JP2012193446A - Steel plate for high-ductile high-strength welded steel pipe, steel pipe, and method for manufacturing the same - Google Patents
Steel plate for high-ductile high-strength welded steel pipe, steel pipe, and method for manufacturing the same Download PDFInfo
- Publication number
- JP2012193446A JP2012193446A JP2012037063A JP2012037063A JP2012193446A JP 2012193446 A JP2012193446 A JP 2012193446A JP 2012037063 A JP2012037063 A JP 2012037063A JP 2012037063 A JP2012037063 A JP 2012037063A JP 2012193446 A JP2012193446 A JP 2012193446A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- strength
- steel pipe
- tensile strength
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、引張強度1150MPaを超える超高強度ラインパイプ用の鋼板および鋼管において、特に一様伸びが大きい高延性溶接鋼管用鋼板および鋼管ならびにその製造方法
に関するものである。なお、本ラインパイプは天然ガスや原油の輸送用として用いられる。
The present invention relates to a steel sheet and a steel pipe for a high ductility welded steel pipe having a particularly high uniform elongation in a steel sheet and a steel pipe for an ultra-high strength line pipe exceeding a tensile strength of 1150 MPa, and a method for producing the same. This line pipe is used for transportation of natural gas and crude oil.
近年、天然ガスや原油の輸送用として使用されるラインパイプは、高圧化による輸送効率の向上や薄肉化による現地溶接施工能率の向上のため、年々高強度化している。これまでに、API規格でX100グレードのラインパイプが実用化され、さらに、引張強度900MPaを超えるX120グレードまで開発されているが、さらなる高強度化が望まれている。 In recent years, line pipes used for transportation of natural gas and crude oil have become stronger year by year in order to improve transport efficiency by increasing pressure and to improve local welding efficiency by reducing wall thickness. So far, X100 grade line pipes have been put into practical use according to the API standard, and further up to X120 grade, which has a tensile strength exceeding 900 MPa, has been desired to be further strengthened.
このような高強度ラインパイプ用溶接鋼管およびその素材となる高強度厚鋼板の製造方法に関し、例えば特許文献1には、耐震性を考慮し、ミクロ組織をフェライト+ベイナイト、あるいはフェライト+マルテンサイト、またはフェライト+ベイナイト+マルテンサイトとすることで高強度かつ低降伏比を達成し、溶接鋼管の変形性能を向上させる技術が開示されている。また、特許文献2には、引張強度1150MPaを満足する超高強度厚鋼板に関する技術が開示されている。 Regarding the manufacturing method of such a high-strength line pipe welded steel pipe and a high-strength thick steel plate as a raw material thereof, for example, in Patent Document 1, in consideration of earthquake resistance, the microstructure is ferrite + bainite, or ferrite + martensite, Or the technique which achieves high strength and a low yield ratio by making it ferrite + bainite + martensite and improves the deformation performance of a welded steel pipe is disclosed. Patent Document 2 discloses a technique related to an ultra-high strength thick steel plate that satisfies a tensile strength of 1150 MPa.
しかしながら、例えば、X150グレードといった引張強度が1150MPaを超える超高強度鋼管を実用化しようとした場合、特許文献1に記載の、軟質なフェライト組織と硬質なベイナイト組織および/またはマルテンサイト組織の組合せで高変形能を付与できるのは引張強度がせいぜい1000MPa程度までである。一方、特許文献2では、1150MPa以上の高強度化を得るために、ほぼ100%マルテンサイト組織を得ることを必要としており、強度を確保するため0.15%以上のC添加を必要とする。このような高C設計の場合、低温のみならず高温での溶接割れ感受性が高くなり、溶接鋼管製造過程で割れ防止の付加工程が必要となるとともに、単相組織であるため延性に乏しく、パイプラインの安全性を確保することが難しい。 However, for example, when trying to put into practical use an ultra-high strength steel pipe having a tensile strength exceeding 1150 MPa such as X150 grade, the combination of a soft ferrite structure and a hard bainite structure and / or martensite structure described in Patent Document 1 High deformability can be imparted with a tensile strength of up to about 1000 MPa. On the other hand, in Patent Document 2, it is necessary to obtain a substantially 100% martensite structure in order to obtain a high strength of 1150 MPa or more, and 0.15% or more of C is required to ensure the strength. In such a high C design, not only low temperature but also high temperature weld cracking susceptibility is required, and an additional process for preventing cracking is required in the welded steel pipe manufacturing process, and the ductility is poor due to the single phase structure. It is difficult to ensure the safety of the line.
本発明は、溶接製造性を考慮し高C添加をすることなく、かつ引張強度1150MPa超の高強度化を行っても十分な延性を有するX150グレード相当の超高強度溶接鋼管用鋼板および鋼管ならびにその製造方法を提供することを目的とする。 The present invention relates to a steel sheet and a steel pipe for an ultra-high strength welded steel pipe corresponding to X150 grade, which has sufficient ductility even if the strength is increased to a tensile strength exceeding 1150 MPa without considering the addition of high C in consideration of weldability. It aims at providing the manufacturing method.
発明者らは、まずC量を多くとも0.11%程度で、引張強度1150MPaへの高強度化を図るべく、種々の鋼の強化手法について検討を行い、析出強化を積極的に行うことで、低Cでも強度を確保できることを知見した。さらに、鋼のミクロ組織をベイナイトとし、多量なCuを過飽和固溶させた後、ベイナイト中に微細かつ多量に分散析出させることで、転位運動を阻害して加工硬化率を上昇させ、析出した金属Cu自身が延性を持つため、一様伸びが著しく向上することを知見した。 The inventors first studied various steel strengthening methods in order to increase the C content to about 0.11% and increase the tensile strength to 1150 MPa, and actively performing precipitation strengthening. It was found that the strength can be secured even at low C. Furthermore, after the steel microstructure is bainite, a large amount of Cu is supersaturated and dissolved, and then dispersed and precipitated in bainite finely and in a large amount, thereby inhibiting dislocation motion and increasing the work hardening rate. It has been found that uniform elongation is remarkably improved because Cu itself has ductility.
さらに、最適なCu析出形態を明らかにすべく、発明者らは、鋼の基本化学組成を質量%で0.11%C、0.20%Si、1.45%Mn、0.02%Al、0.05%Nb、0.020%Tiとして、さらにCuを1.5%から5.0%まで種々変化させた小型鋼塊を準備し、熱間圧延と加速冷却を施して、そのミクロ組織をベイナイトとした15mm厚鋼板を比較材とし、一方、同じく熱間圧延と加速冷却を施した後、加速冷却に引き続き、ベイナイトの焼戻し軟化を最小限とする急速加熱焼戻しを実施した15mm厚鋼板を準備した。なお、急速加熱焼戻しでは加熱温度を種々変化させてベイナイト中へのCu析出状態を変化させた。 Furthermore, in order to clarify the optimum Cu precipitation form, the inventors set the basic chemical composition of steel to 0.11% C, 0.20% Si, 1.45% Mn, 0.02% Al in mass%. , 0.05% Nb, 0.020% Ti, and small steel ingots with various changes in Cu from 1.5% to 5.0% were prepared, subjected to hot rolling and accelerated cooling. 15mm thick steel plate with a bainite structure as a comparative material, on the other hand, after hot rolling and accelerated cooling, followed by accelerated cooling followed by rapid heating and tempering to minimize temper softening of bainite Prepared. In rapid heating and tempering, the heating temperature was variously changed to change the Cu precipitation state in bainite.
これらの鋼板よりAPI−5Lに準拠した全厚引張試験片を圧延長手方向に平行に採取し、引張試験を行い、得られた引張強度および一様伸びについて、Cu析出のための急速加熱処理を行った場合と、加速冷却ままの場合とを比較して、Cu析出による引張強度、一様伸びの上昇量を算出した。 From these steel sheets, a full thickness tensile test piece based on API-5L is taken in parallel with the rolling longitudinal direction, a tensile test is performed, and the obtained tensile strength and uniform elongation are subjected to rapid heat treatment for Cu precipitation. The amount of increase in tensile strength and uniform elongation due to Cu precipitation was calculated by comparing the case of performing the above and the case of accelerated cooling.
次に、Cu析出のための急速加熱処理を行った鋼板の圧延長手方向断面より板厚方向に平行に、0.3mm厚の透過電子顕微鏡用の薄膜試料を各3つずつ採取し、透過電子顕微鏡にて100000倍の倍率でベイナイトラス中のCu析出物の観察を行った。薄膜試料ごとに3視野、計9視野について撮影したCu析出物の写真を画像解析し、単位観察面積(1μm2)当りの析出物個数と、各析出物径の平均値を画像解析装置にて定量化した。そして、鋼板のベイナイト中のCu析出物数および析出物サイズにより、上述の引張強度上昇量および一様伸びの上昇量との関係を導き出した。 Next, three thin film samples for a transmission electron microscope each having a thickness of 0.3 mm were taken in parallel with the thickness direction from the rolling longitudinal cross section of the steel plate subjected to the rapid heat treatment for Cu precipitation, and transmitted. The Cu precipitates in the bainite lath were observed with an electron microscope at a magnification of 100,000. Photographs of Cu deposits taken for 3 fields of view for each thin film sample, a total of 9 fields, are image-analyzed, and the number of precipitates per unit observation area (1 μm 2 ) and the average value of the diameters of each precipitate are measured with an image analyzer. Quantified. And the relationship with the above-mentioned amount of tensile strength increase and the amount of uniform elongation was derived from the number of Cu precipitates and the precipitate size in the bainite of the steel sheet.
その結果、図1に示すようにCuを析出させた場合の引張強度の上昇量は、単位観察面積当りの析出粒子数(個/μm2)が1.0×103(図中では1.E+03と表記、図2も同じ)以上の場合、特に粒子径が40nm以下のCu析出粒子の数が1.0×103以上の場合、100MPa以上の強度上昇が得られることを見出した。このとき、図2に示すように、一様伸びについても増加が認められ、特にCu析出粒子の平均粒径が大きいほど一様伸びの増加が大きいことがわかった。本発明はこれらの知見に、さらに検討を加えたもので、その要旨は次のとおりである。 As a result, as shown in FIG. 1, the amount of increase in tensile strength when Cu was precipitated was 1.0 × 10 3 (number of particles / μm 2 ) per unit observation area (1. In the above case, it was found that an increase in strength of 100 MPa or more can be obtained particularly when the number of Cu precipitated particles having a particle diameter of 40 nm or less is 1.0 × 10 3 or more. At this time, as shown in FIG. 2, an increase in uniform elongation was also observed, and it was found that the increase in uniform elongation was larger as the average particle size of the Cu precipitated particles was larger. The present invention is obtained by further examining these findings, and the gist thereof is as follows.
第1の発明は、鋼組成が、質量%で、C:0.09〜0.11%、Si:0.05〜0.20%、Mn:1.0〜1.5%、Al:0.01〜0.08%、Cu:2.0〜4.0%、Nb:0.05〜0.07%、Ti:0.015〜0.025%を含有し、さらに、Cr:0.05〜0.6%、Mo:0.05〜0.6%、V:0.01〜0.1%、B:0.0005〜0.003%の中から選ばれる一種以上を含有し、残部Fe及び不可避的不純物からなり、金属組織がベイナイトであり、さらに圧延方向の引張強度(MPa)と一様伸び(%)との積が8500以上であることを特徴とする高延性超高強度溶接鋼管用鋼板である。 In the first invention, the steel composition is in mass%, C: 0.09 to 0.11%, Si: 0.05 to 0.20%, Mn: 1.0 to 1.5%, Al: 0 0.01 to 0.08%, Cu: 2.0 to 4.0%, Nb: 0.05 to 0.07%, Ti: 0.015 to 0.025%, and Cr: 0.005%. Containing one or more selected from 05 to 0.6%, Mo: 0.05 to 0.6%, V: 0.01 to 0.1%, B: 0.0005 to 0.003%, High ductility ultra-high strength, characterized by comprising the balance Fe and inevitable impurities, the metal structure being bainite, and the product of tensile strength (MPa) and uniform elongation (%) in the rolling direction being 8500 or more It is a steel plate for welded steel pipes.
第2の発明は、金属組織のベイナイト中に析出するCu析出物の平均粒子径が40nm以下、かつその鋼板断面単位面積当りのCu析出物粒子数が1.0×103個/μm2以上であり、さらに圧延方向の引張強度が1150MPa超えであることを特徴とする第1の発明に記載の高延性超高強度溶接鋼管用鋼板である。 In the second invention, the average particle size of Cu precipitates precipitated in the bainite of the metal structure is 40 nm or less, and the number of Cu precipitate particles per unit area of the steel plate cross section is 1.0 × 10 3 particles / μm 2 or more. Further, the steel sheet for high ductility ultra-high strength welded steel pipe according to the first invention, characterized in that the tensile strength in the rolling direction exceeds 1150 MPa.
第3の発明は、さらに、質量%で、Ca:0.0005〜0.01%、REM:0.0005〜0.02%、Zr:0.0005〜0.03%、Mg:0.0005〜0.02%の中から選ばれる一種以上を含有することを特徴とする第1または第2の発明に記載の高延性超高強度溶接鋼管用鋼板である。 The third invention further includes, in mass%, Ca: 0.0005 to 0.01%, REM: 0.0005 to 0.02%, Zr: 0.0005 to 0.03%, Mg: 0.0005. It is a steel plate for high ductility ultra high strength welded steel pipes according to the first or second invention, characterized by containing one or more selected from -0.02%.
第4の発明は、さらに、質量%で、Ni:1.0〜4.0%を含有することを特徴とする第1乃至第3の発明の何れかに記載の高延性超高強度溶接鋼管用鋼板である。 The fourth invention further comprises Ni: 1.0 to 4.0% by mass%, and the high ductility ultra high strength welded steel pipe according to any one of the first to third inventions Steel plate.
第5の発明は、第1乃至第4の発明の何れかに記載の鋼板を用いて製造され、管長手方向引張強度(MPa)と一様伸び(%)との積が8500以上であることを特徴とする高延性超高強度溶接鋼管である。 5th invention is manufactured using the steel plate in any one of 1st thru | or 4th invention, The product of pipe longitudinal direction tensile strength (MPa) and uniform elongation (%) is 8500 or more. It is a high ductility ultra high strength welded steel pipe characterized by
第6の発明は、管長手方向引張強度が1150MPa超えであることを特徴とする第5の発明に記載の高延性超高強度溶接鋼管である。 A sixth aspect of the present invention is the high ductility ultra high strength welded steel pipe according to the fifth aspect of the present invention, wherein the tensile strength in the longitudinal direction of the pipe exceeds 1150 MPa.
第7の発明は、第1乃至第4の発明の何れかに記載の鋼組成を有する鋼片を、1100〜1200℃に加熱した後に熱間圧延を開始し、950℃以下での累積圧下率を50%以上とし、Ar3変態点以上で圧延を終了し、続いて、冷却速度40〜80℃/sec、冷却停止温度400〜500℃とする加速冷却を行い、さらに、冷却停止温度〜(冷却停止温度−50℃)の温度域から、5℃/sec以上の昇温速度で、550〜650℃に急速再加熱した後に、空冷することを特徴とする高延性超高強度溶接鋼管用鋼板の製造方法である。 7th invention starts hot rolling, after heating the steel slab which has the steel composition in any one of 1st thru | or 4th invention to 1100-1200 degreeC, The cumulative reduction rate in 950 degrees C or less Is 50% or more, the rolling is finished at the Ar 3 transformation point or higher, and then accelerated cooling is performed at a cooling rate of 40 to 80 ° C./sec and a cooling stop temperature of 400 to 500 ° C. The steel sheet for high ductility ultra-high strength welded steel pipe, which is rapidly cooled to 550 to 650 ° C. at a temperature rising rate of 5 ° C./sec or more from the temperature range of (cooling stop temperature −50 ° C.) and then air-cooled. It is a manufacturing method.
第8の発明は、第1乃至第3の発明の何れかに記載の鋼板を冷間で筒状に成形し、対向する端面同士を突合せ溶接した後に、拡管もしくは縮径することを特徴とする高延性超高強度溶接鋼管の製造方法である。 An eighth invention is characterized in that the steel plate according to any one of the first to third inventions is cold-formed into a cylindrical shape, the opposite end faces are butt welded, and then expanded or reduced in diameter. It is a manufacturing method of a high ductility super high strength welded steel pipe.
本発明により、溶接性を考慮し高C添加をすることなく、かつ引張強度1150MPa超の高強度化を行っても十分な延性を有するX150グレード相当の超高強度溶接鋼管用鋼板および鋼管ならびにその製造方法を提供することが可能となった。 According to the present invention, a steel plate and a steel pipe for an ultra-high-strength welded steel pipe corresponding to the X150 grade having sufficient ductility even if the tensile strength exceeds 1150 MPa without increasing the addition of high C in consideration of weldability, and its It has become possible to provide a manufacturing method.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
1.成分組成について
以下に、本発明の成分組成について説明する。なお、成分組成における%は、全て質量%とする。
1. About component composition Below, the component composition of this invention is demonstrated. In addition,% in a component composition shall be mass% altogether.
C:0.09〜0.11%
Cはベイナイト組織中でセメンタイト、およびNb、Ti、V、Moとの合金炭化物生成に寄与し、ベイナイトの強度上昇をもたらす。含有量が0.09%未満では強度上昇効果が不十分なので、引張強度が1150MPaを超える高強度を得るために0.09%以上を含有するものとする。一方、0.11%を超えて含有すると、パイプの溶接金属へCが希釈することにより溶接金属の高温割れが著しくなることから、C量は、0.09〜0.11%の範囲とする。
C: 0.09 to 0.11%
C contributes to the formation of cementite and alloy carbides with Nb, Ti, V, and Mo in the bainite structure, and increases the strength of bainite. If the content is less than 0.09%, the effect of increasing the strength is insufficient, so 0.09% or more is to be contained in order to obtain a high strength with a tensile strength exceeding 1150 MPa. On the other hand, if the content exceeds 0.11%, the hot cracking of the weld metal becomes significant due to dilution of C into the weld metal of the pipe, so the C content is in the range of 0.09 to 0.11%. .
Si:0.05〜0.20%
Siは0.05%以上含有することで変態組織によらず固溶強化するため、母材、HAZの強度上昇に有効である。しかし、0.20%を超えて含有すると靱性が著しく低下するためSi量は、0.05〜0.20%の範囲とする。
Si: 0.05-0.20%
Si containing 0.05% or more strengthens the solid solution regardless of the transformation structure, and is effective in increasing the strength of the base material and HAZ. However, if the content exceeds 0.20%, the toughness is remarkably reduced, so the Si content is in the range of 0.05 to 0.20%.
Mn:1.0〜1.5%
Mnは焼入性向上元素として作用する。フェライト変態を抑制して母材の金属組織をベイナイトを主体とする組織とするためには、1.0%以上を含有することが必要である。一方、1.5%を超えて含有しても効果が飽和するため、Mn量は、1.0〜1.5%の範囲とする。
Mn: 1.0 to 1.5%
Mn acts as a hardenability improving element. In order to suppress the ferrite transformation and make the metal structure of the base material mainly composed of bainite, it is necessary to contain 1.0% or more. On the other hand, since the effect is saturated even if the content exceeds 1.5%, the amount of Mn is set to a range of 1.0 to 1.5%.
Al:0.01〜0.08%
Alは脱酸元素として作用する。0.01%以上の含有で十分な脱酸効果が得られるが、0.08%を超えて含有すると鋼中の清浄度が低下し、靱性劣化の原因となるため、Al量は、0.01〜0.08%の範囲とする。
Al: 0.01 to 0.08%
Al acts as a deoxidizing element. A sufficient deoxidation effect can be obtained when the content is 0.01% or more. However, if the content exceeds 0.08%, the cleanliness in the steel is lowered and the toughness is deteriorated. The range is 01 to 0.08%.
Cu:2.0〜4.0%
Cuはベイナイト中に金属Cuとして多量微細析出することにより、延性を低下させずに析出強化で鋼の強度と延性のバランスを向上させることができる。低炭素ベイナイト組織に析出強化させて引張強度を1150MPa超えとするのに必要な量の析出Cuを得るためには、2.0%以上のCu含有が必要であるが、4.0%を超えて含有すると、スラブ割れ等が顕著となり精整工程での負荷が高くなるため、Cu量は、2.0〜4.0%の範囲とする。好ましくは、2.0〜3.0%の範囲である。
Cu: 2.0 to 4.0%
Cu can be precipitated in a large amount as metal Cu in bainite, thereby improving the balance between strength and ductility by precipitation strengthening without reducing ductility. In order to obtain precipitation Cu of an amount necessary for precipitation strengthening to a low carbon bainite structure to make the tensile strength exceed 1150 MPa, it is necessary to contain 2.0% or more of Cu, but it exceeds 4.0%. If contained, the slab cracking and the like become prominent and the load in the refining process becomes high. Therefore, the Cu amount is set to a range of 2.0 to 4.0%. Preferably, it is 2.0 to 3.0% of range.
Nb:0.05〜0.07%
Nbは、合金炭化物を形成して析出強化作用を発揮し、また、Nbは熱間圧延時のオーステナイト未再結晶領域を拡大する効果も有し、これらの効果を併せて得るために0.05%以上含有することが必要である。一方、0.07%を超えて含有すると、靱性を著しく損ねることからNb量は、0.05〜0.07%の範囲とする。
Nb: 0.05-0.07%
Nb forms alloy carbide to exert precipitation strengthening action, and Nb also has an effect of expanding the austenite non-recrystallized region during hot rolling, and in order to obtain these effects together, 0.05 % Or more must be contained. On the other hand, if the content exceeds 0.07%, the toughness is remarkably impaired, so the Nb content is in the range of 0.05 to 0.07%.
Ti:0.015〜0.025%
Tiは炭化物を形成させて、析出強化を行うために添加する。また、Tiは窒化物も形成してスラブ加熱時のオーステナイト粒成長を抑制し、ベイナイト組織の微細化に寄与する。析出強化のための炭化物形成およびピンニングのための窒化物形成を両立させるには、0.015%以上の含有が必要である。一方、0.025%を超えて含有すると靱性を著しく損ねることからTi量は、0.015〜0.025%の範囲とする。
Ti: 0.015-0.025%
Ti is added to form carbides and strengthen precipitation. Ti also forms nitrides, suppresses austenite grain growth during slab heating, and contributes to refinement of the bainite structure. In order to achieve both carbide formation for precipitation strengthening and nitride formation for pinning, a content of 0.015% or more is necessary. On the other hand, if the content exceeds 0.025%, the toughness is remarkably impaired, so the Ti content is in the range of 0.015 to 0.025%.
本発明においては、ベイナイト主体組織を得るために、更に、焼入性向上元素である、Cr、Mo、V、Bから選択される一種以上を含有することが必要である。 In the present invention, in order to obtain a bainite-based structure, it is necessary to further contain one or more selected from Cr, Mo, V, and B, which are hardenability improving elements.
Cr:0.05〜0.6%
Crは、焼入性向上元素として作用し、多量のMn添加の代替とすることができる。この効果を得るためには、0.05%以上を含有する必要があるが、0.6%を超えて添加すると溶接熱影響部(以下、HAZとも称する)靱性が著しく劣化するため、Crを含有する場合は、その量を0.05〜0.6%の範囲とする。
Cr: 0.05-0.6%
Cr acts as a hardenability-enhancing element and can replace a large amount of Mn addition. In order to obtain this effect, it is necessary to contain 0.05% or more, but if added over 0.6%, the weld heat affected zone (hereinafter also referred to as HAZ) toughness deteriorates significantly, so Cr When it contains, let the quantity be 0.05 to 0.6% of range.
Mo:0.05〜0.6%
Moもまた焼入性向上元素として作用し、多量のMn添加の代替とすることができる。この効果を得るためには、0.05%以上を含有する必要があるが、高価な元素であり、また0.6%を超えて含有しても強度上昇は飽和するため、Moを含有する場合は、その量を0.05〜0.6%の範囲とする。
Mo: 0.05-0.6%
Mo also acts as a hardenability-enhancing element and can replace a large amount of Mn addition. In order to obtain this effect, it is necessary to contain 0.05% or more, but it is an expensive element, and even if it exceeds 0.6%, the strength increase is saturated, so it contains Mo. In that case, the amount is in the range of 0.05 to 0.6%.
V:0.01〜0.1%
VはNbとの複合添加により、多重溶接熱サイクル時に析出硬化し、HAZ軟化防止に寄与する。この効果は0.01%以上含有することにより発現するが、0.1%を超えて含有すると析出硬化が著しくHAZ靱性を劣化させるため、Vを含有する場合は、その量を0.01〜0.1%の範囲とする。
V: 0.01 to 0.1%
V is precipitation-hardened during multiple welding thermal cycles due to the combined addition with Nb, contributing to the prevention of HAZ softening. This effect is manifested by the inclusion of 0.01% or more, but if it exceeds 0.1%, precipitation hardening remarkably deteriorates the HAZ toughness. The range is 0.1%.
B:0.0005〜0.003%
Bは、オーステナイト粒界に偏析してフェライト変態を抑制することにより、特にHAZの強度低下防止に寄与する。この効果を得るために、0.0005%以上を含有する必要があるが、0.003%を超えて含有してもその効果は飽和するため、Bを含有する場合は、その量を0.0005〜0.003%の範囲とする。
B: 0.0005 to 0.003%
B segregates at austenite grain boundaries and suppresses ferrite transformation, thereby contributing particularly to prevention of HAZ strength reduction. In order to acquire this effect, it is necessary to contain 0.0005% or more, but even if it contains more than 0.003%, the effect is saturated. The range is 0005 to 0.003%.
本発明の基本成分組成は、以上であるが、更に、母材あるいは溶接部靭性の向上を目的とする場合は、Ca、REM、Zr、Mgの一種以上を選択元素として含有することができる。 Although the basic component composition of the present invention is as described above, when the purpose is to improve the toughness of the base metal or the welded portion, one or more of Ca, REM, Zr, and Mg can be contained as a selective element.
Ca:0.0005〜0.01%
Caは鋼中の硫化物の形態制御に有効な元素であり、靱性に有害なMnSの生成を抑制する作用を有する。この効果を得るには0.0005%以上含有することが好ましいが、0.01%を超えて含有すると、CaO−CaSのクラスターを形成し、かえって靱性を劣化させるので、Caを含有する場合は、その量を0.0005〜0.01%の範囲とすることが好ましい。
Ca: 0.0005 to 0.01%
Ca is an element effective for controlling the form of sulfide in steel, and has an action of suppressing the generation of MnS harmful to toughness. In order to acquire this effect, it is preferable to contain 0.0005% or more, but if it contains more than 0.01%, a CaO-CaS cluster is formed and the toughness is deteriorated. The amount is preferably in the range of 0.0005 to 0.01%.
REM:0.0005〜0.02%
REMもまた鋼中の硫化物の形態制御に有効な元素であり、靱性に有害なMnSの生成を抑制する作用を有する。この効果を得るには0.0005%以上含有することが好ましいが、高価な元素であり、かつ0.02%を超えて含有しても効果が飽和するため、REMを含有する場合は、その量を0.0005〜0.02%の範囲とすることが好ましい。
REM: 0.0005 to 0.02%
REM is also an element effective for controlling the form of sulfide in steel, and has an action of suppressing the generation of MnS harmful to toughness. In order to obtain this effect, it is preferable to contain 0.0005% or more, but since it is an expensive element and the effect is saturated even if it contains more than 0.02%, when REM is contained, The amount is preferably in the range of 0.0005 to 0.02%.
Zr:0.0005〜0.03%
Zrは鋼中で炭窒化物を形成し、とくに溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上を含有することが好ましいが、0.03%を超えて含有すると、鋼中の清浄度が著しく低下し、靱性が低下するようになるので、Zrを含有する場合は、その量を0.0005〜0.03%の範囲とすることが好ましい。
Zr: 0.0005 to 0.03%
Zr forms carbonitrides in steel and brings about a pinning effect that suppresses the coarsening of austenite grains, particularly in the weld heat affected zone. In order to obtain a sufficient pinning effect, it is preferable to contain 0.0005% or more, but if it exceeds 0.03%, the cleanliness in the steel is remarkably lowered and the toughness is lowered. Therefore, when it contains Zr, it is preferable to make the quantity into the range of 0.0005 to 0.03%.
Mg:0.0005〜0.02%
Mgは製鋼過程で鋼中に微細な酸化物を生成し、特に、溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上を含有することが好ましいが、0.02%を超えて含有すると、鋼中の清浄度が低下し、靱性が低下するので、Mgを含有する場合は、その量を0.0005〜0.02%の範囲とすることが好ましい。
Mg: 0.0005 to 0.02%
Mg produces fine oxides in the steel during the steelmaking process, and in particular, has a pinning effect that suppresses the austenite grain coarsening in the weld heat affected zone. In order to obtain a sufficient pinning effect, it is preferable to contain 0.0005% or more, but if it exceeds 0.02%, the cleanliness in the steel is lowered and the toughness is lowered. When it contains, it is preferable to make the quantity into 0.0005 to 0.02% of range.
本発明では、熱間圧延時のいわゆるCu割れを抑制することを目的として、更にNiを含有することができる。 In the present invention, Ni can further be contained for the purpose of suppressing so-called Cu cracking during hot rolling.
Ni:1.0〜4.0%
Cu含有鋼を熱間圧延する場合、スラブ加熱温度がCuの融点を超えると液相が生成し、これを起点とするCu割れが発生する、これがいわゆるCu割れである。このCu割れを抑制するためには、Cu含有量の半分以上の量のNiを含有することが有効であるが、Cu量を超えて含有しても効果は飽和するため、Niを含有する場合は、その量を1.0〜4.0%の範囲とすることが好ましい。さらに、Ni含有量はCu含有量の1/2以上でかつ、Cu含有量以下であることが、より好ましい。
Ni: 1.0-4.0%
When hot-rolling Cu-containing steel, when the slab heating temperature exceeds the melting point of Cu, a liquid phase is generated, and Cu cracks starting from this are generated, which are so-called Cu cracks. In order to suppress this Cu cracking, it is effective to contain Ni in an amount more than half the Cu content. Is preferably in the range of 1.0 to 4.0%. Furthermore, the Ni content is more preferably ½ or more of the Cu content and less than or equal to the Cu content.
なお、上記した成分以外の残部は、Feおよび不可避的不純物からなる。 The balance other than the above components is composed of Fe and inevitable impurities.
2.金属組織について
鋼板あるいは鋼管母材部の金属組織(ミクロ組織)はベイナイトとする。ミクロ組織が軟質なフェライト単相組織、あるいは、フェライトとベイナイトとの複相組織やフェライトとマルテンサイトとの複相組織の場合、目標とする1150MPaを超える引張強度を達成するのは困難である。一方、ミクロ組織がマルテンサイト主体の場合、強度は十分確保できるものの、延性が著しく低下する。このため、高強度と高延性を両立させるためにはミクロ組織をベイナイトにする必要がある。ベイナイト以外のミクロ組織の面積分率は小さいほどよい。
2. About metal structure The metal structure (micro structure) of a steel plate or a steel pipe base material is bainite. In the case of a ferrite single-phase structure having a soft microstructure, a double-phase structure of ferrite and bainite, or a double-phase structure of ferrite and martensite, it is difficult to achieve a target tensile strength exceeding 1150 MPa. On the other hand, when the microstructure is mainly martensite, the strength can be sufficiently secured, but the ductility is remarkably lowered. For this reason, in order to achieve both high strength and high ductility, the microstructure needs to be bainite. The smaller the area fraction of the microstructure other than bainite, the better.
しかし、ベイナイト以外のミクロ組織の面積分率が小さい場合には、その影響が小さいため、トータルの面積分率で5%以下の他の金属組織、すなわち、フェライト、パーライト、セメンタイト、マルテンサイト、島状マルテンサイト(MAとも言う)などを1種以上を含有してもよい。なお、ベイナイト以外のミクロ組織として、残留オーステナイトが存在する場合、加工誘起変態に伴う伸び向上効果が期待できるものの、一旦塑性加工した後は硬質なマルテンサイト化して、むしろ延性低下の原因になることから、その面積分率は2%未満であることが好ましく、1%未満であることがさらに好ましい。 However, when the area fraction of the microstructure other than bainite is small, the influence is small, so other metal structures of 5% or less in total area fraction, that is, ferrite, pearlite, cementite, martensite, islands One or more kinds of martensite (also referred to as MA) may be contained. In addition, when residual austenite is present as a microstructure other than bainite, it can be expected to improve the elongation accompanying processing-induced transformation, but after plastic working, it becomes hard martensite, which may cause a decrease in ductility. Therefore, the area fraction is preferably less than 2%, more preferably less than 1%.
さらに、上述するベイナイト中にCuを析出させ、かつその析出物の平均粒子径を40nm以下とし、その鋼板あるいは鋼管断面単位面積当りのCu析出物粒子数を1.0×103個/μm2以上とする。Cu析出物は微細分散させることにより転位運動を阻害して加工硬化率を上昇させることからベイナイト組織の高強度化に極めて効果的であり、かつ、Cu自身も延性を持つため、引張強度が上昇するにも関わらず一様伸びも向上する。 Furthermore, Cu is precipitated in the bainite described above, the average particle size of the precipitate is 40 nm or less, and the number of Cu precipitate particles per unit area of the steel plate or steel pipe cross section is 1.0 × 10 3 particles / μm 2. That's it. Since Cu precipitates are finely dispersed to inhibit dislocation movement and increase the work hardening rate, it is extremely effective for increasing the strength of the bainite structure, and Cu itself has ductility, so the tensile strength increases. Despite this, the uniform elongation is improved.
そこでその効果を確認するため、鋼の基本化学組成を質量%で0.11%C、0.20%Si、1.45%Mn、0.02%Al、0.05%Nb、0.020%Tiとして、さらにCuを1.5%から5.0%まで種々変化させた小型鋼塊を準備し、熱間圧延と加速冷却を施して、そのミクロ組織をベイナイトとした15mm厚鋼板を比較材とし、一方、同じく熱間圧延と加速冷却を施した後、加速冷却に引き続き、ベイナイトの焼戻し軟化を最小限とする急速加熱焼戻しを実施した15mm厚鋼板を準備した。なお、急速加熱焼戻しでは加熱温度を種々変化させてベイナイト中へのCu析出状態を変化させた。 Therefore, in order to confirm the effect, the basic chemical composition of the steel is 0.11% C, 0.20% Si, 1.45% Mn, 0.02% Al, 0.05% Nb, 0.020 in mass%. Comparison of 15mm thick steel plates prepared by making small steel ingots with various changes in Cu from 1.5% to 5.0% as% Ti, and applying hot rolling and accelerated cooling to the microstructure of bainite On the other hand, a 15 mm thick steel plate was prepared, which was subjected to rapid rolling and accelerated cooling, followed by rapid heating and tempering that minimizes temper softening of bainite. In rapid heating and tempering, the heating temperature was variously changed to change the Cu precipitation state in bainite.
これらの鋼板よりAPI−5Lに準拠した全厚引張試験片を圧延長手方向に平行に採取し、引張試験を行い、得られた引張強度および一様伸びについて、Cu析出のための急速加熱処理を行った場合と、加速冷却ままの場合とを比較して、Cu析出による引張強度、一様伸びの上昇量を算出した。 From these steel sheets, a full thickness tensile test piece based on API-5L is taken in parallel with the rolling longitudinal direction, a tensile test is performed, and the obtained tensile strength and uniform elongation are subjected to rapid heat treatment for Cu precipitation. The amount of increase in tensile strength and uniform elongation due to Cu precipitation was calculated by comparing the case of performing the above and the case of accelerated cooling.
次に、Cu析出のための急速加熱処理を行った鋼板の圧延長手方向断面より板厚方向に平行に、0.3mm厚の透過電子顕微鏡用の薄膜試料を各3つずつ採取し、透過電子顕微鏡にて100000倍の倍率でベイナイトラス中のCu析出物の観察を行った。薄膜試料ごとに3視野、計9視野について撮影したCu析出物の写真を画像解析し、単位観察面積(1μm2)当りの析出物個数と、各析出物径の平均値を画像解析装置にて定量化した。そして、鋼板のベイナイト中のCu析出物数および析出物サイズにより、上述の引張強度上昇量および一様伸びの上昇量との関係を導き出した。 Next, three thin film samples for a transmission electron microscope each having a thickness of 0.3 mm were taken in parallel with the thickness direction from the rolling longitudinal cross section of the steel plate subjected to the rapid heat treatment for Cu precipitation, and transmitted. The Cu precipitates in the bainite lath were observed with an electron microscope at a magnification of 100,000. Photographs of Cu deposits taken for 3 fields of view for each thin film sample, a total of 9 fields, are image-analyzed, and the number of precipitates per unit observation area (1 μm 2 ) and the average value of the diameters of each precipitate are measured with an image analyzer. Quantified. And the relationship with the above-mentioned amount of tensile strength increase and the amount of uniform elongation was derived from the number of Cu precipitates and the precipitate size in the bainite of the steel sheet.
Cuを析出させた場合の引張強度上昇量は、図1に示すように、平均粒子径が40nm以下の析出物が1.0×103個/μm2以上ある場合に100MPa以上の引張強度の上昇が得られることから、平均粒子径の下限を40nm以下、粒子数を1.0×103個/μm2以上とする。平均粒子径が40nmを超える場合、1.0×103個/μm2以上の粒子数であってもあまり強度上昇が得られず、また、粒子数が1.0×103個/μm2未満の場合は平均粒子径によらず、強度上昇が得られない。 As shown in FIG. 1, the amount of increase in tensile strength when Cu is precipitated is such that the tensile strength is 100 MPa or more when there are 1.0 × 10 3 particles / μm 2 or more of precipitates having an average particle size of 40 nm or less. Since an increase is obtained, the lower limit of the average particle diameter is set to 40 nm or less, and the number of particles is set to 1.0 × 10 3 particles / μm 2 or more. When the average particle diameter exceeds 40 nm, 1.0 × 10 3 cells / [mu] m can not be obtained so much strength increased even number of 2 or more particles, also the number of particles 1.0 × 10 3 cells / [mu] m 2 When the ratio is less than 1, the strength cannot be increased regardless of the average particle size.
なお、一様伸びについては図2に示すように、一様伸びの向上は粒子数よりも平均粒子径に依存し、平均粒子径10nm以上の場合著しい向上が見られることから、Cu析出物の平均粒子径は10nm以上とすることが、好ましい。 As for uniform elongation, as shown in FIG. 2, the improvement in uniform elongation depends on the average particle diameter rather than the number of particles, and when the average particle diameter is 10 nm or more, significant improvement is observed. The average particle size is preferably 10 nm or more.
次に、鋼板圧延方向の引張強度(MPa)と一様伸び(%)との積を8500以上とした理由を説明する。従来の鋼板の強化手法では引張強度の上昇に伴い、一様伸びは逆に低下する。特に引張強度1150MPaを超えるような高強度化をすると、一様伸び低下は著しい。その結果、溶接鋼管に成形後は、鋼管長手方向の一様伸びも著しく低い値となり、パイプ敷設後、なんらかの引張変形が発生した際に、容易に局部破壊が生じて安全上問題となる。 Next, the reason why the product of tensile strength (MPa) and uniform elongation (%) in the steel sheet rolling direction is 8500 or more will be described. In the conventional steel sheet strengthening method, the uniform elongation decreases conversely with the increase in tensile strength. In particular, when the strength is increased such that the tensile strength exceeds 1150 MPa, the uniform elongation is significantly reduced. As a result, after forming into a welded steel pipe, the uniform elongation in the longitudinal direction of the steel pipe also becomes a remarkably low value, and when some tensile deformation occurs after laying the pipe, local breakage easily occurs, which poses a safety problem.
そのため、引張強度と一様伸びの両立を示す指標として、引張強度(MPa)と一様伸び(%)との積を選び、その値を、実用化されている最高強度グレードのX100級(引張強度800MPa程度)でもっとも高延性と考えられるもの(一様伸び10%程度)の引張強度(MPa)と一様伸び(%)との積8000を上回る、8500以上とした。 Therefore, the product of tensile strength (MPa) and uniform elongation (%) is selected as an index indicating the balance between tensile strength and uniform elongation, and the value is used as the highest strength grade X100 grade (tensile). 8500 or more, which exceeds the product of the tensile strength (MPa) and uniform elongation (%) of 8000 (strength of about 800 MPa) that is considered to have the highest ductility (uniform elongation of about 10%).
鋼管長手方向の引張強度(MPa)と一様伸び(%)との積を8500以上とした理由も上述の通りである。なお、安定して鋼管長手方向の引張強度(MPa)と一様伸び(%)との積を8500以上とするためには、鋼板圧延方向の引張強度(MPa)と一様伸び(%)との積は8700以上が望ましい。 The reason why the product of the tensile strength (MPa) in the longitudinal direction of the steel pipe and the uniform elongation (%) is 8500 or more is also as described above. In order to stably set the product of the tensile strength (MPa) and the uniform elongation (%) in the longitudinal direction of the steel pipe to 8500 or more, the tensile strength (MPa) and the uniform elongation (%) in the steel plate rolling direction The product of is desirably 8700 or more.
3.製造条件について
上記した組成を有する鋼を、転炉、電気炉等の溶製手段で常法により溶製し、連続鋳造法または造塊〜分塊法等で常法によりスラブ等の鋼素材とすることが好ましい。なお、溶製方法、鋳造法については上記した方法に限定されるものではないが、経済性の観点から転炉法による製鋼プロセスと連続鋳造プロセスによる鋼片の鋳造を行うことが望ましい。その後、性能所望の形状に圧延し、圧延後に、冷却および再加熱を行う。以下、本発明の製造条件を示す。
3. Manufacturing conditions Steel having the above-described composition is melted by a conventional method using a melting means such as a converter or an electric furnace, and a steel material such as a slab is formed by a conventional method such as a continuous casting method or an ingot-bundling method. It is preferable to do. Although the melting method and the casting method are not limited to the above-described methods, it is desirable to cast a steel piece by a steelmaking process by a converter method and a continuous casting process from the viewpoint of economy. Thereafter, the shape is rolled into a desired shape, and after rolling, cooling and reheating are performed. The production conditions of the present invention are shown below.
本発明において規定される鋼の温度条件は、鋼片あるいは鋼板板厚方向の平均温度を指すものとする。板厚方向の平均温度は、板厚、表面温度および冷却条件などから、シミュレーション計算などにより求められる。たとえば、差分法を用い、板厚方向の温度分布を計算することにより、板厚方向の平均温度を求めることができる。 The steel temperature condition defined in the present invention refers to the average temperature in the steel slab or steel plate thickness direction. The average temperature in the plate thickness direction is obtained by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like. For example, the average temperature in the plate thickness direction can be obtained by calculating the temperature distribution in the plate thickness direction using the difference method.
(1)加熱温度:1100〜1200℃
熱間圧延を行うにあたり、Nb、Tiの炭化物をベイナイト中に析出するためスラブ加熱段階で一旦固溶させる必要があり、両者を十分固溶させるためには加熱温度を1100℃以上とする必要がある。一方、1200℃を超える温度まで鋼片を加熱すると、TiNによるピンニングを行っていても、オーステナイト粒が著しく成長し、靱性を劣化するため、加熱温度は、1100〜1200℃の範囲とする。
(1) Heating temperature: 1100-1200 ° C
In performing hot rolling, Nb and Ti carbides need to be dissolved once in the slab heating stage in order to precipitate carbide in bainite, and the heating temperature needs to be 1100 ° C. or higher in order to sufficiently dissolve both. is there. On the other hand, when the steel slab is heated to a temperature exceeding 1200 ° C., even if pinning with TiN is performed, austenite grains grow significantly and the toughness deteriorates, so the heating temperature is in the range of 1100 to 1200 ° C.
(2)950℃以下での累積圧下率:50%以上
本発明では、Nb添加によって熱間圧延時のオーステナイト未再結晶域は950℃まで拡大している。この温度域にて累積圧下率が50%以上の圧延を行うことにより、オーステナイト粒が展伸し、その後の加速冷却で変態生成するベイナイトが微細化し靱性が向上することから、累積圧下率は50%以上とする。
(2) Cumulative rolling reduction at 950 ° C. or lower: 50% or higher In the present invention, the austenite non-recrystallized region during hot rolling is expanded to 950 ° C. by adding Nb. By performing rolling at a cumulative reduction ratio of 50% or more in this temperature range, austenite grains are expanded, and the bainite that is transformed by the subsequent accelerated cooling is refined and the toughness is improved. Therefore, the cumulative reduction ratio is 50 % Or more.
(3)圧延終了温度:Ar3変態点以上
熱間圧延温度がフェライト変態開始温度を下回った場合、圧延中フェライトを生成して強度が低下するため、熱間圧延終了温度は少なくともAr3変態点以上とする。
(3) Rolling end temperature: Ar 3 transformation point or more When the hot rolling temperature is lower than the ferrite transformation start temperature, ferrite is generated during rolling and the strength is lowered. Therefore, the hot rolling end temperature is at least the Ar 3 transformation point. That's it.
なおAr3変態点は、成分から算出する下記式(1)により求めた。
Ar3=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo・・(1)
ここで、各成分元素は、含有量(質量%)を意味する。
The Ar 3 transformation point was determined by the following formula (1) calculated from the components.
Ar 3 = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (1)
Here, each component element means content (mass%).
(4)冷却速度:40〜80℃/sec
ベイナイトを変態生成させるため、熱間圧延後に引き続き加速冷却を実施する。冷却速度が40℃/sec未満の場合、冷却中にCuが一部析出してしまうため、ベイナイト中に過飽和固溶状態からCuを析出するという本発明の基本思想が実現できなくなることから、Cuの過飽和固溶状態を得るため下限を40℃/secとする。一方、80℃/secを超えた冷却速度の場合、後述の冷却停止温度に制御することが難しく、特に表面近傍でマルテンサイト変態が生じ、靱性が著しく低下するため、冷却速度の範囲は40〜80℃/secとする。好ましくは50〜65℃/secである。
(4) Cooling rate: 40-80 ° C / sec
In order to transform the bainite, accelerated cooling is subsequently performed after hot rolling. When the cooling rate is less than 40 ° C./sec, Cu partially precipitates during cooling, so that the basic idea of the present invention that precipitates Cu from a supersaturated solid solution state in bainite cannot be realized. In order to obtain a supersaturated solid solution state, the lower limit is made 40 ° C./sec. On the other hand, in the case of a cooling rate exceeding 80 ° C./sec, it is difficult to control to the cooling stop temperature described later, and martensitic transformation occurs in the vicinity of the surface and the toughness is significantly reduced. 80 ° C./sec. Preferably it is 50-65 degreeC / sec.
なお、加速冷却は、組織全体がオーステナイトである状態から開始するのが好ましいので、加速冷却開始温度はAr3変態点以上であることが好ましい。 In addition, since accelerated cooling is preferably started from a state where the entire structure is austenite, the accelerated cooling start temperature is preferably equal to or higher than the Ar 3 transformation point.
(5)加速冷却の冷却停止温度:400〜500℃
加速冷却で変態生成させるミクロ組織をベイナイト主体とするため、冷却停止温度を400〜500℃とする。冷却停止温度が400℃未満の場合、マルテンサイト変態が生じ、靭性低下の原因となるため下限を400℃とする。一方、冷却停止温度が500℃を超えるとベイナイト変態が完了しないまま加速冷却を停止することになり、引き続き行う再加熱時にパーライト等が生成して強度低下の原因となるため、冷却停止温度は400〜500℃の範囲とする。好ましくは、420〜480℃である。
(5) Cooling stop temperature for accelerated cooling: 400 to 500 ° C
The cooling stop temperature is set to 400 to 500 [deg.] C. in order to mainly use the bainite as a microstructure that is transformed by accelerated cooling. When the cooling stop temperature is less than 400 ° C., martensitic transformation occurs and causes a decrease in toughness, so the lower limit is set to 400 ° C. On the other hand, when the cooling stop temperature exceeds 500 ° C., the accelerated cooling is stopped without completing the bainite transformation, and pearlite or the like is generated during the subsequent reheating, which causes a decrease in strength. The range is ˜500 ° C. Preferably, it is 420-480 degreeC.
(6)再加熱開始温度:(冷却停止温度−50℃)〜冷却停止温度
鋼中に過飽和固溶しているCuをベイナイト組織中に微細分散析出させるため、加速冷却後直ちに再加熱を行う。再加熱を開始する温度が、加速冷却停止温度より50℃を超えて低くなると、Cuの微細分散を行いにくく、十分な析出強化が得られずに目標強度を下回るため、再加熱の開始温度は、(冷却停止温度−50℃)以上とする。好ましくは、(冷却停止温度−30℃)以上である。
(6) Reheating start temperature: (cooling stop temperature −50 ° C.) to cooling stop temperature Reheating is performed immediately after accelerated cooling in order to finely precipitate Cu, which is supersaturated in the steel, into the bainite structure. When the temperature at which reheating is started is lower than the accelerated cooling stop temperature by more than 50 ° C., it is difficult to finely disperse Cu, and since sufficient precipitation strengthening is not obtained and the target strength is not reached, the reheating starting temperature is , (Cooling stop temperature −50 ° C.) or higher. Preferably, it is (cooling stop temperature −30 ° C.) or higher.
なお、ここで、加速冷却停止後、直ちに再加熱するとは、加速冷却を停止してから2分以内に上述の再加熱処理を実施することを指すものとする。 Here, reheating immediately after stopping accelerated cooling refers to performing the above-described reheating treatment within two minutes after stopping accelerated cooling.
(7)再加熱時の昇温速度:5℃/sec以上
再加熱時の昇温速度は5℃/sec以上とする。再加熱時の昇温速度が遅い場合、昇温中にCuが析出を始め、目標加熱温度に達したときには凝集粗大化してしまいCuの微細分散を行いにくく、十分な析出強化が得られずに目標強度を下回るため、再加熱時の昇温速度は5℃/sec以上とする。
(7) Temperature rise rate during reheating: 5 ° C./sec or more The temperature rise rate during reheating is 5 ° C./sec or more. When the heating rate at the time of reheating is slow, Cu begins to precipitate during the heating, and when the target heating temperature is reached, it becomes coarse and coarse, making it difficult to finely disperse Cu, and sufficient precipitation strengthening cannot be obtained. Since it is below the target strength, the rate of temperature increase during reheating is set to 5 ° C./sec or more.
(8)再加熱温度:550〜650℃
再加熱温度はCuの析出状態に大きく影響する。すなわち、加熱温度が550℃未満では十分にCuの析出を得ることができず、逆に650℃を超えた場合、過時効状態となってCu析出物が粗大化してしまい、十分な析出強化が得られずに目標強度を下回るため、再加熱温度は550〜650℃の範囲とする。
(8) Reheating temperature: 550 to 650 ° C
The reheating temperature greatly affects the Cu precipitation state. That is, if the heating temperature is less than 550 ° C., sufficient Cu precipitation cannot be obtained. Conversely, if the heating temperature exceeds 650 ° C., the Cu precipitate becomes coarse due to overaging, and sufficient precipitation strengthening occurs. Since it is less than the target strength without being obtained, the reheating temperature is in the range of 550 to 650 ° C.
なお、再加熱の保持時間は、特に限定はしないが好ましくは、1秒から100秒程度である。 The holding time for reheating is not particularly limited, but is preferably about 1 to 100 seconds.
なお、再加熱において、加熱保持時間を設定する必要はなく、上記再加熱温度域において過剰な時間にわたって保持すると析出したCuが粗大化するおそれがあるため、保持する場合でも、上記再加熱温度域における滞留時間は200秒以下であることが好ましい。 In the reheating, it is not necessary to set the heating and holding time, and the precipitated Cu may be coarsened if held for an excessive time in the reheating temperature range. The residence time in is preferably 200 seconds or less.
また、再加熱後の冷却過程においては、析出したCuが急速に粗大化するようなことはないので、再加熱後の冷却条件は特に規定しないが、基本的には空冷とすることが好ましい。 Further, in the cooling process after reheating, the precipitated Cu is not rapidly coarsened. Therefore, the cooling conditions after reheating are not particularly defined, but basically it is preferably air cooling.
加速冷却後の再加熱を行うための設備として、加速冷却を行うための冷却設備の下流側に加熱装置を設置することができる。加熱装置としては、鋼板の急速加熱が可能であるガス燃焼炉や誘導加熱装置を用いることが好ましい。 As equipment for performing reheating after accelerated cooling, a heating device can be installed downstream of the cooling equipment for performing accelerated cooling. As the heating device, it is preferable to use a gas combustion furnace or induction heating device capable of rapid heating of the steel sheet.
上記の方法で製造された鋼板の鋼管への成形方法は、特に限定はしないが、従来から用いられているUOE成形、プレスベンド成形、ロール成形のいずれの成形方法も使用することができる。たとえば、鋼板の圧延方向が鋼管の長手方向となるように、鋼板を冷間で筒状に成形し、対向する端面同士を突合せ溶接することにより、本発明の高延性超高強度溶接鋼管を製造することができる。また溶接後に、拡管成形もしくは縮径成形工程を付与することにより、さらに寸法精度が向上した本発明の高延性超高強度溶接鋼管を製造することができる。 The method for forming the steel plate produced by the above method into a steel pipe is not particularly limited, and any of conventionally used forming methods such as UOE forming, press bend forming, and roll forming can be used. For example, the steel sheet is cold formed into a cylindrical shape so that the rolling direction of the steel sheet is the longitudinal direction of the steel pipe, and the opposite end faces are butt welded to produce the high ductility ultra high strength welded steel pipe of the present invention. can do. Moreover, the high ductility ultra high strength welded steel pipe of this invention which further improved the dimensional accuracy can be manufactured by giving a pipe expansion forming process or a diameter reduction forming process after welding.
表1に示す化学組成の鋼を用いて、表2に示す熱間圧延、加速冷却、再加熱条件で15〜20mmの鋼板を作製した。そして、これらの鋼板を素材として、鋼板の圧延長手方向が鋼管の長手方向となるように、UOEプロセスにて溶接鋼管を製造した。鋼管の溶接はサブマージアーク溶接機による内外面1層溶接とし、いずれの溶接も溶接入熱を50kJ/cm以下とした。また、溶接ワイヤはC含有量が0.11%を超えない低炭素系溶接ワイヤを使用した。 Using steel having the chemical composition shown in Table 1, steel plates having a thickness of 15 to 20 mm were produced under the conditions of hot rolling, accelerated cooling, and reheating shown in Table 2. And these steel plates were used as a raw material, and the welded steel pipe was manufactured by the UOE process so that the rolling longitudinal direction of the steel sheet became the longitudinal direction of the steel pipe. The welding of the steel pipe was a single-layer inner / outer surface welding by a submerged arc welding machine, and the welding heat input was 50 kJ / cm or less in any welding. Moreover, the low carbon type welding wire whose C content does not exceed 0.11% was used for the welding wire.
それぞれの鋼管より、API−5Lに準拠した全厚引張試験片(管長手方向を試験片長手方向とする)とDWTT試験片、および管厚中央位置からJISZ2202に記載のVノッチシャルピー衝撃試験片を採取し、鋼管の引張試験とDWTT試験(試験温度:0℃)およびシャルピー衝撃試験(試験温度:0℃)を実施して、強度、一様伸び、および靱性を評価した。靱性として、シャルピー衝撃試験については、0℃における吸収エネルギーvE0を、また、DWTT試験では、0℃における延性破面率SA0を評価した。また、管厚中央位置から金属組織(ミクロ組織)観察用サンプルを採取し、管長手方向と平行な板厚断面を鏡面研磨したあと、3%硝酸アルコール腐食液にてエッチングを行い、光学顕微鏡にて400倍の倍率で観察を行い、ミクロ組織の種類を確認した。 From each steel pipe, a full-thickness tensile specimen according to API-5L (the longitudinal direction of the pipe is the longitudinal direction of the specimen), a DWTT specimen, and a V-notch Charpy impact specimen described in JISZ2202 from the center of the pipe thickness. The steel pipe was subjected to a tensile test and a DWTT test (test temperature: 0 ° C.) and a Charpy impact test (test temperature: 0 ° C.) to evaluate strength, uniform elongation, and toughness. As toughness, the absorbed energy vE 0 at 0 ° C. was evaluated for the Charpy impact test, and the ductile fracture surface ratio SA 0 at 0 ° C. was evaluated for the DWTT test. Also, a sample for observing the metal structure (micro structure) is taken from the center position of the tube thickness, and the plate thickness cross section parallel to the longitudinal direction of the tube is mirror-polished, and then etched with a 3% nitric acid alcohol etchant, Were observed at a magnification of 400 times to confirm the type of microstructure.
次に、鋼管の溶接部全長に渡り、手動で超音波探傷試験を行い、溶接金属の割れ有無について調査した。なお、割れが発生した箇所については溶接部サンプルを切断採取し、割れ状態を断面観察して確認した。
母材のミクロ組織、強度、一様伸び、靱性などの調査結果および管溶接部の非破壊検査の評価結果をまとめて表3に示す。
Next, an ultrasonic flaw detection test was manually performed over the entire length of the welded portion of the steel pipe to investigate whether the weld metal was cracked. In addition, about the location where the crack generate | occur | produced, the welding part sample was cut and extract | collected and the crack state was confirmed by observing a cross section.
Table 3 summarizes the survey results of the microstructure, strength, uniform elongation, toughness, etc. of the base metal and the evaluation results of the nondestructive inspection of the pipe weld.
発明例であるNo.1〜6は成分組成、製造条件および金属組織が発明の範囲内であり良好な強度、靭性が得られた。 Inventive example No. In Nos. 1 to 6, the composition, production conditions, and metal structure were within the scope of the invention, and good strength and toughness were obtained.
No.7〜14は比較例であり、No.7は冷却停止温度が400℃未満となりマルテンサイトが晶出して引張強度×一様伸びが不足した。No.8は冷却停止温度が500℃を超えたので、パーライトが晶出して引張強度が不足し、その結果引張強度×一様伸びが不足した。No.9は再加熱温度が550℃未満となりCuの析出が不十分であったため、引張強度が不足し、その結果引張強度×一様伸びが不足した。 No. 7 to 14 are comparative examples. In No. 7, the cooling stop temperature was less than 400 ° C., martensite crystallized, and the tensile strength × uniform elongation was insufficient. No. Since the cooling stop temperature of No. 8 exceeded 500 ° C., pearlite crystallized and the tensile strength was insufficient. As a result, tensile strength × uniform elongation was insufficient. No. No. 9 had a reheating temperature of less than 550 ° C. and Cu was insufficiently precipitated, so that the tensile strength was insufficient, and as a result, tensile strength × uniform elongation was insufficient.
No.10は再加熱温度が650℃を超え、Cu析出物が粗大化したので引張強度が不足し、その結果引張強度×一様伸びが不足した。 No. No. 10 had a reheating temperature exceeding 650 ° C., and Cu precipitates were coarsened, so that the tensile strength was insufficient, and as a result, tensile strength × uniform elongation was insufficient.
No.11、No.12、No.13、No.14は成分組成が発明の範囲外となり、いずれも所定の特性がでなかった。すなわち、No.11は、C量が本発明範囲よりも少ないため、母材強度が不足した。No.12は、管溶接部の超音波探傷試験において割れありと判断されたので、その割れ発生箇所について溶接部サンプルを切断採取して断面観察を実施したところ、高温割れであることが確認された。これは、No.12のC量が本発明範囲よりも多く、Cが溶接金属に希釈されたことに起因する。No.13は、Cu量が少なく、析出強化が不足したため、母材強度が小さくなった。No.14は、Nb量が過剰であり、靭性が低下した。 No. 11, no. 12, no. 13, no. In No. 14, the component composition was out of the scope of the invention, and none of the predetermined characteristics was obtained. That is, no. No. 11 had insufficient base material strength because the amount of C was less than the range of the present invention. No. No. 12 was determined to be cracked in the ultrasonic flaw detection test of the pipe welded portion. When the welded portion sample was cut and collected from the cracked portion and observed for cross section, it was confirmed that the crack was hot. This is no. This is because the amount of C of 12 is larger than the range of the present invention, and C is diluted in the weld metal. No. In No. 13, since the amount of Cu was small and precipitation strengthening was insufficient, the base material strength was small. No. In No. 14, the amount of Nb was excessive, and the toughness decreased.
実施例2では、実施例1の表1に示す化学組成の鋼を用いて、表4に示す熱間圧延、加速冷却、再加熱条件で15〜20mmの鋼板を作製した。そして、これらの鋼板を素材として、鋼板の圧延長手方向が鋼管の長手方向となるように、UOEプロセスにて溶接鋼管を製造した。鋼管の溶接はサブマージアーク溶接機による内外面1層溶接とし、いずれの溶接も溶接入熱を50kJ/cm以下とした。また、溶接ワイヤはC含有量が0.11%を超えない低炭素系溶接ワイヤを使用した。 In Example 2, a steel plate having a chemical composition shown in Table 1 of Example 1 was used to produce a steel plate having a thickness of 15 to 20 mm under the hot rolling, accelerated cooling, and reheating conditions shown in Table 4. And these steel plates were used as a raw material, and the welded steel pipe was manufactured by the UOE process so that the rolling longitudinal direction of the steel sheet became the longitudinal direction of the steel pipe. The welding of the steel pipe was a single-layer inner / outer surface welding by a submerged arc welding machine, and the welding heat input was 50 kJ / cm or less in any welding. Moreover, the low carbon type welding wire whose C content does not exceed 0.11% was used for the welding wire.
それぞれの鋼管より、API−5Lに準拠した全厚引張試験片(管長手方向を試験片長手方向とする)とDWTT試験片、および管厚中央位置からJISZ2202に記載のVノッチシャルピー衝撃試験片を採取し、鋼管の引張試験とDWTT試験(試験温度:0℃)およびシャルピー衝撃試験(試験温度:0℃)を実施して、強度、一様伸び、および靱性を評価した。靱性として、シャルピー衝撃試験については、0℃における吸収エネルギーvE0を、また、DWTT試験では、0℃における延性破面率SA0を評価した。また、管厚中央位置から金属組織(ミクロ組織)観察用サンプルを採取し、管長手方向と平行な板厚断面を鏡面研磨したあと、3%硝酸アルコール腐食液にてエッチングを行い、光学顕微鏡にて400倍の倍率で観察を行い、ミクロ組織の種類を確認した。 From each steel pipe, a full-thickness tensile specimen according to API-5L (the longitudinal direction of the pipe is the longitudinal direction of the specimen), a DWTT specimen, and a V-notch Charpy impact specimen described in JISZ2202 from the center of the pipe thickness. The steel pipe was subjected to a tensile test and a DWTT test (test temperature: 0 ° C.) and a Charpy impact test (test temperature: 0 ° C.) to evaluate strength, uniform elongation, and toughness. As toughness, the absorbed energy vE 0 at 0 ° C. was evaluated for the Charpy impact test, and the ductile fracture surface ratio SA 0 at 0 ° C. was evaluated for the DWTT test. Also, a sample for observing the metal structure (micro structure) is taken from the center position of the tube thickness, and the plate thickness cross section parallel to the longitudinal direction of the tube is mirror-polished, and then etched with a 3% nitric acid alcohol etchant, Were observed at a magnification of 400 times to confirm the type of microstructure.
さらに、管長手方向と平行な板厚断面から3つずつ透過型電子顕微鏡用薄膜サンプルを採取し、透過型電子顕微鏡にて100000倍の倍率でそれぞれ3視野ずつ、計9視野でCu析出物の写真を撮影し、画像解析にて各Cu析出物粒子の平均径と単位面積当りの粒子数を算出した。 Further, three thin film samples for a transmission electron microscope were collected from the plate thickness section parallel to the longitudinal direction of the tube, and each of the three fields of view at a magnification of 100000 times with a transmission electron microscope, totaling 9 fields of Cu precipitates. A photograph was taken, and the average diameter of each Cu precipitate particle and the number of particles per unit area were calculated by image analysis.
次に、鋼管の溶接部全長に渡り、手動で超音波探傷試験を行い、溶接金属の割れ有無について調査した。なお、割れが発生した箇所については溶接部サンプルを切断採取し、割れ状態を断面観察して確認した。
母材のミクロ組織、強度、一様伸び、靱性などの調査結果および管溶接部の非破壊検査の評価結果をまとめて表5に示す。
Next, an ultrasonic flaw detection test was manually performed over the entire length of the welded portion of the steel pipe to investigate whether the weld metal was cracked. In addition, about the location where the crack generate | occur | produced, the welding part sample was cut and extract | collected, and the crack state was confirmed by observing a cross section.
Table 5 summarizes the survey results of the microstructure, strength, uniform elongation, toughness, etc. of the base metal and the evaluation results of the nondestructive inspection of the pipe weld.
発明例であるNo.15〜17は成分組成、製造条件およびミクロ組織とCu析出物粒子数および粒子の平均径が発明の範囲内であり良好な強度、靭性が得られた。 Inventive example No. In Nos. 15 to 17, the composition, production conditions, microstructure, number of Cu precipitate particles, and average particle diameter were within the range of the invention, and good strength and toughness were obtained.
No.18〜20は比較例であり、No.18は加速冷却時の冷却速度が40℃/secを下回ったため、冷却中に析出し始めたCuが、その後の再加熱で粗大化し、析出物粒子の平均径が40nmを上回ったので引張強度が不足し、その結果引張強度×一様伸びが不足した。No.19は加速冷却停止後、再加熱開始が遅れ、再加熱温度開始温度が冷却停止温度より50℃以上低下した結果、その後の再加熱時のCu析出が抑制され、単位断面積当りの析出物が1.0×103個/μm2を下回ったため、引張強度が不足し、その結果引張強度×一様伸びが不足した。No.20は再加熱時の昇温速度が2℃/secと遅く、加熱中に析出したCuが凝集粗大化してしまい、析出物粒子の平均径が40nmを上回り、かつ単位断面積当りの析出物が1.0×103個/μm2を下回ったため、引張強度が不足し、その結果引張強度×一様伸びが不足した。 No. Nos. 18 to 20 are comparative examples. In No. 18, the cooling rate during accelerated cooling was lower than 40 ° C./sec. Therefore, Cu that began to precipitate during cooling became coarse by subsequent reheating, and the average diameter of the precipitate particles exceeded 40 nm, so the tensile strength was high. As a result, tensile strength × uniform elongation was insufficient. No. No. 19 after the accelerated cooling stop, the reheating start is delayed, and the reheating temperature start temperature is lowered by 50 ° C. or more from the cooling stop temperature. Since it was below 1.0 × 10 3 / μm 2 , the tensile strength was insufficient, and as a result, the tensile strength × uniform elongation was insufficient. No. No. 20 has a slow temperature rise rate of 2 ° C./sec during reheating, Cu precipitated during heating is agglomerated and coarsened, the average diameter of the precipitate particles exceeds 40 nm, and precipitates per unit cross-sectional area are Since it was below 1.0 × 10 3 / μm 2 , the tensile strength was insufficient, and as a result, the tensile strength × uniform elongation was insufficient.
表6に示す化学組成の鋼を用いて、表7に示す熱間圧延、加速冷却、再加熱条件で15〜18mmの鋼板を作製した。 Using steel having the chemical composition shown in Table 6, steel plates having a thickness of 15 to 18 mm were produced under the hot rolling, accelerated cooling, and reheating conditions shown in Table 7.
それぞれの鋼板より、API−5Lに準拠した全厚引張試験片(鋼板圧延方向を試験片長手方向とする)とDWTT試験片、および板厚中央位置からJISZ2202に記載のVノッチシャルピー衝撃試験片を採取し、鋼板の引張試験とDWTT試験(試験温度:0℃)およびシャルピー衝撃試験(試験温度:0℃)を実施して、強度、一様伸び、および靱性を評価した。靱性として、シャルピー衝撃試験については、0℃における吸収エネルギーvE0を、また、DWTT試験では、0℃における延性破面率SA0を評価した。 From each steel plate, a full-thickness tensile specimen according to API-5L (the steel sheet rolling direction is the longitudinal direction of the specimen), a DWTT specimen, and a V-notch Charpy impact specimen described in JISZ2202 from the center of the thickness. The steel sheet was collected and subjected to a tensile test and a DWTT test (test temperature: 0 ° C.) and a Charpy impact test (test temperature: 0 ° C.) to evaluate strength, uniform elongation, and toughness. As toughness, the absorbed energy vE 0 at 0 ° C. was evaluated for the Charpy impact test, and the ductile fracture surface ratio SA 0 at 0 ° C. was evaluated for the DWTT test.
また、板厚中央位置から金属組織(ミクロ組織)観察用サンプルを採取し、鋼板圧延方向と平行な板厚断面を鏡面研磨したあと、3%硝酸アルコール腐食液にてエッチングを行い、光学顕微鏡にて400倍の倍率で観察を行い、ミクロ組織の種類を確認した。 In addition, a sample for observing the metal structure (micro structure) was collected from the center position of the plate thickness, and the plate thickness cross section parallel to the rolling direction of the steel plate was mirror-polished and then etched with a 3% nitric acid alcohol corrosion solution. Were observed at a magnification of 400 times to confirm the type of microstructure.
さらに、鋼板圧延方向と平行な板厚断面から3つずつ透過型電子顕微鏡用薄膜サンプルを採取し、透過型電子顕微鏡にて100000倍の倍率でそれぞれ3視野ずつ、計9視野でCu析出物の写真を撮影し、画像解析にて各Cu析出物粒子の平均径と単位面積当りの粒子数を算出した。 Further, three thin film samples for a transmission electron microscope were taken from the thickness cross section parallel to the rolling direction of the steel sheet, and each of the three fields of view at a magnification of 100000 times with a transmission electron microscope, a total of nine fields of Cu precipitates. A photograph was taken, and the average diameter of each Cu precipitate particle and the number of particles per unit area were calculated by image analysis.
母材のミクロ組織、強度、一様伸び、靱性などの調査結果をまとめて表8に示す。 Table 8 summarizes the survey results of the microstructure, strength, uniform elongation, and toughness of the base material.
発明例であるNo.21〜23は成分組成、製造条件および金属組織が発明の範囲内であり良好な強度、靭性が得られた。 Inventive example No. In 21 to 23, the component composition, production conditions and metal structure were within the scope of the invention, and good strength and toughness were obtained.
No.24および25は比較例であり、No.24は加速冷却後の再加熱処理を実施しなかったため、Cu析出が十分でなく、単位断面積当りの析出物が1.0×103個/μm2を下回ったため、引張強度が不足し、その結果引張強度×一様伸びが不足した。No.25は、Cu量が少なく、単位断面積当りの析出物が1.0×103個/μm2を下回ったため、引張強度が不足し、その結果引張強度×一様伸びが不足した。 No. Nos. 24 and 25 are comparative examples. No. 24 was not subjected to reheating treatment after accelerated cooling, so Cu precipitation was insufficient, and the precipitate per unit cross-sectional area was less than 1.0 × 10 3 pieces / μm 2 , so that the tensile strength was insufficient, As a result, tensile strength × uniform elongation was insufficient. No. In No. 25, the amount of Cu was small, and the number of precipitates per unit cross-sectional area was less than 1.0 × 10 3 pieces / μm 2 , so that the tensile strength was insufficient, and as a result, tensile strength × uniform elongation was insufficient.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012037063A JP2012193446A (en) | 2011-02-28 | 2012-02-23 | Steel plate for high-ductile high-strength welded steel pipe, steel pipe, and method for manufacturing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011041133 | 2011-02-28 | ||
JP2011041133 | 2011-02-28 | ||
JP2012037063A JP2012193446A (en) | 2011-02-28 | 2012-02-23 | Steel plate for high-ductile high-strength welded steel pipe, steel pipe, and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012193446A true JP2012193446A (en) | 2012-10-11 |
Family
ID=47085605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012037063A Pending JP2012193446A (en) | 2011-02-28 | 2012-02-23 | Steel plate for high-ductile high-strength welded steel pipe, steel pipe, and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012193446A (en) |
-
2012
- 2012-02-23 JP JP2012037063A patent/JP2012193446A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4853575B2 (en) | High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same | |
KR101410588B1 (en) | Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe | |
TWI392748B (en) | Pipeline steel and steel pipe | |
JP5353156B2 (en) | Steel pipe for line pipe and manufacturing method thereof | |
JP5217556B2 (en) | High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same | |
JP4997805B2 (en) | High-strength thick steel plate, method for producing the same, and high-strength steel pipe | |
JP5141073B2 (en) | X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same | |
JP5782827B2 (en) | High compressive strength steel pipe for sour line pipe and manufacturing method thereof | |
US20120305122A1 (en) | Welded steel pipe for linepipe having high compressive strength and high fracture toughness and manufacturing method thereof | |
JP5217773B2 (en) | High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same | |
JP5532800B2 (en) | Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same | |
JP5092498B2 (en) | Low yield ratio high strength high toughness steel sheet and method for producing the same | |
JP5834534B2 (en) | High strength low yield ratio steel with high uniform elongation characteristics, manufacturing method thereof, and high strength low yield ratio welded steel pipe | |
JP6123973B2 (en) | High-strength and high-toughness steel plate and method for producing the same | |
JP5391542B2 (en) | High strength steel excellent in deformation performance and tensile strength exceeding 750 MPa and method for producing the same | |
JP5768603B2 (en) | High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same | |
JP5903880B2 (en) | High-strength steel sheet for line pipes with excellent sour resistance and weld heat-affected zone toughness and method for producing the same | |
JP2012172256A (en) | Low yield ratio high strength hot rolled steel sheet having excellent low temperature toughness and method for manufacturing the same | |
JP5991175B2 (en) | High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method | |
JP2006291349A (en) | Line pipe steel sheet having high deformation performance and its manufacturing method | |
JP2015190026A (en) | Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor | |
JP5509654B2 (en) | High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same | |
JP5991174B2 (en) | High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method | |
JP5181697B2 (en) | High strength steel plate with excellent PWHT resistance and method for producing the same | |
WO2016157235A1 (en) | High-strength steel, production method therefor, steel pipe, and production method therefor |