rolling of 0.1% or more and 5% or less to a hot-rolled steel sheet produced by the method for producing a low-yield ratio type high-strength hot-rolled steel sheet excellent in shape freezing property according to claim 6 or 7. A method for producing a low yield ratio type high strength hot-rolled steel sheet having excellent shape freezing characteristics.
JP2004092280A 2003-06-26 2004-03-26 Low yield ratio type high strength hot-rolled steel sheet with excellent shape freezing property and manufacturing method thereof Expired - Lifetime JP4430444B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2004092280A JP4430444B2 (en) 2004-03-26 2004-03-26 Low yield ratio type high strength hot-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
TW093118280A TWI248977B (en) 2003-06-26 2004-06-24 High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
AT04746934T ATE373110T1 (en) 2003-06-26 2004-06-28 HIGH STRENGTH HOT ROLLED STEEL SHEET WITH EXCELLENT FORM-FIXING PROPERTIES AND ASSOCIATED MANUFACTURING PROCESS
KR1020057024886A KR100754035B1 (en) 2003-06-26 2004-06-28 High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
EP04746934A EP1636392B1 (en) 2003-06-26 2004-06-28 High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
PL04746934T PL1636392T3 (en) 2003-06-26 2004-06-28 High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
PCT/JP2004/009465 WO2005005670A1 (en) 2003-06-26 2004-06-28 High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
CA2530008A CA2530008C (en) 2003-06-26 2004-06-28 High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
DE602004008917T DE602004008917T2 (en) 2003-06-26 2004-06-28 HIGH-FIXED HOT-ROLLED STEEL PLATE WITH OUTSTANDING FORMFIXING PROPERTIES AND RELATED MANUFACTURING METHOD
US10/561,133 US7485195B2 (en) 2003-06-26 2004-06-28 High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
ES04746934T ES2293299T3 (en) 2003-06-26 2004-06-28 HOT LAMINATED STEEL SHEET, HIGH RESISTANCE, EXCELLENT IN CAPACITY TO SET THE CONFORMING AND METHOD FOR THEIR PRODUCTION.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092280A JP4430444B2 (en) 2004-03-26 2004-03-26 Low yield ratio type high strength hot-rolled steel sheet with excellent shape freezing property and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005272988A JP2005272988A (en) 2005-10-06
JP4430444B2 true JP4430444B2 (en) 2010-03-10

Family

ID=35172966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092280A Expired - Lifetime JP4430444B2 (en) 2003-06-26 2004-03-26 Low yield ratio type high strength hot-rolled steel sheet with excellent shape freezing property and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4430444B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5181460B2 (en) * 2006-10-31 2013-04-10 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5181461B2 (en) * 2006-10-31 2013-04-10 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5037413B2 (en) * 2007-04-19 2012-09-26 新日本製鐵株式会社 Low yield ratio high Young's modulus steel sheet, hot dip galvanized steel sheet, alloyed hot dip galvanized steel sheet, steel pipe, and production method thereof
JP5399635B2 (en) * 2008-01-25 2014-01-29 Jfeスチール株式会社 Stainless steel pipe for oil well with excellent pipe expandability and method for producing the same
JP5068689B2 (en) * 2008-04-24 2012-11-07 新日本製鐵株式会社 Hot-rolled steel sheet with excellent hole expansion
JP5440431B2 (en) * 2010-07-14 2014-03-12 新日鐵住金株式会社 High-strength hot-rolled steel sheet with excellent paint corrosion resistance and punched portion fatigue characteristics and method for producing the same
EP2489748B1 (en) * 2011-02-18 2017-12-13 ThyssenKrupp Steel Europe AG Hot-rolled steel surface product produced from a complex phase steel and method for the manufacture
EP2698442B1 (en) * 2011-04-13 2018-05-30 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet with excellent local formability, and manufacturing method therefor
MX371035B (en) * 2012-12-19 2020-01-13 Nippon Steel Corp Star Hot-rolled steel sheet and method for producing same.
JP5821861B2 (en) * 2013-01-23 2015-11-24 新日鐵住金株式会社 High-strength hot-rolled steel sheet with excellent appearance and excellent balance between elongation and hole expansibility and method for producing the same
BR112016027395B1 (en) 2014-05-28 2020-05-05 Nippon Steel & Sumitomo Metal Corp hot rolled steel sheet and production method
CN106555115B (en) * 2016-10-27 2018-02-02 北京科技大学 A kind of casting skin spring flat steel rolling mill practice method
CN112203781B (en) * 2018-04-06 2023-10-31 纽科尔公司 High friction rolling of thin metal strips
CN114585764B (en) 2019-10-31 2023-07-07 杰富意钢铁株式会社 Steel sheet, component, and method for manufacturing same

Also Published As

Publication number Publication date
JP2005272988A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
US7485195B2 (en) High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
KR100543956B1 (en) Steel plate excellent in shape freezing property and method for production thereof
EP2258886B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
KR100334948B1 (en) High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
KR100441414B1 (en) High fatigue strength steel sheet excellent in burring workability and method for producing the same
CA2767439C (en) High-strength steel sheet and method for manufacturing the same
US8177924B2 (en) High-strength steel sheet and process for producing the same
JP4384523B2 (en) Low yield ratio type high-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
EP3828301B1 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
JP4430444B2 (en) Low yield ratio type high strength hot-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
JP4276482B2 (en) High-strength hot-rolled steel sheet with excellent ultimate deformability and shape freezing property and its manufacturing method
JP3990553B2 (en) High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
JP2002053935A (en) High tensile strength cold-rolled steel sheet excellent in strain age-hardening characteristic and its production method
KR20190075589A (en) High-strength steel sheet having high yield ratio and method for manufacturing thereof
JP3814134B2 (en) High formability, high strength cold-rolled steel sheet excellent in shape freezing property and impact energy absorption ability during processing and its manufacturing method
JP2004256836A (en) High tensile strength hot-dip galvanized steel sheet having excellent strength-elongation balance and fatigue characteristic, and its manufacturing method
JP3898954B2 (en) Ferritic thin steel sheet with excellent shape freezing property and manufacturing method thereof
JP4126007B2 (en) Cold-rolled steel sheet excellent in shape freezing property and bake hardenability and method for producing the same
JP3990550B2 (en) Low yield ratio type high strength steel plate with excellent shape freezing property and its manufacturing method
JP4189192B2 (en) Low yield ratio type high-strength cold-rolled steel sheet excellent in workability and shape freezing property and manufacturing method thereof
JP4519373B2 (en) High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
JP4160840B2 (en) High formability and high strength hot-rolled steel sheet with excellent shape freezing property and its manufacturing method
JP4710558B2 (en) High-tensile steel plate with excellent workability and method for producing the same
JP4160839B2 (en) High formability and high strength hot-rolled steel sheet with low shape anisotropy and small anisotropy and method for producing the same
JP3911226B2 (en) Method for producing cold-rolled steel sheet with excellent shape freezing property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4430444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term