JPH0727894B2 - Discharge reactor using rotating magnetic field - Google Patents

Discharge reactor using rotating magnetic field

Info

Publication number
JPH0727894B2
JPH0727894B2 JP2018450A JP1845090A JPH0727894B2 JP H0727894 B2 JPH0727894 B2 JP H0727894B2 JP 2018450 A JP2018450 A JP 2018450A JP 1845090 A JP1845090 A JP 1845090A JP H0727894 B2 JPH0727894 B2 JP H0727894B2
Authority
JP
Japan
Prior art keywords
magnetic field
rotating magnetic
potential
vacuum chamber
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018450A
Other languages
Japanese (ja)
Other versions
JPH03222415A (en
Inventor
陽宏 後藤
Original Assignee
アプライドマテリアルズジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アプライドマテリアルズジャパン株式会社 filed Critical アプライドマテリアルズジャパン株式会社
Priority to JP2018450A priority Critical patent/JPH0727894B2/en
Publication of JPH03222415A publication Critical patent/JPH03222415A/en
Publication of JPH0727894B2 publication Critical patent/JPH0727894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はIC、LSIなどの半導体装置の製造、特にドライ
エッチング装置に用いて好適な回転磁界を用いた放電反
応装置に関する。
TECHNICAL FIELD The present invention relates to the manufacture of semiconductor devices such as ICs and LSIs, and more particularly to a discharge reaction device using a rotating magnetic field suitable for a dry etching device.

(従来の技術) 半導体集積回路の集積に増大に伴い、デバイスの微細化
が求められ、また三次元集積回路の開発が進められるな
ど、その加工に必要なドライエッチング技術に対する要
求も益々厳密になっている。
(Prior Art) With the increase in the integration of semiconductor integrated circuits, the miniaturization of devices is required, and the development of three-dimensional integrated circuits is being advanced. ing.

回転磁場を用いたドライエッチング方法のコンセプト
は、1981年にIBMのハイマンによって発表されて以来、
三極反応性イオンエッチング装置とともにプラズマ密度
を高める方法として多く利用されてきた。
Since the concept of the dry etching method using a rotating magnetic field was announced by Hyman of IBM in 1981,
It has been widely used as a method for increasing the plasma density together with the triode reactive ion etching apparatus.

電界と磁界を直交させたマグネトロン方式では、電子が
電界と磁界の相乗効果により、電界と磁界で形成される
面に対して垂直方向(E×B)に、いわゆるマグネトロ
ン運動をして旋回するので、電子が分子と衝突し、イオ
ン化効率がよくなり、エッチング速度が上がる。また磁
界により電子の移動度は著しく低下し、直流的に浮遊状
態になっている電極へ到達する電子電流が少なくなるた
め、自己バイアスは低くなり、電極へ衝突するイオンエ
ネルギーを低くでき、ウェハ表面へのダメージを減少す
ることができる。
In the magnetron system in which the electric field and the magnetic field are orthogonal to each other, the electrons turn by a so-called magnetron motion in a direction (E × B) perpendicular to the plane formed by the electric field and the magnetic field due to the synergistic effect of the electric field and the magnetic field. , Electrons collide with molecules, improving the ionization efficiency and increasing the etching rate. Also, the mobility of electrons is significantly reduced by the magnetic field, and the electron current that reaches the electrode that is in the DC floating state is reduced, so the self-bias is lowered and the ion energy that collides with the electrode can be lowered, and the wafer surface can be reduced. Damage to can be reduced.

回転磁場を利用した装置では、2対または3対の電磁コ
イルにより発生する磁界を回転させることで、高密度の
プラズマをウェハ上で回転させ、プラズマのイオン化を
促進している。
In an apparatus using a rotating magnetic field, high density plasma is rotated on a wafer by rotating a magnetic field generated by two or three pairs of electromagnetic coils to promote ionization of the plasma.

(発明が解決しようとする課題) しかしながら上記従来の装置では以下に述べる問題点が
ある。
(Problems to be Solved by the Invention) However, the above-mentioned conventional device has the following problems.

まず第一に、ウェハは最大直径8インチなどと大口径化
が進んでおり、これら大口径のウェハ上で均一な磁場を
与えようとする、電磁コイルは各々直径1m以上の大型の
のが必要となる。このような大型のものになると、装置
の床占有面積および作業スペースを考慮すると、現在の
半導体製造ラインには使用不可能となってしまう。
First of all, the diameter of wafers is increasing to a maximum diameter of 8 inches, etc., and it is necessary to have a large electromagnetic coil each with a diameter of 1 m or more in order to give a uniform magnetic field on these large diameter wafers. Becomes When such a large size is used, it becomes unusable in the current semiconductor manufacturing line in consideration of the floor occupying area of the device and the work space.

第二に、磁場強度分布にかかわらず、平行平板電極形マ
グネトロン装置では、前記のようにE×B方向に電子が
移動するため同方向に従ってプラズマは密になる。この
ようなプラズマ状態では、磁力方向を北とするとウェハ
上でのプラズマ電位は南北方向ではほぼ均一であって
も、東西方向では東側のプラズマ電位が西側より高くな
る。反応性のイオンエッチングのように、イオンの方向
性および強度によりエッチング形状およびエッチング速
度をコントロールする場合、イオンはプラズマ電位と自
己バイアスの和によってプラズマ暗部で加速され、被エ
ッチング膜に衝突する。またイオン電流JiはJi=eniμi
Eで示されるように、イオン密度とイオン移動度の積に
比例して変化する。すなわち、磁場に対して東周辺部の
方が中心部および西周辺部よりイオンの衝突強度および
量とも大きくなり、エッチング速度も著しく不均一にな
る。プラズマの濃淡現象は主に磁場強度と反応圧力に依
存する。特に次世代デバイスに必要とされる高アスペク
ト比、極小パターンサイズ依存性のエッチングを実現す
るには、低圧雰囲気でのエッチングが不可欠となり、磁
場による濃淡現象は顕著なものとなる。さらにエッチン
グ速度のみでなく、ウェハ外周部では中心部に比べイオ
ン衝突強度が大きいため、イオン照射による損傷を受け
やすく、デバイスによっては周辺部の歩止まりが著しく
低下するという問題点がある。
Secondly, regardless of the magnetic field strength distribution, in the parallel plate electrode type magnetron device, the electrons move in the E × B direction as described above, so that the plasma becomes dense in the same direction. In such a plasma state, when the magnetic force direction is north, the plasma potential on the wafer is almost uniform in the north-south direction, but in the east-west direction, the plasma potential on the east side is higher than that on the west side. In the case of controlling the etching shape and etching rate by the directionality and strength of the ions, such as reactive ion etching, the ions are accelerated in the plasma dark part by the sum of the plasma potential and the self-bias and collide with the film to be etched. Also, the ion current Ji is Ji = eniμi
As indicated by E, it changes in proportion to the product of ion density and ion mobility. That is, the collision strength and amount of ions in the east peripheral portion are larger than those in the central portion and the west peripheral portion with respect to the magnetic field, and the etching rate is significantly nonuniform. The density phenomenon of plasma mainly depends on the magnetic field strength and reaction pressure. In particular, in order to realize the high aspect ratio and extremely small pattern size-dependent etching required for next-generation devices, etching in a low-pressure atmosphere is indispensable, and the density phenomenon due to the magnetic field becomes remarkable. Further, not only the etching rate but also the ion collision strength in the outer peripheral portion of the wafer is higher than that in the central portion, so that the wafer is more likely to be damaged by ion irradiation, and depending on the device, the yield in the peripheral portion is significantly reduced.

さらに従来の技術では、被エッチングウェハ周辺と中心
部のエッチングレートの差および周辺部の周期的なイオ
ンエネルギーの変化によるダメージが大きく、大口径ウ
ェハには不適合なものであった。このため磁場と圧力を
独自に変化させることが困難となり、均一性に対するプ
ロセスウィンドーが非常に狭くなる傾向があった。
Furthermore, the conventional technique is not suitable for a large-diameter wafer because the damage is large due to the difference in etching rate between the periphery of the wafer to be etched and the central portion and the periodic change in ion energy in the peripheral portion. This makes it difficult to independently change the magnetic field and pressure, and the process window for uniformity tends to be very narrow.

本発明は上記の問題点を解決すべくなされ、その目的と
するところは、プラズマ内での電子の運動を抑制し、プ
ラズマ電位の分布を均一にして、ドライエッチング装置
としてウェハ内のエッチング速度をより均一に、またウ
ェハ表面の耐圧を向上させることができ、またプラズマ
CVD装置として均一な皮膜の生成を行うことができる回
転磁界を用いた放電反応装置を提供するにある。
The present invention has been made to solve the above problems, and an object of the present invention is to suppress the movement of electrons in plasma to make the plasma potential distribution uniform and to improve the etching rate in a wafer as a dry etching apparatus. It is possible to improve the uniformity of the surface pressure of the wafer and improve the plasma resistance.
It is an object of the present invention to provide a discharge reaction device using a rotating magnetic field that can generate a uniform film as a CVD device.

(課題を解決するための手段) 上記目的による本発明では、電極を内蔵する真空チャン
バと、真空チャンバ内に所定のガスを供給するガス供給
手段と、真空チャンバー内のガスを排出する排出手段
と、真空チャンバ周囲に配設され、電界の方向と垂直な
面内で回転する回転磁場を生起させる電磁コイルを具備
する回転磁界を用いた放電反応装置において、被処理物
が載置される前記電極の周囲に複数配置され、電界の方
向から見た際の前記回転する磁場の北方向に対して東側
に位置するものよりも西側に位置するものの電位が常に
高くなるように回転磁場の回転と同期して電位が制御さ
れる制御電極を設けたことを特徴としている。
(Means for Solving the Problems) In the present invention according to the above object, a vacuum chamber containing an electrode, a gas supply means for supplying a predetermined gas into the vacuum chamber, and an exhaust means for exhausting the gas in the vacuum chamber. In a discharge reaction device using a rotating magnetic field, which is provided around a vacuum chamber and has an electromagnetic coil that generates a rotating magnetic field that rotates in a plane perpendicular to the direction of the electric field, the electrode on which the object to be treated is placed. Synchronized with the rotation of the rotating magnetic field so that the electric potential of the multiple magnetic field that is placed around the west side of the rotating magnetic field is higher than that of the west side of the rotating magnetic field when viewed from the direction of the electric field. It is characterized in that a control electrode whose potential is controlled is provided.

(作用) 磁場を回転させただけでは、前記したように電界の方向
から見た際の、回転磁場の北方向に対する東側のプラズ
マ電位が高くなる。
(Operation) If the magnetic field is simply rotated, the plasma potential on the east side with respect to the north direction of the rotating magnetic field becomes higher when viewed from the direction of the electric field as described above.

被処理物を載置する電極の周囲に配置した制御電極はそ
の電位が高くなると周囲のプラズマ電位を高くする。し
たがって、回転する磁場の北方向に対する西側に位置す
る制御電極の電位が常に東側に位置する制御電極の電位
よりも高くなるように電位を制御することによって、プ
ラズマ電位を均一にすることができる。
When the potential of the control electrode arranged around the electrode on which the object to be processed is placed is increased, the plasma potential of the surrounding is increased. Therefore, the plasma potential can be made uniform by controlling the potential so that the potential of the control electrode located on the west side with respect to the north direction of the rotating magnetic field is always higher than the potential of the control electrode located on the east side.

(実施例) 以下では本発明の好適な一実施例を添付図面に基づいて
詳細に説明する。
(Embodiment) A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図はドライエッチング装置10の平面図、第2図は正
面断面図を示す。
FIG. 1 is a plan view of the dry etching apparatus 10, and FIG. 2 is a front sectional view.

図において14は真空チャンバであり、CF4等のエッチン
グガスを導入するガス供給口(図示せず)と、真空チャ
ンバ14内を排気して所要の圧力に設定するガス排気口
(図示せず)を有する。ガス供給口はバルブを介してガ
ス供給源に、ガス排出口はバルブを介して排気ポンプに
接続される。
In the figure, 14 is a vacuum chamber, a gas supply port (not shown) for introducing an etching gas such as CF 4 and a gas exhaust port (not shown) for exhausting the inside of the vacuum chamber 14 to set a required pressure. Have. The gas supply port is connected to a gas supply source via a valve, and the gas discharge port is connected to an exhaust pump via a valve.

16は真空チャンバ14内に配設された、ウェハ(被処理物
17)載置用の非接地電極であり、これにはマッチング回
路18を介して高周波電源20が接続され、高周波電力が印
加される。22は真空チャンバ上壁面に配設した接地電極
であり、接地されている。
Reference numeral 16 denotes a wafer (object to be processed) arranged in the vacuum chamber 14.
17) A non-grounded electrode for placement, to which a high frequency power source 20 is connected via a matching circuit 18 and high frequency power is applied. Reference numeral 22 is a ground electrode provided on the upper wall surface of the vacuum chamber and is grounded.

1.1′、2.2′は真空チャンバ14を囲んで配設された2対
の電磁コイルであり、位相が90゜ずれた電流が印加さ
れ、非接地電極16、接地電極22間の電界と直交する方向
に生起される合成磁場を回転させる。この回転磁界の回
転数は低く、2秒間に1回転程度とする。
1.1 'and 2.2' are two pairs of electromagnetic coils arranged so as to surround the vacuum chamber 14, in which a current with a phase difference of 90 ° is applied and a direction orthogonal to the electric field between the non-grounded electrode 16 and the grounded electrode 22. Rotate the synthetic magnetic field generated in the. The rotation speed of this rotating magnetic field is low, and it is set to about 1 rotation in 2 seconds.

このように回転磁場を作用させることで、高密度のプラ
ズマをウェハ17上で回転させることができるが、前記し
たように、磁場方向を北とすると、プラズマ電位は西側
よりも東側の方が高く、磁場を回転させたとしてもプラ
ズマの濃淡が生じたままプラズマがウェハ17上を回転す
るので、前記した問題点が生じる。
By applying a rotating magnetic field in this way, a high-density plasma can be rotated on the wafer 17, but as described above, when the magnetic field direction is north, the plasma potential is higher in the east side than in the west side. However, even if the magnetic field is rotated, the plasma rotates on the wafer 17 while the density of the plasma is generated, so that the above-mentioned problems occur.

本実施例では、非接地電極16の周辺に4つの制御電極
A、C、B、Dを、その上面が非接地電極16に載置され
るウェハ17の上面と略同一になるように配置した。23、
24は絶縁物である。
In this embodiment, four control electrodes A, C, B and D are arranged around the non-grounded electrode 16 so that their upper surfaces are substantially the same as the upper surface of the wafer 17 placed on the non-grounded electrode 16. . twenty three,
24 is an insulator.

上記4つの制御電極A、C、B、Dにはローパスフィル
ターを介して各々直流電源が接続され、位相が90゜ずれ
た脈動電圧が印加される。この脈動電圧は上記磁場の回
転と同期して変位するよう設定されている。すなわち磁
場が2秒間に1回回転するとすれば、脈動電圧の周波数
は1/2Hzに設定する。例えば制御電極A、B、C、Dに
印加する脈動電圧は正弦波の脈動電圧とすることができ
る。また磁場の回転に対して磁界の方向から見た磁場の
方向を北側とすれば、西側に位置する制御電極の電位が
高く、東側に位置する制御電極の電位が低くなるよう同
期してサイクルする。
A DC power source is connected to each of the four control electrodes A, C, B, and D via a low-pass filter, and a pulsating voltage with a phase difference of 90 ° is applied. This pulsating voltage is set to be displaced in synchronization with the rotation of the magnetic field. That is, if the magnetic field rotates once every 2 seconds, the frequency of the pulsating voltage is set to 1/2 Hz. For example, the pulsating voltage applied to the control electrodes A, B, C, and D can be a sinusoidal pulsating voltage. If the direction of the magnetic field as seen from the direction of the magnetic field with respect to the rotation of the magnetic field is the north side, the potential of the control electrode located on the west side is high and the potential of the control electrode located on the east side is low, and the cycles are synchronized. .

以上のように構成されている。It is configured as described above.

続いて本装置の作用について説明する。Next, the operation of this device will be described.

まずガス供給口から真空チャンバ14内にエッチングガ
ス、例えばCF4ガスを導入し、真空チャンバ14内を10-2
〔Torr〕に保ち、非接地電極16に高周波電力(1kW,13.5
MHz)を印加すると、非接地電極16と接地電極22との間
に放電が生じ、プラズマが生起する。一方、2対の電磁
コイル1.1′、2.2′に交流を流して合成磁場を回転させ
る。この合成磁場は電界と直交する方向に生起するの
で、電子がマグネトロン旋回運動をし、イオン化効率を
高める。
First, an etching gas such as CF 4 gas is introduced into the vacuum chamber 14 from the gas supply port, and the inside of the vacuum chamber 14 is changed to 10 -2.
[Torr] is maintained and high frequency power (1kW, 13.5
(MHz) is applied, a discharge is generated between the non-grounded electrode 16 and the grounded electrode 22, and plasma is generated. On the other hand, an alternating current is applied to the two pairs of electromagnetic coils 1.1 'and 2.2' to rotate the composite magnetic field. This synthetic magnetic field is generated in the direction orthogonal to the electric field, so that the electrons make a magnetron swirling motion and enhance the ionization efficiency.

また一方前記したように4つの制御電極A、B、C、D
に脈動電流が印加される。
On the other hand, as described above, the four control electrodes A, B, C, D
A pulsating current is applied to.

例えば電磁コイル1.1′、2.2′のドライバー設定値が
(1、0)の場合、磁界はAを示しており、同時に磁界
の方向に対して西側の制御電極Bの電位は最も高くな
り、東側の制御電極Dは最も電位が低い。また電磁コイ
ル1.1′、2.2′のドライバー設定値が(.707、.707)の
ときは磁界は上記位置から時計方向に45゜回転した方向
を向き、このとき制御電極A、制御電極Bの電位が高
く、制御電極C、制御電極Dの電位が低くなることが理
解される。すなわち、磁界の回転に同期して、4つの制
御電極A、B、C、Dの電位は、磁界の方向(北)に対
して常に西側の制御電極の方が東側の制御電極よりも高
くなるように変位する。
For example, when the driver setting values of the electromagnetic coils 1.1 'and 2.2' are (1, 0), the magnetic field indicates A, and at the same time, the potential of the control electrode B on the west side is the highest with respect to the direction of the magnetic field, and The control electrode D has the lowest potential. Further, when the driver setting values of the electromagnetic coils 1.1 'and 2.2' are (.707, .707), the magnetic field is directed in a direction rotated by 45 ° clockwise from the above position, and at this time, the potentials of the control electrodes A and B are changed. Is high and the potentials of the control electrode C and the control electrode D are low. That is, in synchronization with the rotation of the magnetic field, the potentials of the four control electrodes A, B, C, and D are always higher in the west side control electrode than in the east side control electrode with respect to the magnetic field direction (north). To be displaced.

制御電極A、B、C、Dに陽電位を加えると制御電極近
傍のプラズマ電位はその電極の電位に比例して上昇し、
逆に負電位の場合ではイオン電流が増大し、プラズマ電
位は低下する。これは直流電極が電子の供給源または過
剰電子を除去する働きをするからである。すなわちプラ
ズマ内での電子のE×B方向の運動を抑制し、あるいは
制御できる。
When a positive potential is applied to the control electrodes A, B, C and D, the plasma potential in the vicinity of the control electrode rises in proportion to the potential of that electrode,
On the contrary, when the potential is negative, the ion current increases and the plasma potential decreases. This is because the DC electrode acts as a source of electrons or removes excess electrons. That is, the movement of electrons in the E × B direction in plasma can be suppressed or controlled.

したがって、上記のように、磁界の方向(北)に対して
常に西側の制御電極の方が東側の制御電極よりも高くな
るように4つの制御電極A、B、C、Dの電位が変位す
るようサイクルさせることによって、回転磁場のみによ
る前記のプラズマ電位の東側寄りへの偏りをなくすこと
ができ、これによりプラズマ電位の分布が均一になり、
ウェハ内のエッチング速度がより均一になり、またウェ
ハ表面の耐圧が向上する。
Therefore, as described above, the potentials of the four control electrodes A, B, C, and D are displaced so that the control electrode on the west side is always higher than the control electrode on the east side with respect to the direction of the magnetic field (north). By doing so, it is possible to eliminate the bias of the plasma potential toward the east side due to only the rotating magnetic field, thereby making the distribution of the plasma potential uniform,
The etching rate within the wafer becomes more uniform, and the breakdown voltage on the wafer surface improves.

プラズマ電位の調整は4つの制御電極A、B、C、Dの
電位を調整することで容易に行える。最適な電位調整の
結果、ウェハの中心から4インチの個所で、南北間、お
よび東西間のプラズマ電位は±10V以内となり大幅に改
善された。また同時にウェハ面内のエッチング速度の均
一性は、従来ではエッジより10mmの部位内では±10%も
のバラツキがあったものが、本実施例ではエッジより5m
mの部位を除いて±3.5%となり、許容範囲内にすること
ができた。
The plasma potential can be easily adjusted by adjusting the potentials of the four control electrodes A, B, C, and D. As a result of the optimum potential adjustment, the plasma potential between north and south and east and west was significantly improved to within ± 10 V at a position 4 inches from the center of the wafer. Further, at the same time, the uniformity of the etching rate in the wafer surface was ± 10% in the region of 10 mm from the edge in the past, but it is 5 m from the edge in this embodiment.
It was ± 3.5% excluding the part of m, which was within the allowable range.

上記実施例では4つの制御電極A、B、C、Dを配置し
たが、例えば電極数を8極に増やすと、プラズマ電位の
制御が一層容易に行え、均一化を図ることができる。
Although the four control electrodes A, B, C and D are arranged in the above-mentioned embodiment, for example, if the number of electrodes is increased to eight, the plasma potential can be controlled more easily and can be made uniform.

また上記実施例では高周波電源を用いたが直流電源でも
よく、直流電源の方が装置の構成を簡易なものにするこ
とができる。
Further, although the high frequency power supply is used in the above embodiment, a direct current power supply may be used, and the direct current power supply can simplify the structure of the apparatus.

さらに上記実施例ではドライエッチング装置を例として
説明したが、プラズマCVD装置としても利用できること
はもちろんである。
Further, although the dry etching apparatus has been described as an example in the above embodiment, it is needless to say that it can also be used as a plasma CVD apparatus.

以上、本発明につき好適な実施例を挙げて種々説明した
が、本発明はこの実施例に限定されるものではなく、発
明の精神を逸脱しない範囲内で多くの改変を施し得るの
はもちろんのことである。
Although the present invention has been variously described with reference to the preferred embodiments, the present invention is not limited to these embodiments, and many modifications can be made without departing from the spirit of the invention. That is.

(発明の効果) 以上のように本発明によれば、プラズマ内での電子の運
動を制御でき、プラズマ電位の分布を均一にできるか
ら、ドライエッチング装置として用いて、被処理物のエ
ッチング速度をより均一に、また被処理物表面の耐圧を
向上させることができ、さらにプラズマCVD装置として
用いて被処理物表面に均一な厚さの皮膜を形成すること
ができる。
(Effect of the invention) As described above, according to the present invention, the movement of electrons in plasma can be controlled and the distribution of plasma potential can be made uniform. It is possible to more uniformly improve the pressure resistance of the surface of the object to be processed, and it is possible to form a film having a uniform thickness on the surface of the object to be processed by using the plasma CVD apparatus.

【図面の簡単な説明】[Brief description of drawings]

第1図はドライエッチング装置の平面説明図、第2図は
その正面断面図を示す。 10……ドライエッチング装置、14……真空チャンバ、16
……非接地電極、17……ウェハ、20……高周波電源、22
……接地電極、1.1′、2.2′……電磁コイル、A、B、
C、D……制御電極。
FIG. 1 is a plan view of the dry etching apparatus, and FIG. 2 is a front sectional view thereof. 10: Dry etching device, 14: Vacuum chamber, 16
...... Ungrounded electrode, 17 ・ ・ ・ Wafer, 20 …… High frequency power supply, 22
...... Ground electrode, 1.1 ', 2.2' ...... Electromagnetic coil, A, B,
C, D ... Control electrodes.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電極を内蔵する真空チャンバと、真空チャ
ンバ内に所定のガスを供給するガス供給手段と、真空チ
ャンバ内のガスを排出する排出手段と、真空チャンバ周
囲に配設され、電界の方向と垂直な面内で回転する回転
磁場を生起させる電磁コイルを具備する回転磁界を用い
た放電反応装置において、 被処理物が載置される前記電極の周囲に複数配置され、
電界の方向から見た際の前記回転する磁場の北方向に対
して東側に位置するものよりも西側に位置するものの電
位が常に高くなるように回転磁場の回転と同期して電位
が制御される制御電極を設けたことを特徴とする回転磁
界を用いた放電反応装置。
1. A vacuum chamber containing an electrode, a gas supply means for supplying a predetermined gas into the vacuum chamber, an exhaust means for exhausting the gas in the vacuum chamber, and a vacuum chamber provided around the vacuum chamber for generating an electric field. In a discharge reaction device using a rotating magnetic field, which comprises an electromagnetic coil for generating a rotating magnetic field rotating in a plane perpendicular to the direction, a plurality of objects are placed around the electrode on which the object to be treated is placed,
The potential is controlled in synchronization with the rotation of the rotating magnetic field so that the potential of the west side of the rotating magnetic field is higher than the east side of the rotating magnetic field when viewed from the direction of the electric field. A discharge reaction device using a rotating magnetic field, characterized in that a control electrode is provided.
JP2018450A 1990-01-29 1990-01-29 Discharge reactor using rotating magnetic field Expired - Fee Related JPH0727894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018450A JPH0727894B2 (en) 1990-01-29 1990-01-29 Discharge reactor using rotating magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018450A JPH0727894B2 (en) 1990-01-29 1990-01-29 Discharge reactor using rotating magnetic field

Publications (2)

Publication Number Publication Date
JPH03222415A JPH03222415A (en) 1991-10-01
JPH0727894B2 true JPH0727894B2 (en) 1995-03-29

Family

ID=11971964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018450A Expired - Fee Related JPH0727894B2 (en) 1990-01-29 1990-01-29 Discharge reactor using rotating magnetic field

Country Status (1)

Country Link
JP (1) JPH0727894B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574100B1 (en) * 1992-04-16 1999-05-12 Mitsubishi Jukogyo Kabushiki Kaisha Plasma CVD method and apparatus therefor
TW249313B (en) * 1993-03-06 1995-06-11 Tokyo Electron Co
JP4676074B2 (en) * 2001-02-15 2011-04-27 東京エレクトロン株式会社 Focus ring and plasma processing apparatus
JP2007320352A (en) * 2006-05-30 2007-12-13 Toyota Motor Corp On-vehicle device control system

Also Published As

Publication number Publication date
JPH03222415A (en) 1991-10-01

Similar Documents

Publication Publication Date Title
JP2770753B2 (en) Plasma processing apparatus and plasma processing method
JP3987131B2 (en) Induction enhanced reactive ion etching
JP3381916B2 (en) Low frequency induction type high frequency plasma reactor
JP4896164B2 (en) Plasma processing equipment
JP2008147659A (en) Method and system for controlling uniformity in ballistic electron beam accelerating plasma processing system
JPH09120956A (en) Capacitance coupled type duplex frequency plasma reactor for mass processing
KR970005035B1 (en) Method and apparatus for generating highly dense uniform plasma by use of a high frequency rotating electric field
JPH07288195A (en) Plasma treatment apparatus
US20040037971A1 (en) Plasma processing apparatus and processing method
JPH10270430A (en) Plasma treating device
WO2022098440A1 (en) Apparatus and system including high angle extraction optics
JPH0613196A (en) Plasma generating method and generating device
JP4283360B2 (en) Plasma processing equipment
JPH0727894B2 (en) Discharge reactor using rotating magnetic field
KR100391063B1 (en) Device and Method for Generating Capacitively Coupled Plasma Enhanced Inductively Coupled Plasma
US5869402A (en) Plasma generating and processing method and apparatus thereof
JPH04324631A (en) Surface treatment equipment
JPH0774115A (en) Plasma treatment system
JP3113344B2 (en) Dual frequency excitation plasma device using rotating magnetic field
JP2000164578A (en) Plasma processing device and method
JP3037848B2 (en) Plasma generating apparatus and plasma generating method
CN115206766A (en) Plasma generating device, semiconductor processing equipment and wafer processing method
JPH08195379A (en) Plasma processing method and device
JPH08203869A (en) Method and system for plasma processing
JPH0645095A (en) Method for generating plasma and device therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees