JP5217773B2 - High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same - Google Patents
High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same Download PDFInfo
- Publication number
- JP5217773B2 JP5217773B2 JP2008213867A JP2008213867A JP5217773B2 JP 5217773 B2 JP5217773 B2 JP 5217773B2 JP 2008213867 A JP2008213867 A JP 2008213867A JP 2008213867 A JP2008213867 A JP 2008213867A JP 5217773 B2 JP5217773 B2 JP 5217773B2
- Authority
- JP
- Japan
- Prior art keywords
- mpa
- less
- steel pipe
- affected zone
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 71
- 239000010959 steel Substances 0.000 title claims description 71
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 238000003466 welding Methods 0.000 claims description 28
- 229910001563 bainite Inorganic materials 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 19
- 229910000734 martensite Inorganic materials 0.000 claims description 16
- 229910001566 austenite Inorganic materials 0.000 claims description 15
- 229910001567 cementite Inorganic materials 0.000 claims description 12
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 claims description 12
- 229910000859 α-Fe Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 5
- 229910001562 pearlite Inorganic materials 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 19
- 239000000203 mixture Substances 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- -1 Mg Ca Inorganic materials 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
本発明は、天然ガスや原油の輸送用として好適な、管厚が50mm以下で、引張強度が570MPa以上760MPa以下の溶接熱影響部の低温靭性に優れた高強度溶接鋼管に関する。 The present invention relates to a high-strength welded steel pipe excellent in the low-temperature toughness of a weld heat-affected zone having a pipe thickness of 50 mm or less and a tensile strength of 570 MPa to 760 MPa, which is suitable for transportation of natural gas and crude oil.
近年、天然ガスや原油の輸送用として使用される溶接鋼管は、高圧化による輸送効率の向上や薄肉化による現地溶接施工能率の向上のため、年々高強度化され、既にX100グレードの鋼管が実用化されている。また、引張強度900MPaを超えるX120グレードの鋼管についても具体的検討の段階となっている。 In recent years, welded steel pipes used for transportation of natural gas and crude oil have been strengthened year by year in order to improve transport efficiency by increasing pressure and to improve local welding work efficiency by reducing wall thickness, and X100 grade steel pipes are already in practical use. It has become. Further, an X120 grade steel pipe having a tensile strength exceeding 900 MPa is also in the stage of specific examination.
このような高強度溶接鋼管の溶接熱影響部靭性に関し、例えば特許文献1には、最終溶接後、溶接部の冷却速度が600℃から400℃まで少なくとも1℃/s以上で冷却することによって、溶接熱影響部粗粒域の上部ベイナイト組織中の島状マルテンサイト(MA)量を低減し、HAZの高靭性化を図ることが記載されている。 Regarding the heat-affected zone toughness of such a high-strength welded steel pipe, for example, in Patent Document 1, after the final welding, the cooling rate of the welded portion is cooled from 600 ° C to 400 ° C at least 1 ° C / s or more, It is described that the amount of island martensite (MA) in the upper bainite structure in the coarse region of the weld heat affected zone is reduced to increase the toughness of the HAZ.
特許文献2には、溶接熱影響部のミクロ組織を下部ベイナイトとして、靭性を向上させるため、シーム部の仮付けを除去した後外面側の溶接を行うことにより、溶接入熱を小入熱とした溶接鋼管の製造方法が記載されている。
しかしながら、特許文献1が対象とする溶接鋼管は、引張り強さが800MPa以上の高強度溶接鋼管に関するもので、引張強度が570MPa以上760MPa以下でかつPCMが低い成分を母材とする鋼管についての製造指針は得られていない。 However, welded steel pipe Patent Document 1 is intended, the tensile strength relates to high strength welded steel pipe above 800 MPa, tensile strength about the steel pipe to make a base material 760MPa or less and P CM is lower or more components 570MPa Production guidelines are not available.
また、特許文献2記載の方法は、溶接熱影響部のミクロ組織を完全に下部ベイナイト組織とするため、PCMの範囲を非常に狭い範囲に限定することが必要で、製造安定性が懸念される。 Further, the method of Patent Document 2, in order to completely lower bainite weld heat-affected zone of the microstructure, is necessary to limit to a very narrow range of range of P CM, production stability is concerned The
そこで、本発明は上述した問題点を解決すべく、縦シーム溶接部の溶接熱影響部の低温靭性に優れた引張り強さが570MPa以上760MPa以下の低温用高強度溶接鋼管を提供するものである。 Accordingly, the present invention provides a low-temperature high-strength welded steel pipe having a tensile strength of 570 MPa or more and 760 MPa or less excellent in low-temperature toughness of a welded heat-affected zone of a longitudinal seam weld in order to solve the above-described problems. .
本発明者等は、管厚が50mm以下で、引張り強さが570MPa以上760MPa以下の溶接熱影響部の靭性に優れた低温用高強度溶接鋼管を開発するため、鋭意研究を行い、以下の知見を得た。
(1)溶接熱影響部において靭性が最も低下する部位(LBZ:Local Brittle Zone)は、外面側はボンド近傍のCGHAZ組織で、内面側のRoot部は内面のCGHAZ組織が2相域(Ac1〜Ac3点)に再加熱されるICCGHAZ組織で、いずれもHAZ粗粒域(溶融線近傍の旧オーステナイト粒径が50μm以上となる領域:Coarse−grain HAZ、以後CGHAZ)を前組織とする。なお、Root部とは内面溶接金属と外面溶接金属がクロスする会合部近傍を指す。
(2)CGHAZのミクロ組織は、外面側や内面側によらず、母材のPCM値と、溶接後の冷却において、γ‐α相変態する800℃から500℃の温度域の冷却速度との組合せによって、硬質の島状マルテンサイト(MA)やセメンタイトをラス間に大量に含む上部ベイナイト組織や、強度の高いマルテンサイト組織を一定分率以下に抑制し、円相当径5μm以下のベイニティックフェライトのラス内および/またはラス間にセメンタイトを主体とする炭化物が析出したベイナイト(MAフリーのベイナイト)を主体とすると最も靭性が向上する。
(3)特にベイニティックフェライトのラス界面でのMA生成を抑制するためには、Siを低減することとBを適正量添加することが有効である。
In order to develop a low-temperature high-strength welded steel pipe excellent in toughness of the weld heat-affected zone with a pipe thickness of 50 mm or less and a tensile strength of 570 MPa or more and 760 MPa or less, the present inventors have conducted intensive research and found the following knowledge Got.
(1) The site where the toughness is most reduced in the heat affected zone (LBZ: Local Brittle Zone) is a CGHAZ structure near the bond on the outer surface side, and the CGHAZ structure on the inner surface is a two-phase region (Ac1- In the ICCGHAZ structure reheated to Ac3 point), the HAZ coarse grain region (region where the prior austenite particle size near the melting line is 50 μm or more: Coarse-grain HAZ, hereinafter CGHAZ) is the pre-structure. The root portion refers to the vicinity of the meeting portion where the inner surface weld metal and the outer surface weld metal cross.
(2) CGHAZ microstructure does not depend on the outer surface side and inner surface side, a P CM value of the base material, in cooling after welding, the cooling rate in the temperature range of 500 ° C. from 800 ° C. to transformation gamma-alpha phase In combination, the upper bainite structure containing a large amount of hard island martensite (MA) and cementite between the laths and the high-strength martensite structure are suppressed to a certain fraction or less, and a baini having an equivalent circle diameter of 5 μm or less. Toughness is most improved when bainite (MA-free bainite) in which carbides mainly composed of cementite are precipitated is mainly contained in the lath and / or between laths of the tick ferrite.
(3) In order to suppress MA formation at the lath interface of bainitic ferrite, it is effective to reduce Si and add an appropriate amount of B.
本発明は上記知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1.質量%で、
C:0.03〜0.12%、
Si:0.01〜0.2%、
Mn:1.2〜2.2%、
P:0.015%以下、
S:0.003%以下、
Al:0.01〜0.08%、
Nb:0.01〜0.08%、
Ti:0.005〜0.025%、
N:0.001〜0.010%、
O:0.005%以下、
B:0.0003〜0.0020%
を含有し、更に、
Cu:0.01〜1%、
Ni:0.01〜1%、
Cr:0.01〜1%、
Mo:0.01〜0.2%、
V:0.01〜0.1%
の一種または二種以上を含有し、
下記式(1)で計算されるPCM値(質量%)が0.12≦PCM≦0.20を満足し、
残部Feおよび不可避的不純物からなる母材部と、
内外面から1層ずつ溶接した鋼管のシーム溶接部における旧オーステナイト粒径が50μm以上となる溶接熱影響部のミクロ組織において、平均粒径5μm以下のベイニティックフェライトの、ラス内および/またはラス間にセメンタイトを主体とする炭化物が析出したベイナイトが面積率で少なくとも50%存在し、残部が島状マルテンサイトおよび/またはラス間のセメンタイトを含む上部ベイナイトあるいはマルテンサイトあるいはパーライトあるいはそれらの混合組織である縦シーム溶接継手を有することを特徴とする溶接熱影響部靭性に優れた引張強度が570MPa以上760MPa以下の低温用高強度溶接鋼管。
PCM(質量%)=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B…(1)
但し、各元素は含有量(質量%)を示す。
2.母材部が、更に、質量%で、
Ca:0.0005〜0.01%、
REM:0.0005〜0.02%、
Zr:0.0005〜0.03%、
Mg:0.0005〜0.01%
の一種または二種以上を含有することを特徴とする1記載の溶接熱影響部靭性に優れた引張強度が570MPa以上760MPa以下の低温用高強度溶接鋼管。
3.前記溶接熱影響部の硬さが下記式(2)を満たすことを特徴とする1または2記載の溶接熱影響部靭性に優れた引張強度が570MPa以上760MPa以下の低温用高強度溶接鋼管。
200≦Hv(98N)≦300 …(2)
4.1乃至3のいずれか一つに記載の溶接熱影響部靭性に優れた引張強度が570MPa以上760MPa以下の低温用高強度鋼管の製造方法であって、素材鋼板を筒状に成形し、その突合せ部を内外面から1層ずつ溶接する際の内外面それぞれの溶接入熱が80kJ/cm以下であり、外面側および内面側の入熱バランスが下記式(3)を満たすことを特徴とする溶接熱影響部靭性に優れた引張強度が570MPa以上760MPa以下の低温用高強度溶接鋼管の製造方法。
内面入熱≦外面入熱 …(3)
5.鋼管の長手方向に内外面から1層ずつ溶接した後、0.4%以上2.0%以下の拡管率にて拡管することを特徴とする4記載の溶接熱影響部靭性に優れた引張強度が570MPa以上760MPa以下の低温用高強度溶接鋼管の製造方法。
The present invention has been made by further study based on the above knowledge, that is, the present invention,
1. % By mass
C: 0.03-0.12%,
Si: 0.01 to 0.2%,
Mn: 1.2-2.2%,
P: 0.015% or less,
S: 0.003% or less,
Al: 0.01 to 0.08%,
Nb: 0.01 to 0.08%,
Ti: 0.005 to 0.025%,
N: 0.001 to 0.010%,
O: 0.005% or less,
B: 0.0003 to 0.0020%
Further,
Cu: 0.01 to 1%,
Ni: 0.01 to 1%,
Cr: 0.01-1%,
Mo: 0.01 to 0.2 %,
V: 0.01 to 0.1%
Containing one or more of
P CM value calculated by the following formula (1) (mass%) satisfies the 0.12 ≦ P CM ≦ 0.20,
A base material portion comprising the balance Fe and inevitable impurities;
In the lath and / or lath of bainitic ferrite with an average grain size of 5 μm or less in the microstructure of the weld heat affected zone where the prior austenite grain size is 50 μm or more in the seam weld zone of the steel pipe welded layer by layer from the inner and outer surfaces There is at least 50% area ratio of bainite with cementite mainly composed of cementite in between, and the balance is upper bainite, martensite, pearlite or mixed structure containing cementite between island martensite and / or lath. A high-strength welded steel pipe for low temperatures having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness, characterized by having a certain longitudinal seam welded joint.
P CM (mass%) = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B (1)
However, each element shows content (mass%).
2. The base material part is further mass%,
Ca: 0.0005 to 0.01%,
REM: 0.0005 to 0.02%,
Zr: 0.0005 to 0.03%,
Mg: 0.0005 to 0.01%
The high-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness according to 1, characterized by containing one or more of the above .
3. The low-temperature high-strength welded steel pipe having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat affected zone toughness according to 1 or 2, wherein the hardness of the welding heat affected zone satisfies the following formula (2) :
200 ≦ Hv (98N) ≦ 300 (2)
4.1. A method for producing a high-temperature steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness according to any one of 1 to 3, comprising forming a raw steel plate into a cylindrical shape, The welding heat input of each of the inner and outer surfaces when the butt portion is welded one layer at a time from the inner and outer surfaces is 80 kJ / cm or less, and the heat input balance on the outer surface side and the inner surface side satisfies the following formula (3). A method for producing a high-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness .
Inner surface heat input ≦ Outer surface heat input (3)
5. Tensile strength with excellent weld heat affected zone toughness according to 4, characterized in that after welding one layer at a time from the inner and outer surfaces in the longitudinal direction of the steel pipe, the pipe is expanded at a tube expansion ratio of 0.4% or more and 2.0% or less. Is a manufacturing method of high-strength welded steel pipe for low temperature of 570 MPa or more and 760 MPa or less .
本発明によれば、縦シーム溶接部の溶接熱影響部の靭性に優れた、570MPa以上760MPa以下の引張強度を有する低温用高強度溶接鋼管が得られ、産業上極めて有用である。 ADVANTAGE OF THE INVENTION According to this invention, the high strength welded steel pipe for low temperature which has the tensile strength of 570 MPa or more and 760 MPa or less excellent in the toughness of the welding heat affected zone of a longitudinal seam welded part is obtained, and it is very useful industrially.
本発明では、母材の成分組成、鋼管の長手方向に内外面から1層ずつ溶接した鋼管のシーム溶接部における溶融線近傍の旧オーステナイト粒径が50μm以上となる溶接熱影響部のミクロ組織を規定する。
[母材の成分組成]
以下の説明において%は質量%とする。
In the present invention, the composition of the base material, the microstructure of the weld heat affected zone where the prior austenite grain size near the fusion line in the seam weld zone of the steel pipe welded layer by layer from the inner and outer surfaces in the longitudinal direction of the steel pipe is 50 μm or more. Stipulate.
[Component composition of base material]
In the following description, “%” means “mass%”.
C:0.03〜0.12%
Cは低温変態組織においては過飽和固溶することで強度上昇に寄与する。この効果を得るためには0.03%以上の添加が必要であるが、0.12%を超えて添加すると、鋼管の円周溶接部の硬度上昇が著しくなり、溶接低温割れが発生しやすくなるため、上限を0.12%とする。
C: 0.03-0.12%
C contributes to an increase in strength by being supersaturated in a low temperature transformation structure. In order to obtain this effect, 0.03% or more of addition is necessary, but if added over 0.12%, the hardness of the circumferential welded portion of the steel pipe is remarkably increased and cold cracking is likely to occur. Therefore, the upper limit is made 0.12%.
Si:0.01〜0.2%
Siは脱酸材として作用し、さらに固溶強化により鋼材の強度を増加させる元素であるが、0.01%未満ではその効果が殆ど得られない。一方、Siを0.2%を超えて添加すると溶接入熱が高い場合、溶接熱影響部の靭性にとって有害なMAを多量に含む上部ベイナイトの生成が顕著となるため、上限を0.2%とする。なお、好適な範囲は0.01%以上0.12%未満である。
Si: 0.01 to 0.2%
Si is an element that acts as a deoxidizing material and increases the strength of the steel material by solid solution strengthening, but if it is less than 0.01%, the effect is hardly obtained. On the other hand, when Si is added in excess of 0.2%, when the heat input is high, the formation of upper bainite containing a large amount of MA harmful to the toughness of the weld heat affected zone becomes significant, so the upper limit is 0.2%. And A preferable range is 0.01% or more and less than 0.12%.
Mn:1.2〜2.2%
Mnは焼入性向上元素として作用する。1.2%以上の添加によりその効果が得られるが、連続鋳造プロセスでは中心偏析部での濃度上昇が著しく、2.2%を超える添加を行うと、中心偏析部での遅れ破壊の原因となるため、上限を2.2%とする。
Mn: 1.2-2.2%
Mn acts as a hardenability improving element. The effect can be obtained by addition of 1.2% or more. However, in the continuous casting process, the concentration rises at the center segregation part remarkably. If the addition exceeds 2.2%, the cause of delayed fracture at the center segregation part. Therefore, the upper limit is made 2.2%.
Al:0.01〜0.08%
Alは脱酸元素として作用する。0.01%以上の添加で十分な脱酸効果が得られるが、0.08%を超えて添加すると鋼中の清浄度が低下し、靱性劣化の原因となるため、上限を0.08%とする。
Al: 0.01 to 0.08%
Al acts as a deoxidizing element. A sufficient deoxidation effect can be obtained with addition of 0.01% or more, but if added over 0.08%, the cleanliness in the steel is lowered and the toughness is deteriorated, so the upper limit is 0.08%. And
Nb:0.01〜0.08%
Nbは熱間圧延時のオーステナイト未再結晶領域を拡大する効果があり、950℃以下を未再結晶領域とするため、0.01%以上添加する。一方、0.08%を超えて添加すると、HAZの靱性を著しく損ねることから上限を0.08%とする。
Nb: 0.01 to 0.08%
Nb has an effect of expanding the austenite non-recrystallized region at the time of hot rolling, and 0.01% or more is added to make the non-recrystallized region at 950 ° C. or less. On the other hand, if added over 0.08%, the toughness of HAZ is significantly impaired, so the upper limit is made 0.08%.
Ti:0.005〜0.025%
Tiは窒化物を形成し、鋼中の固溶N量低減に有効で、析出したTiNはピンニング効果でオーステナイト粒の粗大化を抑制して、母材、溶接熱影響部の靱性向上に寄与する。当該ピンニング効果を得るためには0.005%以上の添加が必要であるが、0.025%を超えて添加すると炭化物を形成するようになり、その析出硬化で靱性が著しく劣化するため、上限を0.025%とする。
Ti: 0.005-0.025%
Ti forms nitrides and is effective in reducing the amount of solute N in the steel. Precipitated TiN suppresses the austenite grain coarsening by the pinning effect and contributes to the improvement of the toughness of the base metal and the heat affected zone of the weld. . Addition of 0.005% or more is necessary to obtain the pinning effect, but if added over 0.025%, carbides are formed, and the toughness is significantly deteriorated by precipitation hardening. Is 0.025%.
N:0.001〜0.01%
Nは通常鋼中の不可避不純物として存在するが、Ti添加により、TiNを形成する。TiNによるピンニング効果で、オーステナイト粒の粗大化を抑制するために0.001%
B:0.0003〜0.0020%
Bは溶接熱影響部においてオーステナイト粒界に偏析し、焼入性を高める効果があり、合金量の少ない成分組成でベイニティックフェライトを構成するラスの内部あるいはラス間に微細なセメンタイトが析出したMAを含まないベイナイトの生成を容易にする。
N: 0.001 to 0.01%
N usually exists as an inevitable impurity in steel, but TiN is formed by addition of Ti. 0.001% to suppress austenite grain coarsening due to pinning effect by TiN
B: 0.0003 to 0.0020%
B segregates at the austenite grain boundary in the heat affected zone and has the effect of improving hardenability, and fine cementite is precipitated inside or between the laths constituting the bainitic ferrite with a small alloy composition. Facilitates the production of bainite free of MA.
この効果は0.0003%以上0.0020%以下の添加で顕著であり、0.0020%を超えて添加すると、B系の炭化物や窒化物が大量に生成し靭性が低下するようになるため、上限を0.0020%とする。なお、好適な範囲は0.0005%以上0.0015%以下である。 This effect is prominent when added in an amount of 0.0003% or more and 0.0020% or less, and if added over 0.0020%, a large amount of B-based carbides and nitrides are generated and the toughness is lowered. The upper limit is made 0.0020%. A preferable range is 0.0005% or more and 0.0015% or less.
Cu、Ni、Cr、Mo、Vの一種または二種以上
Cu、Ni、Cr、Mo、Vはいずれも焼入性向上元素として作用するため、高強度化を目的に、これらの元素の一種、または二種以上を添加する。
Cu, Ni, Cr, Mo, V, one or more of Cu, Ni, Cr, Mo, V all act as a hardenability improving element, so for the purpose of increasing the strength, one of these elements, Or two or more of them are added.
Cu:0.01〜1%
Cuは、0.01%以上添加することで鋼の焼入性向上に寄与する。しかし、1%以上の添加を行うと、靱性劣化が生じるため、添加する場合は上限を1%とし、0.01〜1%とする。
Cu: 0.01 to 1%
Cu contributes to the hardenability improvement of steel by adding 0.01% or more. However, since addition of 1% or more causes deterioration of toughness, the upper limit is set to 1% and 0.01 to 1% when added.
Ni:0.01〜1%
Niは、0.01%以上添加することで鋼の焼入性向上に寄与する。特に、多量に添加しても靱性劣化を生じないため、強靱化に有効であるが、高価な元素であるため、添加する場合は上限を1%とし、0.01〜1%とする。
Ni: 0.01 to 1%
Ni contributes to improving the hardenability of steel by adding 0.01% or more. In particular, even if it is added in a large amount, it does not cause toughness deterioration, so it is effective for toughening. However, since it is an expensive element, when it is added, the upper limit is made 1%, and 0.01 to 1%.
Cr:0.01〜1%
Crもまた0.01%以上添加することで鋼の焼入性向上に寄与する。一方、1%を超えて添加すると、靱性が劣化するため、添加する場合は上限を1%とし、0.01〜1%とする。
Cr: 0.01 to 1%
Cr also contributes to improving the hardenability of steel by adding 0.01% or more. On the other hand, if added over 1%, the toughness deteriorates, so when added, the upper limit is made 1%, and 0.01 to 1%.
Mo:0.01〜1%
Moもまた0.01%以上添加することで鋼の焼入性向上に寄与する。一方、1%を超えて添加すると、靱性が劣化するため、添加する場合は、上限を1%とし、0.01〜1%とする。
Mo: 0.01 to 1%
Mo also contributes to improving the hardenability of steel by adding 0.01% or more. On the other hand, if added over 1%, the toughness deteriorates, so when added, the upper limit is made 1% and 0.01 to 1%.
V:0.01〜0.1%
Vは炭窒化物を形成することで析出強化し、特に溶接熱影響部の軟化防止に寄与する。0.01%以上の添加によりこの効果が得られるが、0.1%を超えて添加すると、析出強化が著しく靱性が低下するため、添加する場合は、上限を0.1%とする。
V: 0.01 to 0.1%
V forms precipitation strengthening by forming carbonitride, and contributes especially to the softening prevention of a weld heat affected zone. This effect can be obtained by addition of 0.01% or more, but if added over 0.1%, precipitation strengthening remarkably reduces toughness, so when added, the upper limit is made 0.1%.
O:0.005%以下、P:0.015%以下、S:0.003%以下
本発明でO、P、Sは不可避的不純物であり含有量の上限を規定する。Oは、粗大で靱性に悪影響を及ぼす介在物生成を抑制するため、0.005%以下とする。Pは、含有量が多いと中央偏析が著しく、母材靭性が劣化するため、0.015%以下とする。Sは、含有量が多いとMnSの生成量が著しく増加し、母材の靭性が劣化するため、0.003%以下とする。
O: 0.005% or less, P: 0.015% or less, S: 0.003% or less In the present invention, O, P, and S are inevitable impurities and define the upper limit of the content. O is 0.005% or less in order to suppress the formation of inclusions that are coarse and adversely affect toughness. If the P content is large, the central segregation is remarkable and the base material toughness is deteriorated. If the content of S is large, the amount of MnS produced increases remarkably and the toughness of the base material deteriorates.
PCM(質量%):0.12〜0.20
PCM(質量%)はC+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×Bで表す溶接割れ感受性指数で、各元素は含有量(質量%)とし、含有しない元素は0とする。
P CM (mass%): 0.12 to 0.20
P CM (mass%) is a weld cracking susceptibility index represented by C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B. Each element is a content (mass%), and an element not contained is 0. .
本発明では、鋼管の引張強度:570MPa以上760MPa以下を達成するためPCM(質量%)を0.12以上0.20以下とする。 In the present invention, in order to achieve the tensile strength of the steel pipe: 570 MPa or more and 760 MPa or less, P CM (mass%) is set to 0.12 or more and 0.20 or less.
以上が本発明に係る鋼の基本成分組成であるが、溶接部の靭性を更に向上させる場合、Ca、REM、Zr、Mgの一種または二種以上を添加する。 The above is the basic component composition of the steel according to the present invention. When the toughness of the weld is further improved, one or more of Ca, REM, Zr, and Mg are added.
Ca、REM、Zr、Mg
Ca、REM、Zr、Mgは鋼中で酸硫化物あるいは炭窒化物を形成し、主に溶接熱影響部におけるオーステナイト粒粗大化をピンニング効果で抑制し、靱性を向上させる目的で添加してもよい。
Ca, REM, Zr, Mg
Ca, REM, Zr, and Mg form oxysulfides or carbonitrides in steel, and are mainly added to improve the toughness by suppressing the austenite grain coarsening in the heat affected zone by the pinning effect. Good.
Ca:0.0005〜0.01%
製鋼プロセスにおいて、Ca添加量が0.0005%未満の場合、脱酸反応支配でCaSの確保が難しく靱性改善効果が得られないので、Caの下限を0.0005%とする。
Ca: 0.0005 to 0.01%
In the steelmaking process, when the Ca addition amount is less than 0.0005%, it is difficult to secure CaS due to the deoxidation reaction control, and a toughness improving effect cannot be obtained, so the lower limit of Ca is set to 0.0005%.
一方、Ca添加量が0.01%を超えた場合、粗大CaOが生成しやすくなり、母材を含めて靱性が低下し、取鍋のノズル閉塞の原因となり、生産性を阻害するため、上限は0.01%とし、添加する場合は、0.0005〜0.01%とする。 On the other hand, when the Ca addition amount exceeds 0.01%, coarse CaO is likely to be generated, the toughness including the base material is lowered, the nozzle of the ladle is blocked, and the productivity is hindered. Is 0.01%, and when added, 0.0005 to 0.01%.
REM:0.0005〜0.02%
REMは鋼中で酸硫化物を形成し、0.0005%以上添加することで溶接熱影響部の粗大化を防止するピンニング効果をもたらす。しかし、高価な元素であり、かつ0.02%を超えて添加しても効果が飽和するため、上限を0.02%とし、添加する場合は、0.0005〜0.02%とする。
REM: 0.0005 to 0.02%
REM forms an oxysulfide in steel and provides a pinning effect to prevent the weld heat affected zone from becoming coarse by adding 0.0005% or more. However, since it is an expensive element and the effect is saturated even if added over 0.02%, the upper limit is made 0.02%, and when added, it is made 0.0005 to 0.02%.
Zr:0.0005〜0.03%
Zrは鋼中で炭窒化物を形成し、とくに溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上の添加が必要であるが、0.03%を超えて添加すると、鋼中の清浄度が著しく低下し、靱性が低下するようになるため、上限を0.03%とし、添加する場合は、0.0005〜0.03%とする。
Zr: 0.0005 to 0.03%
Zr forms carbonitrides in steel and brings about a pinning effect that suppresses the coarsening of austenite grains, particularly in the weld heat affected zone. In order to obtain a sufficient pinning effect, addition of 0.0005% or more is necessary. However, when the addition exceeds 0.03%, the cleanliness in the steel is remarkably lowered and the toughness is lowered. Therefore, the upper limit is made 0.03%, and when added, the content is made 0.0005 to 0.03%.
Mg:0.0005〜0.01%
Mgは製鋼過程で鋼中に微細な酸化物として生成し、特に、溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上の添加が必要であるが、0.01%を超えて添加すると、鋼中の清浄度が低下し、靱性が低下するようになるため、上限を0.01%とし、添加する場合は、0.0005〜0.01%とする。
Mg: 0.0005 to 0.01%
Mg is produced as fine oxides in the steel during the steelmaking process, and in particular, has a pinning effect that suppresses the coarsening of austenite grains in the weld heat affected zone. In order to obtain a sufficient pinning effect, addition of 0.0005% or more is necessary, but if added over 0.01%, the cleanliness in the steel is lowered and the toughness is lowered. The upper limit is 0.01%, and when added, 0.0005 to 0.01%.
なお、上記した成分以外の残部は、Feおよび不可避的不純物からなる。 The balance other than the above components is composed of Fe and inevitable impurities.
[母材製造方法]
本発明では、上述した成分組成を有する鋼を、常法により熱間圧延後、加速冷却を行って所定の板厚と強度の鋼板とする。板厚によっては強度、靭性などの機械的性質が所望の値となるように、同一ライン上(インライン)で高周波加熱焼戻しを行う。
[Base material manufacturing method]
In the present invention, the steel having the above-described component composition is hot-rolled by a conventional method and then subjected to accelerated cooling to obtain a steel plate having a predetermined plate thickness and strength. Depending on the plate thickness, high-frequency heat tempering is performed on the same line (inline) so that mechanical properties such as strength and toughness have desired values.
具体的には、例えば、上述した成分組成を有する鋼を、1000〜1200℃の温度に加熱し、600℃以上の圧延終了温度で熱間圧延した後、20℃/s以上の冷却速度で250℃以上600℃以下の温度まで加速冷却する。 Specifically, for example, steel having the above-described component composition is heated to a temperature of 1000 to 1200 ° C., hot-rolled at a rolling end temperature of 600 ° C. or higher, and then cooled at a cooling rate of 20 ° C./s or higher. Accelerated cooling to a temperature of from ℃ to 600 ℃.
尚、本発明では鋼管の引張強度が570MPa以上760MPa以下となるように鋼板の板厚に応じて、0.5℃/s以上の昇温速度で500〜750℃まで再加熱処理を施す。
[鋼管の製造条件]
本発明に係る鋼管は、上述した鋼材(以下、母材)を、通常のUOE鋼管製造プロセスで製造する。
In the present invention, reheating treatment is performed to 500 to 750 ° C. at a temperature rising rate of 0.5 ° C./s or more according to the thickness of the steel plate so that the tensile strength of the steel pipe is 570 MPa or more and 760 MPa or less.
[Production conditions for steel pipes]
The steel pipe which concerns on this invention manufactures the steel material (henceforth a base material) mentioned above with a normal UOE steel pipe manufacturing process.
シーム溶接は、仮付溶接後,鋼管の内面(back側),外面(final側)を1層ずつ入熱80kJ/cm以下の多電極サブマージアーク溶接で行う。80kJ/cm以下の入熱で(3)式を満たす内外面入熱バランスに制御することで、−30℃以下の低温でも安定した継手HAZ靱性が得られる。 Seam welding is performed by multi-electrode submerged arc welding with a heat input of 80 kJ / cm or less for each of the inner surface (back side) and outer surface (final side) of the steel pipe after temporary welding. By controlling the inner and outer surface heat input balance satisfying the expression (3) with a heat input of 80 kJ / cm or less, stable joint HAZ toughness can be obtained even at a low temperature of −30 ° C. or less.
継手HAZにおいて、外面側ではボンド近傍のCGHAZ組織で靭性が最も低く、内面側ではRoot部のCGHAZ組織が外面側のシーム溶接により2相域(Ac1〜Ac3点)に再加熱されるICCGHAZ組織が最も低い。 The joint HAZ has the lowest toughness in the CGHAZ structure in the vicinity of the bond on the outer surface side, and the ICCGHAZ structure in which the CGHAZ structure in the root part is reheated to a two-phase region (Ac1 to Ac3 points) by seam welding on the outer surface side. Lowest.
そして、継手HAZで靱性の最も劣化するLBZ(Local Brittle Zone)は内面側のICCGHAZ組織となるため、本発明では、外面側と内面側のシーム溶接の入熱を式(3)を満たすように設定して、内面側のICCGHAZ組織の前組織となるCGHAZ部のγ粒粗大化を抑制する。 And since LBZ (Local Brittle Zone) whose toughness is most deteriorated in the joint HAZ becomes an ICCGHAZ structure on the inner surface side, in the present invention, the heat input of the seam welding on the outer surface side and the inner surface side is satisfied to satisfy the equation (3). Set to suppress the coarsening of the γ grains in the CGHAZ part, which is the front structure of the ICCGHAZ structure on the inner surface side.
内面入熱≦外面入熱 …(3)
更に、本発明では、外面側および内面側のシャルピー試験(切欠き位置:FL,試験温度ー30℃)で安定して、100J以上の衝撃値が得られるように、外面側と内面側のシーム溶接の入熱を80kJ/cm以下の入熱とする。入熱は、HAZ靭性の観点から小さいほど良いため下限は設定しない。但し、内外面一層溶接が可能な入熱とする。なお、安定的に確保とは、−30℃以下の試験温度で試験本数100回以上のシャルピー試験において累積破損確率が1%以下となることを意味する。
Inner surface heat input ≦ Outer surface heat input (3)
Further, according to the present invention, the seam on the outer surface side and the inner surface side is stable so that an impact value of 100 J or more can be obtained in a stable Charpy test (notch position: FL, test temperature-30 ° C.) on the outer surface side and the inner surface side. The heat input of welding is 80 kJ / cm or less. The lower the heat input, the better from the viewpoint of HAZ toughness, so no lower limit is set. However, the heat input is such that one inner and outer surface welding is possible. “Securing stably” means that the cumulative failure probability is 1% or less in a Charpy test of 100 or more tests at a test temperature of −30 ° C. or less.
シーム溶接で用いるフラックスは特に制限はなく、溶融型であっても焼成型であってもかまわない。また、必要に応じ、溶接前予熱、あるいは溶接後熱処理を行う。シーム溶接後、要求される真円度に応じて、0.4%以上2.0%以下の拡管率にて拡管を行う。 The flux used in seam welding is not particularly limited, and may be a melt type or a fired type. Moreover, preheating before welding or heat treatment after welding is performed as necessary. After seam welding, pipe expansion is performed at a pipe expansion rate of 0.4% or more and 2.0% or less according to the required roundness.
[ミクロ組織]
上述した成分組成の母材と溶接条件の組み合わせにより、シーム溶接部における溶融線近傍の旧オーステナイト粒径が50μm以上となる溶接熱影響部のミクロ組織において、平均粒径5μm以下のベイニティックフェライトの、ラス内および/またはラス間にセメンタイトを主体とする炭化物が析出したベイナイト(MAフリーのベイナイト)の面積率が少なくとも50%存在し、残部が、島状マルテンサイト(MA)および/またはラス間のセメンタイトを含む上部ベイナイトあるいはマルテンサイトあるいはパーライトあるいはそれらの混合組織が得られる。
[Microstructure]
Bainitic ferrite with an average grain size of 5 μm or less in the microstructure of the weld heat-affected zone where the prior austenite grain size in the vicinity of the melt line in the seam weld is 50 μm or more by the combination of the base material having the above composition and the welding conditions. The area ratio of bainite (MA-free bainite) in which carbides mainly composed of cementite are precipitated in the lath and / or between the laths is present at least 50%, and the balance is island martensite (MA) and / or lath. Upper bainite, martensite, pearlite, or a mixed structure containing cementite in between is obtained.
ミクロ組織の同定は、鋼管の外面側の表面から板厚方向に6mmの位置での溶融線近傍を走査型電子顕微鏡(倍率5000倍)でランダムに10視野以上観察して行う。 The microstructure is identified by randomly observing at least 10 fields of view near the melting line at a position 6 mm from the outer surface of the steel pipe in the thickness direction with a scanning electron microscope (5000 magnifications).
また、ベイニティックフェライトの平均粒径は、光学顕微鏡での観察により、100個以上の粒の平均値をとる。尚、溶融線近傍で旧オーステナイト粒径が50μm以上となる溶接熱影響部のCGHAZは鋼管の外面側および、外面溶接前の内面側のFL近傍で観察される。 Moreover, the average particle diameter of bainitic ferrite takes the average value of 100 or more grains by observation with an optical microscope. In addition, CGHAZ of the welding heat affected zone where the prior austenite grain size is 50 μm or more in the vicinity of the melting line is observed near the FL on the outer surface side of the steel pipe and on the inner surface side before outer surface welding.
溶融線近傍の旧オーステナイト粒径が50μm以上となる溶接熱影響部において、上記ミクロ組織の場合、ビッカース硬さ(荷重:98N)が、200≦Hv(98N)≦300となり、所望の継手強度、靭性が得られる。なお、溶接熱影響部の硬さは、荷重98Nにてビッカース硬度を10点以上測定し、その平均値とする。 In the weld heat affected zone where the prior austenite grain size near the melting line is 50 μm or more, in the case of the above microstructure, the Vickers hardness (load: 98 N) is 200 ≦ Hv (98 N) ≦ 300, and the desired joint strength, Toughness is obtained. In addition, the hardness of a welding heat affected zone measures Vickers hardness 10 points or more with a load of 98N, and makes it the average value.
表1に示す化学組成の鋼を転炉で溶製し、連続鋳造によって220mm厚の鋳片とした後、表2に示す熱間圧延、加速冷却、再加熱条件で板厚25〜32mmの鋼板A〜Jを製造した。焼戻し処理として、加速冷却設備と同一ライン上に設置した誘導加熱型の加熱装置で再加熱処理を行った。 Steel having a chemical composition shown in Table 1 is melted in a converter and made into a slab of 220 mm thickness by continuous casting, and then a steel plate having a thickness of 25 to 32 mm under hot rolling, accelerated cooling, and reheating conditions shown in Table 2. A to J were produced. As the tempering treatment, reheating treatment was performed with an induction heating type heating device installed on the same line as the accelerated cooling equipment.
得られた鋼板は通常のUOE管製造装置でUプレス、Oプレスによって成形した後、鋼管の内面および外面をサブマージアーク溶接でシーム溶接し、0.6〜1.2%の拡管率にて拡管して外径400〜1626mmのUOE鋼管とした。 The obtained steel sheet was formed by U press and O press in a normal UOE pipe manufacturing equipment, and then the inner and outer surfaces of the steel pipe were seam welded by submerged arc welding, and the pipe was expanded at a expansion ratio of 0.6 to 1.2%. Thus, a UOE steel pipe having an outer diameter of 400 to 1626 mm was obtained.
得られた鋼管の引張強度を評価するため、API−5Lに準拠した全厚引張試験片を周方向に採取し、引張試験を実施した。 In order to evaluate the tensile strength of the obtained steel pipe, a full-thickness tensile specimen according to API-5L was taken in the circumferential direction, and a tensile test was performed.
更に、鋼管のシーム溶接継手部からJIS Z2202(1980)のVノッチシャルピー衝撃試験片を外面側表面下2mm、内面側のルート部から採取した。シャルピー衝撃試験はシャルピー衝撃試験片のノッチ位置をFL(HAZと溶接金属が1:1の割合)、試験温度−30℃で実施し、試験本数100本の平均値を求めた。 Furthermore, a V-notch Charpy impact test piece of JIS Z2202 (1980) was taken 2 mm below the outer surface and from the root portion on the inner surface from the seam welded joint of the steel pipe. The Charpy impact test was carried out at the notch position of the Charpy impact test piece at FL (ratio of HAZ and weld metal is 1: 1) at a test temperature of −30 ° C., and the average value of 100 test pieces was obtained.
図1(a)に外面側、図1(b)に内面側のルート部におけルシャルピー試験片の採取位置とノッチ位置を示す。 FIG. 1 (a) shows the sampling position and notch position of the Rurpee test piece at the root portion on the outer surface side and FIG. 1 (b) at the root portion on the inner surface side.
外面側CGHAZで、溶融線近傍の旧オーステナイト粒径が50μm以上となる溶接熱影響部の硬さを、ビッカース硬さ試験(荷重:98N)で測定した。 On the outer surface side CGHAZ, the hardness of the weld heat affected zone where the prior austenite grain size in the vicinity of the melting line is 50 μm or more was measured by a Vickers hardness test (load: 98 N).
表3に鋼管の引張強度、CGHAZのミクロ組織および硬度、CGHAZの靱性(以下HAZ靭性)の試験結果をまとめて示す。尚、本実施例の説明では、円相当径5μm以下のベイニティックフェライトの、ラス内および/またはラス間にセメンタイトを主体とする炭化物が析出したベイナイトをMAフリーベイナイト組織と称する。 Table 3 summarizes the test results of the tensile strength of the steel pipe, the microstructure and hardness of CGHAZ, and the toughness of CGHAZ (hereinafter referred to as HAZ toughness). In the description of this example, bainite of bainitic ferrite having an equivalent circle diameter of 5 μm or less in which carbides mainly composed of cementite are precipitated in the lath and / or between the laths is referred to as an MA free bainite structure.
鋼管の引張強度が570MPa以上760MPa以下、溶接ボンド部の試験温度−30℃でのシャルピー吸収エネルギ−(vE−30)が100J以上を本発明範囲内とする。 The steel pipe has a tensile strength of 570 MPa or more and 760 MPa or less, and a Charpy absorbed energy (vE-30) of 100 J or more at a test temperature of the welded bond portion of −30 ° C. is within the scope of the present invention.
発明例No.1〜12は本発明で規定するミクロ組織を有し、高HAZ靭性(100J以上で累積破損確率が1%以下)を備えていることが確認された。発明例No.1〜12は外面、内面の溶接入熱が入熱80kJ/cm以下、且つ内面入熱≦外面入熱を満たしている。 Invention Example No. 1 to 12 have a microstructure defined in the present invention, and were confirmed to have high HAZ toughness (100 J or more and cumulative failure probability of 1% or less). Invention Example No. In Nos. 1 to 12, the heat input of the outer surface and the inner surface satisfies heat input of 80 kJ / cm or less and the inner surface heat input ≦ the outer surface heat input.
一方、比較例No.13〜16は、外面、内面の溶接入熱が入熱80kJ/cm以上で、MAフリーのベイナイト組織の分率を50%以上確保できなかったために、HAZ靭性が低下した。 On the other hand, Comparative Example No. In Nos. 13 to 16, the heat input of the outer surface and the inner surface was 80 kJ / cm or more, and the MA-free bainite structure fraction could not be ensured by 50% or more, so the HAZ toughness decreased.
比較例No.17〜20は、母材の成分組成が本発明範囲外の実施例で、Bを含有しない比較例No.17は、ミクロ組織において、MAフリーのベイナイト組織の分率を50%以上確保できなかったために、HAZ靭性が低下した。 Comparative Example No. Nos. 17 to 20 are examples in which the composition of the base material is outside the range of the present invention, and Comparative Example No. In No. 17, since the fraction of MA-free bainite structure could not be ensured by 50% or more in the microstructure, HAZ toughness was lowered.
PCMが本発明の下限を下回った比較例No.18は、CGHAZ組織がパーライト主体組織となり、CGHAZ硬さが低下するとともに、HAZ靭性が低下した。 Comparative Example P CM is below the lower limit of the present invention No. In No. 18, the CGHAZ structure became a pearlite-based structure, the CGHAZ hardness decreased, and the HAZ toughness decreased.
PCM値が本発明の上限を上回った比較例No.19は、母材強度が本発明範囲外となり、Siの添加量が本発明の上限を上回った比較例No.20は、MAフリーのベイナイト組織の分率を50%以上確保できなかったために、HAZ靭性が低下した。 Comparative Example P CM value exceeds the upper limit of the present invention No. No. 19 is a comparative example No. 19 in which the strength of the base material is outside the range of the present invention and the amount of Si exceeds the upper limit of the present invention. In No. 20, since the fraction of MA-free bainite structure could not be secured by 50% or more, the HAZ toughness was lowered.
内面入熱が外面入熱を上回った比較例No.21やNo.22では、MAフリーのベイナイト組織の分率を50%以上確保できなかったために、シャルピー衝撃値が100J以下で、内面入熱が外面入熱を下回った場合よりも低下した。 Comparative Example No. in which inner surface heat input exceeded outer surface heat input 21 or No. In No. 22, since the fraction of MA-free bainite structure could not be ensured by 50% or more, the Charpy impact value was 100 J or less, and the inner surface heat input was lower than the outer surface heat input.
Claims (5)
C:0.03〜0.12%、
Si:0.01〜0.2%、
Mn:1.2〜2.2%、
P:0.015%以下、
S:0.003%以下、
Al:0.01〜0.08%、
Nb:0.01〜0.08%、
Ti:0.005〜0.025%、
N:0.001〜0.010%、
O:0.005%以下、
B:0.0003〜0.0020%
を含有し、更に、
Cu:0.01〜1%、
Ni:0.01〜1%、
Cr:0.01〜1%、
Mo:0.01〜0.2%、
V:0.01〜0.1%
の一種または二種以上を含有し、
下記式(1)で計算されるPCM値(質量%)が0.12≦PCM≦0.20を満足し、
残部Feおよび不可避的不純物からなる母材部と、
内外面から1層ずつ溶接した鋼管のシーム溶接部における旧オーステナイト粒径が50μm以上となる溶接熱影響部のミクロ組織において、平均粒径5μm以下のベイニティックフェライトの、ラス内および/またはラス間にセメンタイトを主体とする炭化物が析出したベイナイトが面積率で少なくとも50%存在し、残部が島状マルテンサイトおよび/またはラス間のセメンタイトを含む上部ベイナイトあるいはマルテンサイトあるいはパーライトあるいはそれらの混合組織である縦シーム溶接継手を有することを特徴とする溶接熱影響部靭性に優れた引張強度が570MPa以上760MPa以下の低温用高強度溶接鋼管。
PCM(質量%)=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B…(1)
但し、各元素は含有量(質量%)を示す。 % By mass
C: 0.03-0.12%,
Si: 0.01 to 0.2%,
Mn: 1.2-2.2%,
P: 0.015% or less,
S: 0.003% or less,
Al: 0.01 to 0.08%,
Nb: 0.01 to 0.08%,
Ti: 0.005 to 0.025%,
N: 0.001 to 0.010%,
O: 0.005% or less,
B: 0.0003 to 0.0020%
Further,
Cu: 0.01 to 1%,
Ni: 0.01 to 1%,
Cr: 0.01-1%,
Mo: 0.01 to 0.2 %,
V: 0.01 to 0.1%
Containing one or more of
P CM value calculated by the following formula (1) (mass%) satisfies the 0.12 ≦ P CM ≦ 0.20,
A base material portion comprising the balance Fe and inevitable impurities;
In the lath and / or lath of bainitic ferrite with an average grain size of 5 μm or less in the microstructure of the weld heat affected zone where the prior austenite grain size is 50 μm or more in the seam weld zone of the steel pipe welded layer by layer from the inner and outer surfaces There is at least 50% area ratio of bainite with cementite mainly composed of cementite in between, and the balance is upper bainite, martensite, pearlite or mixed structure containing cementite between island martensite and / or lath. A high-strength welded steel pipe for low temperatures having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness, characterized by having a certain longitudinal seam welded joint.
P CM (mass%) = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B (1)
However, each element shows content (mass%).
Ca:0.0005〜0.01%、
REM:0.0005〜0.02%、
Zr:0.0005〜0.03%、
Mg:0.0005〜0.01%
の一種または二種以上を含有することを特徴とする請求項1記載の溶接熱影響部靭性に優れた引張強度が570MPa以上760MPa以下の低温用高強度溶接鋼管。 The base material part is further mass%,
Ca: 0.0005 to 0.01%,
REM: 0.0005 to 0.02%,
Zr: 0.0005 to 0.03%,
Mg: 0.0005 to 0.01%
The high-strength welded steel pipe for low temperatures having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness according to claim 1, comprising one or more of the following .
200≦Hv(98N)≦300 …(2) The hardness of the weld heat affected zone satisfies the following formula (2) : The high strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat affected zone toughness according to claim 1 or 2 .
200 ≦ Hv (98N) ≦ 300 (2)
内面入熱≦外面入熱 …(3) It is a manufacturing method of the high-strength steel pipe for low temperature whose tensile strength excellent in the welding heat affected zone toughness as described in any one of Claims 1 thru | or 570MPa or less is 760MPa or less, Comprising: A raw steel plate is shape | molded cylindrically, The welding heat input of each of the inner and outer surfaces when the butt portion is welded one layer at a time from the inner and outer surfaces is 80 kJ / cm or less, and the heat input balance on the outer surface side and the inner surface side satisfies the following formula (3). A method for producing a high-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness .
Inner surface heat input ≦ Outer surface heat input (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008213867A JP5217773B2 (en) | 2007-09-19 | 2008-08-22 | High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007241932 | 2007-09-19 | ||
JP2007241932 | 2007-09-19 | ||
JP2008213867A JP5217773B2 (en) | 2007-09-19 | 2008-08-22 | High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009091653A JP2009091653A (en) | 2009-04-30 |
JP5217773B2 true JP5217773B2 (en) | 2013-06-19 |
Family
ID=40663924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008213867A Active JP5217773B2 (en) | 2007-09-19 | 2008-08-22 | High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5217773B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9181609B2 (en) * | 2009-11-25 | 2015-11-10 | Jfe Steel Corporation | Welded steel pipe for linepipe having high compressive strength and excellent sour gas resistance and manufacturing method thereof |
JP5561120B2 (en) * | 2009-11-25 | 2014-07-30 | Jfeスチール株式会社 | Welded steel pipe for high compressive strength and high toughness line pipe and manufacturing method thereof |
JP5857400B2 (en) | 2009-11-25 | 2016-02-10 | Jfeスチール株式会社 | Welded steel pipe for high compressive strength line pipe and manufacturing method thereof |
JP5177325B2 (en) * | 2010-11-22 | 2013-04-03 | 新日鐵住金株式会社 | Electron beam welded joint, steel plate for electron beam welded joint, and manufacturing method thereof |
JP5776398B2 (en) * | 2011-02-24 | 2015-09-09 | Jfeスチール株式会社 | Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same |
RU2601719C2 (en) | 2012-08-09 | 2016-11-10 | ДжФЕ СТИЛ КОРПОРЕЙШН | Method of hidden-arc welding, weld joint thus produced, and steel pipeline or pipe with welded joint |
CN103725960B (en) * | 2013-12-28 | 2016-01-20 | 首钢总公司 | A kind of Thin high-flexibility pipeline steel plate and production method thereof |
CN105624553B (en) * | 2015-12-31 | 2017-05-03 | 江西理工大学 | High-strength steel plate with improved low-temperature impact toughness and manufacturing method thereof |
JP6855962B2 (en) * | 2017-07-04 | 2021-04-07 | 日本製鉄株式会社 | Welded steel pipe |
WO2019151045A1 (en) | 2018-01-30 | 2019-08-08 | Jfeスチール株式会社 | Steel material for line pipes, production method for same, and production method for line pipe |
CN111719085A (en) * | 2020-06-30 | 2020-09-29 | 中国石油集团渤海石油装备制造有限公司 | Marine vessel and method of making same |
CN114318129B (en) * | 2020-10-10 | 2022-12-16 | 宝山钢铁股份有限公司 | 890 MPa-level easily-welded seamless steel pipe and manufacturing method thereof |
CN112548277A (en) * | 2020-11-12 | 2021-03-26 | 中国大唐集团科学技术研究院有限公司火力发电技术研究院 | Weld joint interface structure optimization method for dissimilar steel welded joint of thermal power plant |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3519966B2 (en) * | 1999-01-07 | 2004-04-19 | 新日本製鐵株式会社 | Ultra-high-strength linepipe excellent in low-temperature toughness and its manufacturing method |
JP3654194B2 (en) * | 2001-01-29 | 2005-06-02 | 住友金属工業株式会社 | High-strength steel material with excellent strain aging resistance and its manufacturing method |
JP3770106B2 (en) * | 2001-06-20 | 2006-04-26 | 住友金属工業株式会社 | High strength steel and its manufacturing method |
JP3702216B2 (en) * | 2001-11-01 | 2005-10-05 | 新日本製鐵株式会社 | Manufacturing method for inner and outer surface submerged arc welded steel pipes with excellent seam weld toughness |
JP4171267B2 (en) * | 2002-09-05 | 2008-10-22 | 新日本製鐵株式会社 | High strength welded steel pipe with excellent weld toughness and manufacturing method thereof |
JP4671959B2 (en) * | 2003-12-19 | 2011-04-20 | 新日本製鐵株式会社 | Steel sheets and steel pipes for ultra-high-strength line pipes excellent in low-temperature toughness and methods for producing them |
JP4946092B2 (en) * | 2006-02-28 | 2012-06-06 | Jfeスチール株式会社 | High-strength steel and manufacturing method thereof |
-
2008
- 2008-08-22 JP JP2008213867A patent/JP5217773B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009091653A (en) | 2009-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5217773B2 (en) | High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same | |
JP4853575B2 (en) | High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same | |
JP5217556B2 (en) | High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same | |
KR101119240B1 (en) | Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same | |
JP4819186B2 (en) | Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe | |
JP4819185B2 (en) | Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe | |
US11555233B2 (en) | Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes | |
JP2013204103A (en) | High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance | |
JP5055774B2 (en) | A steel plate for line pipe having high deformation performance and a method for producing the same. | |
JP5217385B2 (en) | Steel sheet for high toughness line pipe and method for producing the same | |
JP4655670B2 (en) | Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness | |
JP6256655B2 (en) | Steel sheet for structural pipe, method for manufacturing steel sheet for structural pipe, and structural pipe | |
JP5509654B2 (en) | High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same | |
JPWO2016157857A1 (en) | High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the steel pipe | |
JP2015168864A (en) | Hot rolled steel sheet for electroseamed steel pipe having board thickness of 15 mm or more | |
JP5151034B2 (en) | Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe | |
JP5028761B2 (en) | Manufacturing method of high strength welded steel pipe | |
JP4523908B2 (en) | Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof | |
JP5055899B2 (en) | Method for producing high-strength welded steel pipe excellent in weld heat-affected zone toughness and having tensile strength of 760 MPa or more, and high-strength welded steel pipe | |
JP6237681B2 (en) | Low yield ratio high strength steel plate with excellent weld heat affected zone toughness | |
JP5020691B2 (en) | Steel sheet for high-strength linepipe excellent in low-temperature toughness, high-strength linepipe, and production method thereof | |
JP2009084599A (en) | Method for manufacturing steel sheet and steel pipe for ultrahigh-strength line pipe superior in deformability and low-temperature toughness | |
JP2006183127A (en) | Method for producing high strength welded steel tube | |
JP2012193446A (en) | Steel plate for high-ductile high-strength welded steel pipe, steel pipe, and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110128 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130218 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160315 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5217773 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |