JP2003031408A - Magnetic powder for rate-earth bonded magnet, its manufacturing method, and bonded magnet - Google Patents

Magnetic powder for rate-earth bonded magnet, its manufacturing method, and bonded magnet

Info

Publication number
JP2003031408A
JP2003031408A JP2001212262A JP2001212262A JP2003031408A JP 2003031408 A JP2003031408 A JP 2003031408A JP 2001212262 A JP2001212262 A JP 2001212262A JP 2001212262 A JP2001212262 A JP 2001212262A JP 2003031408 A JP2003031408 A JP 2003031408A
Authority
JP
Japan
Prior art keywords
powder
magnet
alloy
lump
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001212262A
Other languages
Japanese (ja)
Inventor
Yasuhiko Iriyama
恭彦 入山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001212262A priority Critical patent/JP2003031408A/en
Publication of JP2003031408A publication Critical patent/JP2003031408A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide magnetic powder for a rare-earth isotropic bonded mag netic and its manufacturing method which can maintain a high fluidity of com pound of magnetic powder resin binder even if the filling factor of the magnetic powder in the compound is high, and can form a magnet with satisfactory moldability, and to obtain a bonded magnet which is made of the magnetic powder and has high magnetic performance. SOLUTION: Molten Nd-Fe-B system magnet alloy is chilled by rolling to obtain a ribbon which is crushed into flake powder, and the powder is subjected to a hot-upsetting at 500 to 800 deg.C to obtain a lump which is crushed again into granular powder. In the case of Sm-Fe-N system alloy, molten Sm-Fe system alloy is chilled by rolling to obtain a ribbon which is crushed into flake powder, and the flake powder is subjected to a hot-upsetting under at 500 to 800 deg.C to obtain a lump which is crushed again into granular powder, and the granular powder is subjected to nitriding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、希土類ボンド磁石
を製造するための磁石粉末であって、従来のフレーク状
粉末にくらべ高い充填率をもって磁石成形品中に存在さ
せることができる粒状の磁石粉末と、その製造方法に関
する。本発明はまた、この磁石粉末を使用したボンド磁
石にも関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnet powder for producing a rare earth bonded magnet, which is a granular magnet powder which can be present in a magnet molded product with a higher filling rate than conventional flaky powder. And a manufacturing method thereof. The present invention also relates to a bonded magnet using this magnet powder.

【0002】[0002]

【従来の技術】希土類磁石粉末を樹脂バインダーで結合
した等方性ボンド磁石は、磁石性能の尺度である最大エ
ネルギー積が大きいことと、成形性が良好で所望の磁石
形状の実現が容易であることが特徴であって、コンピュ
ータや携帯電話の部品のように、小型で高性能の部品を
構成する材料として広く使用されている。この種の機器
はますます高性能化や小型化が進んでおり、それに伴っ
て、使用するボンド磁石も、一層の高性能化と小型化が
要求されている。
2. Description of the Related Art Isotropic bonded magnets in which rare earth magnet powders are bonded with a resin binder have a large maximum energy product, which is a measure of magnet performance, and have good moldability, so that a desired magnet shape can be easily realized. It is characterized by being widely used as a material for forming small and high-performance parts such as parts for computers and mobile phones. The performance and size of this type of equipment are becoming higher and smaller, and accordingly, the bond magnets used are required to have higher performance and smaller size.

【0003】現在、希土類ボンド磁石製造の材料とする
磁石粉末としては、磁石合金の溶湯をロール急冷法によ
り急冷してリボンを得、これを粉砕した、フレーク状の
粉末が使用されている。ロール急冷法が与えるフレーク
状粉末は、微結晶であって、保磁力が大きいのが利点で
ある。ボンド磁石に使用する希土類磁石としてはNd−
Fe−B系が代表的なものであるが、近年開発が進んで
きたSm−Fe−N系も有力である。
At present, as a magnet powder used as a material for producing a rare earth bonded magnet, a flaky powder obtained by rapidly cooling a melt of a magnet alloy by a roll quenching method to obtain a ribbon and crushing the ribbon is used. The flaky powder provided by the roll quenching method is an advantage that it is a fine crystal and has a large coercive force. As a rare earth magnet used for a bonded magnet, Nd-
The Fe-B system is typical, but the Sm-Fe-N system, which has been developed in recent years, is also effective.

【0004】フレーク状磁石粉末は、厚さが10〜30
μmの範囲の扁平な粉末であって、このことは、ボンド
磁石の成形にとってマイナスに作用し、磁石成形品中の
磁石粉末の充填率を高められないという、原理的な問題
を与える。ボンド磁石の成形をプレス成形で行なう場合
でも、到達できる充填率には限界がある。この限界は、
射出成形による場合にはいっそう深刻であって、フレー
ク状粉末を含む樹脂コンパウンドの流動性を確保するた
め、樹脂バインダーへの磁石粉末の最大添加量は低く抑
えなければならない。いずれにしても、ボンド樹脂の最
大エネルギー積は、焼結磁石に比べて低いレベルに止ま
っている。
The flaky magnet powder has a thickness of 10 to 30.
This is a flat powder in the range of μm, which has a negative effect on the molding of the bonded magnet and gives a theoretical problem that the filling rate of the magnet powder in the magnet molded product cannot be increased. Even when the bonded magnet is molded by press molding, there is a limit to the filling rate that can be achieved. This limit is
In the case of injection molding, which is even more serious, the maximum amount of magnet powder added to the resin binder must be kept low in order to ensure the fluidity of the resin compound containing the flake powder. In any case, the maximum energy product of the bond resin is at a lower level than that of the sintered magnet.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、希土
類の等方性ボンド磁石における上記の問題を解決し、磁
石粉末−樹脂バインダーのコンパウンドに高い密度で添
加しても、コンパウンドの流動性を高く保つことがで
き、プレス成形による場合も射出成形による場合も、良
好な成形性をもって加工することができ、高い磁石性能
を有するボンド磁石を与える磁石粉末と、その製造方法
を提供することにある。この磁石粉末を使用したボンド
磁石を提供することも、もちろん本発明の目的に含まれ
る。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems in rare earth isotropic bonded magnets, and to improve the fluidity of the compound even if it is added to the compound of the magnet powder-resin binder at a high density. To provide a bonded magnet powder having high magnet performance, which can be processed with good moldability regardless of whether press molding or injection molding is performed, and a manufacturing method thereof. is there. It is, of course, included in the object of the present invention to provide a bonded magnet using this magnet powder.

【0006】[0006]

【課題を解決するための手段】本発明にしたがう希土類
ボンド磁石用の磁石粉末は、ロール急冷法によって得た
希土類磁石合金またはその前駆体の粉末の形状を、熱間
アプセットおよび再粉砕により、フレーク状から粒状に
変えてなることを特徴とする、高い粉末充填密度で磁石
を製造することができる磁石粉末である。
The magnetic powder for a rare earth bonded magnet according to the present invention is obtained by hot upsetting and re-grinding the shape of the powder of the rare earth magnetic alloy or its precursor obtained by the roll quenching method to form flakes. A magnet powder capable of producing a magnet with a high powder packing density, characterized in that the magnet powder is formed into a granular shape.

【0007】[0007]

【発明の実施形態】本発明を適用する希土類磁石合金
は、ロール急冷法によりフレーク状粉末とする種類のも
のであり、その代表例は、前記したように、Nd−Fe
−B系磁石合金である。これも前記したように、Sm−
Fe−N系磁石合金が含まれる。
BEST MODE FOR CARRYING OUT THE INVENTION The rare earth magnet alloy to which the present invention is applied is of a type in which flaky powder is formed by a roll quenching method, and a typical example thereof is Nd-Fe as described above.
-B type magnet alloy. As described above, Sm-
Fe—N based magnet alloys are included.

【0008】本発明にしたがう希土類ボンド磁石用の磁
石粉末の製造方法は、Nd−Fe−B系の場合は、Nd
−Fe−B系磁石合金の溶湯をロール急冷して得たリボ
ンを粉砕してフレーク状粉末を得、これを500〜80
0℃の温度で熱間アプセットして塊状にし、この塊を再
粉砕して粒状の粉末とすることを特徴とする。
The method for producing a magnet powder for a rare earth bonded magnet according to the present invention is Nd-Fe-B system in the case of Nd-Fe-B system.
A ribbon obtained by roll-quenching a molten metal of a —Fe—B magnet alloy was crushed to obtain a flake-like powder.
It is characterized in that it is hot upset at a temperature of 0 ° C. to form a lump, and the lump is re-ground to give a granular powder.

【0009】Sm−Fe−N系の場合は、Sm−Fe系
合金の溶湯をロール急冷して得たリボンを粉砕してフレ
ーク状粉末を得、これを500〜800℃の温度で熱間
アプセットして塊状にし、この塊を再粉砕して粒状の粉
末としたものに窒化処理を施すことを特徴とする。
In the case of the Sm-Fe-N system, a ribbon obtained by rapidly cooling a molten Sm-Fe system alloy roll is crushed to obtain a flake powder, which is hot upset at a temperature of 500 to 800 ° C. It is characterized in that the lump is made into a lump, and the lump is re-ground to give a granular powder, which is subjected to a nitriding treatment.

【0010】フレーク状粉末は、通常その厚さが10〜
30μmであるが、熱間のアプセットを行なうと、粉末
が焼結して塊状体になる。このとき、加熱温度が500
℃より低いと、焼結が進行せず、磁石金属の塊が得られ
ない。温度が高い方が焼結は速いが、それとともに結晶
粒子が粗大化して磁気特性、とくに保磁力が低下するお
それがあるので、800℃を上限とする。通常、600
〜650℃が適切である。
The flake powder usually has a thickness of 10 to 10.
Although it is 30 μm, when hot upsetting is performed, the powder sinters into a lump. At this time, the heating temperature is 500
If the temperature is lower than 0 ° C, sintering does not proceed and a lump of magnet metal cannot be obtained. Although the higher the temperature is, the faster the sintering is, the crystal grains may be coarsened and the magnetic characteristics, particularly the coercive force may be lowered, so the upper limit is 800 ° C. Usually 600
~ 650 ° C is suitable.

【0011】塊の粉砕は、荒砕きののち、ピンミルを使
用して行なうのが好適である。この再粉砕により、新し
い破面をもった粒状の粉末が得られる。粒状粉末のサイ
ズは、一般に長径が100〜1000μm、短径が30
〜200μmの範囲にある。ボンド磁石製造の際の金型
への充填性など、実用面からは、長径が400μm以下
の、ほぼ球状の粉末が好ましい。
The crushing of the lumps is preferably carried out using a pin mill after rough crushing. This re-milling gives a granular powder with new fracture surfaces. Granular powders generally have a major axis of 100 to 1000 μm and a minor axis of 30.
˜200 μm. From a practical point of view, such as the filling property in a mold at the time of producing a bonded magnet, a substantially spherical powder having a major axis of 400 μm or less is preferable.

【0012】ボンド磁石の製造は、既知の技術に従って
実施すればよい。本発明に従えば、樹脂バインダーに対
する磁石粉末の充填率上限(容積%)を、つぎのように
増大させることができる。 プレス成形(エポキシ樹脂):従来の75〜80%から
80〜90%へ 射出成形(ナイロン樹脂): 従来の55〜60%から
60〜70%へ
The bonded magnet may be manufactured according to a known technique. According to the present invention, the upper limit (volume%) of the filling rate of the magnet powder to the resin binder can be increased as follows. Press molding (epoxy resin): From conventional 75 to 80% to 80 to 90% Injection molding (nylon resin): From conventional 55 to 60% to 60 to 70%

【0013】[0013]

【実施例1および比較例1】 Nd−Fe−B系 重量%で、Nd:27%、Fe:67%、Co:5%、
B:1%からなる組成のNd−Fe−B系磁石合金を溶
製し、20m/sの周速で回転する銅製ロールを用いた
液体急冷法により急冷フレークを得た。この急冷フレー
クを粉砕して、平均粒径150μmの粉末とした。フレ
ーク状粉末の形状を、図1に示す。
[Example 1 and Comparative Example 1] Nd-Fe-B system weight%, Nd: 27%, Fe: 67%, Co: 5%,
B: A Nd-Fe-B magnet alloy having a composition of 1% was melted, and a quenching flake was obtained by a liquid quenching method using a copper roll rotating at a peripheral speed of 20 m / s. The quenched flakes were crushed into powder having an average particle size of 150 μm. The shape of the flake powder is shown in FIG.

【0014】粉末の磁気特性を高めるため、粉末の一部
に対し、Ar雰囲気中、650℃に20分間加熱する焼
鈍処理を施した。焼鈍した磁石粉末の磁気特性を、振動
試料型磁力計(VSM)で測定して、つぎの値を得た。
このときの磁石粉末の比重は7.6g/cmとし、反磁
界補正は施さなかった。 Br:8.4kG iHc:10.4kOe [BH]max:1
4.3MGOe
In order to enhance the magnetic properties of the powder, a part of the powder was annealed by heating it at 650 ° C. for 20 minutes in an Ar atmosphere. The magnetic properties of the annealed magnet powder were measured with a vibrating sample magnetometer (VSM) to obtain the following values.
The specific gravity of the magnet powder at this time was 7.6 g / cm 3, and no demagnetizing field correction was performed. Br: 8.4kG iHc: 10.4kOe [BH] max: 1
4.3 MGOe

【0015】フレーク状粉末(焼鈍処理を施してないも
の)200gを軟鋼製の円筒状の容器に充填し、軟鋼製
の蓋を溶接して密閉した。これを高周波加熱により65
0℃に昇温し、20分間この温度に保持した後、圧下率
85%となるようにアプセットした。容器から塊状にな
った磁石合金を取り出し、塊を荒砕きしてからピンミル
で粉砕して、粒状の磁石粉末を得た。この粒状の磁石粉
末の形状を、図2に示す。平均の長径は350μm、短
径は70μmであった。
200 g of flaky powder (not subjected to annealing treatment) was filled in a mild steel cylindrical container, and a mild steel lid was welded and sealed. 65 by high frequency heating
After raising the temperature to 0 ° C. and maintaining this temperature for 20 minutes, upsetting was performed so that the rolling reduction was 85%. The agglomerated magnet alloy was taken out of the container, the agglomerate was roughly crushed, and then pulverized with a pin mill to obtain granular magnetic powder. The shape of this granular magnet powder is shown in FIG. The average major axis was 350 μm and the minor axis was 70 μm.

【0016】この粒状粉末の磁気特性はつぎのとおりで
あって、熱間加工による磁気特性のわずかな低下が認め
られた。 Br:8.0kG iHc:9.9kOe [BH]max:13.
8MGOe
The magnetic properties of this granular powder are as follows, and a slight decrease in the magnetic properties due to hot working was observed. Br: 8.0 kG iHc: 9.9 kOe [BH] max: 13.
8MGOe

【0017】上記の粒状粉末98重量%とエポキシ樹脂
2重量%とを混合した物を金型に充填し、12トン/cm
の面圧でプレスした。成形体を150℃に1時間加熱
して、エポキシ樹脂を硬化させて、圧縮成形ボンド磁石
を得た。比較のため、前記のフレーク状粉末(焼鈍処理
を施し、アプセット加工をしてないもの)をそのまま使
用し、同様に圧縮成形ボンド磁石を製造した。これら2
種のボンド磁石の磁気特性を測定して、つぎの値を得
た。 磁石密度 Br iHc [BH]max 実施例 6.6g/cm 7.9kG 9.8kOe 12.3MGOe 比較例 6.1g/cm 7.3kG 10.2kOe 10.5MGOe
A mixture of 98% by weight of the above-mentioned granular powder and 2% by weight of an epoxy resin was filled in a mold to obtain 12 tons / cm.
Pressed at a surface pressure of 2 . The molded body was heated to 150 ° C. for 1 hour to cure the epoxy resin and obtain a compression molded bonded magnet. For comparison, the above-mentioned flaky powder (which was annealed and not upset) was used as it was, and a compression-molded bond magnet was similarly produced. These two
The magnetic properties of the seed bond magnets were measured and the following values were obtained. Magnet density Br iHc [BH] max Example 6.6 g / cm 3 7.9 kG 9.8 kOe 12.3 MGOe Comparative example 6.1 g / cm 3 7.3 kG 10.2 kOe 10.5 MGOe

【0018】実施例に従うとき、粒状粉末への加工によ
り僅かな磁気特性の低下が見られたが、ボンド磁石製品
においては、比較例よりすぐれた磁気特性とくに最大エ
ネルギー積の向上が確認できた。これは、磁石粉末−樹
脂バインダーのコンパウンドを成形するときに粉末の充
填率を高めることが可能になり、それが磁石粉末の若干
の磁気性能の低下を補って余りあることを示している。
In the case of following the examples, a slight decrease in magnetic properties was observed due to the processing into granular powder, but in the bonded magnet products, it was confirmed that the magnetic properties, in particular the maximum energy product, were superior to the comparative examples. This shows that it becomes possible to increase the filling rate of the powder when molding the compound of the magnet powder-resin binder, which is more than enough to make up for some deterioration of the magnetic performance of the magnet powder.

【0019】[0019]

【実施例2および比較例2】 Sm−Fe−N系 重量%で、Sm:22%、Fe:78%からなる組成の
Sm−Fe合金を溶製し、40m/sの周速で回転する
銅製ロールを用いた液体急冷法により急冷フレークを得
た。この急冷フレークを粉砕して、平均粒径150μm
の粉末とした。この粉末の一部に対し、をAr雰囲気
中、700℃に20分間加熱する焼鈍処理を施した。
Example 2 and Comparative Example 2 An Sm-Fe alloy having a composition of Sm: Fe-N system weight% and Sm: 22%, Fe: 78% was melted and rotated at a peripheral speed of 40 m / s. Quenched flakes were obtained by a liquid quenching method using a copper roll. The quenched flakes are crushed to have an average particle size of 150 μm.
Powder. Part of this powder was subjected to an annealing treatment in which was heated to 700 ° C. for 20 minutes in an Ar atmosphere.

【0020】フレーク状粉末(焼鈍処理を施してないも
の)200gを軟鋼製の円筒状の容器に充填し、軟鋼製
の蓋を溶接して密閉した。これを高周波加熱により70
0℃に昇温し、20分間この温度に保持した後、圧下率
85%となるようにアプセットした。容器から塊状にな
った磁石合金を取り出し、塊を荒砕きしてからピンミル
で粉砕して、粒状の磁石粉末を得た。この粒状の磁石粉
末の平均の長径は250μm、短径は55μmであっ
た。
200 g of flake powder (not subjected to annealing treatment) was filled in a cylindrical container made of mild steel, and a lid made of mild steel was welded and hermetically sealed. 70 by high frequency heating
After raising the temperature to 0 ° C. and maintaining this temperature for 20 minutes, upsetting was performed so that the rolling reduction was 85%. The agglomerated magnet alloy was taken out of the container, the agglomerate was roughly crushed, and then pulverized with a pin mill to obtain granular magnetic powder. The average major axis of this granular magnet powder was 250 μm, and the average minor axis was 55 μm.

【0021】上記のフレーク状粉末および粒状粉末を、
電気炉に入れて、水素−アンモニア雰囲気中、450℃
で窒化処理を施し、Sm−Fe−N系の磁石粉末を製造
した。2種の磁石粉末(粒状粉末を素材とする実施例
と、フレーク状粉末を素材とする比較例)の磁気特性
を、VSMで測定して、つぎの結果を得た。このときの
磁石粉末の比重は7.7g/cmとし、反磁界補正は施
さなかった。 Br iHc [BH]max 実施例 8.8kG 9.2kOe 15.5MGOe 比較例 9.2kG 9.5kOe 16.8MGOe
The above flaky powder and granular powder are
Put in an electric furnace, in a hydrogen-ammonia atmosphere, 450 ℃
Was subjected to nitriding treatment to produce Sm-Fe-N based magnet powder. The magnetic properties of two types of magnet powders (Examples using granular powder as a material and Comparative Example using flake-like powder as a material) were measured by VSM, and the following results were obtained. The specific gravity of the magnet powder at this time was 7.7 g / cm 3, and no demagnetizing field correction was performed. Br iHc [BH] max Example 8.8kG 9.2kOe 15.5MGOe Comparative Example 9.2kG 9.5kOe 16.8MGOe

【0022】上記2種類の粉末98重量%とエポキシ樹
脂2重量%とを混合したものを金型に充填し、12トン
/cmの面圧でプレスした。成形体を150℃に1時間
加熱して、エポキシ樹脂を硬化させて、圧縮成形ボンド
磁石を得た。これら2種のボンド磁石の磁気特性をBH
トレーサーにより測定して、つぎの値を得た。 磁石密度 Br iHc [BH]max 実施例 6.7g/cm 8.7kG 9.1kOe 16.4MGOe 比較例 6.2g/cm 8.1kG 9.3kOe 14.6MGOe
A mixture of 98% by weight of the above two kinds of powder and 2% by weight of an epoxy resin was filled in a mold and pressed at a surface pressure of 12 ton / cm 2 . The molded body was heated to 150 ° C. for 1 hour to cure the epoxy resin and obtain a compression molded bonded magnet. The magnetic properties of these two types of bond magnets are
The following values were obtained by measuring with a tracer. Magnet density Br iHc [BH] max Example 6.7 g / cm 3 8.7 kG 9.1 kOe 16.4 MGOe Comparative example 6.2 g / cm 3 8.1 kG 9.3 kOe 14.6 MGOe

【0023】[0023]

【発明の効果】本発明に従って、希土類磁石の粉末を、
ロール急冷により得られたままのフレーク状でなく、熱
間アプセットおよび再粉砕をへて粒状に変えることによ
り、樹脂バインダーへ高い充填率で混合できる磁石粉末
が得られる。この粉末を使用してボンド樹脂を製造すれ
ば、従来より磁気特性、とくに最大エネルギー積が高い
ボンド磁石が得られる。
According to the present invention, the powder of rare earth magnet is
Magnet powder that can be mixed with the resin binder at a high filling rate can be obtained by converting the material into a granular form by hot upsetting and re-grinding, instead of the flake shape obtained by the roll quenching. If a bond resin is produced using this powder, a bond magnet having higher magnetic properties, especially higher maximum energy product than before can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例において用意したNd−Fe
−B磁石合金の、フレーク状粉末の形状を示す顕微鏡写
真(倍率:40倍)。
FIG. 1 is Nd-Fe prepared in an example of the present invention.
-Micrograph showing the shape of flaky powder of B magnet alloy (magnification: 40 times).

【図2】 図1のフレーク状粉末を、本発明に従って塊
状化し再粉砕して得た粒状粉末の形状を示す、図1に対
応する顕微鏡写真(倍率:40倍)。
FIG. 2 is a photomicrograph (magnification: 40 ×) corresponding to FIG. 1, showing the shape of a granular powder obtained by agglomerating and re-milling the flaky powder of FIG. 1 according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/00 303 H01F 41/02 G H01F 41/02 1/06 A Fターム(参考) 4K017 AA04 BA06 BB12 CA09 DA04 EA03 EC02 FA29 4K018 AA27 AB03 BA18 BB01 BC08 BC19 BD01 GA04 KA46 5E040 AA04 AA19 BB03 CA01 HB07 HB11 HB17 NN18 5E062 CC05 CD05 CE05 CG03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 38/00 303 H01F 41/02 G H01F 41/02 1/06 A F term (reference) 4K017 AA04 BA06 BB12 CA09 DA04 EA03 EC02 FA29 4K018 AA27 AB03 BA18 BB01 BC08 BC19 BD01 GA04 KA46 5E040 AA04 AA19 BB03 CA01 HB07 HB11 HB17 NN18 5E062 CC05 CD05 CE05 CG03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ロール急冷法によって得た希土類磁石合
金またはその前駆体の粉末の形状を、熱間アプセットお
よび再粉砕により、フレーク状から粒状に変えてなるこ
とを特徴とする、高い粉末充填密度で磁石を製造するこ
とができる希土類ボンド磁石用の磁石粉末。
1. A high powder packing density, characterized in that the powder of the rare earth magnet alloy or its precursor obtained by the roll quenching method is changed from flakes to particles by hot upsetting and re-grinding. Magnet powder for rare earth bonded magnets that can be used to manufacture magnets.
【請求項2】 希土類磁石合金がNd−Fe−B系磁石
合金である請求項1の磁石粉末。
2. The magnet powder according to claim 1, wherein the rare earth magnet alloy is an Nd-Fe-B based magnet alloy.
【請求項3】 希土類磁石合金がSm−Fe−N系磁石
合金であり、その前駆体がSm−Fe系合金である請求
項1の磁石粉末。
3. The magnet powder according to claim 1, wherein the rare earth magnet alloy is an Sm-Fe-N-based magnet alloy, and the precursor thereof is an Sm-Fe-based alloy.
【請求項4】 粒状の粉末のサイズが、長径100〜1
000μm、短径30〜200μmである請求項1の磁
石粉末。
4. The size of the granular powder has a major axis of 100 to 1
The magnetic powder according to claim 1, which has a diameter of 000 μm and a minor axis of 30 to 200 μm.
【請求項5】 Nd−Fe−B系磁石合金の溶湯をロー
ル急冷して得たリボンを粉砕してフレーク状粉末を得、
これを500〜800℃の温度で熱間アプセットして塊
状にし、この塊を再粉砕して粒状の粉末とすることを特
徴とするNd−Fe−B系ボンド磁石用の磁石粉末の製
造方法。
5. A flaky powder is obtained by crushing a ribbon obtained by rapidly cooling a molten metal of Nd-Fe-B magnet alloy into a roll,
A method for producing magnet powder for Nd-Fe-B based bonded magnet, which comprises hot upsetting this at a temperature of 500 to 800 [deg.] C. to form a lump, and re-pulverizing the lump to give a granular powder.
【請求項6】 Sm−Fe系合金の溶湯をロール急冷し
て得たリボンを粉砕してフレーク状粉末を得、これを5
00〜800℃の温度で熱間アプセットして塊状にし、
この塊を再粉砕して粒状の粉末としたものに窒化処理を
施すことを特徴とするSm−Fe−N系ボンド磁石用の
磁石粉末の製造方法。
6. A flaky powder is obtained by pulverizing a ribbon obtained by rapidly cooling a molten metal of Sm-Fe alloy into a roll.
Hot upset at a temperature of 00-800 ° C to form a lump,
A method for producing magnet powder for an Sm-Fe-N-based bonded magnet, which comprises subjecting this lump to re-pulverization to give a granular powder and subjecting it to a nitriding treatment.
【請求項7】 請求項1ないし5のいずれかに記載の磁
石粉末と樹脂バインダーとのコンパウンドを磁石形状に
成形してなるボンド磁石。
7. A bonded magnet obtained by molding the compound of the magnet powder according to claim 1 and a resin binder into a magnet shape.
JP2001212262A 2001-07-12 2001-07-12 Magnetic powder for rate-earth bonded magnet, its manufacturing method, and bonded magnet Pending JP2003031408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001212262A JP2003031408A (en) 2001-07-12 2001-07-12 Magnetic powder for rate-earth bonded magnet, its manufacturing method, and bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001212262A JP2003031408A (en) 2001-07-12 2001-07-12 Magnetic powder for rate-earth bonded magnet, its manufacturing method, and bonded magnet

Publications (1)

Publication Number Publication Date
JP2003031408A true JP2003031408A (en) 2003-01-31

Family

ID=19047449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001212262A Pending JP2003031408A (en) 2001-07-12 2001-07-12 Magnetic powder for rate-earth bonded magnet, its manufacturing method, and bonded magnet

Country Status (1)

Country Link
JP (1) JP2003031408A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444388A (en) * 2019-08-30 2019-11-12 泮敏翔 A kind of preparation method of obdurability high-stability neodymium iron boron magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444388A (en) * 2019-08-30 2019-11-12 泮敏翔 A kind of preparation method of obdurability high-stability neodymium iron boron magnet

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JPH0424401B2 (en)
JPS6181606A (en) Preparation of rare earth magnet
JPH0551656B2 (en)
JPS6181603A (en) Preparation of rare earth magnet
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JP4089212B2 (en) Method for producing granulated powder of rare earth alloy and method for producing sintered rare earth alloy
JP2006100433A (en) Manufacturing method of rare earth sintered magnet
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP2003031408A (en) Magnetic powder for rate-earth bonded magnet, its manufacturing method, and bonded magnet
JP4240988B2 (en) Rare earth alloy granulated powder manufacturing method, rare earth alloy granulated powder manufacturing apparatus, and rare earth alloy sintered body manufacturing method
CN103480836A (en) Granulation method of sintered neodymium iron boron powder materials
JPH02125402A (en) Magnetic powder and manufacture thereof
JP2018152526A (en) Method for manufacturing rare earth-iron-boron based sintered magnet
JPH05152113A (en) Manufacture of rare-earth anisotropic magnet powder
JPH044385B2 (en)
JPH044383B2 (en)
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JPH01175207A (en) Manufacture of permanent magnet
JPH11233323A (en) Manufacture of anisotropic magnet material and manufacture of bond magnet using the same
JP2992808B2 (en) permanent magnet
JPS63114106A (en) Permanent magnet and manufacture thereof
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPH02156603A (en) Manufacture of magnetic powder