JP3113344B2 - Dual frequency excitation plasma device using rotating magnetic field - Google Patents

Dual frequency excitation plasma device using rotating magnetic field

Info

Publication number
JP3113344B2
JP3113344B2 JP03305991A JP30599191A JP3113344B2 JP 3113344 B2 JP3113344 B2 JP 3113344B2 JP 03305991 A JP03305991 A JP 03305991A JP 30599191 A JP30599191 A JP 30599191A JP 3113344 B2 JP3113344 B2 JP 3113344B2
Authority
JP
Japan
Prior art keywords
plasma
electrode
magnetic field
electric field
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03305991A
Other languages
Japanese (ja)
Other versions
JPH06342698A (en
Inventor
陽宏 後藤
忠弘 大見
Original Assignee
アプライドマテリアルズジャパン株式会社
忠弘 大見
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アプライドマテリアルズジャパン株式会社, 忠弘 大見 filed Critical アプライドマテリアルズジャパン株式会社
Priority to JP03305991A priority Critical patent/JP3113344B2/en
Publication of JPH06342698A publication Critical patent/JPH06342698A/en
Application granted granted Critical
Publication of JP3113344B2 publication Critical patent/JP3113344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はIC、LSIなどの半導
体装置の製造、特にドライエッチング装置に用いられる
回転磁界を用いたプラズマ処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the manufacture of semiconductor devices such as ICs and LSIs, and more particularly to a plasma processing apparatus using a rotating magnetic field used in a dry etching apparatus.

【0002】[0002]

【従来技術】半導体集積回路の集積度の増大に伴い、デ
バイスの微細化が求められ、また三次元集積回路の開発
が進められるなど、その加工に必要なドライエッチング
技術に対する要求も益々厳密になっている。回転磁場を
用いたドライエッチング方法の概念は、1981年にI
BMのハイメンによって発表されて以来、三極型反応性
イオンエッチング装置と共にプラズマ密度を高める方法
として多く利用されてきた。
2. Description of the Related Art With the increase in the degree of integration of semiconductor integrated circuits, miniaturization of devices has been required, and development of three-dimensional integrated circuits has been promoted. ing. The concept of the dry etching method using a rotating magnetic field was introduced in 1981.
Since it was announced by BM's Hymen, it has been widely used as a method for increasing the plasma density together with a triode type reactive ion etching apparatus.

【0003】電界と磁界を直交させたマクネトロン方式
では、電子が電界と磁界の相乗効果により、電界Eと磁
界Bで形成される面に対して垂直方向(E×B)に、い
わゆるサイクロトロン運動をして旋回するので、電子が
分子と衝突しイオン効率が良くなり、エッチング速度が
上がる。また磁界により電子の移動度は著しく低下し、
直流的に浮遊状態になっている電極へ到達する電子の速
度が小さくなり、電極へ衝突するイオンのエネルギーを
低くでき、ウエハ表面へのダメージを減少することがで
きる。
In the magnetron system in which an electric field and a magnetic field are orthogonal to each other, so-called cyclotron motion occurs in a direction (E × B) perpendicular to a plane formed by the electric field E and the magnetic field B due to a synergistic effect of the electric field and the magnetic field. The electron collides with the molecules to improve the ion efficiency and increase the etching rate. In addition, the mobility of electrons is significantly reduced by the magnetic field,
The speed of electrons reaching the electrode which is in a DC floating state is reduced, the energy of ions colliding with the electrode can be reduced, and damage to the wafer surface can be reduced.

【0004】回転磁場を利用した装置では、2対または
3対の電磁コイルにより発生する磁界を回転させること
で、高密度のプラズマをウエハ上で回転させ、プラズマ
のイオン化を促進している。しかしながら、上記従来の
装置では以下に述べる問題点がある。先ず第一に、ウエ
ハは最大直径8インチ(約20.3cm)から12インチ(3
0.5cm)へと大口径化が進んでおり、これら大口径のウ
エハ上で均一な磁場を与えようとすると、電磁コイルは
各々直径1m以上の大型のものが必要となる。このよう
な大型のものになると、装置の床占有面積及び作業スペ
ースを考慮すると、現在の半導体製造ラインには使用不
可能となってしまう。
In a device using a rotating magnetic field, a high-density plasma is rotated on a wafer by rotating a magnetic field generated by two or three pairs of electromagnetic coils, thereby promoting plasma ionization. However, the conventional apparatus has the following problems. First of all, wafers can have a maximum diameter of 8 inches (about 20.3 cm) to 12 inches (30.3 cm).
The diameter is increasing to 0.5 cm). In order to apply a uniform magnetic field on these large-diameter wafers, a large electromagnetic coil having a diameter of 1 m or more is required. When such a large-sized device is used, it cannot be used in the current semiconductor manufacturing line in consideration of the floor occupied area of the device and the working space.

【0005】第二に、磁場強度分布にかかわらず平行平
板電極型マグネトロン装置では、上記のようにE×B方
向に電子が移動するため同方向に従ってプラズマは密に
なる。高周波放電を用いたプラズマ中を流れる電流は、
J(E)=j(ωε0 −ne (x)e/ωme )×E(E.Everha
rt, S.C.Brown, Phys. Rev., 76, 839, 1949により)で
求まる。ここで、J(E)は電流、ne は密度、ωは周波
数、me は質量、Eは交流電界をそれぞれ表す。この式
で、右辺第1項のωε0 は真空中の変位電流でプラズマ
の密度に依存しないが、第2項はプラズマの密度に比例
して大きくなる。従って、プラズマ中の電子、イオンの
密度が大きい所程電流は大きく、電界は小さくなる。こ
のようなプラズマ状態では、いま磁力方向を北とすると
ウエハ上での交流電圧の振幅は南北方向では略均一であ
っても、東西方向では西側の電圧振幅が東側(E×B)
より大きくなる。反応性のイオンエッチングのように、
イオンの方向性及び強度によりエッチング形状及びエッ
チング速度をコントロールする場合、イオンはプラズマ
電位と自己バイアスの和によってプラズマ暗部で加速さ
れ、被エッチング膜に衝突する。またイオン電流Jiは
eをチャージ、niをイオン密度、μをイオンの移動
度、Eを電界としたとき、Ji=e・ni・μ・E(こ
こで、Jiはイオン電流、eはチャージ、niはイオン
密度、μはイオンの移動度、Eは電界を表す。)で示さ
れるように、イオン密度とイオン移動度の積に比例して
変化する。即ち、E×B方向へのプラズマの移動により
イオンの照射密度及びイオンの照射エネルギーともウエ
ハ上で不均一になり、エッチング速度及びエッチング形
状は著しく不均一になる。
Second, regardless of the magnetic field strength distribution, in the parallel plate electrode type magnetron device, the electrons move in the E × B direction as described above, so that the plasma becomes denser in the direction. The current flowing in plasma using high-frequency discharge is
J (E) = j (ωε 0 -n e (x) e / ωm e) × E (E.Everha
rt, SCBrown, Phys. Rev., 76, 839, 1949). Here, J (E) represents current, ne represents density, ω represents frequency, me represents mass, and E represents an alternating electric field. In this equation, ωε 0 in the first term on the right side is a displacement current in a vacuum and does not depend on the density of the plasma, but the second term increases in proportion to the density of the plasma. Therefore, as the density of electrons and ions in the plasma increases, the current increases and the electric field decreases. In such a plasma state, if the magnetic force direction is assumed to be north, the amplitude of the AC voltage on the wafer is substantially uniform in the north-south direction, but the voltage amplitude on the west side is east (E × B) in the east-west direction.
Be larger. Like reactive ion etching,
When the etching shape and the etching rate are controlled by the direction and intensity of the ions, the ions are accelerated in the dark portion of the plasma by the sum of the plasma potential and the self-bias and collide with the film to be etched. When the ion current Ji is charged e, ni is the ion density, μ is the ion mobility, and E is the electric field, Ji = e · ni · μ · E (where Ji is the ion current, e is the charge, ni represents the ion density, μ represents the ion mobility, and E represents the electric field.) As shown in FIG. That is, due to the movement of the plasma in the E × B direction, both the ion irradiation density and the ion irradiation energy become non-uniform on the wafer, and the etching rate and the etching shape become extremely non-uniform.

【0006】プラズマの濃淡現象は主に磁場強度と圧力
(真空度)に依存する。特に次世代デバイスに必要とさ
れる高アスペクト比、極小パターンサイズ依存性のエッ
チングを実現するには低圧雰囲気でのエッチングが不可
欠となり、磁場による濃淡現象は顕著なものとなる。更
にエッチング速度及びエッチング形状のみでなく、ウエ
ハ外周部では中心部に比べて磁場の回転と共に周期的に
プラズマ密度が疎になりプラズマのインピーダンスが大
きくなり交流電圧の振幅が大きくなる。従って、プラズ
マ電位と電極の自己バイアスで決まるイオンの照射エネ
ルギーは増大しイオンの照射による損傷を受けやすく、
デバイスによっては周辺部の歩止まりが著しく低下する
という問題がある。
The density phenomenon of plasma mainly depends on the magnetic field strength and the pressure (degree of vacuum). In particular, etching in a low-pressure atmosphere is indispensable in order to realize etching having a high aspect ratio and extremely small pattern size required for a next-generation device, and the density phenomenon caused by a magnetic field becomes remarkable. Further, not only the etching rate and the etching shape, but also the plasma density is periodically decreased with the rotation of the magnetic field in the outer peripheral portion of the wafer as compared with the central portion, the impedance of the plasma is increased, and the amplitude of the AC voltage is increased. Therefore, the ion irradiation energy determined by the plasma potential and the self-bias of the electrode increases, and is susceptible to damage by ion irradiation,
There is a problem that the yield in the peripheral portion is significantly reduced depending on the device.

【0007】更に従来の技術では、被エッチングウエハ
周辺と中心部のエッチング速度の差及び周辺部お周期的
なイオンエネルギーの変化によるダメージが大きく、大
口径ウエハには不適合なもであった。
Further, in the prior art, the damage caused by the difference in the etching rate between the periphery and the center of the wafer to be etched and the periodic change in ion energy in the periphery is large, and is not suitable for a large-diameter wafer.

【0008】[0008]

【発明が解決すべき課題】本発明は上記の問題を解決す
べくなされ、その目的はウエハ上でのプラズマ密度を均
一にし、イオンの照射エネルギーの分布を均一にして、
ドライエッチング装置としてウエハ内のエッチング速度
をより均一にすることにより、デバイスの歩止まりを向
上させることができ、更にプラズマCVD装置として均
一な成膜を行うことができる回転磁場を用いたプラズマ
処理装置を提供することである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to make the plasma density on the wafer uniform and the ion irradiation energy distribution uniform.
A plasma processing apparatus using a rotating magnetic field capable of improving the yield of devices by making the etching rate in a wafer more uniform as a dry etching apparatus, and capable of forming a uniform film as a plasma CVD apparatus. It is to provide.

【0009】[0009]

【課題を解決するための手段】本発明は、二以上の電極
を内蔵する真空チャンバと、真空チャンバ内に所定のガ
スを供給する供給手段と、真空チャンバ内のガスを排出
する排出手段と、真空チャンバ周囲に配設され、電界の
方向と垂直な面内で回転する回転磁場を生起させる電磁
コイルを具備する回転磁界を用いたプラズマ処理装置に
おいて、被処理物が載置される第1の電極に第1の高周
波電源を接続すると共に、第1の電極に対向して第2の
電極を設け、これに第2の高周波電源を接続したもので
ある。これにより第1の電極とプラズマ間の電界とは逆
方向の電界を第2の電極とプラズマ間に発生させ、E×
Bによるプラズマの移動による不均一性を互いに打ち消
すようにして、ウエハ上のプラズマの密度分布を均一に
するものである。
SUMMARY OF THE INVENTION The present invention comprises a vacuum chamber containing two or more electrodes, a supply means for supplying a predetermined gas into the vacuum chamber, a discharge means for discharging a gas from the vacuum chamber, In a plasma processing apparatus using a rotating magnetic field that is provided around a vacuum chamber and includes an electromagnetic coil that generates a rotating magnetic field that rotates in a plane perpendicular to the direction of an electric field, a first object on which an object to be processed is mounted is provided. A first high-frequency power supply is connected to the electrodes, and a second electrode is provided facing the first electrode, and the second high-frequency power supply is connected to the second electrode. Thereby, an electric field in the opposite direction to the electric field between the first electrode and the plasma is generated between the second electrode and the plasma.
This is to make the plasma density distribution on the wafer uniform by canceling out the non-uniformity due to the movement of the plasma by B.

【0010】[0010]

【作用】磁場を回転させるだけでは、上述のように電極
を上から見た際の、瞬時な磁界の北方向に対する東側
(E×B方向)のプラズマ密度が大きくなる。被処理物を
載置する第1の電極の自己バイアス(負)とプラズマ電
位(正)間での電界E1とは逆方向に第2の電極を負の
電位に制御して第1の電極とプラズマ間でのプラズマの
方向(E1×B)とは逆方向に第2の電極とプラズマ間
に電界E2と磁界によりプラズマを移動させることが可
能になる。従って、プラズマ密度はウエハ上でより均一
になりイオンの照射エネルギーを決める交流電圧の振幅
及びイオンの照射密度をより均一にすることができる。
[Action] By simply rotating the magnetic field, the instantaneous magnetic field on the east side with respect to the north direction when the electrode is viewed from above as described above.
The plasma density in the (E × B direction) increases. The second electrode is controlled to a negative potential in a direction opposite to the electric field E1 between the self-bias (negative) of the first electrode on which the object is placed and the plasma potential (positive), and the first electrode is connected to the first electrode. it is possible to move the plasma by an electric field E 2 and the magnetic field between the second electrode and the plasma in a direction opposite to the direction of the plasma between the plasma (E 1 × B). Therefore, the plasma density becomes more uniform on the wafer, and the amplitude of the AC voltage that determines the ion irradiation energy and the ion irradiation density can be made more uniform.

【0011】[0011]

【実施例】本発明の好適な実施例を添付図面に基づいて
以下に詳細に説明する。 実施例1 図1にドライエッチング装置の断面図を示す。本装置は
真空チャンバ1とCF4等のエッチングガスを導入する
ガス供給口(図示せず)と真空チャンバ1内を排気して
所要の圧力に設定するガス排気口(図示せず)を有す
る。ガス供給口はバルブを介してガス供給源に、またガ
ス排気口はバルブを介して排気バルブに接続される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Embodiment 1 FIG. 1 shows a sectional view of a dry etching apparatus. The apparatus has a vacuum chamber 1, a gas supply port (not shown) for introducing an etching gas such as CF4, and a gas exhaust port (not shown) for evacuating the vacuum chamber 1 and setting it to a required pressure. The gas supply port is connected to a gas supply source via a valve, and the gas exhaust port is connected to an exhaust valve via a valve.

【0012】ウエハ載置用の第1の電極2は真空チャン
バ1内に配設された非接地電極である。これにはマッチ
ング回路を介して第1の高周波電源3が接続されウエハ
バイアス用の高周波電力が印加される。図2には4ふっ
化炭素(CF4 )とアルゴン(Ar)ガスを流量を7sc
cmと133sccm の比率で混合させた場合、基板に印加され
る高周波電源の周波数及び電力とウエハの直流電位との
相関を示す。図2から判るように、プラズマ生成用の上
部電極に100MHz 、100Wを印加した場合、上部電
極の自己バイアスは、基板に印加される周波数及び電力
には殆ど無関係に一定である。一方、基板の自己バイア
スは、そこに印加される周波数と電力により大きく変化
することが判る。従って、第1の高周波電源の周波数と
電力を制御することによりウエハの電位、即ちイオンの
照射エネルギーを決めるプラズマの空間電位とウエハの
直流電位を精密に制御することができる。
The first electrode 2 for mounting a wafer is a non-ground electrode provided in the vacuum chamber 1. To this, the first high frequency power supply 3 is connected via a matching circuit, and high frequency power for wafer bias is applied. FIG. 2 shows a flow rate of carbon tetrafluoride (CF 4 ) and argon (Ar) gas of 7 sc.
In the case of mixing at a ratio of cm and 133 sccm, the correlation between the frequency and the power of the high frequency power supply applied to the substrate and the DC potential of the wafer is shown. As can be seen from FIG. 2, when 100 MHz and 100 W are applied to the upper electrode for plasma generation, the self-bias of the upper electrode is constant regardless of the frequency and power applied to the substrate. On the other hand, it can be seen that the self-bias of the substrate changes greatly depending on the frequency and power applied thereto. Therefore, by controlling the frequency and power of the first high-frequency power supply, the potential of the wafer, that is, the spatial potential of the plasma that determines the ion irradiation energy and the DC potential of the wafer can be precisely controlled.

【0013】プラズマ密度の制御を目的とする第2の電
極4は真空チャンバ1内に第1の電極2に対向して配設
された非接地電極である。これにはマッチング回路を介
して第2の高周波電源5が接続され、プラズマ生成用の
高周波電力が印加される。図3に第2の電極4の印加電
力を変化させたときのプラズマの発光スペクトル強度を
示す。またスペクトルの左側に示した数字は第2の電極
へ導入する電力(W)と419.9nm の波長での相対的なア
ルゴンの発光強度を示している。例えば、150W/9
144は第2の電極への導入電力が150Wで、その時
の発光強度が9144であることを意味する。
The second electrode 4 for the purpose of controlling the plasma density is a non-ground electrode provided in the vacuum chamber 1 so as to face the first electrode 2. To this, a second high frequency power supply 5 is connected via a matching circuit, and high frequency power for plasma generation is applied. FIG. 3 shows the emission spectrum intensity of the plasma when the power applied to the second electrode 4 is changed. The numbers shown on the left side of the spectrum show the power (W) introduced to the second electrode and the relative emission intensity of argon at a wavelength of 419.9 nm. For example, 150W / 9
144 indicates that the power introduced into the second electrode is 150 W and the emission intensity at that time is 9144.

【0014】真空チャンバ1の周囲には相対向する二対
の電磁コイル6は、その軸が直交するように配設され、
そして一方の対の電磁コイルと他方の対の電磁コイルに
位相の90度ずれた低周波電流がそれぞれ印加される
と、対向する二つの非接地電極間の電界と直交する方向
に回転合成磁場を生起する。このように回転磁場を作用
させることで、高密度のプラズマをウエハ上で発生させ
ることができるが、前記したように、第1の電極2のみ
でプラズマを生成させ、またバイアスを制御したのでは
瞬時のプラズマ密度はE×Bの方向が濃く反対方向では
薄くなると言う、前記した問題が生じる。
Around the vacuum chamber 1, two opposing electromagnetic coils 6 are arranged such that their axes are orthogonal to each other.
When low-frequency currents with phases shifted by 90 degrees are applied to one pair of electromagnetic coils and the other pair of electromagnetic coils, respectively, a rotating synthetic magnetic field is generated in a direction orthogonal to the electric field between the two opposing non-grounded electrodes. Occur. By applying the rotating magnetic field in this manner, high-density plasma can be generated on the wafer. However, as described above, if the plasma is generated only by the first electrode 2 and the bias is controlled, The above-described problem occurs that the instantaneous plasma density is high in the direction of E × B and low in the opposite direction.

【0015】本発明のドライエッチング装置を上記のよ
うに構成することにより、プラズマとウエハ載置電極
(第1の電極)間の電界方向とは逆方向にプラズマとプ
ラズマ生成用電極(第2の電極)間で電界を印加するこ
とが可能となるため、プラズマの移動による不均一性が
互いに打ち消されて電極間のプラズマの密度を均一にす
ることができる。
By configuring the dry etching apparatus of the present invention as described above, the plasma and the plasma generating electrode (the second electrode) are opposite to the direction of the electric field between the plasma and the wafer mounting electrode (first electrode). Since an electric field can be applied between the electrodes, the non-uniformity due to the movement of the plasma is canceled each other, and the density of the plasma between the electrodes can be made uniform.

【0016】実施例2 図4にウエハ載置電極(第1の電極)2の周辺にウエハ
中心部とウエハ周辺部のプラズマ密度の均一化を目的と
した永久磁石を配置した場合の実施例を示す。ウエハの
直径が大きくなるにつれてウエハ周辺部のデバイスの直
径が大きくなるため、ウエハ周辺部のデバイスの歩止ま
りを向上することが非常に重要になる。
Embodiment 2 FIG. 4 shows an embodiment in which permanent magnets are arranged around the wafer mounting electrode (first electrode) 2 for the purpose of equalizing the plasma density at the center of the wafer and at the periphery of the wafer. Show. As the diameter of the wafer increases, the diameter of the device at the peripheral portion of the wafer increases. Therefore, it is very important to improve the yield of the device at the peripheral portion of the wafer.

【0017】従来の回転磁場のみでは電子はE×B方向
にドリフトされ、チャンバ1の内壁で再結合するがイオ
ンは影響を受けない。プラズマ電位はプラズマ中のイオ
ンと電子の密度の差によって決まる。電子とイオンの移
動度(質量)の差によりロレンツ力によって電子のみが
疎になるため、ポアソンの式に従って、E×B方向のプ
ラズマ電位が高くなる。イオンの照射エネルギーはプラ
ズマの電位と基板の自己バイアスとの差で決まる。照射
エネルギーが高すぎるとプロセス上の問題点が多く発生
するため最適条件に制御することが望ましいが、プラズ
マ電位は装置構成により決まるため制御範囲が限定され
てしまう。
With the conventional rotating magnetic field alone, electrons are drifted in the E × B direction and recombine on the inner wall of the chamber 1, but ions are not affected. The plasma potential is determined by the difference between the density of ions and electrons in the plasma. Since only electrons become sparse due to Lorentz force due to the difference in mobility (mass) between electrons and ions, the plasma potential in the E × B direction increases according to Poisson's equation. The ion irradiation energy is determined by the difference between the plasma potential and the self-bias of the substrate. If the irradiation energy is too high, many problems on the process occur, so it is desirable to control the conditions to the optimal conditions. However, since the plasma potential is determined by the device configuration, the control range is limited.

【0018】本実施例における主な構成は図1の場合と
同じであるが、本実施例では更に第2の磁界B2 を発生
する永久磁石7をウエハ周辺に配設し、プラズマ生成用
の電界E2 と直交させE2 ×B2 方向へプラズマを閉ル
ープに形成しながら電子をプラズマ内に閉じこめてい
る。イオン照射エネルギーはプラズマの電位と基板の自
己バイアスとの差で決まる。照射エネルギーが高すぎる
とプロセス上の問題が多く発生するため最適条件に制御
することが望ましいがプラズマ電位は装置の構成により
決まるため制御範囲が限定される。このためプラズマ電
位の上昇も許容範囲内に抑えることができた。またウエ
ハ周辺では常時高密度のプラズマが存在するため前記し
たようなプラズマのドリフトの影響を受けることがなく
常にウエハ上の空間で高密度のプラズマを発生すること
が可能となった。
The main configuration of this embodiment is the same as that of FIG. 1, but in this embodiment, a permanent magnet 7 for generating a second magnetic field B 2 is further provided around the wafer to generate a plasma. Electrons are confined in the plasma while forming the plasma in a closed loop in the direction of E 2 × B 2 perpendicular to the electric field E 2 . The ion irradiation energy is determined by the difference between the plasma potential and the self-bias of the substrate. If the irradiation energy is too high, many problems in the process occur, so it is desirable to control the conditions to optimal conditions. However, since the plasma potential is determined by the configuration of the apparatus, the control range is limited. For this reason, the rise of the plasma potential could be suppressed within the allowable range. In addition, since high-density plasma always exists around the wafer, high-density plasma can always be generated in a space above the wafer without being affected by the above-described plasma drift.

【0019】本実施例によるCF4 プラズマを用いて熱
酸化膜のエッチングを行ったところ、従来装置ではウエ
ハエッジより10mmの部位内で±8%ものばらつきがあ
ったが、本実施例ではエッジより3mmの部位を除いて±
2%となり、非常に均一なエッチングを行うことができ
た。上記実施例では第2の電界E2 を発生させるのに高
周波電源を用いたが、直流電源の方が装置の構成を簡単
にすることができる。直流電源を用いた場合、電極表面
は常に導電性であることは勿論である。更に、上記実施
例ではドライエッチング装置を例としたが、プラズマC
VD装置としても利用できることは勿論である。
When the thermal oxide film was etched using the CF 4 plasma according to the present embodiment, there was a variation of ± 8% within 10 mm from the wafer edge in the conventional apparatus, but 3 mm from the edge in the present embodiment. ± except for the part
It was 2%, and very uniform etching could be performed. In the above embodiment, use of a high-frequency power source to generate a second electric field E 2, towards the DC power supply can be simplified the structure of the apparatus. When a DC power supply is used, it is a matter of course that the electrode surface is always conductive. Further, in the above-described embodiment, the dry etching apparatus is used as an example.
Of course, it can also be used as a VD device.

【0020】[0020]

【発明の効果】以上のように本発明によれば、プラズマ
内の電子の運動を制御でき、プラズマ電位の分布を均一
にできるから、ドライエッチング装置として用いて、被
処理物のエッチング速度をより均一にすることができ
る。また被処理物表面のイオンの照射による損傷を低減
することができ、更にプラズマCVD装置として用いて
被処理物表面に均一な厚さの成膜を形成することができ
るなどの効果を奏する。
As described above, according to the present invention, since the movement of electrons in the plasma can be controlled and the distribution of the plasma potential can be made uniform, the etching rate of the object to be processed can be increased by using it as a dry etching apparatus. It can be uniform. In addition, it is possible to reduce the damage of the surface of the processing object due to the irradiation of ions and to form a film having a uniform thickness on the surface of the processing object by using the plasma CVD apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるドライエッチング装置の実施例の
断面図を示す。
FIG. 1 shows a sectional view of an embodiment of a dry etching apparatus according to the present invention.

【図2】電極に印加される高周波電源の周波数及び電力
とウエハの直流電位との相関を示す。
FIG. 2 shows the correlation between the frequency and power of a high-frequency power supply applied to an electrode and the DC potential of a wafer.

【図3】印加電力を変化させた時のプラズマの発光スペ
クトラム強度を示す。
FIG. 3 shows the emission spectrum intensity of plasma when the applied power is changed.

【図4】本発明によるドライエッチング装置の他の実施
例を示す。
FIG. 4 shows another embodiment of the dry etching apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 真空チャンバ 2 第1の電極 3 第1の高周波電源 4 第2の電極 5 第2の高周波電源 6 電磁コイル 7 永久磁石 DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 1st electrode 3 1st high frequency power supply 4 2nd electrode 5 2nd high frequency power supply 6 Electromagnetic coil 7 Permanent magnet

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−346225(JP,A) 特開 平5−287559(JP,A) (58)調査した分野(Int.Cl.7,DB名) H05H 1/46 C23C 16/50 C23F 4/00 H01L 21/3065 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-346225 (JP, A) JP-A-5-287559 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H05H 1/46 C23C 16/50 C23F 4/00 H01L 21/3065

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 二以上の電極を内蔵する真空チャンバ
と、真空チャンバ内に所定のガスを供給するガス供給手
段と、真空チャンバ内のガスを排出する排出手段と、真
空チャンバの周囲に配置され、電界の方向と垂直な面内
で回転する回転磁場を生起される電磁コイルを具備する
回転磁界を用いたプラズマ処理装置において、 被処理物が載置される第1の電極および前記第1の電極
に対向して設置された第2の電極に、負の自己バイアス
電位を各々もたらすと共に、前記第1の電極および第2
の電極との間に、正の電位のプラズマを生成することに
より、前記第2の電極とプラズマ間に、前記第1の電極
とプラズマ間の電界(E 1 )とは逆方向に電界(E 2 )を発生
させることにより、前記第1の電極とプラズマ間でのプ
ラズマの方向(E 1 ×B)とは逆方向(E 2 ×B)によりプラ
ズマを移動させることを特徴とする回転磁界を用いたプ
ラズマ処理装置。
1. A vacuum chamber containing two or more electrodes, a gas supply means for supplying a predetermined gas into the vacuum chamber, a discharge means for discharging gas in the vacuum chamber, and a gas supply means disposed around the vacuum chamber. A plasma processing apparatus using a rotating magnetic field having an electromagnetic coil generating a rotating magnetic field rotating in a plane perpendicular to the direction of an electric field, wherein a first electrode on which an object to be processed is mounted and the first electrode electrode
Negative self-bias is applied to the second electrode
A first potential and a second potential, respectively.
To generate a plasma with a positive potential between the electrodes
By generating an electric field (E 2 ) between the second electrode and the plasma in a direction opposite to the electric field (E 1 ) between the first electrode and the plasma, the electric field between the first electrode and the plasma is increased. In the
In the opposite direction (E 2 × B) to the plasma direction (E 1 × B),
A plasma processing apparatus using a rotating magnetic field, wherein a plasma is moved .
【請求項2】前記第1の電極の周辺部に直流磁界発生手
段を設けたことを特徴とする請求項1に記載のプラズマ
処理装置。
2. The plasma processing apparatus according to claim 1, wherein a DC magnetic field generating means is provided around the first electrode.
JP03305991A 1991-11-21 1991-11-21 Dual frequency excitation plasma device using rotating magnetic field Expired - Fee Related JP3113344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03305991A JP3113344B2 (en) 1991-11-21 1991-11-21 Dual frequency excitation plasma device using rotating magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03305991A JP3113344B2 (en) 1991-11-21 1991-11-21 Dual frequency excitation plasma device using rotating magnetic field

Publications (2)

Publication Number Publication Date
JPH06342698A JPH06342698A (en) 1994-12-13
JP3113344B2 true JP3113344B2 (en) 2000-11-27

Family

ID=17951758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03305991A Expired - Fee Related JP3113344B2 (en) 1991-11-21 1991-11-21 Dual frequency excitation plasma device using rotating magnetic field

Country Status (1)

Country Link
JP (1) JP3113344B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880034A (en) * 1997-04-29 1999-03-09 Princeton University Reduction of semiconductor structure damage during reactive ion etching
JP5102615B2 (en) * 2005-04-04 2012-12-19 パナソニック株式会社 Plasma processing method and apparatus
JP5650281B2 (en) * 2013-06-15 2015-01-07 東京エレクトロン株式会社 Plasma processing method and plasma processing apparatus

Also Published As

Publication number Publication date
JPH06342698A (en) 1994-12-13

Similar Documents

Publication Publication Date Title
KR0159197B1 (en) Plasma process apparatus
JP5219479B2 (en) Uniformity control method and system in ballistic electron beam enhanced plasma processing system
JP3381916B2 (en) Low frequency induction type high frequency plasma reactor
US5345145A (en) Method and apparatus for generating highly dense uniform plasma in a high frequency electric field
KR0127663B1 (en) Apparatus & method for generating plasma of uniform flux density
KR100390540B1 (en) Magnetron plasma etching apparatus
JPH02298024A (en) Reactive ion etching apparatus
JP2000269196A (en) Method and apparatus for plasma treatment
KR970005035B1 (en) Method and apparatus for generating highly dense uniform plasma by use of a high frequency rotating electric field
JP2002289399A (en) Neutral particle beam treatment apparatus
US20010037770A1 (en) Plasma processing apparatus and processing method
JP3113344B2 (en) Dual frequency excitation plasma device using rotating magnetic field
JPH04324631A (en) Surface treatment equipment
JP2851765B2 (en) Plasma generation method and apparatus
JP3037848B2 (en) Plasma generating apparatus and plasma generating method
JPH08195379A (en) Plasma processing method and device
JP3368806B2 (en) Plasma processing method and apparatus
JPH0727894B2 (en) Discharge reactor using rotating magnetic field
JP3192352B2 (en) Plasma processing equipment
JP3354343B2 (en) Etching equipment
JP2794963B2 (en) Dry etching method and dry etching apparatus
JP2877398B2 (en) Dry etching equipment
JP4223143B2 (en) Plasma processing equipment
JP3455616B2 (en) Etching equipment
JPH0645094A (en) Method for generating plasma and device therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees