【0001】
【発明の属する技術分野】
本発明は、IC、LSI等の半導体集積回路素子、電界効果型トランジスタ(FET:Field Effect Transistor)、半導体レーザ(LD)、フォトダイオード(PD)などの各種半導体素子を収納するための半導体素子収納用パッケージ、およびその半導体素子収納用パッケージを用いた半導体装置に関する。
【0002】
【従来の技術】
従来の半導体素子収納用パッケージ(以下、「半導体パッケージ」という)は、図4に示すように、対向する辺部に貫通穴または切欠から成るネジ取付穴を備えた略四角形の基体2を有し、この基体の上面に半導体素子の搭載部を囲繞するように銀ロウ等のロウ材で接合された入出力端子3を具備したものであって、ネジ取付穴を有する前記基体2がモリブデン(Mo)、タングステン(W)、ダイヤモンドの何れかひとつの粉末焼結体の空隙を銀または銅で満たして得られる複合材料によって構成されている。
【0003】
また、この入出力端子3には、メタライズ層が形成されるとともに、外部電気回路に接合されるリード端子4がメタライズ層に銀ロウ等のロウ材を介して接合される。
【0004】
このような基体2は、ネジ取付部を介して外部電気回路の基板にネジ止めされ密着固定されることにより、半導体素子が作動時に発する熱を効率良く基板に伝える所謂放熱板としての機能を有する。また、熱膨張係数を半導体素子と類似のものとできるため、発熱時に大きな熱応力が生じる事無く半導体素子の信頼性は損なわれない。
【0005】
このような基体を有する半導体パッケージに半導体素子を搭載固定した後、半導体素子とメタライズ層とをボンディングワイヤで電気的に接続し、蓋体により半導体素子を気密に封止するか、もしくは樹脂により封止することにより、製品としての半導体装置となる。なお、半導体素子は、外部電気回路から入力される電気信号、または光ファイバから入力される光信号により動作する。
【0006】
上記したような従来の半導体パッケージの具体例について以下述べる。
特許文献1には、この種のパッケージが紹介されている。同文献の記載によれば、銅−タングステン系および/または銅−モリブデン系複合材料からなる放熱基板において、銅の含有量が30質量%以下の複合材料をその放熱基板に使うことによって、パッケージの周辺部材であるセラミックスに損傷を与えることが無く、また銅の含有量が25質量%以下のものを用いることによって、これとセラミックスからなる周辺部材とをロウ材によって直接接続しても実用上問題は無いとしている。
【0007】
さらに特許文献2には、銅−タングステン系および/または銅−モリブデン系複合材料からなる放熱基板において、銅の含有量が25質量%未満になると、基板自体の剛性が上昇するため、特に放熱量の大きなパッケージでは、それらの接続部にかなり厚目のロウ材層又は応力緩和層を介挿しないと、実用時の冷熱サイクルに耐えられない場合もあることから、材料中の銅の量を制御するだけでなく、含有する鉄族金属の量を調整することで熱伝導率を保持したままヤング率を最適化する手法が報告されている。
【0008】
しかしながら前記基体であるモリブデン(Mo)、タングステン(W)、ダイヤモンドの何れかひとつの粉末焼結体の空隙を銀または銅で満たして得られる複合材料は一般に高価である。原材料が高価であることに加え、材料製造工程において鉄、銅等の金属、合金のように溶解、押し出し、鋳造、圧延といった製法が適用できず粉末焼結法、もしくは溶浸法によって製造するしかないため生産性が劣る。また、硬く脆い複合材であるため安価に加工できるプレス加工の適用が困難である。
【0009】
そのためこれらの複合材料の加工は一般的には切削加工、または放電加工によって行なわれる。切削加工は、高速回転する工具を被加工部に接触させながら不要部を除去することによって所望の形状を得るものであり、前記基体の如くネジ取付部を有するような複雑形状を加工するには、相応の時間を要し高価になる。また放電加工は、電極と被加工物との間で生ずるアーク放電によって披加工物を溶融除去するものであるが、放電電極を常に消費しながら加工するため電極代が必要となり高価な加工となる。
【0010】
前記基体が高価であるため、半導体パッケージが高価なものとなり、半導体装置も高価なものにならざるを得ない。また前記基体に用いられるモリブデン(Mo)、タングステン(W)、ダイヤモンドの何れかひとつの粉末焼結体の空隙を銀おまたは銅で満たして得られる複合材料は一般に脆いためネジ締め時に破損する恐れがある。
【0011】
これらの問題を解決する手段として、安価で且つプレス加工が可能な銅や鉄等の金属を前記基体に用いる試みがなされたが、これら金属は熱膨張係数が大きく半導体素子動作時に発生する熱応力によって半導体素子の信頼性が損なわれる。また、鉄、ニッケル、コバルト等からなる低熱膨張合金を前記基体として使用すると、その熱伝導率はモリブデン(Mo)、タングステン(W)、ダイヤモンドの何れかひとつの粉末焼結体の空隙を銀または銅で満たして得られる複合材料には及ばず、半導体素子の発生する熱を基板もしくは大気中に放散することができないため半導体素子を安定して動作させることができない。
【0012】
これらの問題点は、上記半導体パッケージに限らず、基体を放熱板として機能させる、IC、LSI等の半導体集積回路素子やFET等の各種半導体素子を収納する半導体パッケージに関しても同様である。
【0013】
【特許文献1】
特公平4−65544号公報
【特許文献2】
特開2002−121639号公報
【0014】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑み完成されたものであり、その目的は、IC、LSI等の半導体集積回路素子、およびFET、LD等の各種半導体素子に生ずる熱応力を防ぐとともに、作動時に発する熱を効率良く外部電気回路の基板部に伝えることにより、長期間にわたり正常かつ安定に作動させることができる半導体素子を安価に提供することである。
【0015】
【課題を解決するための手段】
本発明者等が鋭意検討した結果、上記の課題は以下に記載する本件発明の構成によって解決することができることを見出した。
(1)上面に半導体素子が搭載される搭載部と、対向する辺部に貫通穴または切欠からなるネジ取付穴を有するネジ取付部とからなる基体と、該基体の上面に該搭載部を囲繞するように取着された入出力端子とを具備した半導体収納用パッケージにおいて、該搭載部は熱膨張係数が5〜10×10-6/K且つ熱伝導率が170W/m・K以上のモリブデン(Mo)、タングステン(W)及びダイヤモンドから選ばれる何れかひとつの粉末焼結体の空隙を銀および/または銅を主成分とする金属で満たして得られる複合材料で構成されると共に、該ネジ取付部が弾性率150Pa以下で且つプレス加工可能な材料で構成されており、該搭載部と該ネジ取付部とが銀ロウによってロウ付け接合されていることを特徴とする半導体素子収納用パッケージ。
【0016】
(2)前記搭載部が、ネジ取付部に設けた凹部に嵌め込まれて該ネジ取付部と銀ロウによってロウ付け接合されていることを特徴とする上記(1)に記載の半導体素子収納用パッケージ。
(3)前記ネジ取付部の材料が銅であることを特徴とする上記(1)又は(2)に記載の半導体素子収納用パッケージ。
(4)前記搭載部、前記銀ロウ及びネジ取付部が金メッキで覆われていることを特徴とする上記(1)〜(3)のいずれかに記載の半導体素子収納用パッケージ。
(5)上記(1)〜(4)のいずれかに記載の半導体素子収納用パッケージと、前記搭載部に搭載固定された半導体素子と、蓋体とを具備したことを特徴とする半導体装置。
【0017】
本発明は、上記構成により半導体素子を搭載する部分の熱膨張係数が半導体素子に近いため動作時の温度変化によっても半導体素子に熱応力が加わらず、且つ多くの熱を放散できるので長期間にわたって正常且つ安定的に作動させることができる。
【0018】
また、前記基体の半導体素子搭載部は略直方体とすることが好ましく、これにより高価なモリブデン(Mo)、タングステン(W)、ダイヤモンドの何れかひとつの粉末焼結体の空隙を銀および/または銅を主成分とする金属で満たして得られる複合材料の材料費を低減できるとともに、切断加工等のような加工法が適用でき安価に製造できる。
【0019】
ネジ取付部には弾性率150GPa以下の軟らかな金属(合金)を使用する為、瞬間的に加工可能な打ち抜きプレス加工で形成でき、安価な材料を選択することで部品代が安くなる。部品点数は増えるものの、これらをそもそも入出力端子を接合するロウ付けによって接合するため製造工程が増えること無く製造できるため全体として安価にパッケージを提供できる。
本発明は、このような構成により上記半導体パッケージを用いた信頼性の高い半導体素子を安価に提供できる。
【0020】
【発明の実施の形態】
本発明の半導体パッケージを以下に詳細に説明する。図1〜図3は本発明の半導体パッケージの実施の形態の一例を示すものであり、図1は半導体パッケージの平面図と断面図、図2は、半導体パッケージの基体の図1中Xで示した円内の部分拡大断面図、図3は半導体パッケージの斜視図である。
【0021】
図1において、1は半導体素子であり、2は半導体素子1を搭載する基体である。この基体2は、ネジ穴2cを有する基体部分である略四角形のネジ取付部2aと半導体素子1を搭載する半導体素子搭載部2b(以下、「搭載部2b」という)とからなっている。
【0022】
搭載部2bの材料は熱膨張係数が5〜10×10-6/K以下且つ熱伝導率が170W/m・K以上の概ね直方体のモリブデン(Mo)、タングステン(W)、ダイヤモンドの何れかひとつの粉末焼結体の空隙を銀および/または銅を主成分とする金属で満たして得られる複合材料であり、該金属としては銀又は銅が好ましく、複合材料としては例えば銅−タングステン(Cu−W)が使用される。
【0023】
搭載部2bは、その形状が概ね直方体であるのでスライシング、ダイシング等の切断加工によって形状が得られる。
【0024】
ネジ取付部2aは弾性率150GPa以下のプレス加工が可能な材料例えば銅が使用され、その両端部には基板に半導体装置を取り付けるためのネジ取付穴2cを具備しており、中央部には搭載部2bを銀ロウ付けする際に容易に位置決めできるよう凹部を有していても良い。このような凹部はプレス加工によって瞬時に加工できるためその程度の凹みを設けることによっては加工費が上昇する事はない。図1に示したものでは、前記搭載部はネジ取付部に設けた凹部に嵌め込まれて該ネジ取付部と銀ロウによってロウ付け接合されている。
【0025】
ネジ取付部2aはプレス加工によってその形状が得られるため、片方の面がダレるのでパッケージに組み立てる際には半導体搭載側の面がダレ面となるようにネジ取付部2aを配する事で、相対的に面積の大きい面が基板と接触するようにすることにより、取り付け時にネジ取付部2aが基板とより広い面積で接触して半導体素子から発生する熱をより多く基板に逃がすことができる。また、柔らかい金属を使用するためネジ締め時のネジ取付部2aの破損を有効に防止する。
【0026】
ネジ取付部2aの材料として熱伝導率が390W/m・Kである銅を用いる事により全て銅−タングステン(Cu−W)で構成するよりも多くの熱を大気中及び基板に放散できる。この場合搭載部2bとの銀ロウ付け時に熱膨張差による反りが問題になるが、ネジ取付部2aを弾性率150GPa以下の材料、例えば銅としネジ取付部2aと搭載部2bの厚み比を適当な値とすればネジ取付部2aが塑性変形することで熱応力を吸収し、大きく反ることはない。
【0027】
このネジ取付部2aに入出力端子3がNiめっき層を介して銀ロウ等のロウ材で接合されている。この入出力端子3は、絶縁性のセラミックス基板に導電性のメタライズ層が被着されたものであり、半導体パッケージ内部の気密性を保持する機能を有するとともに、半導体パッケージと外部電気回路との電気信号の入出力を行う機能を有する。なお、セラミックス基板の材料は、その誘電率や熱膨張係数等の特性に応じて、アルミナ(Al203)セラミックスや窒化アルミニウム(AlN)セラミックス等のセラミックス材料が適宜選定される。
【0028】
入出力端子3は、メタライズ層となるタングステン(W)、モリブデン(Mo)、マンガン(Mn)等の粉末に有機溶剤、溶媒を添加混合して得た金属ペーストを、セラミックス基板となる原料粉末に適当な有機バインダや溶剤等を添加混合してペースト状と成すとともに、このペーストをドクターブレード法やカレンダーロール法によって成形されたセラミックグリーンシートに、予め従来周知のスクリーン印刷法により所望の形状に印刷、塗布し、約1600℃の高温で焼結しNiメッキが施される事によって得られる。
【0029】
入出力端子3には外部電気回路との接続のため、必要に応じリード端子4が設けられる。リード端子4はFe、Ni、Co等の合金であるコバールまたは42Ni−Fe合金の圧延板をエッチング加工、もしくはプレス加工によって所望の形状に加工することによって得られ、入出力端子3のメタライズ部に銀ロウ付けすることで外部電気回路と半導体装置との接続を容易にする。
【0030】
これらネジ取付部2a、搭載部2b、入出力端子3、リード端子4はそれぞれ治具によって相対的な位置を固定され、各接合部に銀ロウが配置された状態で、銀ロウの融点以上、多くの場合は約800℃に加熱する。銀ロウが溶融してネジ取付部2a、搭載部2b、入出力端子3、リード端子4の表面に濡れることで各部品を接合する。この際、加熱時の雰囲気形成には不活性ガスもしくは還元性ガス、例えば窒素を使用し銀もしくは銅が酸化され本来の物性値を失うことを防ぐ。また、治具には炭素を素材として用いると銀ロウと濡れることなく良好なロウ付けが可能となる。
【0031】
ネジ取付部2aと搭載部2bとの接合に熱伝導率が約390W/m・Kである銀ロウを用いることで半導体素子1で発生した熱が搭載部2bを介してネジ取付部2aへ伝わり、大気中もしくは基板へ放散されることを阻害することがない。
【0032】
また、基体2およびリード端子4は図2に示すように、表面に金めつき層Bが被着形成されている。この金めっき層Bは、ネジ取付部2a、搭載部2b及び接合部表面に露出している銀および/または銅を主成分とする金属表面を完全に被覆し、使用環境での酸化による腐食を抑制する機能を有するとともに、半導体素子1の作動時に発する熱を横方向に伝える所謂伝熱媒体として機能する。更には、搭載部2bやリード端子4に接合させる部材を金(Au)−錫(Sn)や錫(Sn)−鉛(Pb)等の半田で接合する際の半田の濡れ性を向上させる所謂濡れ性向上媒体として機能する。
【0033】
この金めっき層Bは、厚さが0.2〜5μmであることが良い。厚さが0.2μm未満の場合、ピンホールなどによりMo、W、ダイヤモンドの何れかひとつの粉末焼結体の空隙をAgもしくはCuで満たして得られる複合材料表面に露出する銀および/または銅を主成分とする金属の酸化を抑制する効果が損なわれる。さらに、半導体素子1やリ−ド端子4に接合させる部材を金(Au)−錫(Sn)や錫(Sn)−鉛(Pb)等の半田で接合する際、半田の濡れ性が損なわれ易く、また伝熱媒体としての機能が損なわれたり、半導体パッケージ内部の気密性検査の際に気密性が不安定になったりする。
【0034】
一方、5μmを超える場合、モリブデン(Mo)、タングステン(W)、ダイヤモンドの何れかひとつの粉末焼結体の空隙を銀(Ag)もしくは銅(Cu)で満たして得られる複合材料と金めっき層Bとの間に発生する熱応力による歪みが大きなものとなり、金めっき層Bが剥離し易くなる。さらに経済面でも好ましくない。
【0035】
このように、本発明の半導体パッケージは、半導体素子1が搭載される搭載部2bとネジ取付部2aとを有する基体2と、搭載部2bを囲繞する入出カ端子3が、銀ロウによって接続され、モリブデン(Mo)、タングステン(W)、ダイヤモンドの何れかひとつの粉末焼結体の空隙を銀および/または銅を主成分とする金属で満たして得られる複合材料から成る基材表面と銀ロウに金めっき層Bが被着されて成る。また必要に応じて入出力端子3のメタライズ部にロウ材を介して接合されるリード端子4を具備している。
【0036】
図に示す半導体パッケージは、半導体素子搭載後に上部に例えば樹脂などのような絶縁特性を有する材質で蓋体が取り付けられる。
【0037】
また、本発明の半導体パッケージと、搭載部2bに搭載固定され入出力端子3に電気的に接続される半導体素子1を具備することにより半導体装置となる。
具体的には、搭載部2b上面に半導体素子1をガラス、樹脂、半田等の接着剤を介して接着固定するとともに、半導体素子1の電極をボンディングワイヤあるいはボンディングリボンを介して所定の端子部に電気的に接続させる。しかる後に、上面に樹脂製蓋体を接着することにより、基体2、入出力端子3、蓋体からなる半導体パッケージの内部に半導体素子1を気密に収納することにより、製品としての半導体装置になる。
【0038】
なお、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を行うことは何等支障ない。例えば、半導体パッケ−ジは、その内部に収納される半導体素子1が無線通信用のMMICなどの場合、パワーアンプ用デバイスやAl203セラミックス基板上に厚膜メタライズでアンテナを形成した基板を具備することにより半導体装置となる。
【0039】
このような無線用半導体装置は、例えば外部電気回路から供給される高周波信号により無線半導体素子を動作させ、パワーアンプにより増幅し、アンテナから無線信号を発信することにより、無線信号発信器として機能し、無線通信分野等に多く用いることができる。
【0040】
【発明の効果】
本発明の半導体素子収納用パッケージは、安価に製造できると共に、IC、LSI等の半導体集積回路素子、およびFET、LD等の各種半導体素子に生ずる熱応力を防ぎ、かつ作動時に発する熱を効率良く外部電気回路の基板部に伝えることが可能となるため、素子を長期間にわたり正常かつ安定に作動させることができる。
【0041】
本発明の半導体素子収納用パッケージは、基体のネジ取付部を熱伝導率が390W/m・Kと高く、弾性率150GPa以下の銅にすることによって、基体の全てを銅−タングステン(Cu−W)で構成する場合に比べて、より熱放散を向上できるとともに、半導体装置として基板にネジ止めする際に破損を防止することができる。
【0042】
また本発明の半導体パッケージは、その基体及び入出力端子、接合部材の表面の少なくとも一部分が金めっき層を被着することにより、金属、金属複合体表面に露出する銅または銀が酸化腐食するのを抑制でき、内部に封入する半導体素子を長期間にわたって安定して使用することができる。
【0043】
さらに、本発明の半導体装置は、本発明の半導体素子収納用パッケージと、搭載部に搭載固定されるとともに入出力端子に電気的に接続された半導体素子と、蓋体とを具備したことにより、上記作用効果を有する半導体パッケージを用いた信頼性の高い半導体装置を安価に提供できる。
【図面の簡単な説明】
【図1】本発明の半導体素子収納パッケージの一例の上面図及び断面図である。
【図2】本発明の半導体素子収納パッケージの基体の部分拡大断面図である。
【図3】本発明の半導体素子収納パッケージの斜視図である。
【図4】従来の半導体素子収納パッケージの斜視図である。
【符号の説明】
1 半導体素子
2 基体
2a ネジ取付部
2b 搭載部
2c ネジ取付穴
3 入出力端子
4 リード端子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device housing for housing various semiconductor devices such as a semiconductor integrated circuit device such as an IC and an LSI, a field effect transistor (FET), a semiconductor laser (LD), and a photodiode (PD). And a semiconductor device using the semiconductor element storage package.
[0002]
[Prior art]
As shown in FIG. 4, a conventional package for housing a semiconductor element (hereinafter, referred to as a “semiconductor package”) has a substantially square base 2 having a through hole or a notch screw mounting hole on opposite sides. And an input / output terminal 3 joined to the upper surface of the base by a brazing material such as silver brazing so as to surround a mounting portion of the semiconductor element. The base 2 having a screw mounting hole is made of molybdenum (Mo). ), Tungsten (W), and diamond are formed of a composite material obtained by filling voids of a powder sintered body with silver or copper.
[0003]
A metallized layer is formed on the input / output terminal 3, and a lead terminal 4 to be connected to an external electric circuit is bonded to the metallized layer via a brazing material such as silver brazing.
[0004]
Such a base 2 has a function as a so-called radiator plate that efficiently transfers heat generated during operation of the semiconductor element to the substrate by being screwed to and tightly fixed to the substrate of the external electric circuit via the screw mounting portion. . Further, since the thermal expansion coefficient can be made similar to that of the semiconductor element, a large thermal stress does not occur at the time of heat generation, and the reliability of the semiconductor element is not impaired.
[0005]
After mounting and fixing the semiconductor element on a semiconductor package having such a base, the semiconductor element and the metallized layer are electrically connected with a bonding wire, and the semiconductor element is hermetically sealed with a lid or sealed with a resin. By stopping, it becomes a semiconductor device as a product. Note that the semiconductor element operates by an electric signal input from an external electric circuit or an optical signal input from an optical fiber.
[0006]
A specific example of the above-described conventional semiconductor package will be described below.
Patent Literature 1 introduces such a package. According to the description of the document, in a heat-dissipating substrate made of a copper-tungsten-based and / or copper-molybdenum-based composite material, by using a composite material having a copper content of 30% by mass or less for the heat dissipating substrate, the package can be manufactured. By using a material which does not damage the ceramic which is a peripheral member and has a copper content of 25% by mass or less, even if it is directly connected to the peripheral member made of ceramics by a brazing material, there is a practical problem. There is no.
[0007]
Further, Patent Document 2 discloses that in a heat-dissipating substrate made of a copper-tungsten-based and / or copper-molybdenum-based composite material, if the copper content is less than 25% by mass, the rigidity of the substrate itself increases, and thus the heat dissipation amount is particularly large. For large packages, the amount of copper in the material can be controlled because the connection may not be able to withstand the cooling and heating cycle in practical use unless a considerably thick brazing material layer or stress relaxation layer is interposed. In addition, there has been reported a method of optimizing the Young's modulus while maintaining the thermal conductivity by adjusting the amount of the iron group metal contained.
[0008]
However, a composite material obtained by filling the voids of any one of the powdery sintered bodies of molybdenum (Mo), tungsten (W) and diamond with silver or copper is generally expensive. In addition to the fact that raw materials are expensive, in the material manufacturing process, manufacturing methods such as melting, extrusion, casting, and rolling are not applicable, as with metals and alloys such as iron and copper. Productivity is low. Moreover, since it is a hard and brittle composite material, it is difficult to apply press working that can be processed at low cost.
[0009]
Therefore, processing of these composite materials is generally performed by cutting or electric discharge machining. Cutting is to obtain a desired shape by removing unnecessary portions while contacting a high-speed rotating tool with a portion to be processed, and to process a complicated shape having a screw mounting portion like the base. It takes a long time and becomes expensive. In addition, in electric discharge machining, a workpiece is melted and removed by arc discharge generated between an electrode and a workpiece. However, since the machining is performed while constantly consuming the discharge electrode, an electrode cost is required, resulting in expensive machining. .
[0010]
Since the base is expensive, the semiconductor package is expensive, and the semiconductor device is inevitably expensive. Further, a composite material obtained by filling the voids of any one of molybdenum (Mo), tungsten (W), and diamond powder sintered bodies with silver or copper used for the base is generally brittle, and may be damaged during screw tightening. There is.
[0011]
As means for solving these problems, attempts have been made to use inexpensive and press-workable metals such as copper and iron for the base, but these metals have a large thermal expansion coefficient and a thermal stress generated during operation of the semiconductor element. This impairs the reliability of the semiconductor device. When a low thermal expansion alloy made of iron, nickel, cobalt, or the like is used as the substrate, the thermal conductivity of the powder sintered body of molybdenum (Mo), tungsten (W), or diamond is changed to silver or silver. It is inferior to a composite material obtained by filling with copper, and the heat generated by the semiconductor element cannot be dissipated into the substrate or the atmosphere, so that the semiconductor element cannot be operated stably.
[0012]
These problems are not limited to the above-described semiconductor package, but also apply to a semiconductor package which accommodates a semiconductor integrated circuit element such as an IC or an LSI or various semiconductor elements such as an FET which causes the base to function as a heat sink.
[0013]
[Patent Document 1]
Japanese Patent Publication No. 4-65544 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-121639
[Problems to be solved by the invention]
The present invention has been completed in view of the above problems, and an object of the present invention is to prevent thermal stress generated in semiconductor integrated circuit devices such as ICs and LSIs and various semiconductor devices such as FETs and LDs, and to emit heat during operation. An object of the present invention is to provide an inexpensive semiconductor device that can operate normally and stably for a long period of time by efficiently transmitting heat to a substrate portion of an external electric circuit.
[0015]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors, it has been found that the above-mentioned problems can be solved by the configuration of the present invention described below.
(1) A base body including a mounting part on which a semiconductor element is mounted on an upper surface, a screw mounting part having a screw mounting hole formed with a through hole or a cutout on an opposite side, and surrounding the mounting part on the upper surface of the base. And a semiconductor package having an input / output terminal attached to the semiconductor device, the mounting portion having a thermal expansion coefficient of 5 to 10 × 10 −6 / K and a thermal conductivity of 170 W / m · K or more. (Mo), tungsten (W), and diamond are formed of a composite material obtained by filling voids of a powdered sintered body with a metal containing silver and / or copper as a main component. The mounting part is made of a material having an elastic modulus of 150 Pa or less and which can be pressed, and the mounting part and the screw mounting part are joined by brazing with silver brazing. Di.
[0016]
(2) The package for housing a semiconductor element according to the above (1), wherein the mounting portion is fitted into a recess provided in the screw mounting portion and is brazed to the screw mounting portion by silver brazing. .
(3) The package for housing a semiconductor element according to the above (1) or (2), wherein the material of the screw mounting portion is copper.
(4) The package for accommodating a semiconductor element according to any one of the above (1) to (3), wherein the mounting portion, the silver solder and the screw mounting portion are covered with gold plating.
(5) A semiconductor device comprising: the semiconductor element storage package according to any one of the above (1) to (4); a semiconductor element mounted and fixed on the mounting portion; and a lid.
[0017]
According to the present invention, a thermal expansion coefficient of a portion on which a semiconductor element is mounted is close to that of the semiconductor element due to the above-described configuration. It can be operated normally and stably.
[0018]
Further, the semiconductor element mounting portion of the base is preferably a substantially rectangular parallelepiped, whereby the voids of any one of expensive powder sintered bodies of molybdenum (Mo), tungsten (W), and diamond are formed of silver and / or copper. In addition to reducing the material cost of a composite material obtained by filling with a metal having as a main component, it is possible to apply a processing method such as a cutting process and to manufacture the composite material at a low cost.
[0019]
Since a soft metal (alloy) having an elastic modulus of 150 GPa or less is used for the screw mounting portion, it can be formed by punching and press working that can be performed instantaneously, and the cost of parts can be reduced by selecting an inexpensive material. Although the number of components is increased, they are first joined by brazing to join the input / output terminals, so that they can be manufactured without increasing the number of manufacturing steps, so that a package can be provided at low cost as a whole.
According to the present invention, a highly reliable semiconductor device using the above-described semiconductor package can be provided at a low cost.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The semiconductor package of the present invention will be described in detail below. 1 to 3 show an embodiment of a semiconductor package according to the present invention. FIG. 1 is a plan view and a sectional view of the semiconductor package, and FIG. FIG. 3 is a perspective view of a semiconductor package.
[0021]
In FIG. 1, reference numeral 1 denotes a semiconductor element, and reference numeral 2 denotes a base on which the semiconductor element 1 is mounted. The base 2 includes a substantially square screw mounting portion 2a, which is a base portion having a screw hole 2c, and a semiconductor element mounting portion 2b on which the semiconductor element 1 is mounted (hereinafter, referred to as "mounting portion 2b").
[0022]
The material of the mounting portion 2b is any one of substantially rectangular parallelepiped molybdenum (Mo), tungsten (W), and diamond having a thermal expansion coefficient of 5 to 10 × 10 −6 / K or less and a thermal conductivity of 170 W / m · K or more. Is a composite material obtained by filling the voids of the powder sintered body with a metal containing silver and / or copper as a main component, and the metal is preferably silver or copper, and the composite material is, for example, copper-tungsten (Cu- W) is used.
[0023]
Since the mounting portion 2b has a substantially rectangular parallelepiped shape, a shape can be obtained by cutting such as slicing and dicing.
[0024]
The screw mounting portion 2a is made of a material that can be pressed, for example, having an elastic modulus of 150 GPa or less, for example, copper, and has a screw mounting hole 2c for mounting a semiconductor device on a substrate at both ends, and a mounting portion at the center. A concave portion may be provided so that the portion 2b can be easily positioned at the time of silver brazing. Since such a concave portion can be processed instantaneously by pressing, the provision of such a concave portion does not increase the processing cost. In the structure shown in FIG. 1, the mounting portion is fitted into a recess provided in the screw mounting portion, and is joined to the screw mounting portion by silver brazing.
[0025]
Since the shape of the screw mounting portion 2a is obtained by press working, one surface is sagged, so when assembling into a package, the screw mounting portion 2a is arranged so that the surface on the semiconductor mounting side is a sagging surface. By making the surface having a relatively large area come into contact with the substrate, the screw mounting portion 2a comes into contact with the substrate over a larger area during mounting, and more heat generated from the semiconductor element can be released to the substrate. In addition, since a soft metal is used, damage to the screw mounting portion 2a during screw tightening is effectively prevented.
[0026]
By using copper having a thermal conductivity of 390 W / m · K as the material of the screw mounting portion 2a, more heat can be dissipated to the atmosphere and to the substrate than if all were made of copper-tungsten (Cu-W). In this case, warping due to a difference in thermal expansion when silver is soldered to the mounting portion 2b is a problem. However, the screw mounting portion 2a is made of a material having an elastic modulus of 150 GPa or less, for example, copper, and the thickness ratio of the screw mounting portion 2a and the mounting portion 2b is appropriately adjusted. If the screw mounting portion 2a is set to an appropriate value, the screw mounting portion 2a plastically deforms to absorb thermal stress and does not warp significantly.
[0027]
The input / output terminal 3 is joined to the screw mounting portion 2a with a brazing material such as silver brazing via a Ni plating layer. The input / output terminal 3 is formed by attaching a conductive metallization layer to an insulating ceramic substrate, has a function of maintaining airtightness inside the semiconductor package, and has an electric connection between the semiconductor package and an external electric circuit. It has a function of inputting and outputting signals. The material of the ceramic substrate, depending on the characteristics such as the dielectric constant and the thermal expansion coefficient of alumina (Al 2 0 3) ceramic or aluminum nitride (AlN) ceramic material such as ceramics is suitably selected.
[0028]
The input / output terminal 3 is formed by adding a metal paste obtained by adding an organic solvent and a solvent to a powder of tungsten (W), molybdenum (Mo), manganese (Mn) or the like to be a metallized layer, to a raw material powder to be a ceramic substrate. A suitable organic binder, a solvent, etc. are added and mixed to form a paste, and the paste is printed on a ceramic green sheet formed by a doctor blade method or a calendar roll method in a desired shape in advance by a conventionally known screen printing method. , Applied, sintered at a high temperature of about 1600 ° C., and plated with Ni.
[0029]
The input / output terminal 3 is provided with a lead terminal 4 as needed for connection to an external electric circuit. The lead terminal 4 is obtained by processing a rolled plate of Kovar or 42Ni-Fe alloy, which is an alloy of Fe, Ni, Co, or the like, into a desired shape by etching or press working. The silver brazing facilitates the connection between the external electric circuit and the semiconductor device.
[0030]
The relative positions of the screw mounting portion 2a, the mounting portion 2b, the input / output terminal 3, and the lead terminal 4 are fixed by jigs, respectively. Often it is heated to about 800 ° C. The parts are joined by melting the silver braze and wetting the surfaces of the screw mounting portion 2a, the mounting portion 2b, the input / output terminals 3, and the lead terminals 4. At this time, an inert gas or a reducing gas, for example, nitrogen is used for forming an atmosphere at the time of heating to prevent silver or copper from being oxidized and losing original physical properties. When carbon is used as a material for the jig, good brazing can be performed without getting wet with silver brazing.
[0031]
By using a silver solder having a thermal conductivity of about 390 W / m · K for joining the screw mounting portion 2a and the mounting portion 2b, heat generated in the semiconductor element 1 is transmitted to the screw mounting portion 2a via the mounting portion 2b. It does not hinder emission to the air or the substrate.
[0032]
Further, as shown in FIG. 2, the base 2 and the lead terminals 4 are provided with a plating layer B on the surface. This gold plating layer B completely covers the metal surface mainly composed of silver and / or copper exposed on the screw mounting portion 2a, the mounting portion 2b, and the surface of the joint portion, and prevents corrosion due to oxidation in the use environment. In addition to having a function of suppressing, it also functions as a so-called heat transfer medium that transmits heat generated during operation of the semiconductor element 1 in the lateral direction. Furthermore, what is called a so-called improving solder wettability when a member to be joined to the mounting portion 2b or the lead terminal 4 is joined with a solder such as gold (Au) -tin (Sn) or tin (Sn) -lead (Pb). Functions as a wettability improving medium.
[0033]
The gold plating layer B preferably has a thickness of 0.2 to 5 μm. When the thickness is less than 0.2 μm, silver and / or copper exposed on the surface of a composite material obtained by filling a void of any one of Mo, W, and diamond powder sintered bodies with Ag or Cu by a pinhole or the like. The effect of suppressing the oxidation of a metal containing as a main component is impaired. Furthermore, when a member to be joined to the semiconductor element 1 or the lead terminal 4 is joined with a solder such as gold (Au) -tin (Sn) or tin (Sn) -lead (Pb), wettability of the solder is impaired. This is easy, and the function as a heat transfer medium is impaired, and the airtightness becomes unstable during the airtightness inspection inside the semiconductor package.
[0034]
On the other hand, when the thickness exceeds 5 μm, a composite material obtained by filling the voids of any one of molybdenum (Mo), tungsten (W), and diamond powder sintered bodies with silver (Ag) or copper (Cu) and a gold plating layer B becomes large due to the thermal stress generated between them, and the gold plating layer B is easily peeled off. Further, it is not economically preferable.
[0035]
As described above, in the semiconductor package of the present invention, the base 2 having the mounting portion 2b on which the semiconductor element 1 is mounted and the screw mounting portion 2a, and the input / output terminals 3 surrounding the mounting portion 2b are connected by the silver brazing. , Molybdenum (Mo), tungsten (W), and diamond powders, and the surface of a base material made of a composite material obtained by filling voids of a powder sintered body with a metal containing silver and / or copper as a main component; And a gold plating layer B is adhered thereto. Also, a lead terminal 4 is provided, which is joined to the metallized portion of the input / output terminal 3 via a brazing material as required.
[0036]
In the semiconductor package shown in the figure, a lid body is attached to the upper part of the semiconductor package after mounting the semiconductor element with a material having an insulating property such as a resin.
[0037]
Further, a semiconductor device is provided by including the semiconductor package of the present invention and the semiconductor element 1 mounted and fixed to the mounting portion 2b and electrically connected to the input / output terminal 3.
Specifically, the semiconductor element 1 is bonded and fixed to the upper surface of the mounting portion 2b with an adhesive such as glass, resin, solder, or the like, and the electrodes of the semiconductor element 1 are connected to predetermined terminal portions via bonding wires or bonding ribbons. Make electrical connection. Thereafter, the semiconductor device 1 is hermetically housed in a semiconductor package including the base 2, the input / output terminals 3, and the lid by bonding a resin lid to the upper surface, thereby obtaining a semiconductor device as a product. .
[0038]
It should be noted that the present invention is not limited to the above-described embodiment, and that various changes may be made without departing from the scope of the present invention. For example, a semiconductor package - di, when the semiconductor element 1 is accommodated in its interior, such as MMIC for wireless communication, the substrate formed with the antenna in a thick film metallization to the power amplifier devices and Al 2 0 3 ceramic substrate By providing the semiconductor device, a semiconductor device is obtained.
[0039]
Such a wireless semiconductor device functions as a wireless signal transmitter, for example, by operating a wireless semiconductor element by a high-frequency signal supplied from an external electric circuit, amplifying the power by a power amplifier, and transmitting a wireless signal from an antenna. , Can be used in many fields such as wireless communication.
[0040]
【The invention's effect】
The package for accommodating a semiconductor element of the present invention can be manufactured at low cost, and can prevent thermal stress generated in semiconductor integrated circuit elements such as ICs and LSIs and various semiconductor elements such as FETs and LDs, and efficiently generate heat during operation. Since the signal can be transmitted to the substrate of the external electric circuit, the element can be normally and stably operated for a long period of time.
[0041]
In the package for housing a semiconductor element of the present invention, the entire substrate is made of copper-tungsten (Cu-W) by using a screw mounting portion of the substrate made of copper having a high thermal conductivity of 390 W / m · K and an elastic modulus of 150 GPa or less. ), Heat dissipation can be further improved, and breakage can be prevented when the semiconductor device is screwed to a substrate.
[0042]
Further, in the semiconductor package of the present invention, at least a part of the surface of the base, the input / output terminals, and the joining member is coated with the gold plating layer, so that the metal, copper or silver exposed on the surface of the metal composite is oxidized and corroded. , And the semiconductor element sealed therein can be used stably for a long period of time.
[0043]
Further, the semiconductor device of the present invention includes the semiconductor element housing package of the present invention, a semiconductor element mounted and fixed to the mounting portion and electrically connected to the input / output terminal, and a lid, A highly reliable semiconductor device using the semiconductor package having the above-described functions and effects can be provided at low cost.
[Brief description of the drawings]
FIG. 1 is a top view and a cross-sectional view of an example of a semiconductor element storage package according to the present invention.
FIG. 2 is a partially enlarged cross-sectional view of a base of the semiconductor element storage package of the present invention.
FIG. 3 is a perspective view of a semiconductor element storage package according to the present invention.
FIG. 4 is a perspective view of a conventional semiconductor element storage package.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Base 2a Screw mounting part 2b Mounting part 2c Screw mounting hole 3 I / O terminal 4 Lead terminal