JP5768603B2 - High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same - Google Patents

High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same Download PDF

Info

Publication number
JP5768603B2
JP5768603B2 JP2011188576A JP2011188576A JP5768603B2 JP 5768603 B2 JP5768603 B2 JP 5768603B2 JP 2011188576 A JP2011188576 A JP 2011188576A JP 2011188576 A JP2011188576 A JP 2011188576A JP 5768603 B2 JP5768603 B2 JP 5768603B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
weld metal
uniform elongation
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011188576A
Other languages
Japanese (ja)
Other versions
JP2013049895A (en
Inventor
岡津 光浩
光浩 岡津
彰彦 谷澤
彰彦 谷澤
純二 嶋村
純二 嶋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011188576A priority Critical patent/JP5768603B2/en
Publication of JP2013049895A publication Critical patent/JP2013049895A/en
Application granted granted Critical
Publication of JP5768603B2 publication Critical patent/JP5768603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、API規格X65〜X70(引張強度550MPaを超え)級高強度ラインパイプ用で、−20℃までの低温域での優れた溶接部靱性を兼ね備えた高強度溶接鋼管およびその製造方法に関する。   The present invention relates to API standard X65 to X70 (tensile strength exceeding 550 MPa) class high-strength line pipe, and relates to a high-strength welded steel pipe having excellent weld toughness in a low temperature range up to -20 ° C. and a method for producing the same. .

近年、天然ガスや原油の輸送用として使用されるラインパイプは、高圧化による輸送効率の向上や薄肉化による現地溶接施工効率の向上のため、年々高強度化され、さらに、大地震や凍土地帯における地盤変動を原因として、ラインパイプに大変形が生じても、座屈を発生しにくい高変形能の要求もなされるようになってきた。   In recent years, line pipes used for the transportation of natural gas and crude oil have been strengthened year by year in order to improve transportation efficiency by increasing pressure and to improve local welding construction efficiency by reducing wall thickness. As a result of ground deformation in Japan, there has been a demand for high deformability that hardly causes buckling even if large deformation occurs in the line pipe.

鋼材の変形能は降伏比が低い程大きいため、鋼材のミクロ組織を軟質なフェライト相と、硬質なベイナイトやマルテンサイトなどの硬質相が適度に分散した2相組織とする低降伏比鋼が開発されている。   The lower the yield ratio, the greater the deformability of the steel material. Therefore, a low yield ratio steel has been developed in which the microstructure of the steel material is a two-phase structure in which a soft ferrite phase and a hard phase such as hard bainite and martensite are appropriately dispersed. Has been.

例えば特許文献1は低降伏比低炭素低合金高張力鋼の製造方法に関し、軟質相中に硬質相が適度に分散した組織の鋼が記載され、その製造方法として、焼入れ(Q)と焼戻し(T)の中間に、フェライトとオーステナイトの2相域からの焼入れ(Q´)を施す熱処理方法が開示されている。   For example, Patent Document 1 relates to a method of manufacturing a low yield ratio, low carbon, low alloy, high strength steel, which describes a steel having a structure in which a hard phase is appropriately dispersed in a soft phase, and as a manufacturing method thereof, quenching (Q) and tempering ( In the middle of T), a heat treatment method is disclosed in which quenching (Q ′) from a two-phase region of ferrite and austenite is performed.

特許文献2は建築用高強度低降伏比鋼管の製造方法に関し、同様な考え方にもとづき、溶接鋼管の製造工程において、冷間での曲げ成形および継ぎ目部の溶接を行ってから2相域に加熱後冷却する、低降伏比鋼管の製造方法が開示されている。特許文献3は低降伏比を有する高強度ラインパイプ用鋼に関し、軟質相である加工フェライトと、ベイナイトやマルテンサイトの硬質相を混在させた組織により低降伏比が達成されることが開示されている。特許文献4は高強度高靭性鋼板の製造方法に関し、ベイナイト中に硬質な島状マルテンサイトを分散させた場合、低降伏比が達成されることが開示されている。   Patent Document 2 relates to a method of manufacturing a high-strength low yield ratio steel pipe for construction, and based on the same concept, in the manufacturing process of a welded steel pipe, it is heated in a two-phase region after performing cold bending and welding at the seam. A method of manufacturing a low yield ratio steel pipe that is post-cooled is disclosed. Patent Document 3 discloses a steel for high-strength line pipes having a low yield ratio, and it is disclosed that a low yield ratio is achieved by a structure in which a processed ferrite that is a soft phase and a hard phase of bainite or martensite are mixed. Yes. Patent Document 4 relates to a method for producing a high-strength and high-toughness steel sheet, and discloses that a low yield ratio is achieved when hard island martensite is dispersed in bainite.

ラインパイプに大変形が生じて座屈が発生した後、更にパイプの変形が進むと、パイプには局部的な歪集中が生じ、延性破壊発生限界歪に到達すると延性破壊が生じる。延性破壊発生限界歪は、鋼材の一様伸びと相関すると考えられることから、低降伏比とともに高一様伸びを備えた鋼も開発されている。   When the pipe pipe is further deformed after the line pipe undergoes large deformation and buckling occurs, local strain concentration occurs in the pipe, and when the ductile fracture occurrence limit strain is reached, ductile fracture occurs. Since the critical strain at which ductile fracture occurs is considered to correlate with the uniform elongation of the steel material, steels having a high uniform elongation with a low yield ratio have been developed.

特許文献5は低降伏比高強度高靭性鋼板およびその製造方法に関し、金属組織がフェライトとベイナイトと島状マルテンサイトの3相組織で、体積分率が3〜15%の島状マルテンサイトと体積分率が2%以上の残留オーステナイトを含み、鋼板長手方向の一様伸びが12%以上である鋼板およびその製造方法が開示されている。特許文献6には特許文献5による低降伏比高強度高靭性鋼板を用いた低降伏比高強度高靭性鋼管およびその製造方法が記載されている。   Patent Document 5 relates to a low-yield-ratio high-strength and high-toughness steel sheet and a method for producing the same, and the metal structure is a three-phase structure of ferrite, bainite, and island martensite, and the volume ratio of 3-15% island martensite and volume. A steel sheet containing a retained austenite with a fraction of 2% or more and a uniform elongation in the longitudinal direction of the steel sheet of 12% or more and a method for producing the same are disclosed. Patent Document 6 describes a low yield ratio, high strength, high toughness steel pipe using a low yield ratio, high strength, high toughness steel pipe according to Patent Document 5, and a method for producing the same.

特開昭55−97425号公報JP-A-55-97425 特開平07−150247号公報Japanese Patent Laid-Open No. 07-150247 特開平08―209291号公報Japanese Patent Laid-Open No. 08-209291 特開2006―265577号公報JP 2006-265577 A 特開2008―248328号公報JP 2008-248328 A 特開2008―248330号公報JP 2008-248330 A

現在、引張強度が550MPaを超える、API規格X65〜X70級の高強度ラインパイプの実用化が進展し、−20℃の寒冷な地震地帯などでの敷設も検討されているが、特許文献5および6には鋼板を鋼管とする際の突合せ溶接部に関する記載がなく、鋼管として上記環境に適したものは記載されていない。なお、特許文献1〜4には一様伸びについての記載はない。   Currently, the practical use of high strength line pipes of API standard X65-X70 class with a tensile strength exceeding 550 MPa has progressed, and laying in a cold earthquake zone of −20 ° C. has been studied. No. 6 does not describe a butt weld when using a steel plate as a steel pipe, and does not describe a steel pipe suitable for the above environment. In addition, Patent Documents 1 to 4 do not describe the uniform elongation.

そこで、本発明は、地震等の地盤変動による曲げ変形を受けた場合の、座屈発生の抑制と、パイプが座屈しても、座屈部からの延性破壊発生の防止するための高い一様伸びを有し、かつ溶接部における優れた低温靱性を兼ね備えたAPI規格X65〜X70級の高強度鋼を用いた鋼管を提供することを目的とする。   Therefore, the present invention is highly uniform for suppressing the occurrence of buckling when subjected to bending deformation due to ground deformation such as an earthquake, and for preventing the occurrence of ductile fracture from the buckled portion even if the pipe buckles. An object is to provide a steel pipe using API standard X65-X70 grade high strength steel having elongation and excellent low temperature toughness in a welded portion.

本発明者等は、埋設鋼管が地盤変動によって曲げ変形を受けた際、曲げ内側での座屈発生を、当該位置での圧縮歪量が1%となるまで抑制することを目標に鋼の引張特性およびミクロ組織について鋭意検討し、以下の知見を得た。なお、本発明で溶接部低温靱性とは溶接金属の低温靭性を指す。
1 応力−歪曲線の1%歪前後における硬化勾配が大きくなるほど座屈発生が抑制でき、 実管曲げ試験では、使用鋼管の応力−歪曲線における0.5%耐力値に対する1.5%耐力値が1.15以上となる場合に座屈が発生しなくなる。
2 鋼板の一様伸びには島状マルテンサイト(MA(Martensite−Austenite constituents)という場合がある)の形態および第1相中の分散状態が大きく影響し、素材鋼板の製造方法と冷間加工による鋼管形状への成形中の熱処理を制御することで、低温靱性を得るために必要な溶接金属のミクロ組織を変質させることなく、上記1の達成に最適なMAの形態および分散状態が得られる。
When the buried steel pipe is subjected to bending deformation due to ground fluctuation, the present inventors have aimed to suppress the occurrence of buckling inside the bend until the amount of compressive strain at the position becomes 1%. The following findings were obtained through extensive studies on characteristics and microstructure. In the present invention, the low temperature toughness of the weld zone refers to the low temperature toughness of the weld metal.
1 The buckling can be suppressed as the hardening gradient before and after 1% strain of the stress-strain curve increases. In the actual pipe bending test, the 1.5% proof stress value relative to the 0.5% proof stress value in the stress-strain curve of the steel pipe used. No buckling occurs when the value is 1.15 or more.
2 Uniform elongation of steel sheet is greatly influenced by the form of island martensite (may be called MA (Martensite-Austenite constituents)) and the dispersion state in the first phase. By controlling the heat treatment during forming into a steel pipe shape, the optimum form and dispersion state of MA can be obtained without altering the microstructure of the weld metal necessary for obtaining low temperature toughness.

尚、本発明において「高一様伸び」とは母材部の0.5%耐力に対する1.5%耐力の比(1.5%耐力/0.5%耐力の値)が1.15以上かつ引張強度と一様伸びの積が7500MPa・%以上の優れた変形性能を備えていることを指す。   In the present invention, “high uniform elongation” means that the ratio of 1.5% proof stress to 0.5% proof stress of the base metal part (1.5% proof stress / 0.5% proof stress value) is 1.15 or more. In addition, it means that the product of tensile strength and uniform elongation has an excellent deformation performance of 7500 MPa ·% or more.

本発明は得られた知見をもとに更に検討を加えてなされたもので、すなわち、本発明は
1.母材の成分組成が、質量%で、
C:0.03%超〜0.06%、
Si:0.1%以下、
Mn:1.0〜1.7%、
Al:0.003〜0.08%、
Nb:0.01〜0.04%、
Ti:0.005〜0.025%、
を含有し、さらに
Cu:0.1〜0.5%、
Ni:0.1〜0.5%、
Mo:0.1〜0.5%、
Cr:0.1〜0.5%、
V:0.003〜0.04%、
の1種または2種以上を含有し
残部Feおよび不可避的不純物からなり、
溶接金属の成分組成が、質量%で、
C:0.06〜0.08%、
Si:0.2〜0.5%、
Mn:1.3〜1.8%、
Al:0.03%以下、
B:0.001〜0.003%、
Nb:0.005〜0.025%、
Ti:0.015〜0.040%、
Cu:0.1%以下、
V:0.03%以下、
O:0.015〜0.04%、
N:0.01%以下、
を含有し、さらに
Ni:0.1〜0.4%、
Mo:0.05〜0.2%、
Cr:0.1〜0.2%、
の1種または2種以上を含有し、
残部Feおよび不可避的不純物からなり、
前記母材部は、第1相がフェライトで、第2相が第1相中に面積率で5〜20%分散した平均アスペクト比が2.0以下である島状マルテンサイトで、前記島状マルテンサイトの90%以上がフェライト粒界に存在したミクロ組織を有し、
前記溶接金属部は、アシキュラフェライトの面積率が80%以上かつ、島状マルテンサイトの面積率が5%以下であるミクロ組織を有することを特徴とする高一様伸びを備え、かつ溶接部低温靱性に優れた高強度溶接鋼管。
2.母材部の成分組成が更に、質量%で、
Ca:0.0005〜0.01%、
REM:0.0005〜0.02%、
Zr:0.0005〜0.01%、
Mg:0.0005〜0.01%、
の1種または2種以上を含有することを特徴とする1記載の高一様伸びを備え、かつ溶接部低温靱性に優れた高強度溶接鋼管。
3.質量%で、
C:0.03超え〜0.06%、
Si:0.1%以下、
Mn:1.0〜1.7%、
Al:0.003〜0.08%、
Nb:0.01〜0.04%、
Ti:0.005〜0.025%、
を含有し、さらに
Cu:0.1〜0.5%、
Ni:0.1〜0.5%、
Mo:0.1〜0.5%、
Cr:0.1〜0.5%、
V:0.003〜0.04%、
の1種または2種以上を含有し
残部Feおよび不可避的不純物からなる鋼片を、
Ac以上に再加熱後、圧延終了温度Ar以上で熱間圧延し、その後、空冷して得られた鋼板を冷間成形により筒状に成形した後、Ac以上Ac以下に急速加熱し、引続き空冷あるいは水冷で室温まで冷却後、端部を溶接し、最後に拡管をすることを特徴とする、高一様伸びを備え、かつ溶接部低温靱性に優れた高強度溶接鋼管の製造方法。
4.鋼片の成分組成が更に、質量%で、
Ca:0.0005〜0.01%、
REM:0.0005〜0.02%、
Zr:0.0005〜0.01%、
Mg:0.0005〜0.01%、
の1種または2種以上を含有することを特徴とする3記載の高一様伸びを備え、かつ溶接部低温靱性に優れた高強度溶接鋼管の製造方法。
The present invention has been made by further investigation based on the obtained knowledge. The composition of the base material is mass%,
C: more than 0.03% to 0.06%,
Si: 0.1% or less,
Mn: 1.0-1.7%,
Al: 0.003 to 0.08%,
Nb: 0.01-0.04%,
Ti: 0.005 to 0.025%,
Further Cu: 0.1-0.5%,
Ni: 0.1 to 0.5%,
Mo: 0.1 to 0.5%,
Cr: 0.1 to 0.5%,
V: 0.003-0.04%,
1 type or 2 types or more, and the balance Fe and unavoidable impurities,
The component composition of the weld metal is mass%,
C: 0.06 to 0.08%,
Si: 0.2 to 0.5%
Mn: 1.3-1.8%
Al: 0.03% or less,
B: 0.001 to 0.003%,
Nb: 0.005 to 0.025%,
Ti: 0.015-0.040%,
Cu: 0.1% or less,
V: 0.03% or less,
O: 0.015-0.04%,
N: 0.01% or less,
In addition, Ni: 0.1 to 0.4%,
Mo: 0.05-0.2%
Cr: 0.1 to 0.2%
Containing one or more of
The balance Fe and inevitable impurities,
The base material portion is an island-shaped martensite having an average aspect ratio of 2.0 or less in which the first phase is ferrite and the second phase is dispersed in an area ratio of 5 to 20% in the first phase. 90% or more of martensite has a microstructure in the ferrite grain boundaries,
The weld metal part has a highly uniform elongation characterized by having a microstructure in which the area ratio of acicular ferrite is 80% or more and the area ratio of island martensite is 5% or less, and the weld part High strength welded steel pipe with excellent low temperature toughness.
2. The component composition of the base material part is further mass%,
Ca: 0.0005 to 0.01%,
REM: 0.0005 to 0.02%,
Zr: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
A high-strength welded steel pipe having high uniform elongation as described in 1 and excellent in low temperature toughness at the welded portion.
3. % By mass
C: more than 0.03 to 0.06%,
Si: 0.1% or less,
Mn: 1.0-1.7%,
Al: 0.003 to 0.08%,
Nb: 0.01-0.04%,
Ti: 0.005 to 0.025%,
Further Cu: 0.1-0.5%,
Ni: 0.1 to 0.5%,
Mo: 0.1 to 0.5%,
Cr: 0.1 to 0.5%,
V: 0.003-0.04%,
A steel slab comprising one or more of the balance Fe and unavoidable impurities,
After reheating to Ac 3 or higher, hot rolling at a rolling end temperature Ar 3 or higher, and then forming a steel plate obtained by air cooling into a cylindrical shape by cold forming, followed by rapid heating to Ac 1 or higher and Ac 3 or lower Then, after cooling to room temperature by air cooling or water cooling, the end is welded, and finally the pipe is expanded, and a high strength welded steel pipe with high uniform elongation and excellent low temperature toughness at the weld is manufactured. Method.
4). The component composition of the billet is further mass%,
Ca: 0.0005 to 0.01%,
REM: 0.0005 to 0.02%,
Zr: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
A method for producing a high-strength welded steel pipe having high uniform elongation as described in 3 and excellent in low-temperature toughness of the welded portion, characterized by containing one or more of the following.

本発明によれば、地震等の地盤変動によっても鋼管の座屈およびその後の延性破壊が生じにくく、かつ−20℃までの溶接部低温靱性を有するAPI規格X65〜X70級の高強度鋼管を提供することが可能で、産業上極めて有用である。   According to the present invention, there is provided an API standard X65-X70 class high-strength steel pipe which is less prone to buckling of the steel pipe and subsequent ductile fracture due to ground fluctuation such as an earthquake and has a low temperature toughness of a welded portion up to −20 ° C. This is extremely useful in industry.

本発明では、母材部および溶接金属部の成分組成とミクロ組織をそれぞれ規定する。
[母材部成分組成]以下の説明において%は質量%とする。
C:0.03%超、0.06%以下
Cは十分なMA面積率を確保するために0.03%を超える添加が必要である。一方、0.06%を超えて添加すると、母材部ミクロ組織でフェライト相と第2相のMAに加えてパーライト相の生成を招き延性の低下につながるため、上限を0.06%とする。
In the present invention, the component composition and the microstructure of the base metal part and the weld metal part are respectively defined.
[Base Material Component Composition] In the following description,% is mass%.
C: More than 0.03% and 0.06% or less C needs to be added in excess of 0.03% in order to secure a sufficient MA area ratio. On the other hand, if added over 0.06%, in addition to the ferrite phase and second phase MA in the base material microstructure, it leads to the formation of pearlite phase and leads to a decrease in ductility, so the upper limit is made 0.06% .

Si:0.1%以下
Siは溶接熱影響部においてはMAの生成を助長し、溶接部靱性の低下をもたらすため、溶接部におけるMAの生成を抑制するため上限を0.1%とする。
Si: 0.1% or less Since Si promotes the formation of MA in the weld heat affected zone and causes a reduction in weld toughness, the upper limit is made 0.1% in order to suppress the formation of MA in the weld.

Mn:1.0〜1.7%
Mnは焼入性向上元素として作用する。さらに、多量に添加することで、フェライト相に固溶できるC量を低減する効果があり、未変態オーステナイト領域へのC濃化を大きくするので、MAの生成量を増加させる。
Mn: 1.0 to 1.7%
Mn acts as a hardenability improving element. Furthermore, the addition of a large amount has the effect of reducing the amount of C that can be dissolved in the ferrite phase and increases the C concentration in the untransformed austenite region, thereby increasing the amount of MA produced.

後述するようにミクロ組織において、MAの面積率を5%以上とするためには、1.0%以上の添加が必要である。一方、1.7%を超えて添加してもその効果が飽和するため経済性の観点から、上限を1.7%とする。   As will be described later, in order to make the area ratio of MA 5% or more in the microstructure, it is necessary to add 1.0% or more. On the other hand, even if added over 1.7%, the effect is saturated, so the upper limit is made 1.7% from the viewpoint of economy.

Al:0.003〜0.08%
Alは脱酸元素として作用する。Siと同時添加で十分な脱酸効果を得るためには0.003%以上の含有が必要である。一方、0.08%を超えて添加すると鋼の清浄度が低下し、一様伸び低下の原因となるため、上限を0.08%とする。
Al: 0.003 to 0.08%
Al acts as a deoxidizing element. In order to obtain a sufficient deoxidation effect by simultaneous addition with Si, a content of 0.003% or more is necessary. On the other hand, if added over 0.08%, the cleanliness of the steel is lowered and the uniform elongation is reduced, so the upper limit is made 0.08%.

Nb:0.01〜0.04%
Nbは熱間圧延中のオーステナイト未再結晶域を拡大し、鋼の焼入れ性向上元素としても作用する。また、Mnと同様に未変態オーステナイト領域へのC濃化を大きくするので、MAの生成量を増加させる。後述するようにミクロ組織において、MAの面積率を5%以上とするためには、0.01%以上の添加が必要である。一方、0.04%を超えて添加すると溶接部靱性を低下させることから、上限を0.04%とする。
Nb: 0.01-0.04%
Nb expands the austenite non-recrystallized region during hot rolling, and also acts as an element for improving the hardenability of steel. Further, since the C concentration in the untransformed austenite region is increased similarly to Mn, the amount of MA produced is increased. As will be described later, in order to make the area ratio of MA 5% or more in the microstructure, it is necessary to add 0.01% or more. On the other hand, if added over 0.04%, the toughness of the weld is reduced, so the upper limit is made 0.04%.

Ti:0.005〜0.025%
Tiは窒化物を形成し、靭性に悪影響を与える、鋼中の固溶N量の低減に有効であるほか、析出したTiNがピンニング効果でオーステナイト粒の粗大化を抑制して、ミクロ組織の粗大化を抑制する。そのような効果を得るため、0.005%以上含有させる。一方、0.025%を超えて添加するとTiCを形成するようになり、その析出硬化で降伏比が上昇しやすくなることから、上限を0.025%とする。
Ti: 0.005-0.025%
Ti forms nitrides and has an adverse effect on toughness. It is effective in reducing the amount of dissolved N in steel. In addition, the precipitated TiN suppresses the coarsening of austenite grains due to the pinning effect, and the microstructure is coarse. Control. In order to obtain such an effect, 0.005% or more is contained. On the other hand, if added over 0.025%, TiC is formed, and the yield ratio tends to increase due to precipitation hardening, so the upper limit is made 0.025%.

さらに、本発明では、母材部の強度としてAPI規格のX65〜X70強度を確保し、溶接熱影響部の強度上昇を目的として、Cu、Ni、Mo、Cr、Vの1種または2種以上を含有する。   Furthermore, in the present invention, API standard X65 to X70 strength is secured as the strength of the base material portion, and one or more of Cu, Ni, Mo, Cr, and V are used for the purpose of increasing the strength of the weld heat affected zone. Containing.

Cu:0.1〜0.5%
Cuは0.1%以上含有することによって焼入性向上元素として作用し、多量のMn添加の代替とすることができる。しかし、0.5%までの添加でAPIX70の強度を満足させることができ、0.5%を超えて含有させても効果が飽和するため、含有させる場合には上限を0.5%とする。
Cu: 0.1 to 0.5%
When Cu is contained in an amount of 0.1% or more, it acts as a hardenability improving element and can replace a large amount of Mn addition. However, the addition of up to 0.5% can satisfy the strength of APIX70, and the effect is saturated even if it is contained in excess of 0.5%. .

Ni:0.1〜0.5%
Niは、焼入性向上元素として作用し、添加しても靱性劣化を起こさない。この効果を得るために、0.1%以上含有することが好ましいが、0.5%までの添加でAPIX70の強度を満足させることができ、0.5%を超えて含有させても効果が飽和するため、含有させる場合には上限を0.5%とする。
Ni: 0.1 to 0.5%
Ni acts as a hardenability improving element and does not cause deterioration in toughness even when added. In order to obtain this effect, it is preferable to contain 0.1% or more, but the addition of 0.5% can satisfy the strength of APIX70, and even if it exceeds 0.5%, the effect is effective. In order to saturate, when it is contained, the upper limit is made 0.5%.

Mo:0.1〜0.5%
Moは母材あるいは溶接熱影響部の強度を向上させるため含有させることができる。0.1%以上含有することによって焼入性向上元素として作用し、多量のMn添加の代替とすることができる。しかし、高価な元素であり、かつ0.5%までの添加でAPIX70の強度を満足させることができ、0.5%を超えて含有させても効果が飽和するため、含有させる場合には上限を0.5%とする。
Mo: 0.1 to 0.5%
Mo can be contained in order to improve the strength of the base material or the weld heat affected zone. By containing 0.1% or more, it acts as a hardenability improving element and can be used as a substitute for adding a large amount of Mn. However, it is an expensive element, and the addition of up to 0.5% can satisfy the strength of APIX70, and even if contained over 0.5%, the effect is saturated. Is 0.5%.

Cr:0.1〜0.5%
Crは母材あるいは溶接熱影響部の強度を向上させるため含有させることができる。0.1%以上含有することによって焼入性向上元素として作用し、多量のMn添加の代替とすることができる。しかし、高価な元素であり、かつ0.5%までの添加でAPIX70の強度を満足させることができ、0.5%を超えて含有させても効果が飽和するため、含有させる場合には上限を0.5%とする。
Cr: 0.1 to 0.5%
Cr can be contained in order to improve the strength of the base material or the weld heat affected zone. By containing 0.1% or more, it acts as a hardenability improving element and can be used as a substitute for adding a large amount of Mn. However, it is an expensive element, and the addition of up to 0.5% can satisfy the strength of APIX70, and even if contained over 0.5%, the effect is saturated. Is 0.5%.

V:0.003〜0.04%
Vは母材あるいは溶接熱影響部の強度を向上させるため添加することができる。0.003%以上含有することによって、鋼中で炭化物を形成して析出強化により鋼の強度を高めることができる。一方、0.04%を超えて含有すると溶接熱影響部の靱性に悪影響を及ぼすため、含有する場合には上限を0.04%とする。
V: 0.003-0.04%
V can be added to improve the strength of the base material or the weld heat affected zone. By containing 0.003% or more, carbide can be formed in the steel and the strength of the steel can be increased by precipitation strengthening. On the other hand, if the content exceeds 0.04%, the toughness of the weld heat-affected zone is adversely affected.

以上が母材部の基本成分組成であるが、一様伸び特性をさらに向上させる場合、Ca、REM、Zr、Mgの一種または二種以上を含有させることができる。Ca、REM、Zr、Mgは鋼中の非金属介在物であるMnSの形態制御あるいは酸化物若しくは窒化物を形成し、鋼の清浄度を向上させて一様伸びを向上させる。   The above is the basic component composition of the base material part, but when further improving the uniform elongation characteristic, one or more of Ca, REM, Zr, and Mg can be contained. Ca, REM, Zr, and Mg form MnS, which is a non-metallic inclusion in the steel, or form an oxide or nitride, thereby improving the cleanliness of the steel and improving the uniform elongation.

Ca:0.0005〜0.01%
Caは鋼中の硫化物の形態制御に有効な元素であり、0.0005%以上含有すると延性に有害なMnSの生成を抑制する。一方、0.01%を超えて含有すると、CaO−CaSのクラスターを形成し、かえって延性を劣化させるので、含有する場合は、上限を0.01%とすることが好ましい。
Ca: 0.0005 to 0.01%
Ca is an element effective for controlling the form of sulfide in steel, and when contained in an amount of 0.0005% or more, the production of MnS harmful to ductility is suppressed. On the other hand, when the content exceeds 0.01%, a CaO-CaS cluster is formed, and ductility is deteriorated. Therefore, when it is contained, the upper limit is preferably made 0.01%.

REM:0.0005〜0.02%
REMは鋼中の硫化物の形態制御に有効な元素であり、0.0005%以上含有すると延性に有害なMnSの生成を抑制する。一方、高価な元素であり、かつ0.02%を超えて含有しても効果が飽和するため、含有する場合は、上限を0.02%とすることが好ましい。
REM: 0.0005 to 0.02%
REM is an effective element for controlling the form of sulfide in steel, and when it is contained in an amount of 0.0005% or more, it suppresses the generation of MnS harmful to ductility. On the other hand, since it is an expensive element and the effect is saturated even if it contains more than 0.02%, when it is contained, the upper limit is preferably made 0.02%.

Zr:0.0005〜0.01%
Zrは鋼中で炭窒化物を形成し、オーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上含有することが好ましいが、0.01%を超えて含有すると、鋼の清浄度が著しく低下し、延性の低下につながるため、含有する場合は、上限を0.01%とすることが好ましい。
Zr: 0.0005 to 0.01%
Zr forms carbonitrides in steel and brings about a pinning effect that suppresses coarsening of austenite grains. In order to obtain a sufficient pinning effect, the content is preferably 0.0005% or more. However, if the content exceeds 0.01%, the cleanliness of the steel is remarkably lowered and the ductility is lowered. In such a case, the upper limit is preferably set to 0.01%.

Mg:0.0005〜0.01%
Mgは製鋼過程で酸化物を微細化する効果があり、延性低下の原因となる粗大酸化物の抑制に有効である。酸化物の微細化効果を十分に得るためには0.0005%以上含有することが好ましいが、0.01%を超えて含有しても効果が飽和することから、含有する場合には、上限を0.01%とすることが好ましい。
Mg: 0.0005 to 0.01%
Mg has the effect of refining oxides in the steelmaking process and is effective in suppressing coarse oxides that cause ductility reduction. In order to sufficiently obtain an oxide refinement effect, it is preferably contained in an amount of 0.0005% or more, but even if contained over 0.01%, the effect is saturated. Is preferably 0.01%.

上記以外の成分は、Feおよび不可避的不純物である。本発明においてPおよびSは不可避的不純物で、過度のP含有は鋳造時に中心偏析して鋼の延性を低下させるため、また、過度のS含有は延性に有害なMnSの生成を助長するため、いずれも、経済性を考慮して可能な範囲で低減することが好ましく、P量は0.01%以下、S量は0.003%以下であることが好ましい。   Components other than the above are Fe and inevitable impurities. In the present invention, P and S are unavoidable impurities, and excessive P content segregates during casting to lower the ductility of the steel, and excessive S content promotes the generation of MnS harmful to ductility. In any case, it is preferable to reduce as much as possible in consideration of economic efficiency, and the P amount is preferably 0.01% or less, and the S amount is preferably 0.003% or less.

[溶接金属成分組成]以下の説明において%は質量%とする。
C:0.06%〜0.08%
溶接金属においてCは溶接金属高温割れを防止するために0.06%以上必要である。一方、0.08%を超えると、溶接金属靱性にとっては有害なMAが溶接金属ミクロ組織中に多数生成するため、上限を0.08%とする。
[Welding metal component composition] In the following description, "%" means "mass%".
C: 0.06% to 0.08%
In the weld metal, C is required to be 0.06% or more in order to prevent hot cracking of the weld metal. On the other hand, if it exceeds 0.08%, a large amount of MA harmful to weld metal toughness is generated in the weld metal microstructure, so the upper limit is made 0.08%.

Si:0.2〜0.5%
Siは溶接金属中では脱酸元素として働き、溶接金属中の酸素量を制御するために必要な元素である。溶接金属中のSiが0.2%未満の場合、脱酸が不十分となり溶接金属中の酸素量が増加し靱性の低下をもたらすため0.2%以上必要である。一方、0.5%を超えると溶接金属靱性にとっては有害なMAの生成が著しくなるため、上限を0.5%とする。
Si: 0.2 to 0.5%
Si acts as a deoxidizing element in the weld metal and is an element necessary for controlling the amount of oxygen in the weld metal. If the Si content in the weld metal is less than 0.2%, deoxidation is insufficient and the amount of oxygen in the weld metal increases, resulting in a decrease in toughness. On the other hand, if it exceeds 0.5%, the production of MA harmful to weld metal toughness becomes remarkable, so the upper limit is made 0.5%.

Mn:1.3〜1.8%
Mnは溶接金属においても焼入性向上元素として作用する。溶接金属をポリゴナルフェライトより強度の高いアシキュラフェライトとするために、1.3%以上含有することが必要である。一方、1.8%を超えて添加しても効果が飽和するため、上限を1.8%とする。
Mn: 1.3-1.8%
Mn also acts as a hardenability improving element in the weld metal. In order to make the weld metal an acicular ferrite having higher strength than polygonal ferrite, it is necessary to contain 1.3% or more. On the other hand, even if added over 1.8%, the effect is saturated, so the upper limit is made 1.8%.

Al:0.03%以下
Alは母材部からの希釈で不可避不純物として溶接金属中に存在するが、0.03%を超えると後述するTiOの生成を阻害し、溶接金属のアシキュラフェライトの微細化が抑制され優れた低温靱性を得ることができないため、上限を0.03%とする。
Al: 0.03% or less Al is present in the weld metal as an unavoidable impurity due to dilution from the base metal part. However, if it exceeds 0.03%, the formation of TiO described later is inhibited, and the acicular ferrite of the weld metal Since the miniaturization is suppressed and excellent low temperature toughness cannot be obtained, the upper limit is made 0.03%.

B:0.001〜0.003%
Bは溶接金属のオーステナイト粒界からのポリゴナルフェライト生成を抑制し、アシキュラフェライト主体組織とするために必要な元素である。粒界からのポリゴナルフェライト生成を完全に抑制するためには0.001%以上含有することが必要であるが、0.003%を超えても効果が飽和するため、上限を0.003%とする。
B: 0.001 to 0.003%
B is an element necessary for suppressing the formation of polygonal ferrite from the austenite grain boundary of the weld metal and forming an acicular ferrite main structure. In order to completely suppress the formation of polygonal ferrite from the grain boundary, it is necessary to contain 0.001% or more, but even if it exceeds 0.003%, the effect is saturated, so the upper limit is 0.003%. And

Nb:0.005〜0.025%
Nbは、溶接金属中の固溶Nと、Bより先に窒化物を形成することにより、オーステナイト粒界においてBを固溶Bとして存在させる。そのような効果を得るため、0.005%以上含有することが必要である。一方、0.025%を超えると炭化物を形成し、溶接金属を析出硬化させ靱性の低下をもたらすため、上限を0.025%とする。
Nb: 0.005 to 0.025%
Nb forms B as a solid solution B at the austenite grain boundary by forming a nitride before the solid solution N in the weld metal and B. In order to acquire such an effect, it is necessary to contain 0.005% or more. On the other hand, if it exceeds 0.025%, carbides are formed, the weld metal is precipitated and hardened, and the toughness is reduced, so the upper limit is made 0.025%.

Ti:0.015〜0.040%
Tiは溶接金属中の酸素と反応して、溶接金属オーステナイト粒内からのアシキュラフェライト変態核として機能するTiOを形成する。微細なアシキュラフェライト組織とするためには多数のTiOの生成が必要で、Tiは0.015%以上含有することが必要である。一方、0.040%を超えると溶接金属中のTiOが凝集・粗大化してシャルピー衝撃値の低下をもたらすため、上限を0.040%とする。
Ti: 0.015-0.040%
Ti reacts with oxygen in the weld metal to form TiO that functions as an acicular ferrite transformation nucleus from within the weld metal austenite grains. In order to obtain a fine acicular ferrite structure, it is necessary to generate a large number of TiO, and Ti must be contained in an amount of 0.015% or more. On the other hand, if it exceeds 0.040%, TiO in the weld metal is aggregated and coarsened to reduce the Charpy impact value, so the upper limit is made 0.040%.

Cu:0.1%以下
Cuは母材からの希釈で溶接金属中に不純物として含まれることがあるが、0.1%を超えて含まれると、溶接金属の凝固過程で柱状晶界面に偏析し、かつ、地鉄より融点が低いため液化割れの原因となることから、上限を0.1%とする。
Cu: 0.1% or less Cu may be contained as an impurity in the weld metal due to dilution from the base material, but if it exceeds 0.1%, it segregates at the columnar crystal interface during the solidification process of the weld metal. In addition, since the melting point is lower than that of the base iron, it causes liquefaction cracking, so the upper limit is made 0.1%.

V:0.03%以下
Vは主に母材からの希釈で溶接金属中に不純物として含まれることがあるが、0.03%を超えて含まれると炭化物を形成して析出硬化し、溶接金属の靱性の低下をもたらすため、上限を0.03%とする。
V: 0.03% or less V may be mainly contained as an impurity in the weld metal due to dilution from the base metal, but if it exceeds 0.03%, carbide is formed and precipitation hardening occurs. In order to reduce the toughness of the metal, the upper limit is made 0.03%.

O:0.015〜0.04%
Oは、上述のTiと反応して溶接金属オーステナイト粒内からのアシキュラフェライト変態核として機能するTiOを形成する。微細なアシキュラフェライト組織を得るのに必要な多数のTiOの生成させるため、0.015%以上含有することが必要である。一方、0.04%を超えると溶接金属中のTiOが凝集・粗大化してシャルピー衝撃値の低下をもたらすため、上限を0.04%とする。
O: 0.015-0.04%
O reacts with the above-mentioned Ti to form TiO that functions as an acicular ferrite transformation nucleus from within the weld metal austenite grains. In order to generate a large number of TiO necessary for obtaining a fine acicular ferrite structure, it is necessary to contain 0.015% or more. On the other hand, if it exceeds 0.04%, TiO in the weld metal is aggregated and coarsened to reduce the Charpy impact value, so the upper limit is made 0.04%.

N:0.01%以下
溶接金属中のNは不可避的不純物として存在するが、0.01%を超えて含む場合、固溶して溶接金属靱性を著しく劣化させるため、上限を0.01%とする。
N: 0.01% or less N in the weld metal exists as an unavoidable impurity. However, if it exceeds 0.01%, it dissolves and significantly deteriorates the weld metal toughness, so the upper limit is 0.01%. And

さらに、本発明では、溶接金属の強度上昇を目的として、Ni、Mo、Crの1種または2種以上を含有させる。   Furthermore, in the present invention, for the purpose of increasing the strength of the weld metal, one or more of Ni, Mo, and Cr are contained.

Ni:0.1〜0.4%
Niは、0.1%以上含有することによって焼入性向上元素として作用し、多く含有しても靱性劣化を起こさない。しかし、0.4%までの添加でAPIX70の強度を満足させることができ、0.4%を超えて含有させても効果が飽和するため、含有させる場合には上限を0.4%とする。
Ni: 0.1 to 0.4%
When Ni is contained in an amount of 0.1% or more, it acts as a hardenability improving element, and even if contained in a large amount, Ni does not cause toughness deterioration. However, the addition of up to 0.4% can satisfy the strength of APIX70, and the effect is saturated even if the content exceeds 0.4%. .

Mo:0.05〜0.2%
Moは0.05%以上含有することによって焼入性向上元素として作用し、Mn添加の代替とすることができる。しかし、高価な元素であり、かつ0.2%までの添加でAPIX70の強度を満足させることができ、0.2%を超えて含有させても効果が飽和するため、含有させる場合には上限を0.2%とする。
Mo: 0.05-0.2%
By containing 0.05% or more of Mo, it acts as a hardenability improving element and can be used as an alternative to the addition of Mn. However, since it is an expensive element and the addition of up to 0.2% can satisfy the strength of APIX70, the effect is saturated even if it is contained over 0.2%. Is 0.2%.

Cr:0.1〜0.2%
Crもまた0.1%以上含有することによって焼入性向上元素として作用し、Mn添加の代替とすることができる。しかし、高価な元素であり、0.2%までの添加でAPIX70の強度を満足させることができ、0.2%を超えて含有させても効果が飽和するため、含有させる場合には上限を0.2%とする。
Cr: 0.1 to 0.2%
When Cr is also contained in an amount of 0.1% or more, it acts as a hardenability improving element and can be used as an alternative to Mn addition. However, it is an expensive element, and the addition of up to 0.2% can satisfy the strength of APIX70, and even if contained over 0.2%, the effect is saturated. 0.2%.

溶接金属において、上記以外の成分は、Feおよび不可避的不純物である。なお、本発明においてPおよびSは不可避的不純物で、過度のP含有は溶接金属部の粒界に偏析して延性・靭性を低下させるため、また、過度のS含有は延性に有害なMnSの生成を助長するため、いずれも、経済性を考慮して可能な範囲で低減することが好ましく、P量は0.01%以下、S量は0.003%以下であることが好ましい。
[母材部ミクロ組織]
本発明では、鋼管母材部のミクロ組織を、フェライト主体の第1相(母相)と、前記第1相(母相)中に分散して存在する第2相とを有し、該第2相を平均アスペクト比が2.0以下の島状マルテンサイト(MAと言う場合がある)とする。前記第2相の島状マルテンサイトの面積率は5〜20%で、さらに、前記島状マルテンサイトの90%以上は、フェライト粒界に存在している組織に規定する。
Components other than the above in the weld metal are Fe and inevitable impurities. In the present invention, P and S are unavoidable impurities, and excessive P content segregates at the grain boundaries of the weld metal part to lower ductility and toughness. Excessive S content is a harmful component of MnS. In order to promote the generation, it is preferable to reduce the amount as much as possible in consideration of economic efficiency. The P amount is preferably 0.01% or less, and the S amount is preferably 0.003% or less.
[Base material microstructure]
In the present invention, the microstructure of the steel pipe base material portion has a first phase (parent phase) mainly composed of ferrite and a second phase dispersed and present in the first phase (parent phase). The two phases are island martensite (may be referred to as MA) having an average aspect ratio of 2.0 or less. The area ratio of the island-like martensite in the second phase is 5 to 20%, and more than 90% of the island-like martensite is defined in the structure existing in the ferrite grain boundary.

鋼管の曲げ座屈限界歪を向上させるべく、0.5%耐力に対する1.5%耐力の比(以下、耐力比とも称する)を高めるため、母材部において、MAを第2相として、面積率で5〜20%分散させる。   In order to increase the ratio of 1.5% proof stress to 0.5% proof stress (hereinafter also referred to as proof stress ratio) in order to improve the bending buckling limit strain of the steel pipe, MA is defined as the second phase in the base metal part. Disperse at a rate of 5-20%.

面積率5%未満では、鋼管の曲げ座屈限界歪を向上させる十分な耐力比が得られず、一方、面積率が20%を超えた場合、後述するMAのアスペクト比が規定を満足していても、一様伸び低下が著しくなることから上限を20%とする。   If the area ratio is less than 5%, a sufficient yield strength ratio for improving the bending buckling limit strain of the steel pipe cannot be obtained. On the other hand, if the area ratio exceeds 20%, the aspect ratio of MA described later satisfies the specification. However, since the uniform elongation drop is remarkable, the upper limit is made 20%.

尚、MA面積率は倍率1000〜3000倍程度で鋼の断面SEM(走査型電子顕微鏡)写真を4視野以上撮影し、それぞれの写真中に見えるMA粒の個々の面積を画像解析によって測定、積算し、測定視野面積で除することによって算出する。   Note that the MA area ratio is about 1000 to 3000 magnifications and four or more cross-sectional SEM (scanning electron microscope) photographs of the steel are taken, and the individual areas of the MA grains visible in each photograph are measured and integrated. And dividing by the measurement visual field area.

MAのアスペクト比は2.0以下とする。MA粒の形状は、細長い状態であるほどMAと第1相であるフェライト相との界面から微視的な破壊が生じやすくなり、その結果、一様伸びが低下するため、2.0以下とする。   The aspect ratio of MA is 2.0 or less. As the shape of the MA grain becomes narrower, microscopic breakage is likely to occur from the interface between the MA and the ferrite phase as the first phase, and as a result, the uniform elongation decreases. To do.

MAのアスペクト比は、1000〜3000倍程度の倍率で鋼の断面SEM写真を4視野以上撮影し、視野毎に、個々のMA粒について、長径および短径を画像解析により計測してアスペクト比(=長径/短径)を求めた後、平均値を算出し、更に全視野での平均値を求める。   As for the aspect ratio of MA, the cross-sectional SEM photograph of steel is taken at a magnification of about 1000 to 3000 times and four or more fields of view are taken, and for each field of view, the major axis and the minor axis are measured by image analysis to measure the aspect ratio ( = Major axis / minor axis), and then the average value is calculated, and further the average value over the entire field of view.

さらに、これらアスペクト比2.0以下のMAがフェライト粒内に存在する場合、高い耐力比は得られるものの、強度が上昇したときの一様伸びの低下が著しいため、MAが第1相の結晶粒界面に存在することが重要で、フェライト粒界上に存在するMAが、全MAの90%以上となる必要がある。   Furthermore, when MA having an aspect ratio of 2.0 or less is present in the ferrite grains, although a high yield strength ratio can be obtained, the decrease in uniform elongation when the strength is increased is significant. It is important to exist at the grain interface, and the MA present on the ferrite grain boundary needs to be 90% or more of the total MA.

フェライト粒界上に存在するMAの分率は、上述の面積率測定で計測した全MA粒子についてSEM写真で粒界との位置関係を確認し、粒界上に存在している粒子の数を数え、全MA粒子数で割ることで算出する。   The fraction of MA present on the ferrite grain boundary is determined by confirming the positional relationship with the grain boundary in the SEM photograph for all MA particles measured by the above-described area ratio measurement, and calculating the number of particles present on the grain boundary. Count and calculate by dividing by the total number of MA particles.

なお、フェライト粒界は例えばナイタール腐食によって現出することができるので、観察されたMAがこれらの粒界上にあるかないかを確認することが可能である。   In addition, since the ferrite grain boundary can appear by, for example, nital corrosion, it is possible to confirm whether or not the observed MA is on these grain boundaries.

本発明においては、母相の主体であるフェライト、および第2相である島状マルテンサイト(MA)以外のミクロ組織の面積率は小さいほどよい。   In the present invention, the area ratio of the microstructure other than the ferrite that is the main component of the matrix and the island-like martensite (MA) that is the second phase is preferably as small as possible.

しかし、フェライトまたはベイナイト、および島状マルテンサイト(MAとも言う)以外のミクロ組織の面積率が小さい場合には、その影響が小さいため、トータルの面積率で5%以下の他の金属組織、すなわち、パーライトやセメンタイトなどを1種または2種以上を含有してもよい。   However, when the area ratio of the microstructure other than ferrite or bainite and island martensite (also referred to as MA) is small, the influence is small, and therefore other metal structures of 5% or less in total area ratio, In addition, one or more of pearlite and cementite may be contained.

なお、フェライトまたはベイナイト、および島状マルテンサイト(MA)以外のミクロ組織として、残留オーステナイトが存在する場合、加工誘起変態に伴う伸び向上効果が期待できるものの、一旦塑性加工した後は硬質なマルテンサイト化して、むしろ延性低下の原因になることから、その面積率は2%未満であることが好ましく、1%未満であることがさらに好ましい。   When retained austenite is present as a microstructure other than ferrite or bainite and island martensite (MA), it can be expected to have an effect of improving elongation due to work-induced transformation, but it is hard martensite after plastic working once. Rather, the area ratio is preferably less than 2%, and more preferably less than 1%.

[溶接金属ミクロ組織]
本発明では、鋼管溶接金属のミクロ組織を、面積率で80%以上のアシキュラフェライト組織かつ、島状マルテンサイトの面積率が5%以下の組織に規定する。
[Welding metal microstructure]
In the present invention, the microstructure of the steel pipe weld metal is defined as an acicular ferrite structure having an area ratio of 80% or more and a structure in which the area ratio of island martensite is 5% or less.

溶接金属において高強度と優れた靱性を両立させるためには、多数のTiOを核として変態生成した微細なアシキュラフェライト組織とすることが必要で、熱処理等により一部オーステナイト化してから再変態して生成するマルテンサイト、パーライト、セメンタイト等の分率が増大すると靱性が著しく低下する。   In order to achieve both high strength and excellent toughness in the weld metal, it is necessary to make a fine acicular ferrite structure with a large number of TiO as the core, which is partly austenitic by heat treatment etc. and then retransformed. As the fraction of martensite, pearlite, cementite, and the like produced increases, the toughness significantly decreases.

このため溶接金属中のアシキュラフェライト面積率を80%以上とすることが必要で、好ましくは90%以上とする。また、溶接金属においては硬質なMAは少量でも著しく靱性を劣化させるため、面積率を5%以下、好ましくは2%以下とする。   For this reason, the acicular ferrite area ratio in the weld metal is required to be 80% or more, and preferably 90% or more. Further, in the weld metal, hard MA significantly deteriorates toughness even in a small amount, so the area ratio is set to 5% or less, preferably 2% or less.

以下、上記成分組成と上記ミクロ組織を備えた鋼の、好適な製造方法について述べる。
本発明において規定される鋼の温度条件は、鋼片あるいは鋼板板厚方向平均温度を指すものとする。
Hereinafter, a suitable manufacturing method of the steel having the above component composition and the above microstructure will be described.
The steel temperature condition defined in the present invention refers to the average temperature in the thickness direction of the steel slab or the steel plate.

鋼片加熱温度:Ac以上
熱間圧延により形状およびミクロ組織を造り込むため、鋼片をオーステナイト化する目的で、Ac以上の温度に再加熱する。加熱温度がAc未満の場合、未変態フェライト等が残存し、その後のミクロ組織制御に悪影響を及ぼす。完全にオーステナイト化するためには加熱温度を1000℃以上とすることが好ましい。一方、鋼片加熱温度の上限は、母材靱性の観点からは1200℃以下とすることが好ましい。鋼片加熱温度:Ac以上より熱間圧延を開始する。直送圧延の場合は、再加熱せず、Ac以上の温度で熱間圧延を開始する。なお、Ac温度は鋼の合金元素含有量を下記式(1)に代入することで簡易に求めることができる。
Ac=961.6−311.9C+49.5Si−36.4Mn+12.7Al−51Cu−29Ni−8.7Cr+13.5Mo+308.1Nb−140V+318.9Ti+611.2B (1)
式中のM(%)は元素Mの含有量(質量%)を示し、元素Mが無添加の場合は、0%として計算する。
Steel slab heating temperature: Ac 3 or higher In order to build the shape and microstructure by hot rolling, the steel slab is reheated to a temperature of Ac 3 or higher for the purpose of austenizing the steel slab. If the heating temperature is less than Ac 3, untransformed ferrite remains and adversely affects the subsequent microstructure control. In order to completely austenite, the heating temperature is preferably set to 1000 ° C. or higher. On the other hand, the upper limit of the billet heating temperature is preferably 1200 ° C. or less from the viewpoint of base material toughness. Steel slab heating temperature: Hot rolling is started from Ac 3 or higher. In the case of direct feed rolling, hot rolling is started at a temperature of Ac 3 or higher without reheating. Incidentally, Ac 3 temperature can be obtained simply by substituting the alloy element content of the steel in the following formula (1).
Ac 3 = 961.6-311.9C + 49.5Si-36.4Mn + 12.7Al-51Cu-29Ni-8.7Cr + 13.5Mo + 308.1Nb-140V + 318.9Ti + 611.2B (1)
M (%) in the formula indicates the content (mass%) of the element M, and when the element M is not added, it is calculated as 0%.

熱間圧延終了温度:Ar以上
熱間圧延により所定の板厚・板幅に成形するときの圧延温度がAr未満まで低下した場合、圧延中に変態生成したフェライトが加工を受けた、いわゆる加工フェライトが形成される。加工フェライト量の増加に伴い、降伏強度が上昇するため、鋼管の曲げ座屈歪向上に必要な耐力比を達成することが難しくなることから、圧延最終パスの温度をAr以上とする。好ましくは、800℃以上とする。熱間圧延後はミクロ組織第1相をフェライトとするために空冷を実施する。
なお、Ar温度は鋼の合金元素添加量を下記式(2)に代入することで簡易に求めることができる。
Ar=910−273C−74Mn−56Ni−16Cr−9Mo−5Cu (2)
式中のM(%)は元素Mの含有量(質量%)を示し、元素Mが無添加の場合は、0%として計算する。
Hot rolling end temperature: Ar 3 or higher When the rolling temperature when forming into a predetermined plate thickness and width by hot rolling is lowered to less than Ar 3 , the so-called ferrite that has undergone transformation undergoes processing during rolling. A processed ferrite is formed. Since the yield strength increases as the amount of processed ferrite increases, it becomes difficult to achieve the yield ratio necessary for improving the bending buckling strain of the steel pipe. Therefore, the temperature of the final rolling pass is set to Ar 3 or higher. Preferably, it is set to 800 ° C. or higher. After hot rolling, air cooling is performed to make the microstructure first phase ferrite.
Incidentally, Ar 3 temperature can be obtained simply by substituting the alloy element addition of the steel in the following formula (2).
Ar 3 = 910-273C-74Mn-56Ni-16Cr-9Mo-5Cu (2)
M (%) in the formula indicates the content (mass%) of the element M, and when the element M is not added, it is calculated as 0%.

次に、鋼管の製造条件について述べる。
まず、上述の製造方法によって製造された鋼板を冷間加工法によって筒状に成形する。成形方法はUOE法、ロールベンド法等があるがいずれでもかまわない。そして筒状に成形した後、再加熱処理を実施する。
Next, the manufacturing conditions of the steel pipe will be described.
First, the steel plate manufactured by the above-described manufacturing method is formed into a cylindrical shape by a cold working method. There are UOE method, roll bend method and the like as the forming method, and any of them may be used. And after shape | molding in a cylinder shape, a reheating process is implemented.

再加熱温度:Ac以上Ac以下
ミクロ組織第1相を目標とするフェライトとした後、加熱によりその一部をオーステナイトに逆変態させる。この場合、逆変態オーステナイトはフェライト粒界3重点より変態し、かつ、拡散的に変態することから、後の冷却過程でさらに変態生成するMAがフェライト粒内に生成することを抑制し、さらに、生成するMAをアスペクト比が小さい、一様伸び劣化が少ない形状とすることができる。
Reheating temperature: Ac 1 or more and Ac 3 or less After making the microstructure the first phase of the microstructure ferrite, a part thereof is reversely transformed into austenite by heating. In this case, the reverse-transformed austenite is transformed from the triple point of the ferrite grain boundary, and is transformed diffusively, so that MA which is further transformed in the subsequent cooling process is suppressed from being produced in the ferrite grain, The MA to be generated can have a shape with a small aspect ratio and little uniform elongation deterioration.

再加熱温度がAc未満の場合、オーステナイトに逆変態しないため硬質第2相としてのMAを生成させることができない。一方、再加熱温度がAcを超えると、全面的にオーステナイトに逆変態してしまい、硬質相を所定の面積率で分散させた状態を得ることが極めて困難となるため、再加熱温度をAc以上Ac以下とする。加熱時の逆変態オーステナイトをフェライトの粒内から生成することを抑制するために、加熱時の昇温速度を2℃/s以上とすることが好ましい。 When the reheating temperature is less than Ac 1 , since it does not reversely transform to austenite, MA as a hard second phase cannot be generated. On the other hand, when the reheating temperature exceeds Ac 3 , the entire surface is reversely transformed into austenite, and it is extremely difficult to obtain a state in which the hard phase is dispersed at a predetermined area ratio. 1 or more and Ac 3 or less. In order to suppress the generation of reverse transformed austenite during heating from within the grains of the ferrite, it is preferable to set the heating rate during heating to 2 ° C./s or more.

Ac温度は鋼の合金元素添加量を下記式(3)に代入することで簡易に求めることができる。
Ac=751−26.6C+17.6Si−11.6Mn−169Al−23Cu−23Ni+24.1Cr+22.5Mo+233Nb−39.7V−5.7Ti−895B (3)
式中のM(%)は元素Mの含有量(質量%)を示し、元素Mが無添加の場合は、0%として計算する。
The Ac 1 temperature can be easily obtained by substituting the alloy element addition amount of steel into the following formula (3).
Ac 1 = 751-26.6C + 17.6Si-11.6Mn -169Al-23Cu-23Ni + 24.1Cr + 22.5Mo + 233Nb-39.7V-5.7Ti-895B (3)
M (%) in the formula indicates the content (mass%) of the element M, and when the element M is not added, it is calculated as 0%.

再加熱後は空冷あるいは水冷を実施する。硬質相であるMAの硬さを上げてより安定的に高い耐力比を得るためには、10℃/s以上の冷却速度で200℃以下まで水冷することが好ましい。   After reheating, air cooling or water cooling is performed. In order to increase the hardness of MA which is a hard phase and to obtain a higher yield strength ratio stably, it is preferable to water-cool to 200 ° C. or less at a cooling rate of 10 ° C./s or more.

加熱冷却を行った後、端部を溶接する。先に端部を溶接してからMAを生成させる加熱冷却を行ってしまうと、溶接金属が再変態し、マルテンサイト、パーライト、セメンタイトあるいはMAが生成し、組織中のアシキュラフェライト面積率を80%以上にできない。   After heating and cooling, the ends are welded. If the end portion is first welded and then heated and cooled to generate MA, the weld metal retransforms, martensite, pearlite, cementite, or MA is generated, and the acicular ferrite area ratio in the structure is 80 % Cannot be over.

特に、溶接金属がAc〜Acの温度域に加熱されると、多量のMAが溶接金属中に生成し、MA面積率が目標値である5%以下を満足できない。以上の理由により、鋼管とするためのシーム溶接は必ず母材部の加熱冷却の後に行い、溶接金属のミクロ組織がアシキュラフェライト主体の組織となるようにする。 In particular, when the weld metal is heated to a temperature range of Ac 1 to Ac 3 , a large amount of MA is generated in the weld metal, and the MA area ratio cannot satisfy the target value of 5% or less. For the above reasons, seam welding for forming a steel pipe is always performed after heating and cooling of the base metal portion so that the microstructure of the weld metal is mainly composed of acicular ferrite.

シーム溶接はサブマージドアーク溶接による内外面1層溶接が一般的であるが、レーザーあるいはレーザーアークハイブリッド溶接等による1層溶接でもかまわない。シーム溶接後、管の真円度向上を目的とした拡管成形を行う。拡管条件としては形状確保の観点から拡管率を0.6%以上、2.0%以下とすることが好ましい。   Seam welding is generally single layer welding on the inner and outer surfaces by submerged arc welding, but may be one layer welding by laser or laser arc hybrid welding. After seam welding, pipe expansion is performed to improve the roundness of the pipe. As the tube expansion condition, it is preferable that the tube expansion rate is 0.6% or more and 2.0% or less from the viewpoint of securing the shape.


表1に示す化学組成A〜Jの鋼を用い、表2に示す鋼片加熱、圧延、冷却を施して、鋼板No.1〜12を作製した。なお、表1に表示していないが、不可避的不純物であるPおよびSの含有量は、いずれも、P量:0.01%以下、S量:0.003%以下、であった。

Steels having chemical compositions A to J shown in Table 1 were used, and steel slab heating, rolling and cooling shown in Table 2 were performed, and the steel plate No. 1-12 were produced. Although not shown in Table 1, the contents of P and S, which are inevitable impurities, were both P amount: 0.01% or less and S amount: 0.003% or less.

これらの鋼板より圧延方向と直交する方向に、平行部幅150mm、平行部長さ600mmとする平板引張試験片を採取し、UOE鋼管のU−Oプレス成形に相当する引張歪を付与してから、表3に示す熱処理条件で加熱・冷却を実施した。   From these steel plates, in a direction perpendicular to the rolling direction, a flat plate tensile test piece having a parallel part width of 150 mm and a parallel part length of 600 mm was collected, and after applying a tensile strain corresponding to U-O press forming of a UOE steel pipe, Heating and cooling were performed under the heat treatment conditions shown in Table 3.

次に、この熱処理された平板引張試験片試料を使い、表3に示す溶接入熱条件で、鋼管のシーム溶接を模擬する内外面1層サブマージドアーク溶接を実施した。最後に、このサブマージドアーク溶接部を含む試験体に、UOE鋼管の拡管成形に相当する引張歪を付与した。なお、比較として、平板引張試験片に引張歪を付与した後、先にサブマージドアーク溶接を行い、その後、加熱・冷却を行い、最後に再び引張歪を付与する試験体も作製した.   Next, using the heat-treated flat plate tensile test specimen, inner and outer surface single-layer submerged arc welding for simulating seam welding of a steel pipe was performed under the welding heat input conditions shown in Table 3. Finally, a tensile strain corresponding to UOE steel pipe expansion forming was applied to the test body including the submerged arc weld. For comparison, after applying tensile strain to the flat plate tensile test piece, submerged arc welding was first performed, and then heating / cooling was performed, and finally a test body that applied tensile strain again was also produced.

Figure 0005768603
Figure 0005768603

Figure 0005768603
Figure 0005768603

Figure 0005768603
Figure 0005768603

サブマージドアーク溶接部を含む試験体の母材部中央よりミクロ組織観察用サンプルを採取し、元の鋼板の圧延長手方向と平行な板厚断面を鏡面研磨したあと、2段エッチング法を用いてMAを現出させた。その後、走査型電子顕微鏡(SEM)を用い2000倍の倍率で無作為に5視野のミクロ組織写真を撮影し、写真中のMAの面積率、平均アスペクト比、およびフェライト粒界に属するMAの割合を画像解析によって計測・算出した。さらに、同じ試料を再度鏡面研磨した後、3%硝酸アルコール腐食液にてエッチングを行い、光学顕微鏡にて400倍の倍率で観察を行い、ミクロ組織の第1相の種類を確認した。   A sample for microstructural observation is collected from the center of the base metal part of the specimen including the submerged arc weld, and the two-stage etching method is used after mirror-polishing the plate thickness section parallel to the rolling longitudinal direction of the original steel sheet. MA appeared. Thereafter, a microstructure photograph of 5 fields of view was randomly taken at a magnification of 2000 using a scanning electron microscope (SEM). The area ratio of MA, the average aspect ratio, and the ratio of MA belonging to the ferrite grain boundary in the photograph. Was measured and calculated by image analysis. Furthermore, after the same sample was mirror-polished again, it was etched with a 3% nitric acid alcohol etchant and observed with an optical microscope at a magnification of 400 times to confirm the type of the first phase of the microstructure.

次に、同じ試験体の母材部中央よりJIS Z2201に従って14A号引張試験片を採取し、引張試験を行った。引張試験はJIZ Z2241に従い、降伏強度、引張強度、一様伸びを計測した。   Next, a No. 14A tensile test piece was sampled from the center of the base material part of the same specimen in accordance with JIS Z2201, and a tensile test was performed. The tensile test measured yield strength, tensile strength, and uniform elongation according to JIZ Z2241.

同じく、試験体の母材部中央よりJIS Z2202に従って2mmVノッチシャルピー衝撃試験片を採取し、シャルピー衝撃試験を行った。シャルピー試験はJIS Z2242に従い、延性−脆性破面遷移温度(vTrs)を計測した。   Similarly, a 2 mm V-notch Charpy impact test piece was sampled from the center of the base material part of the test body according to JIS Z2202, and a Charpy impact test was performed. The Charpy test measured ductile-brittle fracture surface transition temperature (vTrs) according to JIS Z2242.

サブマージドアーク溶接部の溶接金属より化学成分分析試料を採取し、溶接金属の化学成分を測定した。表4に測定結果を示す。   A chemical composition analysis sample was taken from the weld metal of the submerged arc weld and the chemical composition of the weld metal was measured. Table 4 shows the measurement results.

Figure 0005768603
Figure 0005768603

サブマージドアーク溶接部より、溶接金属のミクロ組織観察用サンプルを採取し、板厚断面を鏡面研磨したあと、2段エッチング法を用いてMAを現出させた。その後、走査型電子顕微鏡(SEM)を用い2000倍の倍率で無作為に5視野のミクロ組織写真を撮影し、各視野のMAの面積率を画像解析によって計測・算出し、5視野分の平均値を求めた。さらに、同じ試料を再度鏡面研磨した後、3%硝酸アルコール腐食液にてエッチングを行い、光学顕微鏡にて400倍の倍率で観察を行い、ミクロ組織の種類を確認した。   A sample for observing the microstructure of the weld metal was collected from the submerged arc weld, and the plate thickness section was mirror-polished, and then MA was revealed using a two-step etching method. After that, using a scanning electron microscope (SEM), microscopic photographs of 5 fields of view were randomly taken at a magnification of 2000 times, and the area ratio of MA in each field of view was measured and calculated by image analysis, and the average of 5 fields of view was calculated. The value was determined. Furthermore, after the same sample was mirror-polished again, it was etched with a 3% nitric acid alcohol etchant and observed with an optical microscope at a magnification of 400 times to confirm the type of microstructure.

次に、サブマージドアーク溶接部からJIS Z2202に従って2mmVノッチシャルピー衝撃試験片を採取し、溶接金属のシャルピー衝撃試験を行った。シャルピー試験はJIS Z2242に従い、試験温度−20℃における吸収エネルギー(3本平均値)を計測した。   Next, a 2 mmV notch Charpy impact test piece was sampled from the submerged arc weld according to JIS Z2202, and a Charpy impact test of the weld metal was performed. The Charpy test was performed according to JIS Z2242, and the absorbed energy (average value of 3 bars) at a test temperature of −20 ° C. was measured.

UOE鋼管の製造工程を模擬する冷間加工+熱処理後+内外面1層サブマージドアーク溶接+拡管相当冷間加工を実施した試験体の母材部および溶接金属部のミクロ組織画像解析結果および機械的性質調査結果をまとめて表5に示す。   Results of microstructure analysis and machine of the base metal part and weld metal part of the specimen subjected to cold working + simulated heat treatment + inner / outer surface 1 layer submerged arc welding + pipe expansion equivalent cold working to simulate UOE steel pipe manufacturing process Table 5 summarizes the results of the investigation of the physical properties.

Figure 0005768603
Figure 0005768603

No.1−1〜6は母材部化学組成、溶接金属化学組成、母材部ミクロ組織、および溶接金属ミクロ組織が本発明範囲内となる発明例で、いずれもAPIX65ないしX70の強度が得られ、0.5%耐力に対する1.5%耐力の比が1.15以上であり、引張強度と一様伸びとの積が7500MPa・%を超える値を示し、さらに−20℃における溶接金属シャルピー吸収エネルギーが100Jを超える、優れた低温靱性を示した。 No. 1-1 to 6 are invention examples in which the base metal part chemical composition, the weld metal chemical composition, the base metal part microstructure, and the weld metal microstructure are within the scope of the present invention, and any of the strengths of APIX65 to X70 is obtained. The ratio of 1.5% proof stress to 0.5% proof stress is 1.15 or more, the product of tensile strength and uniform elongation exceeds 7500 MPa ·%, and the weld metal Charpy absorbed energy at −20 ° C. Exhibited an excellent low-temperature toughness exceeding 100 J.

一方、U−Oプレス相当の冷間加工歪付与後にサブマージドアーク溶接を行ってから加熱・冷却をした比較例No.1−2は、溶接金属のミクロ組織が加熱・冷却の熱影響でアシキュラフェライト面積率およびMA面積率の両方が本発明の範囲外となり、溶接金属シャルピー吸収エネルギーが著しく低下した。   On the other hand, comparative example No. which heated / cooled after submerged arc welding was performed after cold work distortion equivalent to a U-O press was given. In No. 1-2, both the acicular ferrite area ratio and the MA area ratio were outside the scope of the present invention due to the heat effect of heating and cooling in the microstructure of the weld metal, and the weld metal Charpy absorbed energy was significantly reduced.

また、U−Oプレス相当の冷間加工歪付与後の再加熱温度が本願下限を下回った比較例1−3は、再加熱時にオーステナイト化が起こらなかったため、MAの面積率が下限の5%を下回った結果、引張強度が低く、かつ0.5%耐力に対する1.5%耐力の比が本発明の目標に達しなかった。逆に、再加熱温度が本願上限を上回った比較例1−4は、再加熱によって全面的にオーステナイトに逆変態し、その後の空冷時にベイナイト変態をし、ベイナイトラス間にアスペクト比が大きいMAが生成した。その結果、引張強度と一様伸びの積が7500を下回った。   In Comparative Example 1-3 in which the reheating temperature after applying cold working strain equivalent to the U-O press was below the lower limit of the present application, austenitization did not occur during reheating, so the area ratio of MA was 5% of the lower limit. As a result, the tensile strength was low, and the ratio of 1.5% proof stress to 0.5% proof strength did not reach the target of the present invention. Conversely, in Comparative Example 1-4 in which the reheating temperature exceeded the upper limit of the present application, MA reversibly transformed into austenite entirely by reheating, then bainite transformed during air cooling, and MA having a large aspect ratio between bainite laths. Generated. As a result, the product of tensile strength and uniform elongation was less than 7500.

熱間圧延時の鋼片加熱温度が本発明の下限を下回った比較例7は、鋼片が完全にオーステナイト化せず、残留したフェライト相が圧延・成形・加熱の履歴を経ても最後まで残ってしまい、再加熱時後のMA生成に影響してフェライト粒界上のMA分率が本発明の範囲を下回った結果、引張強度と一様伸びとの積が7500を下回った。同様に、熱間圧延時の圧延終了温度が本発明の下限を下回った比較例8も、フェライト粒界上のMA分率が本発明の範囲を下回ったため、一様伸びが低下し、引張強度と一様伸びとの積が7500を下回った。   In Comparative Example 7, in which the steel slab heating temperature during hot rolling was lower than the lower limit of the present invention, the steel slab was not completely austenitic, and the remaining ferrite phase remained until the end even after rolling, forming, and heating history. As a result of the influence of MA formation after reheating and the MA fraction on the ferrite grain boundary being below the range of the present invention, the product of tensile strength and uniform elongation was less than 7500. Similarly, in Comparative Example 8 in which the rolling end temperature during hot rolling was lower than the lower limit of the present invention, the MA fraction on the ferrite grain boundary was lower than the range of the present invention. And the uniform elongation were less than 7500.

母材部のC量が本発明の上限を上回った比較例No.9は、MAの面積率が上限を上回り、その結果一様伸びが低下し、引張強度と一様伸びとの積が7500を下回った。母材部のSi量が本発明の上限を上回った比較例No.10は、溶接金属のSi量も上限を上回り、溶接金属中のMA面積率が高くなった結果、溶接金属シャルピー吸収エネルギーが低下した。   Comparative Example No. in which the amount of C in the base material part exceeded the upper limit of the present invention. In No. 9, the area ratio of MA exceeded the upper limit. As a result, the uniform elongation decreased, and the product of the tensile strength and the uniform elongation was less than 7500. Comparative Example No. in which the amount of Si in the base material part exceeded the upper limit of the present invention. No. 10, the amount of Si in the weld metal also exceeded the upper limit, and as a result of the increase in the MA area ratio in the weld metal, the weld metal Charpy absorbed energy decreased.

母材部のMn量が本発明の下限を下回った比較例No.11は、MAの面積率が本発明の範囲を外れたため母材部引張強度が低く、かつ0.5%耐力に対する1.5%耐力の比が低下した。鋼のNb量が本発明の上限を上回った比較例No.12は、溶接金属のNb量も本発明の上限を上回り、MA面積率も本発明の範囲を外れたため、溶接金属シャルピー吸収エネルギーが低下した。   Comparative Example No. in which the amount of Mn in the base material part was below the lower limit of the present invention. In No. 11, the area ratio of MA was outside the range of the present invention, so the base material tensile strength was low, and the ratio of 1.5% proof stress to 0.5% proof stress was lowered. Comparative Example No. in which the Nb content of the steel exceeded the upper limit of the present invention. No. 12, the Nb content of the weld metal also exceeded the upper limit of the present invention, and the MA area ratio also deviated from the range of the present invention, so that the weld metal Charpy absorbed energy decreased.

比較例2−a、2−b、2−c、2−d、2−e、2−f、2−g、2−hは、いずれも、溶接金属の化学成分が本発明の範囲を外れたもので、母材部は目標とする機械的性質を満足したものの、溶接金属ミクロ組織が本発明の範囲外となるか、TiO過剰、あるいはNbないしVの析出硬化の結果、いずれも溶接金属シャルピー吸収エネルギーが低下した。   In Comparative Examples 2-a, 2-b, 2-c, 2-d, 2-e, 2-f, 2-g, and 2-h, the chemical components of the weld metal are outside the scope of the present invention. However, although the base metal part satisfies the target mechanical properties, the weld metal microstructure is outside the scope of the present invention, or as a result of excessive TiO or precipitation hardening of Nb or V, both are weld metal. Charpy absorbed energy decreased.

Claims (3)

母材の成分組成が、質量%で、
C:0.03%超〜0.06%、
Si:0.1%以下、
Mn:1.0〜1.7%、
Al:0.003〜0.08%、
Nb:0.01〜0.04%、
Ti:0.005〜0.025%、
を含有し、さらに
Cu:0.1〜0.5%、
Ni:0.1〜0.5%、
Mo:0.1〜0.5%、
Cr:0.1〜0.5%、
V:0.003〜0.04%、
の1種または2種以上を含有し
残部Feおよび不可避的不純物からなり、
溶接金属の成分組成が、質量%で、
C:0.06〜0.08%、
Si:0.2〜0.5%、
Mn:1.3〜1.8%、
Al:0.03%以下、
B:0.001〜0.003%、
Nb:0.005〜0.025%、
Ti:0.015〜0.040%、
Cu:0.1%以下、
V:0.03%以下、
O:0.015〜0.04%、
N:0.01%以下、
を含有し、さらに
Ni:0.1〜0.4%、
Mo:0.05〜0.2%、
Cr:0.1〜0.2%、
の1種または2種以上を含有し、
残部Feおよび不可避的不純物からなり、
前記母材部は、第1相がフェライトで、第2相が第1相中に面積率で5〜20%分散した平均アスペクト比が2.0以下である島状マルテンサイトで、前記島状マルテンサイトの90%以上がフェライト粒界に存在したミクロ組織を有し、
前記溶接金属部は、アシキュラフェライトの面積率が80%以上かつ、島状マルテンサイトの面積率が5%以下であるミクロ組織を有することを特徴とする、
高一様伸びを備え、かつ溶接部低温靱性に優れた高強度溶接鋼管。
The composition of the base material is mass%,
C: more than 0.03% to 0.06%,
Si: 0.1% or less,
Mn: 1.0-1.7%,
Al: 0.003 to 0.08%,
Nb: 0.01-0.04%,
Ti: 0.005 to 0.025%,
Further Cu: 0.1-0.5%,
Ni: 0.1 to 0.5%,
Mo: 0.1 to 0.5%,
Cr: 0.1 to 0.5%,
V: 0.003-0.04%,
1 type or 2 types or more, and the balance Fe and unavoidable impurities,
The component composition of the weld metal is mass%,
C: 0.06 to 0.08%,
Si: 0.2 to 0.5%
Mn: 1.3-1.8%
Al: 0.03% or less,
B: 0.001 to 0.003%,
Nb: 0.005 to 0.025%,
Ti: 0.015-0.040%,
Cu: 0.1% or less,
V: 0.03% or less,
O: 0.015-0.04%,
N: 0.01% or less,
In addition, Ni: 0.1 to 0.4%,
Mo: 0.05-0.2%
Cr: 0.1 to 0.2%
Containing one or more of
The balance Fe and inevitable impurities,
The base material portion is an island-shaped martensite having an average aspect ratio of 2.0 or less in which the first phase is ferrite and the second phase is dispersed in an area ratio of 5 to 20% in the first phase. 90% or more of martensite has a microstructure in the ferrite grain boundaries,
The weld metal part has a microstructure in which the area ratio of acicular ferrite is 80% or more and the area ratio of island martensite is 5% or less,
A high-strength welded steel pipe with high uniform elongation and excellent low temperature toughness at the weld.
母材部の成分組成が更に、質量%で、
Ca:0.0005〜0.01%、
REM:0.0005〜0.02%、
Zr:0.0005〜0.01%、
Mg:0.0005〜0.01%、
の1種または2種以上を含有することを特徴とする請求項1記載の高一様伸びを備え、かつ溶接部低温靱性に優れた高強度溶接鋼管。
The component composition of the base material part is further mass%,
Ca: 0.0005 to 0.01%,
REM: 0.0005 to 0.02%,
Zr: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
The high strength welded steel pipe having high uniform elongation according to claim 1 and excellent in low temperature toughness of the welded portion.
請求項1または2記載の高一様伸びを備え、かつ溶接部低温靱性に優れた高強度溶接鋼管の製造方法であって、鋼片を、
Ac以上に再加熱後、圧延終了温度Ar以上で熱間圧延し、その後、空冷して得られた鋼板を冷間成形により筒状に成形した後、Ac以上Ac以下に急速加熱し、引続き空冷あるいは水冷で室温まで冷却後、端部を溶接し、最後に拡管をすることを特徴とする、高一様伸びを備え、かつ溶接部低温靱性に優れた高強度溶接鋼管の製造方法。
A method for producing a high-strength welded steel pipe having a high uniform elongation according to claim 1 or 2 and having excellent welded portion low temperature toughness ,
After reheating to Ac 3 or higher, hot rolling at a rolling end temperature Ar 3 or higher, and then forming a steel plate obtained by air cooling into a cylindrical shape by cold forming, followed by rapid heating to Ac 1 or higher and Ac 3 or lower Then, after cooling to room temperature by air cooling or water cooling, the end is welded, and finally the pipe is expanded, and a high strength welded steel pipe with high uniform elongation and excellent low temperature toughness at the weld is manufactured. Method.
JP2011188576A 2011-08-31 2011-08-31 High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same Active JP5768603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011188576A JP5768603B2 (en) 2011-08-31 2011-08-31 High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011188576A JP5768603B2 (en) 2011-08-31 2011-08-31 High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013049895A JP2013049895A (en) 2013-03-14
JP5768603B2 true JP5768603B2 (en) 2015-08-26

Family

ID=48012155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011188576A Active JP5768603B2 (en) 2011-08-31 2011-08-31 High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same

Country Status (1)

Country Link
JP (1) JP5768603B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191393B2 (en) * 2013-10-28 2017-09-06 新日鐵住金株式会社 Submerged arc welding metal with excellent cryogenic toughness, and wire and flux for forming submerged arc welding
JP6201803B2 (en) * 2014-02-17 2017-09-27 新日鐵住金株式会社 Submerged arc welds with excellent low temperature toughness
CN104694844B (en) * 2015-03-27 2017-01-18 山东钢铁股份有限公司 Production method of X65M pipeline steel
KR101799202B1 (en) * 2016-07-01 2017-11-20 주식회사 포스코 High-strength steel sheet having excellent low yield ratio property and low temperature toughness and method for manufacturing the same
KR101917451B1 (en) * 2016-12-21 2018-11-09 주식회사 포스코 Low-yield ratio steel sheet having excellent low-temperature toughness and method for manufacturing the same
CN110475887A (en) * 2017-04-04 2019-11-19 日本制铁株式会社 Longitudinal seam welding steel pipe
RU2718949C1 (en) 2017-04-04 2020-04-15 Ниппон Стил Корпорейшн Welded steel pipe with longitudinal seam
JP7485920B2 (en) 2020-04-14 2024-05-17 日本製鉄株式会社 Intermediate bending roll steel pipe
CN113025884B (en) * 2021-02-07 2022-05-20 首钢集团有限公司 Pipeline steel and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278656A (en) * 1994-04-04 1995-10-24 Nippon Steel Corp Production of low yield ratio high tensile strength steel
JPH08283838A (en) * 1995-04-17 1996-10-29 Nippon Steel Corp Production of low yield ratio, high ductility steel excellent in strength, toughness and ductility
JP4016800B2 (en) * 2002-10-25 2007-12-05 Jfeスチール株式会社 Thick large-diameter straight UOE steel pipe that satisfies the strict toughness requirements of both the inner weld metal and the reheated part, and its manufacturing method
JP4585483B2 (en) * 2006-05-11 2010-11-24 新日本製鐵株式会社 High strength steel pipe with excellent weld toughness and deformability and method for producing high strength steel plate
JP5532800B2 (en) * 2009-09-30 2014-06-25 Jfeスチール株式会社 Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
WO2011040624A1 (en) * 2009-09-30 2011-04-07 Jfeスチール株式会社 Steel plate with low yield ratio, high strength, and high toughness and process for producing same

Also Published As

Publication number Publication date
JP2013049895A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP5776377B2 (en) High-strength hot-rolled steel sheet for welded steel pipes for line pipes with excellent sour resistance and method for producing the same
JP5768603B2 (en) High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same
US9493865B2 (en) Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method of producing same
EP3409803B1 (en) High-strength hot-rolled steel sheet for electric resistance welded steel pipe and manufacturing method therefor
JP5561120B2 (en) Welded steel pipe for high compressive strength and high toughness line pipe and manufacturing method thereof
CN111094610B9 (en) Steel pipe and steel plate
EP2395122B1 (en) High-strength steel tube for low-temperature use with superior buckling resistance and toughness in weld heat-affected areas, and manufacturing method for same
JP5561119B2 (en) Welded steel pipe for high compressive strength sour line pipe and manufacturing method thereof
JP5834534B2 (en) High strength low yield ratio steel with high uniform elongation characteristics, manufacturing method thereof, and high strength low yield ratio welded steel pipe
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5348386B2 (en) Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method
WO2013147197A1 (en) High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP5782827B2 (en) High compressive strength steel pipe for sour line pipe and manufacturing method thereof
JP5391542B2 (en) High strength steel excellent in deformation performance and tensile strength exceeding 750 MPa and method for producing the same
CN104937125B (en) The effective hot rolled steel plate of high-strength line-pipe steel
EP3276026A1 (en) Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
JP6048615B2 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP2015189984A (en) Low yield ratio high strength and high toughness steel plate, method for producing low yield ratio high strength and high toughness steel plate, and steel pipe
JP6128042B2 (en) Low yield ratio high strength spiral steel pipe pile and manufacturing method thereof
JP5842473B2 (en) High strength welded steel pipe with high uniform elongation characteristics and excellent weld toughness, and method for producing the same
JP7163777B2 (en) Steel plate for line pipe
CN111655872B (en) Steel material for line pipe, method for producing same, and method for producing line pipe
JP7388371B2 (en) ERW steel pipe and method for manufacturing ERW steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5768603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250