JP2003037196A - Package for housing optical semiconductor element - Google Patents

Package for housing optical semiconductor element

Info

Publication number
JP2003037196A
JP2003037196A JP2001224110A JP2001224110A JP2003037196A JP 2003037196 A JP2003037196 A JP 2003037196A JP 2001224110 A JP2001224110 A JP 2001224110A JP 2001224110 A JP2001224110 A JP 2001224110A JP 2003037196 A JP2003037196 A JP 2003037196A
Authority
JP
Japan
Prior art keywords
semiconductor element
optical semiconductor
weight
copper
frame body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001224110A
Other languages
Japanese (ja)
Inventor
Yoshihiro Basho
義博 芭蕉
Masaaki Iguchi
公明 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001224110A priority Critical patent/JP2003037196A/en
Publication of JP2003037196A publication Critical patent/JP2003037196A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the heat accumulated when an optical semiconductor element operates is not efficiently dispersed outside, causing thermal destruction with the optical semiconductor element. SOLUTION: The package for housing an optical semiconductor element comprises a base 1, a frame 2 of an iron-nickel-cobalt alloy or iron-nickel alloy which is fitted to the base 1 and comprises a through hole 2a and a notch 2b on the side part, a fixing member 6 which is fitted to the through hole 2a and jointed to an optical fiber member 8, a ceramic terminal 9 in which, inserted in the notch 2b, a wiring layer to which electrodes of an optical semiconductor element 4 are connected is formed, and a lid member 3 fitted to the upper surface of the frame 2. The base 1 comprises tungsten and copper, and has a 3-layer structure where upper and lower layers 1b and 1c, comprising tungsten by 25-55 wt.% and copper by 45-75 wt.%, are provided on both upper and lower surfaces of an intermediate layer 1c comprising tungsten by 70-90 wt.% and copper by 10-30 wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光半導体素子を収容
するための光半導体素子収納用パッケージに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device housing package for housing an optical semiconductor device.

【0002】[0002]

【従来の技術】従来、光半導体素子を収容するための光
半導体素子収納用パッケージは、一般に鉄−ニッケル−
コバルト合金や鉄−ニッケル合金等の金属材料からな
り、上面中央に光半導体素子が載置される載置部を有す
る基体と、前記光半導体素子載置部を囲繞するようにし
て基体上に銀ロウ等のロウ材を介して接合され、側部に
貫通孔及び切欠部を有する鉄−ニッケル−コバルト合金
や鉄−ニッケル合金等の金属材料から成る枠体と、前記
枠体の貫通孔もしくは貫通孔周辺の枠体に取着され、内
部に光信号が伝達される空間を有する鉄−ニッケル−コ
バルト合金等の金属材料から成る筒状の固定部材と、前
記筒状の固定部材に融点が200〜400℃の金−錫合
金等の低融点ロウ材を介して取着された固定部材の内部
を塞ぐ非晶質ガラス等から成る透光性部材と、前記枠体
の切欠部に挿着され、酸化アルミニウム質焼結体等のセ
ラミックス絶縁体に光半導体素子の各電極がボンディン
グワイヤを介して電気的に接続される配線層を形成した
セラミック端子体と、前記枠体の上面に取着され、光半
導体素子を気密に封止する蓋部材とから構成されてお
り、基体の光半導体素子載置部に光半導体素子を載置固
定させるとともに該光半導体素子の各電極をボンディン
グワイヤを介してセラミック端子体の配線層に電気的に
接続し、しかる後、前記枠体の上面に蓋部材を接合さ
せ、基体と枠体と蓋部材とから成る容器内部に光半導体
素子を気密に収容するとともに筒状固定部材に光ファイ
バー部材を、例えば、YAG溶接等により取着すること
によって製品としての光半導体装置となる。
2. Description of the Related Art Conventionally, an optical semiconductor element housing package for housing an optical semiconductor element is generally made of iron-nickel-
A base made of a metal material such as a cobalt alloy or an iron-nickel alloy and having a mounting portion on which the optical semiconductor element is mounted at the center of the upper surface, and a silver on the base body so as to surround the optical semiconductor element mounting portion. A frame made of a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy, which is joined through a brazing material such as brazing and has a through hole and a cutout portion on its side, and a through hole or a through hole of the frame. A tubular fixing member made of a metal material such as an iron-nickel-cobalt alloy, which is attached to a frame around the hole and has a space for transmitting an optical signal therein, and the melting point of the tubular fixing member is 200 A translucent member made of amorphous glass or the like for closing the inside of a fixing member attached via a low melting point brazing material such as a gold-tin alloy of 400 to 400 ° C., and inserted into a cutout portion of the frame body. For ceramic insulators such as aluminum oxide sintered bodies From a ceramic terminal body in which each electrode of the semiconductor element is formed with a wiring layer electrically connected through a bonding wire, and a lid member attached to the upper surface of the frame body to hermetically seal the optical semiconductor element. The optical semiconductor element is mounted and fixed on the optical semiconductor element mounting portion of the base body, and each electrode of the optical semiconductor element is electrically connected to the wiring layer of the ceramic terminal body through a bonding wire. After that, a lid member is joined to the upper surface of the frame body to hermetically accommodate the optical semiconductor element inside a container composed of the base body, the frame body and the lid member, and an optical fiber member is attached to the tubular fixing member, for example, YAG welding or the like. Then, the optical semiconductor device as a product is obtained by the attachment.

【0003】なお上述の光半導体素子収納用パッケージ
においては、内部に収容される光半導体素子が高周波領
域で駆動し、外部ノイズの影響を受け易いものであるた
め基体及び枠体を金属材料で形成し、容器内部をシール
ドしておくことによって光半導体素子に外部ノイズが影
響しないようにしている。また基体及び枠体はセラミッ
ク端子体や光半導体素子等の線熱膨張係数と合わすため
一般に鉄−ニッケル−コバルト合金や鉄−ニッケル合金
等が使用されている。
In the above-mentioned package for housing an optical semiconductor element, the optical semiconductor element housed inside is driven in a high frequency region and is easily affected by external noise, so that the base body and the frame body are formed of a metal material. However, by shielding the inside of the container, external noise is prevented from affecting the optical semiconductor element. Further, the base body and the frame body are generally made of iron-nickel-cobalt alloy, iron-nickel alloy or the like in order to match the linear thermal expansion coefficient of the ceramic terminal body or the optical semiconductor element.

【0004】しかしながら、この従来の光半導体素子収
納用パッケージにおいては、光半導体素子が載置固定さ
れる基体の熱伝導率が20W/m・K程度であり、熱を
効率良く伝達することができないことから光半導体素子
が作動時に熱を発した際、その熱を基体を介して外部に
十分放散させることができず、その結果、光半導体素子
は該光半導体素子自身の発する熱で高温となり、熱破壊
を起こしたり、特性に熱劣化を招来し、誤動作したりす
るという欠点を有していた。
However, in this conventional package for accommodating an optical semiconductor element, the heat conductivity of the substrate on which the optical semiconductor element is mounted and fixed is about 20 W / m · K, and heat cannot be efficiently transmitted. Therefore, when the optical semiconductor element emits heat during operation, the heat cannot be sufficiently dissipated to the outside through the substrate, and as a result, the optical semiconductor element becomes high temperature due to the heat generated by the optical semiconductor element itself, It has the drawbacks of causing thermal destruction and causing thermal deterioration of the characteristics, resulting in malfunction.

【0005】そこで上記欠点を解消するために基体を熱
伝導率が高く、かつ線熱膨張係数がセラミック端子体の
線熱膨張係数に近似する銅−タングステン合金や銅−モ
リブデン合金で形成しておくことが考えられる。
Therefore, in order to solve the above-mentioned drawbacks, the substrate is formed of a copper-tungsten alloy or a copper-molybdenum alloy having a high thermal conductivity and a linear thermal expansion coefficient close to that of the ceramic terminal body. It is possible.

【0006】かかる銅−タングステン合金や銅−モリブ
デン合金は一般にタングステン粉末やモリブデン粉末を
焼成して焼結多孔体を得、次に前記焼結多孔体の空孔内
に溶融させた銅を含浸させることによって製造されてお
り、例えば、タングステンから成る焼結多孔体に銅を含
浸させる場合は焼結多孔体が75乃至90重量%、銅が
10乃至25重量%の範囲に、モリブデンから成る焼結
多孔体に銅を含浸させる場合は焼結多孔体が80乃至9
0重量%、銅が10乃至20重量%の範囲となってい
る。
Such copper-tungsten alloy or copper-molybdenum alloy is generally obtained by firing tungsten powder or molybdenum powder to obtain a sintered porous body, and then impregnating molten copper into the pores of the sintered porous body. For example, when impregnating a sintered porous body made of tungsten with copper, a sintered porous body made of molybdenum is added in the range of 75 to 90% by weight and copper in the range of 10 to 25% by weight. When the porous body is impregnated with copper, the sintered porous body is 80 to 9
The range is 0% by weight and the range of 10 to 20% by weight of copper.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、この従
来の光半導体素子収納用パッケージにおいては、基体が
タングステン粉末やモリブデン粉末を焼成して焼結多孔
体を得るとともに該焼結多孔体の空孔内に溶融させた銅
を含浸させることによって形成されており熱伝導率が約
180W/m・K程度である。
However, in this conventional package for accommodating an optical semiconductor element, the base body is fired of tungsten powder or molybdenum powder to obtain a sintered porous body, and the inside of the pores of the sintered porous body is obtained. It is formed by impregnating it with molten copper and has a thermal conductivity of about 180 W / m · K.

【0008】そのためこの従来一般に製造されている銅
−タングステン合金を基体として用いた光半導体素子収
納用パッケージは鉄−ニッケル−コバルト合金等を基体
として用いた光半導体素子収納用パッケージよりも熱放
散性に優れているものの近時の発光出力が高く作動時に
従来に比し多量の熱を発する光半導体素子を収容した場
合、光半導体素子が発する熱を基体を介して外部に完全
に放出させることができなくなり、その結果、光半導体
素子が該素子自身の発する熱によって高温となり、光半
導体素子に熱破壊を招来させたり、特性にばらつきを生
じ安定に作動させることができないという欠点を有して
いた。
Therefore, the package for storing an optical semiconductor element using the conventionally manufactured copper-tungsten alloy as a base is more heat dissipating than the package for storing an optical semiconductor element using an iron-nickel-cobalt alloy or the like as a base. However, when an optical semiconductor element that emits a larger amount of heat than the conventional one, which has a high light emission output at the time of operation, is housed, the heat generated by the optical semiconductor element can be completely released to the outside through the substrate. As a result, the optical semiconductor element has a high temperature due to the heat generated by the element itself, which causes thermal damage to the optical semiconductor element or causes a variation in the characteristics to cause a stable operation. .

【0009】本発明は上記知見に基づき案出されたもの
で、その目的は発光出力が高く作動時に多量の熱を発す
る光半導体素子を常に適温に保持し、光半導体素子を長
期間にわたり安定に機能させることができる光半導体素
子収納用パッケージを提案することにある。
The present invention has been devised on the basis of the above findings, and its object is to keep an optical semiconductor element which emits a large amount of heat at the time of operation at a high emission output and keeps the optical semiconductor element stable for a long period of time. An object of the present invention is to propose a package for storing an optical semiconductor element that can function.

【0010】[0010]

【課題を解決するための手段】本発明は、上面に光半導
体素子が載置される載置部を有する基体と、前記基体上
に光半導体素子載置部を囲繞するようにして取着され、
側部に貫通孔および切欠部を有する鉄−ニッケル−コバ
ルト合金もしくは鉄−ニッケル合金から成る枠体と、前
記貫通孔もしくは貫通孔周辺の枠体に取着され、光ファ
イバー部材が接合される固定部材と、前記切欠部に挿着
され、セラミックス絶縁体に光半導体素子の各電極が接
続される配線層が形成されているセラミック端子体と、
前記枠体の上面に取着され、光半導体素子を気密に封止
する蓋部材とから成る光半導体素子収納用パッケージで
あって、前記基体はタングステンと銅とから成り、タン
グステンが70乃至90重量%、銅が10乃至30重量
%から成る中間層の上下両面にタングステンが25乃至
55重量%、銅が45乃至75重量%から成る上下層を
配した3層構造を有していることを特徴とするものであ
る。
According to the present invention, a base having a mounting portion on which an optical semiconductor element is mounted is mounted on an upper surface, and the optical semiconductor element mounting portion is mounted on the base so as to surround the mounting portion. ,
A frame member made of an iron-nickel-cobalt alloy or an iron-nickel alloy having a through hole and a cutout portion in a side portion, and a fixing member attached to the through hole or the frame body around the through hole and joined to an optical fiber member. And a ceramic terminal body which is inserted into the cutout portion and in which a wiring layer to which each electrode of the optical semiconductor element is connected to the ceramic insulator is formed,
A package for accommodating an optical semiconductor element, comprising a lid member attached to the upper surface of the frame body and hermetically sealing the optical semiconductor element, wherein the base body is made of tungsten and copper, and the weight of tungsten is 70 to 90%. %, Copper 10 to 30% by weight, and an upper and lower layer of 25 to 55% by weight of tungsten and 45 to 75% by weight of copper on the upper and lower surfaces of the intermediate layer. It is what

【0011】また本発明は、上面に光半導体素子が載置
される載置部を有する基体と、前記基体上に光半導体素
子載置部を囲繞するようにして取着され、側部に貫通孔
および切欠部を有する鉄−ニッケル−コバルト合金もし
くは鉄−ニッケル合金から成る枠体と、前記貫通孔もし
くは貫通孔周辺の枠体に取着され、光ファイバー部材が
接合される固定部材と、前記切欠部に挿着され、セラミ
ックス絶縁体に光半導体素子の各電極が接続される配線
層が形成されているセラミック端子体と、前記枠体の上
面に取着され、光半導体素子を気密に封止する蓋部材と
から成る光半導体素子収納用パッケージであって、前記
基体はモリブデンと銅とから成り、モリブデンが75乃
至95重量%、銅が5乃至25重量%から成る中間層の
上下両面にモリブデンが30乃至60重量%、銅が40
乃至70重量%から成る上下層を配した3層構造を有し
ていることを特徴とするものである。
Further, according to the present invention, a base having a mounting portion on which an optical semiconductor element is mounted is mounted on an upper surface, and the optical semiconductor element mounting portion is mounted on the base so as to surround the base and penetrates to a side portion. A frame body made of an iron-nickel-cobalt alloy or an iron-nickel alloy having a hole and a notch portion, a fixing member attached to the through hole or a frame body around the through hole, and joined to an optical fiber member, and the notch. And a ceramic terminal body in which a wiring layer for connecting each electrode of the optical semiconductor element to the ceramic insulator is formed, and the upper surface of the frame body, and the optical semiconductor element is hermetically sealed. And a lid member for storing an optical semiconductor element, wherein the base is made of molybdenum and copper, and molybdenum is formed on both upper and lower surfaces of an intermediate layer made of molybdenum of 75 to 95% by weight and copper of 5 to 25% by weight. Down from 30 to 60 wt%, copper 40
It has a three-layer structure in which upper and lower layers of 70 to 70% by weight are arranged.

【0012】本発明の光半導体素子収納用パッケージに
よれば、基体をタングステンが70乃至90重量%、銅
が10乃至30重量%から成る中間層の上下両面にタン
グステンが25乃至55重量%、銅が45乃至75重量
%から成る上下層を配した3層構造、またはモリブデン
が75乃至95重量%、銅が5乃至25重量%から成る
中間層の上下両面にモリブデンが30乃至60重量%、
銅が40乃至70重量%から成る上下層を配した3層構
造となしたことから基体の光半導体素子が載置される上
層の熱伝導率を250W/m・K以上の高いものとし、
基体上に載置される光半導体素子が作動時に多量の熱を
発したとしてもその熱は基体の上層で平面方向に素早く
広がらせるとともに基体の上層、中間層、下層を順次介
して外部に効率よく確実に放散させることができ、これ
によって光半導体素子は常に適温となり、光半導体素子
を長期間にわたり安定かつ正常に作動させることが可能
となる。
According to the package for accommodating an optical semiconductor element of the present invention, the base is an intermediate layer consisting of 70 to 90% by weight of tungsten and 10 to 30% by weight of copper, and 25 to 55% by weight of tungsten on both upper and lower surfaces of the intermediate layer. Has a three-layer structure in which upper and lower layers of 45 to 75% by weight are arranged, or 30 to 60% by weight of molybdenum on both upper and lower surfaces of an intermediate layer of 75 to 95% by weight of molybdenum and 5 to 25% by weight of copper,
The upper layer on which the optical semiconductor element of the substrate is mounted has a high thermal conductivity of 250 W / mK or more because the upper and lower layers of copper are 40 to 70% by weight.
Even if the optical semiconductor device mounted on the substrate emits a large amount of heat during operation, the heat is quickly spread in the plane direction in the upper layer of the substrate and is efficiently transferred to the outside through the upper layer, the intermediate layer and the lower layer of the substrate in sequence. It can be well and surely dissipated, whereby the optical semiconductor element is always kept at an appropriate temperature, and the optical semiconductor element can be stably and normally operated for a long period of time.

【0013】また本発明の光半導体素子収納用パッケー
ジによれば、基体をタングステンが70乃至90重量
%、銅が10乃至30重量%から成る中間層の上下両面
にタングステンが25乃至55重量%、銅が45乃至7
5重量%から成る上下層を配した3層構造、またはモリ
ブデンが75乃至95重量%、銅が5乃至25重量%か
ら成る中間層の上下両面にモリブデンが30乃至60重
量%、銅が40乃至70重量%から成る上下層を配した
3層構造となし、線熱膨張係数が小さい中間層を線熱膨
張係数の大きい上下層で挟み込み、基体全体の線熱膨張
係数を鉄−ニッケル−コバルト合金や鉄−ニッケル合金
から成る枠体あるいは酸化アルミニウム質焼結体やガラ
スセラミック焼結体等のセラミックス絶縁体から成るセ
ラミック端子体の線熱膨張係数に近似させたことから基
体上に枠体やセラミック端子体を取着させる際や光半導
体素子が作動した際等において基体と枠体やセラミック
端子体に熱が作用したとしても基体と枠体やセラミック
端子体との間には両者の線熱膨張係数の相違に起因する
大きな熱応力が発生することはなく、これによって光半
導体素子を収容する空所の気密封止が常に完全となり、
光半導体素子を安定かつ正常に作動させることが可能と
なる。
Further, according to the package for accommodating an optical semiconductor device of the present invention, tungsten is 25 to 55% by weight on both upper and lower surfaces of an intermediate layer of 70 to 90% by weight of tungsten and 10 to 30% by weight of copper. 45 to 7 copper
A three-layer structure in which upper and lower layers of 5% by weight are arranged, or 30 to 60% by weight of molybdenum and 40 to 40% of copper on the upper and lower surfaces of an intermediate layer of 75 to 95% by weight of molybdenum and 5 to 25% by weight of copper. It has a three-layer structure in which upper and lower layers of 70 wt% are arranged, and an intermediate layer having a small coefficient of linear thermal expansion is sandwiched between upper and lower layers having a large coefficient of linear thermal expansion, and the coefficient of linear thermal expansion of the entire substrate is iron-nickel-cobalt alloy. Since the linear thermal expansion coefficient is approximated to the linear thermal expansion coefficient of a frame body made of iron, nickel alloy, or a ceramic terminal body made of a ceramic insulator such as an aluminum oxide sintered body or a glass ceramic sintered body, a frame body or a ceramic body is formed on the substrate. Even if heat is applied to the base body and the frame body or the ceramic terminal body when attaching the terminal body or when the optical semiconductor element is activated, etc. Large that the thermal stress is generated not, thereby hermetically sealing the cavity for accommodating the optical semiconductor element is always completely due to the difference in linear thermal expansion coefficient of the person,
It is possible to operate the optical semiconductor element stably and normally.

【0014】[0014]

【発明の実施の形態】次に、本発明を添付図面に示す実
施例に基づき詳細に説明する。図1及び図2は本発明の
光半導体素子収納用パッケージの一実施例を示し、1は
基体、2は枠体、3は蓋部材である。この基体1と枠体
2と蓋部材3とにより内部に光半導体素子4を気密に収
容する容器5が構成される。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in detail with reference to the embodiments shown in the accompanying drawings. 1 and 2 show an embodiment of a package for storing an optical semiconductor element according to the present invention, in which 1 is a base, 2 is a frame, and 3 is a lid member. The base body 1, the frame body 2 and the lid member 3 constitute a container 5 for hermetically housing the optical semiconductor element 4 therein.

【0015】前記基体1はその上面に光半導体素子4が
載置される載置部1aを有しており、該載置部1aには
光半導体素子4が取着されている。
The substrate 1 has a mounting portion 1a on the upper surface of which the optical semiconductor element 4 is mounted, and the optical semiconductor element 4 is attached to the mounting portion 1a.

【0016】前記基体1は光半導体素子4を支持する支
持部材として作用するとともに光半導体素子4が作動時
に発する熱を良好に吸収し、かつ大気中に効率よく放散
させて光半導体素子4を常に適温とする作用をなす。
The substrate 1 functions as a support member for supporting the optical semiconductor element 4, and also absorbs heat generated by the optical semiconductor element 4 during operation, and efficiently dissipates the heat into the atmosphere to keep the optical semiconductor element 4 at all times. It has the effect of keeping it at an appropriate temperature.

【0017】なお前記基体1はタングステンと銅とから
成り、タングステン粉末を焼成して得られる焼結多孔体
の空孔内に溶融させた銅を含浸させることによって製作
されている。
The substrate 1 is composed of tungsten and copper, and is manufactured by impregnating molten copper into the pores of a sintered porous body obtained by firing tungsten powder.

【0018】また前記基体1の上面外周部には該基体1
の上面に設けた光半導体素子4が載置される載置部1a
を囲繞するようにして枠体2がロウ材等の接着剤を介し
て取着されており、該枠体2の内側に光半導体素子4を
収容するための空所が形成されている。
Further, on the outer peripheral portion of the upper surface of the base body 1, the base body 1 is provided.
Mounting part 1a on which the optical semiconductor element 4 provided on the upper surface of the mounting part 1a is mounted
The frame body 2 is attached via an adhesive such as a brazing material so as to surround the above, and a space for accommodating the optical semiconductor element 4 is formed inside the frame body 2.

【0019】前記枠体2は鉄−ニッケル−コバルト合金
や鉄−ニッケル合金で形成されており、例えば、鉄−ニ
ッケル−コバルト合金等のインゴット(塊)をプレス加
工により枠状とすることによって形成され、基体1への
取着は基体1上面と枠体2の下面とを銀ロウ材を介しロ
ウ付けすることによって行われている。
The frame 2 is formed of an iron-nickel-cobalt alloy or an iron-nickel alloy, and is formed by pressing an ingot (lump) of iron-nickel-cobalt alloy or the like into a frame shape by pressing. The attachment to the base 1 is performed by brazing the upper surface of the base 1 and the lower surface of the frame body 2 with a silver brazing material.

【0020】前記枠体2はその側部に貫通孔2aが設け
てあり、該貫通孔2aの内壁面には筒状の固定部材6が
取着され、更に筒状の固定部材6の内側の一端には、例
えば、透光性部材7が取着されている。
The frame body 2 has a through hole 2a formed in its side portion, and a cylindrical fixing member 6 is attached to the inner wall surface of the through hole 2a. For example, the translucent member 7 is attached to one end.

【0021】前記枠体2の側部に形成されている貫通孔
2aは固定部材6を枠体2に取着するための取着孔とし
て作用し、枠体2の側部に従来周知のドリル孔あけ加工
を施すことによって所定形状に形成される。
The through hole 2a formed in the side portion of the frame body 2 acts as an attachment hole for attaching the fixing member 6 to the frame body 2, and a conventionally well-known drill is provided on the side portion of the frame body 2. It is formed into a predetermined shape by performing a drilling process.

【0022】前記枠体2の貫通孔2aに取着されている
固定部材6は光ファイバー部材8を枠体2に固定する際
の下地固定部材として作用するとともに光半導体素子4
が励起した光を光ファイバー部材8に伝達させる作用を
なし、その内側の一端には、例えば、透光性部材7が取
着され、また外側の一端には光ファイバー部材8が取着
される。
The fixing member 6 attached to the through hole 2a of the frame body 2 acts as a base fixing member when fixing the optical fiber member 8 to the frame body 2, and at the same time, the optical semiconductor element 4 is provided.
Has a function of transmitting the excited light to the optical fiber member 8. The transparent member 7 is attached to one end of the inside thereof, and the optical fiber member 8 is attached to one end of the outside thereof.

【0023】前記筒状の固定部材6は鉄−ニッケル−コ
バルト合金や鉄−ニッケル合金等の金属材料からなり、
例えば、鉄−ニッケル−コバルト合金等のインゴット
(塊)をプレス加工により筒状とすることによって形成
されている。
The tubular fixing member 6 is made of a metal material such as iron-nickel-cobalt alloy or iron-nickel alloy.
For example, it is formed by pressing an ingot (lump) of iron-nickel-cobalt alloy or the like into a tubular shape by pressing.

【0024】更に前記固定部材6はその内側の一端に、
例えば、透光性部材7が取着されており、該透光性部材
7は固定部材6の内部空間を塞ぎ、基体1と枠体2と蓋
部材3とからなる容器5の気密封止を保持させるととも
に固定部材6の内部空間を伝達する光半導体素子4の励
起した光をそのまま固定部材6に取着した光ファイバー
部材8に伝達させる作用をなす。
Further, the fixing member 6 is provided at one inner end thereof,
For example, a translucent member 7 is attached, and the translucent member 7 closes the inner space of the fixing member 6 to hermetically seal the container 5 including the base body 1, the frame body 2 and the lid member 3. It has the function of holding the light and transmitting the light excited by the optical semiconductor element 4 which is transmitted through the internal space of the fixing member 6 to the optical fiber member 8 attached to the fixing member 6 as it is.

【0025】前記透光性部材7は例えば、酸化珪素、酸
化鉛を主成分とした鉛系及びホウ酸、ケイ砂を主成分と
したホウケイ酸系の非晶質ガラスで形成されており、該
非晶質ガラスは結晶軸が存在しないことから光半導体素
子4の励起する光を透光性部材7を通過させて光ファイ
バー部材8に授受させる場合、光半導体素子4の励起し
た光は透光性部材7で複屈折を起こすことはなくそのま
ま光ファイバー部材8に授受されることとなり、その結
果、光半導体素子4が励起した光の光ファイバー部材8
への授受が高効率となって光信号の伝送効率を高いもの
となすことができる。
The translucent member 7 is formed of, for example, a lead-based glass containing silicon oxide or lead oxide as a main component and a borosilicate-based amorphous glass containing boric acid or silica sand as a main component. Since crystalline glass does not have a crystal axis, when the light excited by the optical semiconductor element 4 is transmitted to and received from the optical fiber member 8 through the transparent member 7, the light excited by the optical semiconductor element 4 is transmitted by the transparent member. No birefringence occurs in 7 and the light is transmitted and received as it is to the optical fiber member 8. As a result, the optical fiber member 8 for the light excited by the optical semiconductor element 4 is transmitted.
The efficiency of transmission and reception to and from the device can be increased, and the transmission efficiency of optical signals can be increased.

【0026】なお、前記透光性部材7の固定部材6への
取着は、例えば、透光性部材7の外周部に予め金属層を
被着させておき、該金属層と固定部材6とを金−錫合金
等のロウ材を介しロウ付けすることによって行われる。
For attachment of the transparent member 7 to the fixing member 6, for example, a metal layer is previously attached to the outer peripheral portion of the transparent member 7, and the metal layer and the fixing member 6 are attached. Is brazed through a brazing material such as a gold-tin alloy.

【0027】更に前記枠体2はその側部に切欠部2bが
形成されており、該切欠部2bにはセラミック端子体9
が挿着されている。
Further, the frame body 2 has a cutout portion 2b formed on its side portion, and the ceramic terminal body 9 is formed in the cutout portion 2b.
Has been inserted.

【0028】前記セラミック端子体9はセラミックス絶
縁体10と複数個の配線層11とから成り、配線層11
を枠体2に対し電気的絶縁をもって枠体2の内側から外
側にかけて配設する作用をなし、セラミックス絶縁体1
0の側面に予め金属層を被着させておくとともに該金属
層を枠体2の切欠部2b内壁面に銀ロウ等のロウ材を介
し取着することによって枠体2の切欠部2bに挿着され
る。
The ceramic terminal body 9 comprises a ceramic insulator 10 and a plurality of wiring layers 11, and the wiring layer 11
Has a function of electrically insulating the frame body 2 from the inside to the outside of the frame body 2.
No. 0 side surface is preliminarily coated with a metal layer, and the metal layer is attached to the inner wall surface of the cutout portion 2b of the frame body 2 through a brazing material such as silver brazing so as to be inserted into the cutout portion 2b of the frame body 2. Be worn.

【0029】前記セラミック端子体9のセラミックス絶
縁体10は酸化アルミニウム質焼結体やガラスセラミク
焼結体等から成り、例えば、酸化アルミニウム質焼結体
から成る場合には酸化アルミニウム、酸化珪素、酸化マ
グネシウム、酸化カルシウム等の原料粉末に適当な有機
バインダー、可塑剤、溶剤を添加混合して泥漿状となす
とともに該泥漿物を従来周知のドクターブレード法やカ
レンダーロール法を採用することによってセラミックグ
リーンシート(セラミック生シート)を形成し、次に前
記セラミックグリーンシートに適当な打ち抜き加工を施
し、所定形状となすとともに必要に応じて複数枚を積層
して成形体となし、しかる後、これを1600℃の温度
で焼成することによって製作される。
The ceramic insulator 10 of the ceramic terminal body 9 is made of an aluminum oxide sintered body or a glass ceramic sintered body. For example, when it is made of an aluminum oxide sintered body, aluminum oxide, silicon oxide, or magnesium oxide. , A suitable organic binder, a plasticizer, and a solvent are added to a raw material powder such as calcium oxide to form a slurry, and the slurry is made into a ceramic green sheet by employing a conventionally known doctor blade method or calender roll method ( Ceramic green sheet) is formed, and then the ceramic green sheet is appropriately punched to form a predetermined shape and, if necessary, a plurality of sheets are laminated to form a molded body. It is manufactured by firing at a temperature.

【0030】また前記セラミック端子体9には枠体2の
内側から外側にかけて導出する複数個の配線層11が埋
設されており、該配線層11の枠体2の内側に位置する
領域には光半導体素子4の各電極がボンディングワイヤ
12を介して電気的に接続され、また枠体2の外側に位
置する領域には外部電気回路と接続される外部リード端
子13が銀ロウ等のロウ材を介してロウ付け取着されて
いる。
A plurality of wiring layers 11 extending from the inside to the outside of the frame body 2 are embedded in the ceramic terminal body 9, and light is provided in an area of the wiring layer 11 located inside the frame body 2. The electrodes of the semiconductor element 4 are electrically connected through the bonding wires 12, and the external lead terminals 13 connected to an external electric circuit are provided with a brazing material such as silver brazing in a region located outside the frame body 2. It is attached by brazing through.

【0031】前記配線層11は光半導体素子4の各電極
を外部電気回路に接続する際の導電路として作用し、タ
ングステン、モリブデン、マンガン、銅、銀等の金属粉
末により形成されている。
The wiring layer 11 acts as a conductive path when connecting each electrode of the optical semiconductor element 4 to an external electric circuit, and is formed of metal powder such as tungsten, molybdenum, manganese, copper, silver or the like.

【0032】前記配線層11はタングステン、モリブデ
ン、マンガン、銅、銀等の金属粉末に適当な有機バイン
ダー、溶剤等を添加混合して得られた金属ペーストをセ
ラミックス絶縁体10となるセラミックグリーンシート
に予め従来周知のスクリーン印刷法等の印刷法を用いる
ことにより所定パターンに印刷塗布しておくことによっ
てセラミックス絶縁体10に形成される。
For the wiring layer 11, a metal paste obtained by adding and mixing a suitable organic binder, a solvent, etc. to a metal powder of tungsten, molybdenum, manganese, copper, silver or the like is used as a ceramic green sheet for the ceramic insulator 10. The ceramic insulator 10 is formed by printing and applying a predetermined pattern in advance by using a conventionally known printing method such as a screen printing method.

【0033】なお前記配線層11はその露出する表面に
ニッケル、金等の耐蝕性に優れ、かつロウ材との濡れ性
に優れる金属を1μm〜20μmの厚みにメッキ法によ
り被着させておくと、配線層11の酸化腐蝕を有効に防
止することができるとともに配線層11への外部リード
端子13のロウ付けを強固となすことができる。従っ
て、前記配線層11はその露出する表面にニッケル、金
等の耐蝕性に優れ、かつロウ材との濡れ性に優れる金属
を1μm〜20μmの厚みに被着させておくことが好ま
しい。
It is to be noted that the exposed surface of the wiring layer 11 is formed by depositing a metal such as nickel and gold, which has excellent corrosion resistance and wettability with a brazing material, to a thickness of 1 μm to 20 μm by a plating method. The oxidative corrosion of the wiring layer 11 can be effectively prevented and the brazing of the external lead terminal 13 to the wiring layer 11 can be strengthened. Therefore, it is preferable that the exposed surface of the wiring layer 11 is coated with a metal such as nickel and gold having excellent corrosion resistance and wettability with the brazing material in a thickness of 1 μm to 20 μm.

【0034】また前記配線層11には外部リード端子1
3が銀ロウ等のロウ材を介してロウ付け取着されてお
り、該外部リード端子13は容器5内部に収容する光半
導体素子4の各電極を外部電気回路に電気的に接続する
作用をなし、外部リード端子13を外部電気回路に接続
することによって容器5内部に収容される光半導体素子
4は配線層11および外部リード端子13を介して外部
電気回路に電気的に接続されることとなる。
On the wiring layer 11, external lead terminals 1
3 is brazed and attached via a brazing material such as silver brazing, and the external lead terminals 13 serve to electrically connect the respective electrodes of the optical semiconductor element 4 housed inside the container 5 to an external electric circuit. None, the optical semiconductor element 4 housed inside the container 5 by connecting the external lead terminal 13 to the external electric circuit is electrically connected to the external electric circuit via the wiring layer 11 and the external lead terminal 13. Become.

【0035】前記外部リード端子13は鉄−ニッケル−
コバルト合金や鉄−ニッケル合金等の金属材料から成
り、例えば、鉄−ニッケル−コバルト合金等の金属から
成るインゴット(塊)に圧延加工法や打ち抜き加工法
等、従来周知の金属加工法を施すことによって所定形状
に形成される。
The external lead terminal 13 is made of iron-nickel-
Applying a well-known metal processing method such as a rolling method or a punching method to an ingot (lump) made of a metal material such as a cobalt alloy or an iron-nickel alloy, for example, a metal such as an iron-nickel-cobalt alloy. Is formed into a predetermined shape.

【0036】更に前記枠体2はその上面に、例えば、鉄
−ニッケル−コバルト合金や鉄−ニッケル合金等の金属
材料から成る蓋部材3が接合され、これによって基体1
と枠体2と蓋部材3とからなる容器5の内部に光半導体
素子4が気密に封止されることとなる。
Further, a lid member 3 made of a metal material such as an iron-nickel-cobalt alloy or an iron-nickel alloy is joined to the upper surface of the frame body 2, whereby the base body 1 is formed.
Thus, the optical semiconductor element 4 is hermetically sealed inside the container 5 including the frame body 2 and the lid member 3.

【0037】前記蓋部材3の枠体2上面への接合は、例
えば、シームウェルド法等の溶接によって行われる。
The lid member 3 is joined to the upper surface of the frame body 2 by welding such as the seam weld method.

【0038】本発明の光半導体素子収納用パッケージに
おいては、前記基体1をタングステンが70乃至90重
量%、銅が10乃至30重量%から成る中間層の上下両
面にタングステンが25乃至55重量%、銅が45乃至
75重量%から成る上下層を配した3層構造としておく
ことが重要である。
In the package for accommodating an optical semiconductor element of the present invention, the substrate 1 comprises 25 to 55% by weight of tungsten on both upper and lower surfaces of an intermediate layer comprising 70 to 90% by weight of tungsten and 10 to 30% by weight of copper. It is important to have a three-layer structure in which the upper and lower layers of copper are 45 to 75% by weight.

【0039】前記基体1をタングステンが70乃至90
重量%、銅が10乃至30重量%から成る中間層の上下
両面にタングステンが25乃至55重量%、銅が45乃
至75重量%から成る上下層を配した3層構造としたこ
とから基体1の光半導体素子4が載置される上層1bの
熱伝導率を250W/m・K以上の高いものとし、基体
1上に載置される光半導体素子4が作動時に多量の熱を
発したとしてもその熱は基体1の上層1bで平面方向に
素早く広がらせるとともに基体1の上層1b、中間層1
c、下層1dを順次介して外部に効率よく確実に放散さ
せることができ、これによって光半導体素子4は常に適
温となり、光半導体素子4を長期間にわたり安定かつ正
常に作動させることが可能となる。
The substrate 1 is made of tungsten 70 to 90.
Since the intermediate layer composed of 10% to 30% by weight of copper and the upper and lower surfaces of 25 to 55% by weight of tungsten and 45 to 75% by weight of copper are arranged on the upper and lower surfaces of the intermediate layer, a three-layer structure is adopted. Even if the upper layer 1b on which the optical semiconductor element 4 is mounted has a high thermal conductivity of 250 W / mK or more, even if the optical semiconductor element 4 mounted on the substrate 1 emits a large amount of heat during operation. The heat is quickly spread in the plane direction in the upper layer 1b of the substrate 1 and the upper layer 1b of the substrate 1 and the intermediate layer 1
c and the lower layer 1d can be sequentially and efficiently diffused to the outside, whereby the optical semiconductor element 4 is always at an appropriate temperature, and the optical semiconductor element 4 can be stably and normally operated for a long period of time. .

【0040】また本発明の光半導体素子収納用パッケー
ジによれば、基体1をタングステンが70乃至90重量
%、銅が10乃至30重量%から成る中間層の上下両面
にタングステンが25乃至55重量%、銅が45乃至7
5重量%から成る上下層を配した3層構造となし、線熱
膨張係数が小さい中間層1cを線熱膨張係数の大きい上
下層1b、1dで挟み込み、基体1全体の線熱膨張係数
を鉄−ニッケル−コバルト合金や鉄−ニッケル合金から
成る枠体2あるいは酸化アルミニウム質焼結体やガラス
セラミック焼結体等のセラミックス絶縁体10から成る
セラミック端子体9の線熱膨張係数に近似させたことか
ら基体1上に枠体2やセラミック端子体9等を取着させ
る際や光半導体素子4が作動した際等において基体1と
枠体2とセラミック端子体9に熱が作用したとしても基
体1と枠体2とセラミック端子体9との間には両者の線
熱膨張係数の差に起因する大きな熱応力が発生すること
はなく、これによって光半導体素子4を収容する容器5
の気密封止が常に完全となり、光半導体素子4を安定か
つ正常に作動させることが可能となる。
According to the package for accommodating an optical semiconductor device of the present invention, the substrate 1 has an intermediate layer of 70 to 90% by weight of tungsten and 10 to 30% by weight of copper, and 25 to 55% by weight of tungsten on the upper and lower surfaces of the intermediate layer. , Copper is 45 to 7
The upper and lower layers 1b and 1d having a large linear thermal expansion coefficient are sandwiched between the intermediate layer 1c having a small linear thermal expansion coefficient and the intermediate layer 1c having a large linear thermal expansion coefficient to form a linear thermal expansion coefficient of iron. The linear thermal expansion coefficient of the frame body 2 made of nickel-cobalt alloy or iron-nickel alloy or the ceramic terminal body 9 made of ceramic insulator 10 such as aluminum oxide sintered body or glass ceramic sintered body. Even if heat is applied to the base body 1, the frame body 2 and the ceramic terminal body 9 when the frame body 2, the ceramic terminal body 9 or the like is mounted on the base body 1 or when the optical semiconductor element 4 is operated. A large thermal stress due to the difference in linear thermal expansion coefficient between the frame body 2 and the ceramic terminal body 9 does not occur between the frame body 2 and the ceramic terminal body 9, whereby the container 5 for accommodating the optical semiconductor element 4 is formed.
The airtight sealing is always complete, and the photosemiconductor element 4 can be stably and normally operated.

【0041】なお前記基体1はその中間層1cのタング
ステンの量が70重量%未満の場合、或いは90重量%
を超えた場合、基体1の線熱膨張係数が枠体2の線熱膨
張係数に対して大きく相違することとなり、その結果、
基体1に枠体2を強固に取着させておくことができなく
なってしまう。従って、前記基体1の中間層1cはそれ
を形成するタングステンの量は70乃至90重量%の範
囲に特定される。
The substrate 1 has an intermediate layer 1c in which the amount of tungsten is less than 70% by weight, or 90% by weight.
When it exceeds, the coefficient of linear thermal expansion of the substrate 1 greatly differs from the coefficient of linear thermal expansion of the frame body 2, and as a result,
It becomes impossible to firmly attach the frame body 2 to the base body 1. Therefore, the amount of tungsten forming the intermediate layer 1c of the substrate 1 is specified in the range of 70 to 90% by weight.

【0042】また前記上下層1b、1dのタングステン
の量が25重量%未満となると、言い換えれば銅が75
重量%を超えると、基体1の線熱膨張係数が枠体2やセ
ラミック端子体9の線熱膨張係数に対し大きく相違して
基体1に枠体2やセラミック端子体9を強固に取着させ
ておくことができなくなってしまい、またタングステン
の量が55重量%を超えると、言い換えれば銅が45重
量%未満となると上下層1b、1dの熱伝導率を250
W/m・K以上の高いものと成すことができず光半導体
素子4作動時に多量の熱を発した場合、その熱を基体1
を介して外部に完全に放散させることができなくなり、
その結果、光半導体素子4を高温として光半導体素子4
に熱破壊を招来させたり、特性にばらつきが生じ安定に
作動させることができなくなってしまう。従って、前記
基体1の上下層1b、1dはタングステンが25乃至5
5重量%、銅が45乃至75重量%に特定される。
When the amount of tungsten in the upper and lower layers 1b and 1d is less than 25% by weight, in other words, copper is 75%.
If it exceeds 5% by weight, the coefficient of linear thermal expansion of the base body 1 greatly differs from the coefficient of linear thermal expansion of the frame body 2 or the ceramic terminal body 9, and the frame body 2 or the ceramic terminal body 9 is firmly attached to the base body 1. If the amount of tungsten exceeds 55% by weight, that is, if the amount of copper is less than 45% by weight, the thermal conductivity of the upper and lower layers 1b, 1d is 250.
When it cannot be made as high as W / m · K or more and a large amount of heat is generated when the optical semiconductor element 4 operates, the heat is generated by the substrate 1
Cannot be completely dissipated to the outside through
As a result, the optical semiconductor element 4 is heated to a high temperature and the optical semiconductor element 4 is heated.
If so, thermal breakdown may occur, and the characteristics may vary, making stable operation impossible. Therefore, the upper and lower layers 1b and 1d of the substrate 1 are made of tungsten 25 to 5
5% by weight and 45 to 75% by weight of copper are specified.

【0043】更に前記上下層1b、1dはその組成、厚
みを略同一に形成しておくと上層1bと中間層1cの間
に発生する応力と、下層1dと中間層1cの間に発生す
る応力が相殺されて基体1の平坦度が良好となり、その
結果、基体1に枠体2やセラミック端子体9を極めて強
固に接合させることができ、容器5の気密封止の信頼性
がより確実なものとして容器5内部に収納する光半導体
素子4の作動信頼性をより安定、確実なものと成すこと
ができる。
If the upper and lower layers 1b and 1d are formed to have substantially the same composition and thickness, the stress generated between the upper layer 1b and the intermediate layer 1c and the stress generated between the lower layer 1d and the intermediate layer 1c. Are canceled out, and the flatness of the substrate 1 is improved. As a result, the frame body 2 and the ceramic terminal body 9 can be joined to the substrate 1 extremely strongly, and the reliability of the hermetic sealing of the container 5 is further ensured. As a result, the operation reliability of the optical semiconductor element 4 housed in the container 5 can be made more stable and reliable.

【0044】また更に前記上下層1b、1dと中間層1
cの厚みは前記上下層1b、1dの厚みをX、中間層1
cの厚みをYとした場合、0.5Y≦X≦Yの範囲とし
ておくと基体1を介して光半導体素子4の発する熱をよ
り良好に外部に放散することができる。前記上下層1
b、1dの厚みをX、中間層1cの厚みをYとした場
合、0.5Y>Xとなると250W/m・K以上の高熱
伝導率である上下層1b、1dが薄くなり光半導体素子
4の発する熱を外部に効率よく放散させることができな
くなる危険性があり、Y<Xとなると線熱膨張係数の大
きな上下層の基体1全体に及ぼす影響が大きくなり、基
体1の線熱膨張係数を前記枠体2やセラミック端子体9
の線熱膨張係数と近似させることが困難となる危険性が
あることから、前記上下層1b、1dと中間層1cの厚
みは前記上下層1b、1dの厚みをX、中間層1cの厚
みをYとした場合、0.5Y≦X≦Yの範囲が望まし
い。
Furthermore, the upper and lower layers 1b and 1d and the intermediate layer 1
c is the thickness of the upper and lower layers 1b and 1d, and X is the thickness of the intermediate layer 1.
When the thickness of c is Y, the heat generated by the optical semiconductor element 4 can be more effectively dissipated to the outside through the substrate 1 by setting the range of 0.5Y ≦ X ≦ Y. The upper and lower layers 1
When the thicknesses of b and 1d are X and the thickness of the intermediate layer 1c is Y, when 0.5Y> X, the upper and lower layers 1b and 1d having high thermal conductivity of 250 W / m · K or more are thinned and the optical semiconductor element 4 is obtained. There is a risk that the heat generated by will not be able to be efficiently dissipated to the outside, and if Y <X, the influence on the entire upper and lower base bodies 1 having a large linear thermal expansion coefficient will increase, and the linear thermal expansion coefficient of the base body 1 will increase. The frame body 2 and the ceramic terminal body 9
Since there is a risk that it will be difficult to approximate the linear thermal expansion coefficient to the upper and lower layers 1b, 1d and the intermediate layer 1c, the thickness of the upper and lower layers 1b, 1d is X, and the thickness of the intermediate layer 1c is When Y is set, the range of 0.5Y ≦ X ≦ Y is desirable.

【0045】なお前記3層構造の基体1は、中間層1c
となる所定量のタングステン焼結体に所定量の銅を含浸
させた所定厚みの板体と、上下層1b、1dとなる所定
量のタングステン焼結体に所定量の銅を含浸させた所定
厚みの板体とを準備し、前記中間層1cとなる板体の上
下を上下層となる板体で挟み込んだ後、銅の溶融温度
(1083℃)より20℃程度高い温度にて真空中もし
くは中性、還元雰囲気中で加圧しながら積層することに
よって製作される。
The substrate 1 having the three-layer structure is the intermediate layer 1c.
A plate body having a predetermined thickness obtained by impregnating a predetermined amount of tungsten sintered body with a predetermined amount of copper, and a predetermined thickness obtained by impregnating a predetermined amount of tungsten sintered body serving as the upper and lower layers 1b and 1d with a predetermined amount of copper. And the upper and lower plates of the intermediate layer 1c are sandwiched between the upper and lower plates, and then in a vacuum or in a medium at a temperature about 20 ° C. higher than the melting temperature of copper (1083 ° C.). It is manufactured by stacking under pressure in a reducing atmosphere.

【0046】かくして上述の光半導体素子収納用パッケ
ージによれば、基体1の光半導体素子載置部1a上に光
半導体素子4を固定するとともに該光半導体素子4の各
電極をボンディングワイヤ12を介して所定の配線層1
1に接続させ、次に枠体2の上面に蓋部材3を接合さ
せ、基体1と枠体2と蓋部材3とから成る容器5内部に
光半導体素子4を収容し、最後に枠体2に取着させた筒
状の固定部材6に光ファイバー部材8を取着させること
によって最終製品としての光半導体装置となる。
Thus, according to the above-mentioned package for accommodating the optical semiconductor element, the optical semiconductor element 4 is fixed on the optical semiconductor element mounting portion 1a of the base body 1 and each electrode of the optical semiconductor element 4 is bonded via the bonding wire 12. Predetermined wiring layer 1
1, the lid member 3 is joined to the upper surface of the frame body 2, the optical semiconductor element 4 is housed inside the container 5 composed of the base body 1, the frame body 2 and the lid member 3, and finally the frame body 2 The optical fiber member 8 is attached to the tubular fixing member 6 attached to the optical semiconductor device as a final product.

【0047】次に本発明の他の実施例について説明す
る。上述の光半導体素子収納用パッケージでは基体1を
タングステンが70乃至90重量%、銅が10乃至30
重量%から成る中間層1cの上下両面にタングステンが
25乃至55重量%、銅が45乃至75重量%から成る
上下層1b、1dを配した3層構造としたが、これをモ
リブデンが75乃至95重量%、銅が5乃至25重量%
から成る中間層1cの上下両面にモリブデンが30乃至
60重量%、銅が40乃至70重量%から成る上下層1
b、1dを配した3層構造としてもよい。
Next, another embodiment of the present invention will be described. In the package for storing the optical semiconductor element described above, the base 1 is 70 to 90% by weight of tungsten and 10 to 30 of copper.
The upper and lower surfaces of the intermediate layer 1c composed of 1% by weight are 25 to 55% by weight of tungsten, and the upper and lower layers 1b and 1d are composed of 45 to 75% by weight of copper. % By weight, 5 to 25% by weight of copper
The upper and lower layers 1 and 30 of molybdenum and 40 to 70% by weight of molybdenum on the upper and lower surfaces of the intermediate layer 1c.
A three-layer structure in which b and 1d are arranged may be used.

【0048】前記基体1をモリブデンが75乃至95重
量%、銅が5乃至25重量%から成る中間層1cの上下
両面にモリブデンが30乃至60重量%、銅が40乃至
70重量%から成る上下層1b、1dを配した3層構造
とした場合、基体1の光半導体素子4が載置される上層
1bの熱伝導率を250W/m・K以上の高いものと
し、基体1上に載置される光半導体素子4が作動時に多
量の熱を発したとしてもその熱は基体1の上層1bで平
面方向に素早く広がらせるとともに基体1の上層1b、
中間層1c、下層1dを順次介して外部に効率よく確実
に放散させることができ、これによって光半導体素子4
は常に適温となり、光半導体素子4を長期間にわたり安
定かつ正常に作動させることが可能となる。
The substrate 1 comprises an intermediate layer 1c comprising 75 to 95% by weight of molybdenum and 5 to 25% by weight of copper, and an upper and lower layer comprising 30 to 60% by weight of molybdenum and 40 to 70% by weight of copper on the upper and lower surfaces of the intermediate layer 1c. In the case of a three-layer structure in which 1b and 1d are arranged, the thermal conductivity of the upper layer 1b on which the optical semiconductor element 4 of the base 1 is mounted is set to be 250 W / mK or higher and the base 1 is mounted. Even if the optical semiconductor element 4 that generates a large amount of heat is generated during operation, the heat is quickly spread in the plane direction in the upper layer 1b of the base body 1 and the upper layer 1b of the base body 1,
The intermediate layer 1c and the lower layer 1d can be sequentially and efficiently diffused to the outside, whereby the optical semiconductor element 4 can be formed.
Is always at an appropriate temperature, and the optical semiconductor element 4 can be stably and normally operated for a long period of time.

【0049】また前記モリブデンが75乃至95重量
%、銅が5乃至25重量%から成る中間層の上下両面に
モリブデンが30乃至60重量%、銅が40乃至70重
量%から成る上下層を配した3層構造の基体1は、線熱
膨張係数が小さい中間層1cを線熱膨張係数の大きい上
下層1b、1dで挟み込み、基体1全体の線熱膨張係数
を鉄−ニッケル−コバルト合金や鉄−ニッケル合金から
成る枠体2あるいは酸化アルミニウム質焼結体やガラス
セラミック焼結体等のセラミックス絶縁体10から成る
セラミック端子体9の線熱膨張係数に近似させたことか
ら基体1上に枠体2やセラミック端子体9等を取着させ
る際や光半導体素子4が作動した際等において基体1と
枠体2とセラミック端子体9に熱が作用したとしても基
体1と枠体2とセラミック端子体9との間には両者の線
熱膨張係数の差に起因する大きな熱応力が発生すること
はなく、これによって光半導体素子4を収容する容器5
の気密封止が常に完全となり、光半導体素子4を安定か
つ正常に作動させることが可能となる。
Further, the upper and lower layers of molybdenum of 30 to 60% by weight and copper of 40 to 70% by weight are disposed on both upper and lower surfaces of the intermediate layer of 75 to 95% by weight of molybdenum and 5 to 25% by weight of copper. The substrate 1 having a three-layer structure has an intermediate layer 1c having a small linear thermal expansion coefficient sandwiched between upper and lower layers 1b and 1d having a large linear thermal expansion coefficient, so that the linear thermal expansion coefficient of the entire substrate 1 is iron-nickel-cobalt alloy or iron-. Since the linear thermal expansion coefficient of the frame body 2 made of a nickel alloy or the ceramic terminal body 9 made of a ceramic insulator 10 such as an aluminum oxide sintered body or a glass ceramic sintered body is approximated to the frame body 2 on the base body 1. Even when heat is applied to the base body 1, the frame body 2, and the ceramic terminal body 9 when the ceramic terminal body 9 or the like is attached or when the optical semiconductor element 4 is operated, the base body 1, the frame body 2 and the ceramic Tsu Between the click pin member 9 is not a large thermal stress caused by the difference in linear thermal expansion coefficient between them is generated, the container 5 thereby accommodating the optical semiconductor element 4
The airtight sealing is always complete, and the photosemiconductor element 4 can be stably and normally operated.

【0050】なお前記基体1はその中間層1cのモリブ
デンの量が75重量%未満の場合、或いは95重量%を
超えた場合、基体1の線熱膨張数が枠体2やセラミック
端子体9の線熱膨張係数に対して大きく相違することと
なり、その結果、基体1に枠体2やセラミック端子体9
を強固に取着させておくことができなくなってしまう。
従って、前記基体1の中間層1cはそれを形成するモリ
ブデンの量は75乃至95重量%の範囲に特定される。
When the amount of molybdenum in the intermediate layer 1c of the substrate 1 is less than 75% by weight or exceeds 95% by weight, the coefficient of linear thermal expansion of the substrate 1 is higher than that of the frame body 2 or the ceramic terminal body 9. This greatly differs from the linear thermal expansion coefficient, and as a result, the frame body 2 and the ceramic terminal body 9 are attached to the base body 1.
Will not be able to be firmly attached.
Therefore, the amount of molybdenum forming the intermediate layer 1c of the substrate 1 is specified in the range of 75 to 95% by weight.

【0051】また前記上下層1b、1dのモリブデンの
量が30重量%未満となると、言い換えれば銅が70重
量%を超えると、基体1の線熱膨張係数が枠体2やセラ
ミック端子体9の線熱膨張係数に対し大きく相違して基
体1に枠体2やセラミック端子体9を強固に取着させて
おくことができなくなってしまい、またモリブデンの量
が60重量%を超えると、言い換えれば銅が40重量%
未満となると上下層1b、1dの熱伝導率を250W/
m・K以上の高いものと成すことができず、光半導体素
子4が作動時に多量の熱を発した場合、その熱を基体1
を介して外部に完全に放散させることができなくなり、
その結果、光半導体素子4を高温として光半導体素子4
に熱破壊を招来させたり、特性にばらつきが生じ安定に
作動させることができなくなってしまう。従って、前記
基体1の上下層1b、1dはモリブデンが30乃至60
重量%、銅が40乃至70重量%に特定される。
When the amount of molybdenum in the upper and lower layers 1b and 1d is less than 30% by weight, in other words, when the amount of copper exceeds 70% by weight, the coefficient of linear thermal expansion of the base body 1 is that of the frame body 2 and the ceramic terminal body 9. If the frame body 2 and the ceramic terminal body 9 cannot be firmly attached to the base body 1 due to a large difference with respect to the linear thermal expansion coefficient, and the amount of molybdenum exceeds 60% by weight, in other words, 40% by weight of copper
When it is less than 250, the thermal conductivity of the upper and lower layers 1b and 1d is 250 W /
When the optical semiconductor element 4 emits a large amount of heat during operation because it cannot be made as high as m · K or more, the heat is applied to the substrate 1
Cannot be completely dissipated to the outside through
As a result, the optical semiconductor element 4 is heated to a high temperature and the optical semiconductor element 4 is heated.
If so, thermal breakdown may occur, and the characteristics may vary, making stable operation impossible. Therefore, the upper and lower layers 1b and 1d of the substrate 1 are made of molybdenum in an amount of 30 to 60.
%, Copper is specified to be 40 to 70% by weight.

【0052】更に前記上下層1b、1dはその組成、厚
みを略同一に形成しておくと上層1bと中間層1cの間
に発生する応力と、下層1dと中間層1cの間に発生す
る応力が相殺されて基体1の平坦度が良好となり、その
結果、基体1に枠体2やセラミック端子体9を極めて強
固に接合させることができ、容器5の気密封止の信頼性
がより確実なものとして容器5内部に収納する光半導体
素子4の作動信頼性をより安定、確実なものと成すこと
ができる。
Further, if the upper and lower layers 1b and 1d are formed to have substantially the same composition and thickness, the stress generated between the upper layer 1b and the intermediate layer 1c and the stress generated between the lower layer 1d and the intermediate layer 1c. Are canceled out, and the flatness of the substrate 1 is improved. As a result, the frame body 2 and the ceramic terminal body 9 can be joined to the substrate 1 extremely strongly, and the reliability of the hermetic sealing of the container 5 is further ensured. As a result, the operation reliability of the optical semiconductor element 4 housed in the container 5 can be made more stable and reliable.

【0053】また更に前記上下層1b、1dと中間層1
cの厚みは前記上下層1b、1dの厚みをX、中間層1
cの厚みをYとした場合、0.5Y≦X≦Yの範囲とし
ておくと基体1を介して光半導体素子4の発する熱をよ
り良好に外部に放散することができる。前記上下層1
b、1dの厚みをX、中間層1cの厚みをYとした場
合、0.5Y>Xとなると250W/m・K以上の高熱
伝導率である上下層1b、1dが薄くなり光半導体素子
4の発する熱を外部に効率よく放散させることができな
くなる危険性があり、Y<Xとなると線熱膨張係数の大
きな上下層の基体1全体に及ぼす影響が大きくなり、基
体1の線熱膨張係数を前記枠体2やセラミック端子体9
の線熱膨張係数と近似させることが困難となる危険性が
あることから、前記上下層1b、1dと中間層1cの厚
みは前記上下層1b、1dの厚みをX、中間層1cの厚
みをYとした場合、0.5Y≦X≦Yの範囲が望まし
い。
Furthermore, the upper and lower layers 1b and 1d and the intermediate layer 1
c is the thickness of the upper and lower layers 1b and 1d, and X is the thickness of the intermediate layer 1.
When the thickness of c is Y, the heat generated by the optical semiconductor element 4 can be more effectively dissipated to the outside through the substrate 1 by setting the range of 0.5Y ≦ X ≦ Y. The upper and lower layers 1
When the thicknesses of b and 1d are X and the thickness of the intermediate layer 1c is Y, when 0.5Y> X, the upper and lower layers 1b and 1d having high thermal conductivity of 250 W / m · K or more are thinned and the optical semiconductor element 4 is obtained. There is a risk that the heat generated by will not be able to be efficiently dissipated to the outside, and if Y <X, the influence on the entire upper and lower base bodies 1 having a large linear thermal expansion coefficient will increase, and the linear thermal expansion coefficient of the base body 1 will increase. The frame body 2 and the ceramic terminal body 9
Since there is a risk that it will be difficult to approximate the linear thermal expansion coefficient to the upper and lower layers 1b, 1d and the intermediate layer 1c, the thickness of the upper and lower layers 1b, 1d is X, and the thickness of the intermediate layer 1c is When Y is set, the range of 0.5Y ≦ X ≦ Y is desirable.

【0054】なお前記3層構造の基体1は、中間層1c
となる所定量のモリブデン焼結体に所定量の銅を含浸さ
せた所定厚みの板体と、上下層1b、1dとなる所定量
のモリブデン焼結体に所定量の銅を含浸させた所定厚み
の板体とを準備し、前記中間層1cとなる板体の上下を
上下層となる板体で挟み込んだ後、銅の溶融温度(10
83℃)より20℃程度高い温度にて真空中もしくは中
性、還元雰囲気中で加圧しながら積層することによって
製作される。
The substrate 1 having the three-layer structure is the intermediate layer 1c.
A plate body having a predetermined thickness obtained by impregnating a predetermined amount of molybdenum sintered body with a predetermined amount of copper and a predetermined thickness obtained by impregnating a predetermined amount of molybdenum sintered body serving as the upper and lower layers 1b and 1d with a predetermined amount of copper. And the upper and lower plates of the intermediate layer 1c are sandwiched between the upper and lower plates, and the copper melting temperature (10
It is manufactured by stacking while pressurizing in a vacuum or in a neutral or reducing atmosphere at a temperature about 20 ° C. higher than (83 ° C.).

【0055】また、本発明は上述の実施例に限定される
ものではなく、本発明の要旨を逸脱しない範囲であれば
種々の変更は可能である。
The present invention is not limited to the above-mentioned embodiments, but various modifications can be made without departing from the gist of the present invention.

【0056】[0056]

【発明の効果】本発明の光半導体素子収納用パッケージ
によれば、基体をタングステンが70乃至90重量%、
銅が10乃至30重量%から成る中間層の上下両面にタ
ングステンが25乃至55重量%、銅が45乃至75重
量%から成る上下層を配した3層構造、またはモリブデ
ンが75乃至95重量%、銅が5乃至25重量%から成
る中間層の上下両面にモリブデンが30乃至60重量
%、銅が40乃至70重量%から成る上下層を配した3
層構造となしたことから基体の光半導体素子が載置され
る上層の熱伝導率を250W/m・K以上の高いものと
し、基体上に載置される光半導体素子が作動時に多量の
熱を発したとしてもその熱は基体の上層で平面方向に素
早く広がらせるとともに基体の上層、中間層、下層を順
次介して外部に効率よく確実に放散させることができ、
これによって光半導体素子は常に適温となり、光半導体
素子を長期間にわたり安定かつ正常に作動させることが
可能となる。
According to the package for accommodating an optical semiconductor element of the present invention, the base contains 70 to 90% by weight of tungsten,
A three-layer structure in which an upper layer and a lower layer each containing 25 to 55% by weight of tungsten and 45 to 75% by weight of copper are arranged on the upper and lower surfaces of an intermediate layer of 10 to 30% by weight of copper, or 75 to 95% by weight of molybdenum, An upper and lower layer of molybdenum of 30 to 60% by weight and copper of 40 to 70% by weight is provided on both upper and lower surfaces of an intermediate layer of 5 to 25% by weight of copper. 3
Due to the layered structure, the thermal conductivity of the upper layer on which the optical semiconductor element of the base is mounted is set to a high value of 250 W / mK or more, and a large amount of heat is generated when the optical semiconductor element mounted on the base operates. Even if the heat is emitted, the heat can be quickly spread in the plane direction in the upper layer of the substrate, and can be efficiently and reliably dissipated to the outside through the upper layer, the intermediate layer, and the lower layer of the substrate sequentially.
As a result, the optical semiconductor element is always kept at an appropriate temperature, and the optical semiconductor element can be stably and normally operated for a long period of time.

【0057】また本発明の半導体素子収納用パッケージ
によれば、基体をタングステンが70乃至90重量%、
銅が10乃至30重量%から成る中間層の上下両面にタ
ングステンが25乃至55重量%、銅が45乃至75重
量%から成る上下層を配した3層構造、またはモリブデ
ンが75乃至95重量%、銅が5乃至25重量%から成
る中間層の上下両面にモリブデンが30乃至60重量
%、銅が40乃至70重量%から成る上下層を配した3
層構造となし、線熱膨張係数が小さい中間層を線熱膨張
係数の大きい上下層で挟み込み、基体全体の線熱膨張係
数を鉄−ニッケル−コバルト合金や鉄−ニッケル合金か
ら成る枠体あるいは酸化アルミニウム質焼結体やガラス
セラミック焼結体等のセラミックス絶縁体から成るセラ
ミック端子体の線熱膨張係数に近似させたことから基体
上に枠体やセラミック端子体を取着させる際や光半導体
素子が作動した際等において基体と枠体やセラミック端
子体に熱が作用したとしても基体と枠体やセラミック端
子体との間には両者の線熱膨張係数の相違に起因する大
きな熱応力が発生することはなく、これによって光半導
体素子を収容する空所の気密封止が常に完全となり、光
半導体素子を安定かつ正常に作動させることが可能とな
る。
According to the package for accommodating semiconductor elements of the present invention, the base is made of 70 to 90% by weight of tungsten,
A three-layer structure in which an upper layer and a lower layer each containing 25 to 55% by weight of tungsten and 45 to 75% by weight of copper are arranged on the upper and lower surfaces of an intermediate layer of 10 to 30% by weight of copper, or 75 to 95% by weight of molybdenum, An upper and lower layer of molybdenum of 30 to 60% by weight and copper of 40 to 70% by weight is provided on both upper and lower surfaces of an intermediate layer of 5 to 25% by weight of copper. 3
It has a layered structure in which an intermediate layer having a small linear thermal expansion coefficient is sandwiched between upper and lower layers having a large linear thermal expansion coefficient, and the linear thermal expansion coefficient of the entire substrate is made of an iron-nickel-cobalt alloy or iron-nickel alloy frame or oxidation. Since the linear thermal expansion coefficient of a ceramic terminal body made of a ceramic insulator such as an aluminum-based sintered body or a glass ceramic sintered body is approximated, the frame body or the ceramic terminal body is attached to the base body or the optical semiconductor element. Even when heat is applied to the base body and the frame body or ceramic terminal body during operation of the, a large thermal stress is generated between the base body and the frame body or ceramic terminal body due to the difference in the linear thermal expansion coefficients of the two. By doing so, the airtight sealing of the space for accommodating the optical semiconductor element is always perfect, and the optical semiconductor element can be operated stably and normally.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光半導体素子収納用パッケージの一実
施例を示す断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of a package for storing an optical semiconductor element of the present invention.

【図2】図1に光半導体素子収納用パッケージの平面図
である。
FIG. 2 is a plan view of a package for storing an optical semiconductor element in FIG.

【符号の説明】[Explanation of symbols]

1・・・・・基体 1a・・・・載置部 1b・・・・上層 1c・・・・中間層 1d・・・・下層 2・・・・・枠体 2a・・・・貫通孔 2b・・・・切欠部 3・・・・・蓋部材 4・・・・・光半導体素子 5・・・・・容器 6・・・・・固定部材 7・・・・・透光性部材 8・・・・・光ファイバー部材 9・・・・・セラミック端子体 10・・・・セラミックス絶縁体 1 ... Base 1a ... ・ Mounting part 1b ... upper layer 1c ... Middle layer 1d ... Lower layer 2 ... frame 2a ... through-hole 2b ... ・ Notch 3 ... Lid member 4 ... Optical semiconductor device 5 ... Container 6 ... Fixing member 7: Translucent member 8: Optical fiber member 9: Ceramic terminal body 10 ... Ceramic insulator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 23/373 H01L 23/36 Z H01S 5/022 M Fターム(参考) 2H037 AA01 BA02 BA11 DA03 DA04 DA36 DA38 5F036 AA01 BA23 BB01 BD01 5F073 AB28 BA02 EA28 FA07 FA15 FA21 FA27 FA28 FA29 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 23/373 H01L 23/36 Z H01S 5/022 MF term (reference) 2H037 AA01 BA02 BA11 DA03 DA04 DA36 DA38 5F036 AA01 BA23 BB01 BD01 5F073 AB28 BA02 EA28 FA07 FA15 FA21 FA27 FA28 FA29

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】上面に光半導体素子が載置される載置部を
有する基体と、前記基体上に光半導体素子載置部を囲繞
するようにして取着され、側部に貫通孔および切欠部を
有する鉄−ニッケル−コバルト合金もしくは鉄−ニッケ
ル合金から成る枠体と、前記貫通孔もしくは貫通孔周辺
の枠体に取着され、光ファイバー部材が接合される固定
部材と、前記切欠部に挿着され、セラミックス絶縁体に
光半導体素子の各電極が接続される配線層が形成されて
いるセラミック端子体と、前記枠体の上面に取着され、
光半導体素子を気密に封止する蓋部材とから成る光半導
体素子収納用パッケージであって、前記基体はタングス
テンと銅とから成り、タングステンが70乃至90重量
%、銅が10乃至30重量%から成る中間層の上下両面
にタングステンが25乃至55重量%、銅が45乃至7
5重量%から成る上下層を配した3層構造を有している
ことを特徴とする光半導体素子収納用パッケージ。
1. A base body having a mounting portion on which an optical semiconductor element is mounted, and an optical semiconductor element mounting portion mounted on the base body so as to surround the mounting portion, and a through hole and a notch are formed in a side portion. A frame body made of an iron-nickel-cobalt alloy or an iron-nickel alloy having a portion, a fixing member attached to the through hole or the frame body around the through hole, and an optical fiber member is joined, and the cutout portion. And a ceramic terminal body in which a wiring layer to which each electrode of the optical semiconductor element is connected is formed on the ceramic insulator, and is attached to the upper surface of the frame body,
A package for housing an optical semiconductor element, which comprises a lid member for hermetically sealing an optical semiconductor element, wherein the base body is made of tungsten and copper, and tungsten is 70 to 90% by weight and copper is 10 to 30% by weight. 25 to 55% by weight of tungsten and 45 to 7 of copper are formed on both upper and lower surfaces of the intermediate layer.
A package for accommodating an optical semiconductor element, which has a three-layer structure in which upper and lower layers of 5% by weight are arranged.
【請求項2】上面に光半導体素子が載置される載置部を
有する基体と、前記基体上に光半導体素子載置部を囲繞
するようにして取着され、側部に貫通孔および切欠部を
有する鉄−ニッケル−コバルト合金もしくは鉄−ニッケ
ル合金から成る枠体と、前記貫通孔もしくは貫通孔周辺
の枠体に取着され、光ファイバー部材が接合される固定
部材と、前記切欠部に挿着され、セラミックス絶縁体に
光半導体素子の各電極が接続される配線層が形成されて
いるセラミック端子体と、前記枠体の上面に取着され、
光半導体素子を気密に封止する蓋部材とから成る光半導
体素子収納用パッケージであって、前記基体はモリブデ
ンと銅とから成り、モリブデンが75乃至95重量%、
銅が5乃至25重量%から成る中間層の上下両面にモリ
ブデンが30乃至60重量%、銅が40乃至70重量%
から成る上下層を配した3層構造を有していることを特
徴とする光半導体素子収納用パッケージ。
2. A base body having a mounting portion on which an optical semiconductor element is mounted, and an optical semiconductor element mounting portion mounted on the base body so as to surround the mounting portion. A frame body made of an iron-nickel-cobalt alloy or an iron-nickel alloy having a portion, a fixing member attached to the through hole or the frame body around the through hole, and an optical fiber member is joined, and the cutout portion. And a ceramic terminal body in which a wiring layer to which each electrode of the optical semiconductor element is connected is formed on the ceramic insulator, and is attached to the upper surface of the frame body,
A package for housing an optical semiconductor element, which comprises a lid member that hermetically seals an optical semiconductor element, wherein the base body is made of molybdenum and copper, and molybdenum is 75 to 95% by weight.
30 to 60% by weight of molybdenum and 40 to 70% by weight of copper on the upper and lower surfaces of the intermediate layer composed of 5 to 25% by weight of copper
A package for housing an optical semiconductor element, which has a three-layer structure in which upper and lower layers made of
JP2001224110A 2001-07-25 2001-07-25 Package for housing optical semiconductor element Pending JP2003037196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001224110A JP2003037196A (en) 2001-07-25 2001-07-25 Package for housing optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001224110A JP2003037196A (en) 2001-07-25 2001-07-25 Package for housing optical semiconductor element

Publications (1)

Publication Number Publication Date
JP2003037196A true JP2003037196A (en) 2003-02-07

Family

ID=19057332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001224110A Pending JP2003037196A (en) 2001-07-25 2001-07-25 Package for housing optical semiconductor element

Country Status (1)

Country Link
JP (1) JP2003037196A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099933A1 (en) * 2007-02-15 2008-08-21 Kabushiki Kaisha Toshiba Semiconductor package
WO2008099934A1 (en) * 2007-02-15 2008-08-21 Kabushiki Kaisha Toshiba Semiconductor package
CN103959121A (en) * 2011-11-29 2014-07-30 Ls美创有限公司 Photoelectric wiring module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099933A1 (en) * 2007-02-15 2008-08-21 Kabushiki Kaisha Toshiba Semiconductor package
WO2008099934A1 (en) * 2007-02-15 2008-08-21 Kabushiki Kaisha Toshiba Semiconductor package
JP2008227473A (en) * 2007-02-15 2008-09-25 Toshiba Corp Semiconductor package
US7732916B2 (en) 2007-02-15 2010-06-08 Kabushiki Kaisha Toshiba Semiconductor package
KR101017452B1 (en) 2007-02-15 2011-02-25 가부시끼가이샤 도시바 Semiconductor package
US7911794B2 (en) 2007-02-15 2011-03-22 Kabushiki Kaisha Toshiba Semiconductor package
KR101066711B1 (en) * 2007-02-15 2011-09-21 가부시끼가이샤 도시바 Semiconductor package
US8049316B2 (en) 2007-02-15 2011-11-01 Kabushiki Kaisha Toshiba Semiconductor package
CN103959121A (en) * 2011-11-29 2014-07-30 Ls美创有限公司 Photoelectric wiring module
CN103959121B (en) * 2011-11-29 2016-06-22 Ls美创有限公司 Photoelectric distribution module

Similar Documents

Publication Publication Date Title
US20040183172A1 (en) Package for housing semiconductor chip, and semiconductor device
JP2001060635A (en) Optical semiconductor element housing package
JP3619393B2 (en) Optical semiconductor element storage package
JP2003037196A (en) Package for housing optical semiconductor element
JP3532114B2 (en) Optical semiconductor element storage package
JP2000183253A (en) Package for housing semiconductor element
JP3457906B2 (en) Optical semiconductor element storage package
JP2003037321A (en) Package for accommodating optical semiconductor element
JP2003304027A (en) Package for housing optical semiconductor element
JP3981256B2 (en) Optical semiconductor element storage package
JP2003101123A (en) Package for storage of optical semiconductor element
JP2003037204A (en) Package for accommodating semiconductor element
JP3488392B2 (en) Optical semiconductor element storage package
JPH11163184A (en) Optical semiconductor device housing package
JP2000150745A (en) Package for housing optical semiconductor element
JP2003142762A (en) Package for housing optical semiconductor element
JP2000156427A (en) Package for housing optical semiconductor device
JP3709082B2 (en) Optical semiconductor element storage package
JP2001102636A (en) Package for housing optical semiconductor element
JP2003069132A (en) Package for accommodating optical semiconductor element
JP2003100930A (en) Package for accommodating semiconductor device
JP2000164742A (en) Package for housing optical semiconductor device
JP2000150746A (en) Package for housing optical semiconductor element
JP2003068914A (en) Package for semiconductor element storage
JP2003037200A (en) Package for housing semiconductor element