JP4710558B2 - High-tensile steel plate with excellent workability and method for producing the same - Google Patents
High-tensile steel plate with excellent workability and method for producing the same Download PDFInfo
- Publication number
- JP4710558B2 JP4710558B2 JP2005329576A JP2005329576A JP4710558B2 JP 4710558 B2 JP4710558 B2 JP 4710558B2 JP 2005329576 A JP2005329576 A JP 2005329576A JP 2005329576 A JP2005329576 A JP 2005329576A JP 4710558 B2 JP4710558 B2 JP 4710558B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- tensile
- mpa
- less
- workability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Metal Rolling (AREA)
Description
本発明は、自動車用部材の素材に適した、加工性に優れた高張力鋼板およびその製造方法に関する。 The present invention relates to a high-strength steel sheet excellent in workability suitable for a material for automobile members and a method for producing the same.
環境保全につながる燃費向上の観点から、自動車用鋼板の高強度薄肉化が強く求められている。自動車用部材はプレス成形により得られる複雑な形状のものが多く、高強度でありながら加工性の指標である伸びと伸びフランジ性がともに優れた材料が必要である。近年、鋼板強度はますます高強度化し、980MPaを超えるものが要望されている。また、鋼板をより軽量化する観点からさらなる薄肉化が指向されており、板厚2.5mm以下の薄物に対する要望も強くなってきている。 From the viewpoint of improving fuel efficiency leading to environmental conservation, there is a strong demand for reducing the strength and thickness of automotive steel sheets. Many automotive members have complicated shapes obtained by press molding, and materials that have both high strength and excellent elongation and stretch flangeability, which are indexes of workability, are required. In recent years, the strength of steel sheets has been increasing further, and those exceeding 980 MPa have been desired. Further, from the viewpoint of reducing the weight of the steel sheet, further thinning is directed, and a demand for a thin object having a thickness of 2.5 mm or less is also increasing.
従来、この種の鋼板は種々提案されており、例えば特許文献1には、転位密度の高いベイニティック・フェライト組織が生成した、伸びフランジ性に優れた鋼板が提案されている。しかし、この鋼板は、転位密度の高いベイニティック・フェライト組織を含むために伸びが乏しいという欠点がある。また、ベイニティック・フェライト生成のために、ランナウトテーブル上での強冷却が不可避であり、薄物製造時にはランナウトテーブルでのストリップの走行性に問題が生じるため、板厚2.5mm以下の薄物を生産するには不向きである。 Conventionally, various steel sheets of this type have been proposed. For example, Patent Document 1 proposes a steel sheet excellent in stretch flangeability, in which a bainitic ferrite structure having a high dislocation density is generated. However, this steel sheet has a drawback that it has poor elongation because it contains a bainitic ferrite structure with a high dislocation density. In addition, strong cooling on the run-out table is inevitable for the production of bainitic ferrite, and a problem arises in strip runnability on the run-out table when manufacturing a thin product. Not suitable for production.
特許文献2には、組織の大部分をポリゴナルフェライトとし、TiCを中心として析出強化および固溶強化した伸びフランジ性に優れる鋼板が提案されている。しかし、この鋼板に用いられている一般的によく知られた析出物で980MPa以上に高張力化するには、多量のTi添加が必要となり、サイズの大きい析出物が生成しやすく、特性が不安定になりやすいという欠点がある。また、この鋼は特性向上のために圧延荷重を増大させるSiを積極的に用いているため、薄物の製造において圧延荷重が増大し、鋼板形状確保が難しい。 Patent Document 2 proposes a steel sheet excellent in stretch flangeability in which most of the structure is polygonal ferrite and precipitation strengthening and solid solution strengthening are centered on TiC. However, in order to increase the tension to 980 MPa or more with the generally well-known precipitates used in this steel sheet, a large amount of Ti is required to be added, and precipitates having a large size are likely to be formed, resulting in poor properties. There is a drawback that it tends to be stable. Moreover, since this steel positively uses Si that increases the rolling load for improving the characteristics, the rolling load increases in the production of thin objects, and it is difficult to ensure the shape of the steel sheet.
特許文献3には、微細なTiCおよび、またはNbCが析出したアシキュラー・フェライト組織を有した、伸びフランジ性に優れた鋼板が提案されている。しかし、この鋼板も先に述べた特許文献1で提案された鋼板同様に、アシキュラー・フェライトという転位密度の高い組織であるため十分な伸びが得られていない。また、この鋼は特許文献2で提案された鋼と同様に、特性向上のために圧延荷重を増大させるSiを積極的に用いているため、薄物の製造において圧延荷重が増大し、鋼板形状確保が難しい。 Patent Document 3 proposes a steel sheet having an acicular ferrite structure in which fine TiC and / or NbC are precipitated and having excellent stretch flangeability. However, since this steel sheet is a structure having a high dislocation density called acicular ferrite as well as the steel sheet proposed in Patent Document 1 described above, sufficient elongation cannot be obtained. In addition, this steel, like the steel proposed in Patent Document 2, actively uses Si for increasing the rolling load to improve the characteristics, so that the rolling load increases in the production of thin objects, and the steel plate shape is secured. Is difficult.
特許文献4には、Vの炭窒化物で析出強化した熱延鋼板が提案されている。しかし、この鋼板は、組織はフェライト主相となっているもののパーライト等が同時に生成し、伸びや伸びフランジ性が低下する懸念がある。また、この技術では、フェライトを微細化するために、仕上げ圧延の際、タンデム圧延機列の最終から1段前の圧延スタンドにおいてAr3点以上で圧延し、その後50℃/秒以上の平均冷却速度で「Ar3点−50℃」以下の温度まで冷却した後、最終スタンドにおいて20%以下の圧下を施すことが必要であり、通常の製造ラインでは製造に困難性を伴う。 Patent Document 4 proposes a hot-rolled steel sheet precipitation strengthened with V carbonitride. However, although this steel sheet has a ferrite main phase in its structure, there is a concern that pearlite or the like is generated at the same time, and elongation and stretch flangeability are deteriorated. Moreover, in this technique, in order to refine the ferrite, at the time of finish rolling, rolling is performed at 3 or more Ar points in the rolling stand one stage before the end of the tandem rolling mill row, and then average cooling of 50 ° C./second or more is performed. After cooling to a temperature of “Ar 3 points−50 ° C.” or less at a speed, it is necessary to apply a reduction of 20% or less at the final stand, which is difficult to manufacture in a normal production line.
また、超高張力鋼板を得る技術として、特許文献5の技術が開発されている。特許文献5の技術は、フェライト単相中にC、Ti、Moよりなる微細炭化物を分散させ、伸びと伸びフランジ性がともに優れた超高張力鋼板を得ることができる技術である。しかしながら、特許文献5に記載された鋼板では、980MPa以上の引張強度を得るために多量のCやTiを添加すると、通常のスラブ加熱温度(1250℃程度以下)ではスラブ中に析出しているTiCなどを完全には溶解させることができない場合があり、完全に溶解させるにはより高温が必要となって製造が困難となる場合がある。
本発明はかかる事情に鑑みてなされたものであって、自動車用部材のようにプレス時の断面形状が複雑な用途に適した、加工性の指標である伸びと伸びフランジ性がともに優れた高張力鋼板、特に980MPa以上の強度を有する高張力鋼板、およびそのような高張力鋼板の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is suitable for an application having a complicated cross-sectional shape at the time of pressing, such as an automobile member. An object of the present invention is to provide a tensile steel sheet, particularly a high-tensile steel sheet having a strength of 980 MPa or more, and a method for producing such a high-tensile steel sheet.
本発明者らは、上記目的を達成すべく鋭意検討を行った結果、以下の知見を得た。
(1)熱延段階で素地をマルテンサイトとし、これに連続焼鈍などの熱処理を加えることで素地の強度を高く保ったままTi、Mo、Vを含有した複合微細炭化物が析出し、非常に強度が高く、強度に対する伸び特性の指標である強度−伸びバランスや伸びフランジ性が良好な鋼板が得られる。
(2)C、Ti、Mo、Vの添加バランスを適宜制御すると、これらが複合した炭化物が微細に析出する。
(3)複合析出物中のVの割合が低くなると、析出物が粗大化するため、伸びと伸びフランジ性がともに低下する。
(4)Vを添加した鋼は、Ti、Moのみを添加した鋼に比べて低温で炭化物が溶解し、強化に効く微細析出物が効率よく得られる。
As a result of intensive studies to achieve the above object, the present inventors have obtained the following knowledge.
(1) In the hot rolling stage, the base material is martensite, and by applying heat treatment such as continuous annealing, the composite fine carbide containing Ti, Mo, V precipitates while keeping the strength of the base material to be very strong. Therefore, a steel sheet having a high strength-elongation balance and stretch flangeability, which is an index of elongation characteristics with respect to strength, can be obtained.
(2) When the addition balance of C, Ti, Mo, and V is appropriately controlled, carbides in which these are combined are finely precipitated.
(3) When the proportion of V in the composite precipitate becomes low, the precipitate becomes coarse, so that both elongation and stretch flangeability are lowered.
(4) Steel added with V dissolves carbides at a lower temperature than steel added only with Ti and Mo, and fine precipitates effective for strengthening can be obtained efficiently.
本発明は、これらの知見に基づいて完成されたものであり、以下の(1)〜(5)を提供するものである。
(1)質量%で、C:0.06超〜0.24%、Si≦0.3%、Mn:0.5〜2.0%、P≦0.06%、S≦0.005%、Al≦0.06%、N≦0.006%、Mo:0.05〜0.5%、Ti:0.03〜0.2%、V:0.15超〜1.2%を含み、残部がFeおよび不可避的不純物からなり、C、Ti、Mo、V含有量が以下の(I)式を満足する成分組成を有し、鋼板組織が、面積率で95%以上のマルテンサイト状組織が観察されるとともに、引張強度(TS)と伸び(El)との積であるTS×Elが13000MPa・%以上となる組織である実質的に焼き戻しマルテンサイト単相組織であり、平均粒径10nm未満のTi、MoおよびVを含む炭化物が分散析出するとともに、該Ti、MoおよびVを含む炭化物は、原子%で表されるTi、Mo、Vが、V/(Ti+Mo+V)≧0.3を満たす組成を有することを特徴とする、引張強度が980MPa以上の加工性に優れた高張力鋼板。
0.8≦(C/12)/{(Ti/48)+(Mo/96)+(V/51)}≦1.5 …(I)
(ただし、C、Ti、Mo、Vは各成分の質量%を表す)
(2)上記(1)の高張力鋼板において、板厚2.5mm以下の薄物熱延鋼板であることを特徴とする引張強度が980MPa以上の加工性に優れた高張力鋼板。
(3)上記(1)または(2)の高張力鋼板において、表面に溶融亜鉛系めっき皮膜を有することを特徴とする引張強度が980MPa以上の加工性に優れた高張力鋼板。
(4)質量%で、C:0.06超〜0.24%、Si≦0.3%、Mn:0.5〜2.0%、P≦0.06%、S≦0.005%、Al≦0.06%、N≦0.006%、Mo:0.05〜0.5%、Ti:0.03〜0.2%、V:0.15超〜1.2%を含み、残部がFeおよび不可避的不純物からなり、C、Ti、Mo、V含有量が以下の(I)式を満足する成分組成を有する鋼を溶製し、仕上圧延終了温度880℃以上、巻取温度400℃未満の条件で熱間圧延を行ったのち、600〜720℃で20秒〜24時間の焼鈍を行って、(1)または(2)に記載の鋼板を製造することを特徴とする、引張強度が980MPa以上の加工性に優れた高張力鋼板の製造方法。
0.8≦(C/12)/{(Ti/48)+(Mo/96)+(V/51)}≦1.5 …(I)
(ただし、C、Ti、Mo、Vは各成分の質量%を表す)
(5)上記(4)において、前記焼鈍後の鋼板に溶融亜鉛系めっきを施すことを特徴とする引張強度が980MPa以上の加工性に優れた高張力鋼板の製造方法。
The present invention has been completed based on these findings and provides the following (1) to ( 5 ).
( 1 ) By mass%, C: more than 0.06 to 0.24%, Si ≦ 0.3%, Mn: 0.5 to 2.0%, P ≦ 0.06%, S ≦ 0.005% , Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.05-0.5%, Ti: 0.03-0.2%, V: Over 0.15-1.2% , the balance being Fe and unavoidable impurities, C, Ti, Mo, V content have a component composition that satisfies the following formula (I), the steel sheet structure is 95% or more of martensite form an area ratio While the structure is observed, TS × El, which is the product of tensile strength (TS) and elongation (El), is a structure in which TS × El is 13000 MPa ·% or more, and is a substantially tempered martensite single-phase structure. Carbide containing Ti, Mo and V having a diameter of less than 10 nm is dispersed and precipitated, and carbide containing Ti, Mo and V Is characterized by having a composition satisfying V / (Ti + Mo + V) ≧ 0.3 in terms of Ti, Mo, V expressed in atomic%, and having excellent workability with a tensile strength of 980 MPa or more. High tensile steel plate.
0.8 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} ≦ 1.5 (I)
(However, C, Ti, Mo and V represent mass% of each component)
( 2 ) The high-tensile steel sheet of (1 ) above, which is a thin hot-rolled steel sheet having a thickness of 2.5 mm or less and excellent in workability having a tensile strength of 980 MPa or more.
( 3 ) A high-tensile steel sheet excellent in workability having a tensile strength of 980 MPa or more, characterized in that the high-strength steel sheet according to (1) or (2) has a hot dip galvanized coating film on the surface .
( 4 ) By mass%, C: more than 0.06 to 0.24%, Si ≦ 0.3%, Mn: 0.5 to 2.0%, P ≦ 0.06%, S ≦ 0.005% , Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.05-0.5%, Ti: 0.03-0.2%, V: Over 0.15-1.2% The remainder is composed of Fe and unavoidable impurities, and steel having a component composition satisfying the following formula (I) in which C, Ti, Mo, and V are contained is melted, and the finish rolling finish temperature is 880 ° C. or higher. After performing hot rolling under the conditions of a temperature of less than 400 ° C., I line annealing of 20 seconds to 24 hours at 600 to 720 ° C., and characterized by producing steel sheet according to (1) or (2) A method for producing a high-tensile steel plate having excellent workability with a tensile strength of 980 MPa or more.
0.8 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} ≦ 1.5 (I)
(However, C, Ti, Mo and V represent mass% of each component)
( 5 ) A method for producing a high-tensile steel sheet having excellent workability with a tensile strength of 980 MPa or more, characterized in that hot-dip galvanizing is applied to the steel sheet after annealing in ( 4 ).
なお、本発明において実質的に焼戻しマルテンサイト単相組織とは、焼戻しマルテンサイト以外に微量の他の相を許容できることをいい、好ましくは焼戻しマルテンサイトの面積比率が95%以上である。 In the present invention, the tempered martensite single-phase structure means that a small amount of other phases can be allowed in addition to the tempered martensite, and the area ratio of the tempered martensite is preferably 95% or more.
本発明によれば、Ti、Moに加えてVを適正なバランスで添加して、Ti、MoおよびVを含む微細な炭化物を分散析出させることにより、加工性に優れた高張力鋼板が得られる。 According to the present invention, in addition to Ti and Mo, V is added in an appropriate balance, and fine carbides containing Ti, Mo and V are dispersed and precipitated, thereby obtaining a high-tensile steel plate having excellent workability. .
以下、本発明について、金属組織、化学成分、製造方法等に分けて具体的に説明する。 Hereinafter, the present invention will be specifically described by dividing it into a metal structure, a chemical component, a production method, and the like.
[金属組織]
本発明に係る高張力鋼板は、実質的に焼戻しマルテンサイト単相組織であり、Ti、Mo、Vを含む炭化物が析出している。
[Metal structure]
The high-tensile steel sheet according to the present invention has a substantially tempered martensite single-phase structure, and carbides including Ti, Mo, and V are precipitated.
・実質的に焼戻しマルテンサイト単相組織:
マトリックスを焼戻しマルテンサイト組織としたのは、特に高強度としかつ伸び特性を確保する上で、焼戻しマルテンサイトとすることが有効であるとともに、伸びフランジ性の向上には、単相組織とすることが有効であるためである。焼戻しマルテンサイトは、例えばフェライト組織よりは伸び特性には劣るものの、高強度化の達成が容易であり、また、マルテンサイト組織に比べ、高伸び特性のTS×Elバランスに優れた鋼板とすることができる。
・ Substantially tempered martensite single phase structure:
The matrix has a tempered martensite structure. In particular, it is effective to use a tempered martensite to ensure high strength and stretch properties, and to improve the stretch flangeability, a single-phase structure should be used. This is because is effective. Although tempered martensite is inferior in elongation characteristics to ferrite structure, for example, it is easy to achieve high strength, and steel sheet excellent in TS × El balance with high elongation characteristics compared to martensite structure. Can do.
ここで、焼戻しマルテンサイトとマルテンサイトの区別を組織観察のみで行うことは困難である。一方、鋼板特性としては、前述のように、マルテンサイトが焼戻されない状態では、引張強度(TS)は高いものの、伸び(El)特性が悪くなり、TS×Elバランスが悪くなる。そこで、本発明では、組織観察を行い、マルテンサイト組織が観察されるとともに、TS×Elが13000MPa・%以上である場合、焼戻しマルテンサイト組織が得られているものとした。 Here, it is difficult to distinguish between tempered martensite and martensite only by observing the structure. On the other hand, as described above, as described above, in the state where martensite is not tempered, the tensile strength (TS) is high, but the elongation (El) characteristic is deteriorated, and the TS × El balance is deteriorated. Therefore, in the present invention, the structure is observed, the martensite structure is observed, and when TS × El is 13000 MPa ·% or more, the tempered martensite structure is obtained.
すなわち、本発明において、実質的に焼戻しマルテンサイトからなるとは、鋼板組織として、面積率で95%以上のマルテンサイト状組織が観察されるとともに、TS×Elが13000MPa・%以上であることを意味する。 That is, in the present invention, being substantially composed of tempered martensite means that a martensitic structure with an area ratio of 95% or more is observed as a steel sheet structure, and TS × El is 13000 MPa ·% or more. To do.
・Ti、Mo、Vを含む炭化物:
Ti、Mo、Vを含む炭化物は、微細となるため、鋼を強化するのに有効である。従来は、析出物としてMo、Vを含まないTiCを用いることが主流であった。しかしながら、Tiは析出物形成傾向が強いため、Mo、Vを含まない場合には粗大化しやすく、強化に対する効果が低くなることから、必要な強化量を得るには加工性を劣化させるまでの析出物が必要となる。これに対し、TiとMo、Vを含む複合炭化物は微細に析出するため、加工性を劣化させずに鋼を強化することができる。これは、Mo、Vの析出物形成傾向がTiよりも弱いため、強化に寄与しない粗大な析出物となることなく安定して微細に存在することができ、加工性を低下させない少量で有効に強化できるからであると考えられる。
-Carbides containing Ti, Mo, V:
Since carbides containing Ti, Mo, and V become fine, they are effective for strengthening steel. Conventionally, it has been mainstream to use TiC containing no Mo or V as a precipitate. However, since Ti has a strong tendency to form precipitates, when it does not contain Mo and V, it is easy to coarsen, and the effect on strengthening is reduced. Therefore, precipitation until the workability is deteriorated to obtain the required strengthening amount. Things are needed. On the other hand, since the composite carbide containing Ti, Mo, and V precipitates finely, the steel can be strengthened without degrading workability. This is because Mo and V precipitate formation tendency is weaker than Ti, so it can exist stably and finely without becoming coarse precipitates that do not contribute to strengthening, and it is effective in a small amount that does not reduce workability. This is thought to be because it can be strengthened.
析出物微細化の効果はTiにMoを加えるだけでも得られるが、Ti、Moを含む炭化物のみで980MPa以上の引張強度が得られるレベルのTiを添加すると、前述のように一般的な熱延前の加熱温度を上回る高温が要求される場合があり、高温化を図るためには例えば特殊な設備を要するためコストアップとなる。一方、VとCの組み合わせは溶解温度が非常に低く、980MPa以上という高強度を得るために多量に添加しても通常の加熱温度で容易に溶解することができる。 The effect of refinement of precipitates can be obtained only by adding Mo to Ti. However, when Ti is added at a level at which a tensile strength of 980 MPa or more can be obtained only by carbide containing Ti and Mo, as described above, general hot rolling is performed. In some cases, a high temperature that exceeds the previous heating temperature is required, and in order to increase the temperature, for example, special equipment is required, resulting in an increase in cost. On the other hand, the combination of V and C has a very low melting temperature, and can be easily dissolved at a normal heating temperature even if added in a large amount in order to obtain a high strength of 980 MPa or more.
また、従来、Ti、Moに加え、多量のVを添加すると、伸びが低下する傾向にあるため、Vの添加は比較的低い範囲に抑えられていた。しかしながら、本発明者らが詳細に検討した結果、Vの添加量を増大させるに従いVの析出量が高くなり、添加したVが炭化物として十分に析出するようになり、炭化物を安定して微細に析出させることで、十分な伸びを確保した上で、高強度化を達成できることを見出した。 Conventionally, when a large amount of V is added in addition to Ti and Mo, the elongation tends to decrease. Therefore, the addition of V has been suppressed to a relatively low range. However, as a result of detailed examinations by the present inventors, the amount of precipitation of V increases as the amount of addition of V is increased, and the added V is sufficiently precipitated as carbides. It has been found that by precipitating, high strength can be achieved while securing sufficient elongation.
炭化物が安定して微細に存在できるためには炭化物の組成が影響し、炭化物の組成が、原子%で表されるTi、Mo、Vが、V/(Ti+Mo+V)≧0.3を満たすようになると、析出物の粗大化を抑制する効果が高くなり、所望の微細析出物を得ることができる。したがって、本発明では、原子%で表されるTi、Mo、VがV/(Ti+Mo+V)≧0.3を満たす範囲でTi、Mo、Vを含む炭化物が分散析出していることを要件とする。 In order for the carbide to exist stably and finely, the composition of the carbide influences so that Ti, Mo, V expressed in atomic% satisfy V / (Ti + Mo + V) ≧ 0.3. If it becomes, the effect which suppresses the coarsening of a precipitate will become high, and a desired fine precipitate can be obtained. Therefore, in the present invention, it is required that carbides containing Ti, Mo, and V are dispersed and precipitated in a range where Ti, Mo, and V expressed in atomic% satisfy V / (Ti + Mo + V) ≧ 0.3. .
また、この複合炭化物の平均粒径を10nm未満とすることで、析出物周囲の歪みが転位の移動の抵抗としてより効果的となり、効率よく鋼を強化できる。このため、本発明では、平均粒径10nm未満のTi、Mo、Vを含む炭化物が析出していることを要件とする。さらに好ましくは、平均粒径が5nm以下である。さらに、鋼中のCと(Ti+Mo+V)との原子数比が0.8〜1.5となるようにC、Ti、Mo、Vの含有量を調整することにより、Ti、Mo、Vを含む炭化物が析出しやすくなり、10nm未満の微細析出物の形成が容易となるため、鋼中のCと(Ti+Mo+V)との原子数比が0.8〜1.5の範囲となるようにVおよびTi、Moを添加することが好ましい。上記原子数比のより好ましい範囲は0.8〜1.3である。なお、上記Cと(Ti+Mo+V)との原子数比0.8〜1.5を質量%に換算すると、以下の(I)式を満たすことになる。
0.8≦(C/12)/{(Ti/48)+(Mo/96)+(V/51)}≦1.5 …(I)
ただし、上記(I)式中、C、Ti、Mo、Vは各成分の質量%を表す。
Further, by setting the average particle size of the composite carbide to less than 10 nm, the distortion around the precipitate becomes more effective as the resistance of dislocation movement, and the steel can be strengthened efficiently. For this reason, in this invention, it is required that the carbide | carbonized_material containing Ti, Mo, and V with an average particle diameter of less than 10 nm has precipitated. More preferably, the average particle size is 5 nm or less. Furthermore, Ti, Mo, and V are included by adjusting the contents of C, Ti, Mo, and V so that the atomic ratio between C and (Ti + Mo + V) in the steel is 0.8 to 1.5. Since carbides easily precipitate and formation of fine precipitates of less than 10 nm is facilitated, V and V so that the atomic ratio between C and (Ti + Mo + V) in the steel is in the range of 0.8 to 1.5. It is preferable to add Ti and Mo. A more preferable range of the atomic ratio is 0.8 to 1.3. When the atomic ratio 0.8 to 1.5 of C and (Ti + Mo + V) is converted into mass%, the following formula (I) is satisfied.
0.8 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} ≦ 1.5 (I)
However, in said Formula (I), C, Ti, Mo, and V represent the mass% of each component.
[化学成分]
本発明では、上記金属組織さえ満たしていれば所望の伸びおよび伸びフランジ性および980MPa以上の引張強度が得られ、化学成分は特に限定されないが、質量%で、C:0.06超〜0.24%、Si≦0.3%、Mn:0.5〜2.0%、P≦0.06%、S≦0.005%、Al≦0.06%、N≦0.006%、Mo:0.05〜0.5%、Ti:0.03〜0.2%、V:0.15超〜1.2%を含み、残部がFeおよび不可避的不純物からなり、C、Ti、Mo、V含有量が以下の(I)式を満足する成分組成を有することが好ましい。
0.8≦(C/12)/{(Ti/48)+(Mo/96)+(V/51)}≦1.5 …(I)
ただし、上記(I)式中、C、Ti、Mo、Vは各成分の質量%を表す。
以下、これら各成分について説明する。
[Chemical composition]
In the present invention, as long as the metal structure is satisfied, desired elongation and stretch flangeability and tensile strength of 980 MPa or more can be obtained, and the chemical composition is not particularly limited, but by mass%, C: more than 0.06 to 0.00. 24%, Si ≦ 0.3%, Mn: 0.5 to 2.0%, P ≦ 0.06%, S ≦ 0.005%, Al ≦ 0.06%, N ≦ 0.006%, Mo : 0.05 to 0.5%, Ti: 0.03 to 0.2%, V: more than 0.15 to 1.2%, with the balance being Fe and inevitable impurities, C, Ti, Mo It is preferable that the V content has a component composition satisfying the following formula (I).
0.8 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} ≦ 1.5 (I)
However, in said Formula (I), C, Ti, Mo, and V represent the mass% of each component.
Hereinafter, each of these components will be described.
C:0.06超〜0.24%
Cは炭化物を形成し、鋼を強化するのに有効である。しかし、0.06%以下では、鋼の強化が不十分であり、0.24%を超えて添加するとスポット溶接が困難となるため、C含有量は0.06超〜0.24%が好ましい。より好ましくは、0.07%以上であり、特に1100MPa以上の引張強度を得るためには0.1%以上であることが望ましい。
C: Over 0.06 to 0.24%
C forms carbides and is effective for strengthening steel. However, if it is 0.06% or less, the steel is not sufficiently strengthened, and if it exceeds 0.24%, spot welding becomes difficult, so the C content is preferably more than 0.06 to 0.24%. . More preferably, it is 0.07% or more, and in particular, in order to obtain a tensile strength of 1100 MPa or more, 0.1% or more is desirable.
Si:0.3%以下
Siは固溶強化には有効な元素であるが、0.3%を超えて添加すると、フェライトからのC析出が促進されて粒界に粗大な鉄炭化物が析出しやすくなり、伸びフランジ性が低下する。また、本発明においては、従来、高張力鋼板に積極的に用いられてきたSiを低減することによりオースナイトの圧延荷重を低減し、薄物の製造が容易となる。0.3%を超えてSiを添加すると、2.5mm以下の材料の圧延が不安定となり、板形状も悪くなる。これらの理由により、Si含有量は0.3%以下が好ましい。さらに好ましくは0.15%以下であり、望ましくは0.05%以下である。
Si: 0.3% or less Si is an effective element for solid solution strengthening, but if added over 0.3%, C precipitation from ferrite is promoted and coarse iron carbide precipitates at grain boundaries. It becomes easy and stretch flangeability falls. In the present invention, the rolling load of austenite is reduced by reducing Si that has been positively used for high-tensile steel sheets in the past, and the manufacture of thin objects is facilitated. If Si is added in excess of 0.3%, rolling of a material of 2.5 mm or less becomes unstable, and the plate shape is also deteriorated. For these reasons, the Si content is preferably 0.3% or less. More preferably, it is 0.15% or less, and desirably 0.05% or less.
Mn:0.5〜2.0%
Mnは固溶強化により鋼を強化する観点からは0.5%以上が好ましいが、2.0%を超えて添加すると偏析し、伸びフランジ性が低下する。このため、Mn含有量は0.5〜2.0%が好ましい。
Mn: 0.5 to 2.0%
Mn is preferably 0.5% or more from the viewpoint of strengthening the steel by solid solution strengthening, but if added over 2.0%, segregation occurs and stretch flangeability deteriorates. For this reason, the Mn content is preferably 0.5 to 2.0%.
P:0.06%以下
Pは固溶強化に有効であるが、0.06%を超えて添加すると偏析して伸びフランジ性を低下させるため、0.06%以下とすることが好ましい。
P: 0.06% or less P is effective for solid solution strengthening, but if added over 0.06%, segregation occurs and the stretch flangeability is deteriorated, so 0.06% or less is preferable.
S:0.005%以下
Sは少ないほど好ましく、0.005%を超えると伸びフランジ性が低下するため、0.005%以下が好ましい。
S: 0.005% or less S is preferably as small as possible, and if it exceeds 0.005%, the stretch flangeability deteriorates, so 0.005% or less is preferable.
Al:0.06%以下
Alは脱酸剤として添加される。しかし、鋼中のAlが0.06%を超えると伸びおよび伸びフランジ性が低下するため、0.06%以下が好ましい。下限は特にないが、脱酸剤としての効果を十分に得るためにはAl量を0.01%以上とすることが好ましい。
Al: 0.06% or less Al is added as a deoxidizer. However, if the Al content in the steel exceeds 0.06%, elongation and stretch flangeability deteriorate, so 0.06% or less is preferable. There is no particular lower limit, but in order to sufficiently obtain the effect as a deoxidizer, the Al content is preferably 0.01% or more.
N:0.006%以下
Nは少ないほど好ましく、0.006%を超えると粗大な窒化物が増え、伸びフランジ性が低下するため、0.006%以下が好ましい。
N: 0.006% or less N is preferably as small as possible. If it exceeds 0.006%, coarse nitrides increase and stretch flangeability deteriorates, so 0.006% or less is preferable.
Mo:0.05〜0.5%
Moは本発明において重要な元素であり、0.05%以上添加することで熱延後の冷却中にフェライト変態やパーライト変態を抑制し、容易にマルテンサイト組織が得られるようになる。また、Ti、Vと微細な析出物を形成することで、優れた伸びおよび伸びフランジ性を確保しつつ鋼を強化することができる。しかし、0.5%を超えて添加しても効果が飽和し、コストアップとなるだけであるため、Mo含有量は0.05〜0.5%が好ましい。
Mo: 0.05-0.5%
Mo is an important element in the present invention. Adding 0.05% or more suppresses ferrite transformation and pearlite transformation during cooling after hot rolling, and a martensitic structure can be easily obtained. Further, by forming fine precipitates with Ti and V, the steel can be strengthened while ensuring excellent elongation and stretch flangeability. However, even if added over 0.5%, the effect is saturated and only the cost is increased, so the Mo content is preferably 0.05 to 0.5%.
Ti:0.03〜0.2%
Tiは本発明において重要な元素である。Mo、Vと複合炭化物を形成することで、優れた伸びおよび伸びフランジ性を確保しつつ、鋼を強化することができる。しかし、0.03%未満では、鋼を強化する効果が不十分であり、0.2%を超えると伸びフランジ性が低下するとともに、熱延前のスラブ加熱温度を1300℃以上という高温にしなければ炭化物が溶解しないため、これ以上添加しても微細析出物として有効に析出させることができない。したがって、Ti含有量は0.03〜0.2%が好ましい。
Ti: 0.03-0.2%
Ti is an important element in the present invention. By forming composite carbide with Mo and V, steel can be strengthened while ensuring excellent elongation and stretch flangeability. However, if it is less than 0.03%, the effect of strengthening the steel is insufficient. If it exceeds 0.2%, the stretch flangeability deteriorates, and the slab heating temperature before hot rolling must be 1300 ° C or higher. Since the carbide does not dissolve, it cannot be effectively precipitated as a fine precipitate even if it is added more than this. Therefore, the Ti content is preferably 0.03 to 0.2%.
V:0.15超〜1.2%
Vは本発明において重要な元素である。前述のように、炭化物が安定して微細に存在できるためには炭化物の組成が影響し、炭化物の組成が、原子%で表されるTi、Mo、Vが、V/(Ti+Mo+V)≧0.3を満たすようになると、析出物の粗大化を抑制する効果が高くなり、所望の微細析出物を得ることができる。また、Cを0.06%超えて多量に含有させるとともに、Vを多量に含有させることでVの析出効率が上昇し、V/(Ti+Mo+V)≧0.3を満たす析出物を得られるようになることが判明した。
V: Over 0.15 to 1.2%
V is an important element in the present invention. As described above, in order for the carbide to exist stably and finely, the composition of the carbide influences, and the composition of the carbide is Ti / Mo / V expressed in atomic% as V / (Ti + Mo + V) ≧ 0. When 3 is satisfied, the effect of suppressing the coarsening of the precipitate becomes high, and a desired fine precipitate can be obtained. In addition, C is included in a large amount exceeding 0.06%, and by adding a large amount of V, the precipitation efficiency of V is increased, and a precipitate satisfying V / (Ti + Mo + V) ≧ 0.3 can be obtained. Turned out to be.
具体的には、Cを0.06%超えて多量に含有させた上でVを0.15%を超えて含有させて非常に良好な析出効率とすることで、炭化物の組成が、原子%で表されるTi、Mo、VがV/(Ti+Mo+V)≧0.3を満たすようになり、Ti、Moと微細な複合炭化物を形成し、優れた伸びや伸びフランジ性を確保しつつ鋼を強化することができることが判明した。しかし、Vの含有量が1.2%を超えると中心偏析が強く現れるようになり、伸びや靭性の低下を招くため、V含有量は0.15超〜1.2%が好ましい。より好ましくは0.2〜1.2%である。なお、Vを1.2%含有させた場合でもスラブ加熱温度は1200℃程度の通常温度とすれば炭化物が完全に溶解する。 Specifically, by containing C in a large amount exceeding 0.06% and adding V exceeding 0.15% to obtain a very good precipitation efficiency, the composition of the carbide is atomic%. Ti, Mo, and V represented by V / (Ti + Mo + V) ≧ 0.3, forming fine composite carbide with Ti and Mo, and ensuring excellent elongation and stretch flangeability It turns out that it can be strengthened. However, when the content of V exceeds 1.2%, center segregation appears strongly, leading to a decrease in elongation and toughness. Therefore, the V content is preferably more than 0.15 to 1.2%. More preferably, it is 0.2 to 1.2%. Even when 1.2% of V is contained, if the slab heating temperature is a normal temperature of about 1200 ° C., the carbide is completely dissolved.
0.8≦(C/12)/{(Ti/48)+(Mo/96)+(V/51)}≦1.5
(ただし、式中のC、Ti、Mo、Vは各成分の質量%を表す)
本発明においてC、Ti、Mo、Vの添加バランスは非常に重要である。C、Ti、Mo、V含有量を上記所定範囲とした上で、(C/12)/{(Ti/48)+(Mo/96)+(V/51)}を0.8〜1.5とすることにより、Ti、Mo、VがV/(Ti+Mo+V)≧0.3を満たす組成を有する多量の炭化物を微細に、すなわち平均粒径10nm未満として分散析出しやすくすることができる。(C/12)/{(Ti/48)+(Mo/96)+(V/51)}が0.8未満では、析出物が粗大となって980MPa以上の強度が安定して得られなくなり、一方、(C/12)/{(Ti/48)+(Mo/96)+(V/51)}が1.5超では、Cが過剰となってパーライトを生じるため成形性が低下する。
0.8 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} ≦ 1.5
(However, C, Ti, Mo, and V in the formula represent mass% of each component)
In the present invention, the balance of addition of C, Ti, Mo and V is very important. With the C, Ti, Mo, and V contents in the predetermined ranges, (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} is set to 0.8 to 1. By setting it to 5, a large amount of carbide having a composition satisfying V / (Ti + Mo + V) ≧ 0.3 for Ti, Mo, and V can be finely dispersed, that is, with an average particle diameter of less than 10 nm, and can be easily dispersed and precipitated. When (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} is less than 0.8, the precipitate becomes coarse and a strength of 980 MPa or more cannot be obtained stably. On the other hand, when (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} is more than 1.5, C becomes excessive and pearlite is generated, so that the formability is lowered. .
[製造方法]
本発明では、上記成分組成を有する鋼を溶製し、仕上圧延終了温度880℃以上、巻取温度400℃未満の条件で熱間圧延を行った後、600〜720℃で20秒〜24時間の焼鈍を行う。なお、通常上記成分組成を有する鋼は溶製後、常法に従いスラブに鋳造され、そのまま、あるいは一旦冷却後、再加熱して熱間圧延に供される。スラブを再加熱する場合でも、本発明においては、スラブの加熱温度は常法の範囲である1200〜1250℃程度とすればよい。
[Production method]
In the present invention, steel having the above component composition is melted and hot rolled at a finish rolling finish temperature of 880 ° C. or more and a coiling temperature of less than 400 ° C., then at 600 to 720 ° C. for 20 seconds to 24 hours. Annealing is performed. In general, steel having the above composition is cast into a slab according to a conventional method after melting, and is subjected to hot rolling as it is or after being cooled and reheated. Even in the case where the slab is reheated, in the present invention, the heating temperature of the slab may be about 1200 to 1250 ° C., which is the range of ordinary methods.
・仕上圧延終了温度:880℃以上
仕上圧延終了温度は伸びおよび伸びフランジ性の確保と圧延荷重の低減に重要である。880℃未満では未再結晶で圧延が進行するために起こる歪みの蓄積量が増大し、圧延荷重が著しく増大することで薄物の熱間圧延が困難となるため、880℃以上とする。
Finish finish rolling temperature: 880 ° C. or higher Finish finish rolling temperature is important for securing elongation and stretch flangeability and reducing rolling load. If the temperature is lower than 880 ° C., the amount of accumulated strain increases due to the progress of rolling due to non-recrystallization, and it becomes difficult to hot-roll thin materials due to a significant increase in rolling load.
・巻取温度:400℃未満
巻取温度が400℃以上になるとベイナイトやフェライトを生じて本願の目的とするマルテンサイトの素地を得られないため、400℃未満とする。なお、巻取温度は低くなりすぎると熱間圧延後の冷却時に使用した水が蒸発せずコイル内に水がたまり鋼板が腐食する場合があるため、100℃以上とすることが好ましい。
-Winding temperature: less than 400 ° C. When the winding temperature is 400 ° C. or higher, bainite and ferrite are produced and the martensite base material of the present application cannot be obtained. In addition, since the water used at the time of cooling after hot rolling will not evaporate and water may accumulate in a coil and a steel plate may corrode if a coiling temperature becomes too low, it is preferable to set it as 100 degreeC or more.
・焼鈍温度:600〜720℃
本発明における焼鈍は素地であるマルテンサイトを焼戻し、強度を確保しつつ延性を回復させるのと同時にTi、Mo、Vを含む複合炭化物を析出させることが目的である。焼鈍温度が600℃未満ではマルテンサイトの焼戻し、複合炭化物の析出とも十分でなく、一方720℃を超えるとγ相を生じて冷却中に軟質なフェライトに変態してしまうため、焼鈍温度は600〜720℃とする。
-Annealing temperature: 600-720 ° C
The purpose of annealing in the present invention is to temper martensite, which is a base material, to recover ductility while ensuring strength, and at the same time, to precipitate composite carbide containing Ti, Mo and V. When the annealing temperature is less than 600 ° C., neither tempering of martensite nor precipitation of composite carbides is sufficient. On the other hand, when it exceeds 720 ° C., a γ phase is generated and transformed into soft ferrite during cooling. 720 ° C.
・焼鈍時間:20秒〜24時間
焼鈍時間は20秒〜24時間とする。焼鈍時間が20秒未満ではマルテンサイトの焼戻し、複合炭化物の析出が十分でなく、一方24時間を超えると焼戻しの進行や析出物の粗大化で急激に軟質化するので、焼鈍時間は20秒〜24時間とする。
Annealing time: 20 seconds to 24 hours The annealing time is 20 seconds to 24 hours. If the annealing time is less than 20 seconds, the tempering of martensite and the precipitation of composite carbides are not sufficient. On the other hand, if the annealing time exceeds 24 hours, the tempering progresses and the precipitate becomes coarser, so the annealing time is 20 seconds to 24 hours.
なお、焼鈍は連続焼鈍ライン、連続溶解亜鉛めっきライン、箱焼鈍など、通常行われるいずれの焼鈍方式で行ってもよく、これらのいずれでも所望の効果を得ることができる。 In addition, annealing may be performed by any of the usual annealing methods such as a continuous annealing line, a continuous melting galvanizing line, and box annealing, and any of these can obtain a desired effect.
本発明の高張力鋼板には、表面に溶融亜鉛系めっき皮膜を形成し、溶融亜鉛めっき系鋼板としたものを含む。例えば、熱延後の焼鈍を連続溶解亜鉛めっきラインで行い、焼鈍後連続して溶融亜鉛めっき、あるいはさらに合金化処理を行うことができる。本発明の高張力鋼板は良好な加工性を有することから、溶融亜鉛系めっき皮膜を形成しても良好な加工性を維持できる。ここで、溶融亜鉛系めっきとは、亜鉛および亜鉛を主体とした溶融めっきであり、亜鉛のほかにAl、Crなどの合金元素を含んだものも含む。また、めっきままでも、めっき後に合金化処理を行ってもかまわない。また、本発明の高張力鋼板は、鋼板形状確保等の問題なく従来要求の強かった板厚2.5mm以下の薄物材とすることができる。 The high-tensile steel plate of the present invention includes a hot-dip galvanized steel sheet formed on the surface thereof. For example, annealing after hot rolling can be performed in a continuous melting galvanizing line, and hot dip galvanizing or further alloying can be performed continuously after annealing. Since the high-tensile steel sheet of the present invention has good workability, good workability can be maintained even when a hot dip galvanized film is formed. Here, the hot dip galvanizing is hot dip plating mainly composed of zinc and zinc, and includes those containing alloy elements such as Al and Cr in addition to zinc. In addition, the plating may be performed as it is or after the plating. In addition, the high-tensile steel plate of the present invention can be made into a thin material having a thickness of 2.5 mm or less, which has been strongly demanded in the past without problems such as securing the shape of the steel plate.
(実施例1)
表1に示す組成からなるスラブを溶製し、スラブ加熱温度(SRT)1250℃、熱延仕上温度(FDT)900℃、巻取温度(CT)200℃で板厚1.8mmまで熱延後、700℃で120秒の連続焼鈍を行った。
Example 1
After melting a slab having the composition shown in Table 1 and hot rolling to a plate thickness of 1.8 mm at a slab heating temperature (SRT) of 1250 ° C., a hot rolling finishing temperature (FDT) of 900 ° C., and a winding temperature (CT) of 200 ° C. , Continuous annealing was performed at 700 ° C. for 120 seconds.
得られた鋼板を酸洗後、鋼板から作製した薄膜を透過型電子顕微鏡(TEM)によって観察するとともに、析出物のサイズを測定した。析出物中のTi、Mo、Vの組成はTEMに装備されたエネルギー分散型X線分光装置(EDX)による分析から決定し、析出物のV比率(原子比)=V/(Ti+Mo+V)(式中、Ti,Mo,Vは原子%)を求めた。なお、組織の観察は走査型電子顕微鏡(SEM)によって行った。また、焼鈍後の組織については、前述のようにマルテンサイト状組織が面積率で95%以上観察されるとともに、TS×Elが13000MPa・%以上の場合を焼戻しマルテンサイトとし、13000MPa・%未満の場合は単にマルテンサイトとした。 After pickling the obtained steel plate, the thin film produced from the steel plate was observed with a transmission electron microscope (TEM), and the size of the precipitate was measured. The composition of Ti, Mo, and V in the precipitate is determined by analysis with an energy dispersive X-ray spectrometer (EDX) equipped in the TEM, and the V ratio (atomic ratio) of the precipitate = V / (Ti + Mo + V) (formula Among them, Ti, Mo, and V are atomic%). The structure was observed with a scanning electron microscope (SEM). As for the microstructure after annealing, as described above, the martensitic structure is observed in an area ratio of 95% or more, and the case where TS × El is 13000 MPa ·% or more is tempered martensite, and less than 13000 MPa ·%. The case was simply martensite.
また、得られた鋼板からJIS5号引張試験片および穴広げ試験片を採取した。引張試験片は圧延垂直方向から採取し、穴広げ試験は130mm角の鋼板の中央に10mmφのポンチにより、クリアランス(片側)を板厚の12.5%で打ち抜いた穴を有する試験片を準備し、60°円錐ポンチにより打ち抜き穴のバリ側の反対方向から押し上げ、割れが鋼板を貫通した時点での穴径dを測定し、穴広げ率λを次式より算出した。
λ(%)={(d−10)/10}×100
表2に、A値、熱延後組織、焼鈍後組織、析出物平均粒径、析出物の組成(V比率)、降伏強度(YS)、引張強度(TS)、伸び(El)、TS×El、穴広げ率(λ)を示す。なお、表2中、A値は、上記(I)式の(C/12)/{(Ti/48)+(Mo/96)+(V/51)}の値を示す。
Moreover, a JIS No. 5 tensile test piece and a hole expansion test piece were collected from the obtained steel plate. Tensile test specimens were taken from the vertical direction of rolling, and for the hole expansion test, a specimen having a hole with a clearance (one side) punched out at 12.5% of the plate thickness was prepared at the center of a 130 mm square steel plate. The hole diameter d at the time when the crack penetrated the steel plate was measured by pushing up with a 60 ° conical punch from the opposite direction of the burr side of the punched hole, and the hole expansion ratio λ was calculated from the following equation.
λ (%) = {(d−10) / 10} × 100
Table 2 shows the A value, the structure after hot rolling, the structure after annealing, the average particle size of precipitates, the composition of precipitates (V ratio), the yield strength (YS), the tensile strength (TS), the elongation (El), and the TS × El and hole expansion rate (λ) are shown. In Table 2, the A value indicates the value of (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} in the above formula (I).
表2に示すように、本発明の範囲内である鋼A〜Cでは、加工性に優れた、具体的にはTS×El≧13000MPa・%と伸び特性に優れるとともに、伸びフランジ性の指標である穴広げ率(λ)がλ≧50%である、980MPa以上の高張力鋼板が得られることが確認された。なお、組織観察により、鋼板はマルテンサイト単相組織であることが確認され、また、TS×Elの値が13000MPa・%以上であることから、焼鈍後に生成されたマルテンサイトは焼戻しマルテンサイトであることが確認された。これに対して、比較例である鋼Dは、TS×Elの値が13000MPa・%を超え、焼戻しマルテンサイトにはなっているものの、微細析出物が生じないため引張強度が980MPaを超えず、加工性も本発明鋼より劣る結果であった。 As shown in Table 2, steels A to C, which are within the scope of the present invention, have excellent workability, specifically, TS × El ≧ 13000 MPa ·%, excellent elongation characteristics, and an index of stretch flangeability. It was confirmed that a high-tensile steel plate of 980 MPa or more with a certain hole expansion ratio (λ) of λ ≧ 50% can be obtained. In addition, it is confirmed by structure observation that the steel sheet has a martensite single-phase structure, and since the value of TS × El is 13000 MPa ·% or more, the martensite generated after annealing is tempered martensite. It was confirmed. On the other hand, the steel D as a comparative example has a value of TS × El exceeding 13000 MPa ·%, which is tempered martensite, but because no fine precipitates are formed, the tensile strength does not exceed 980 MPa, The workability was also inferior to the steel of the present invention.
(実施例2)
表1に示す鋼Bの組成のスラブを用い、表3に示す条件で、板厚1.8mmまで熱延して焼鈍を行った(鋼板No.1〜11)。なお、No.6については溶融亜鉛めっきラインにて焼鈍し、引き続きライン内で合金化溶融亜鉛めっき(亜鉛めっき浴温:480℃ 合金化温度:530℃)を行った。
得られた鋼板を実施例1と同様に評価した。結果を表4に示す。
(Example 2)
Using a slab having the composition of Steel B shown in Table 1, annealing was performed by hot rolling to a plate thickness of 1.8 mm under the conditions shown in Table 3 (steel plates No. 1 to 11). In addition, No. 6 was annealed in a hot dip galvanizing line, and subsequently alloyed hot dip galvanizing (galvanizing bath temperature: 480 ° C., alloying temperature: 530 ° C.) was performed in the line.
The obtained steel plate was evaluated in the same manner as in Example 1. The results are shown in Table 4.
表4に示すように、本発明を満たす条件で製造した本発明例No.1〜6は、加工性に優れ980MPa以上の高張力鋼板が得られていることが確認された。これに対して比較例であるNo.7〜11は、加工性および強度のいずれかが劣っていた。 As shown in Table 4, Example No. of the present invention produced under conditions satisfying the present invention. It was confirmed that Nos. 1 to 6 were excellent in workability and high-tensile steel sheets of 980 MPa or more were obtained. On the other hand, No. which is a comparative example. 7 to 11 were inferior in workability and strength.
Claims (5)
0.8≦(C/12)/{(Ti/48)+(Mo/96)+(V/51)}≦1.5 …(I)
(ただし、C、Ti、Mo、Vは各成分の質量%を表す) In mass%, C: more than 0.06 to 0.24%, Si ≦ 0.3%, Mn: 0.5 to 2.0%, P ≦ 0.06%, S ≦ 0.005%, Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.05 to 0.5%, Ti: 0.03 to 0.2%, V: more than 0.15 to 1.2%, the balance being of Fe and unavoidable impurities, C, Ti, Mo, V content have a component composition that satisfies the following formula (I), the steel sheet structure is less than 95% of martensite-like structure with an area ratio observed In addition, TS × El, which is the product of tensile strength (TS) and elongation (El), is a substantially tempered martensite single-phase structure having a structure of 13000 MPa ·% or more, and an average particle size of less than 10 nm The carbide containing Ti, Mo and V is dispersed and precipitated, and the carbide containing Ti, Mo and V % Represented Ti, Mo, V in is, you characterized by having a composition satisfying V / (Ti + Mo + V ) ≧ 0.3, high tensile strength and excellent more workability 980MPa Tensile steel plate.
0.8 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} ≦ 1.5 (I)
(However, C, Ti, Mo and V represent mass% of each component)
0.8≦(C/12)/{(Ti/48)+(Mo/96)+(V/51)}≦1.5 …(I)
(ただし、C、Ti、Mo、Vは各成分の質量%を表す) In mass%, C: more than 0.06 to 0.24%, Si ≦ 0.3%, Mn: 0.5 to 2.0%, P ≦ 0.06%, S ≦ 0.005%, Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.05 to 0.5%, Ti: 0.03 to 0.2%, V: more than 0.15 to 1.2%, the balance being A steel composed of Fe and inevitable impurities and having a C, Ti, Mo, and V content satisfying the following formula (I) is melted, and finish rolling finish temperature is 880 ° C. or higher, winding temperature is 400 ° C. After performing hot rolling at less than condition, line annealing of 20 seconds to 24 hours at six hundred to seven hundred and twenty ° C., characterized by producing the steel sheet according to claim 1 or claim 2, tensile A method for producing a high-tensile steel sheet having excellent workability with a strength of 980 MPa or more.
0.8 ≦ (C / 12) / {(Ti / 48) + (Mo / 96) + (V / 51)} ≦ 1.5 (I)
(However, C, Ti, Mo and V represent mass% of each component)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005329576A JP4710558B2 (en) | 2005-11-15 | 2005-11-15 | High-tensile steel plate with excellent workability and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005329576A JP4710558B2 (en) | 2005-11-15 | 2005-11-15 | High-tensile steel plate with excellent workability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007138189A JP2007138189A (en) | 2007-06-07 |
JP4710558B2 true JP4710558B2 (en) | 2011-06-29 |
Family
ID=38201430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005329576A Active JP4710558B2 (en) | 2005-11-15 | 2005-11-15 | High-tensile steel plate with excellent workability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4710558B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013112890A (en) * | 2011-11-30 | 2013-06-10 | Nisshin Steel Co Ltd | Press working annealed steel sheet, manufacturing method therefor, and machine component excellent in wear resistance |
JP6008039B2 (en) | 2013-02-26 | 2016-10-19 | 新日鐵住金株式会社 | High-strength hot-rolled steel sheet with a maximum tensile strength of 980 MPa or more with excellent bake hardenability and low-temperature toughness |
JP6524716B2 (en) * | 2015-03-03 | 2019-06-05 | 日本製鉄株式会社 | Method of manufacturing hot rolled steel sheet excellent in workability |
KR101725274B1 (en) * | 2015-10-16 | 2017-04-10 | 삼화스틸(주) | Steel plate with high tensile strength and process for the same |
CN105970101A (en) * | 2016-05-04 | 2016-09-28 | 芜湖市爱德运输机械有限公司 | High-tenacity bucket elevator |
CN109735697B (en) * | 2018-12-18 | 2020-07-24 | 钢铁研究总院 | Alloy steel, preparation method and forming method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000199034A (en) * | 1998-12-28 | 2000-07-18 | Kawasaki Steel Corp | High tensile strength hot rolled steel plate excellent in workability and its production |
JP2001220641A (en) * | 2000-02-02 | 2001-08-14 | Kawasaki Steel Corp | High strength thin steel sheet and high strength gavlanized thin steel sheet excellent in ductility and low in yield ratio and producing method therefor |
JP2005002406A (en) * | 2003-06-11 | 2005-01-06 | Sumitomo Metal Ind Ltd | High strength hot rolled steel sheet and its production method |
-
2005
- 2005-11-15 JP JP2005329576A patent/JP4710558B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000199034A (en) * | 1998-12-28 | 2000-07-18 | Kawasaki Steel Corp | High tensile strength hot rolled steel plate excellent in workability and its production |
JP2001220641A (en) * | 2000-02-02 | 2001-08-14 | Kawasaki Steel Corp | High strength thin steel sheet and high strength gavlanized thin steel sheet excellent in ductility and low in yield ratio and producing method therefor |
JP2005002406A (en) * | 2003-06-11 | 2005-01-06 | Sumitomo Metal Ind Ltd | High strength hot rolled steel sheet and its production method |
Also Published As
Publication number | Publication date |
---|---|
JP2007138189A (en) | 2007-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10435762B2 (en) | High-yield-ratio high-strength cold-rolled steel sheet and method of producing the same | |
JP5076394B2 (en) | High-tensile steel plate and manufacturing method thereof | |
JP4324072B2 (en) | Lightweight high strength steel with excellent ductility and its manufacturing method | |
TWI406966B (en) | High tensile strength galvanized steel sheet excellent in workability and method for manufacturing the same | |
KR101218464B1 (en) | High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same | |
JP4894863B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
US8815025B2 (en) | High strength steel excellent in uniform elongation properties and method of manufacturing the same | |
JP5447741B1 (en) | Steel plate, plated steel plate, and manufacturing method thereof | |
JP5402191B2 (en) | Ultra-high-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof | |
WO2011004779A1 (en) | High-strength steel sheet and manufacturing method therefor | |
US20140234655A1 (en) | Hot-dip galvanized steel sheet and method for producing same | |
WO2012002565A1 (en) | High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same | |
WO2012002566A1 (en) | High-strength steel sheet with excellent processability and process for producing same | |
WO2012105126A1 (en) | High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same | |
WO2013046697A1 (en) | Hot-rolled steel sheet and method for producing same | |
KR20150082612A (en) | Low-yield-ratio high-strength cold-rolled steel sheet and method for manufacturing same | |
WO2017168957A1 (en) | Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet | |
WO2013088666A1 (en) | High-yield-ratio high-strength cold-rolled steel sheet and method for producing same | |
JP2002053935A (en) | High tensile strength cold-rolled steel sheet excellent in strain age-hardening characteristic and its production method | |
JP4924052B2 (en) | High yield ratio high tensile cold-rolled steel sheet and method for producing the same | |
WO2016157258A1 (en) | High-strength steel sheet and production method therefor | |
WO2018193787A1 (en) | High strength hot-dip galvanized steel sheet and production method therefor | |
JP6492869B2 (en) | High-strength cold-rolled steel sheet with excellent weldability and workability and its manufacturing method | |
JP4905147B2 (en) | Thin high tensile hot-rolled steel sheet and manufacturing method thereof | |
JP7136335B2 (en) | High-strength steel plate and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110114 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110307 |