JP2002152983A - Charger - Google Patents

Charger

Info

Publication number
JP2002152983A
JP2002152983A JP2000344763A JP2000344763A JP2002152983A JP 2002152983 A JP2002152983 A JP 2002152983A JP 2000344763 A JP2000344763 A JP 2000344763A JP 2000344763 A JP2000344763 A JP 2000344763A JP 2002152983 A JP2002152983 A JP 2002152983A
Authority
JP
Japan
Prior art keywords
charging
voltage
circuit
operational amplifier
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000344763A
Other languages
Japanese (ja)
Inventor
Masanori Doi
雅則 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2000344763A priority Critical patent/JP2002152983A/en
Publication of JP2002152983A publication Critical patent/JP2002152983A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the charging time of a charger for simultaneously charging a plurality of batteries, which require constant voltage control. SOLUTION: The charger comprises a first charging circuit, including a main transistor Q1 and a second charging circuit which includes a main transistor Q2 A charging voltage of each charging circuit is controlled to a constant voltage with an individual voltage monitoring means and a feedback circuit, including the main transistors and a charging current of each charging circuit is controlled to a constant current, with a current monitoring means for common sum of such charging currents and a plurality of feedback circuits including main transistors of the charging circuits. The voltage-monitoring means includes a circuit, comprising an operational amplifier IC3 in the first charging circuit, a circuit comprising an operational amplifier IC4 in the second charging circuit, while the common current monitoring mans comprises a resistor R1 for current detection and an operational amplifier IC1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、定電圧制御が必要
な電池、例えばリチウムイオン電池を複数個同時に充電
するための充電器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charger for simultaneously charging a plurality of batteries requiring constant voltage control, for example, a plurality of lithium ion batteries.

【0002】[0002]

【従来の技術】図2は従来の充電器の回路図で、一対の
充電端子11と12との間に接続された電池10を充電
する第1充電回路と、一対の充電端子21と22との間
に接続された電池20を充電する第2充電回路を有する
2出力充電回路から構成され、各充電回路の充電電圧は
定電圧制御され且つ充電電流は定電流制御されている。
2. Description of the Related Art FIG. 2 is a circuit diagram of a conventional charger, in which a first charging circuit for charging a battery 10 connected between a pair of charging terminals 11 and 12 and a pair of charging terminals 21 and 22 are provided. And a two-output charging circuit having a second charging circuit for charging the battery 20 connected between them. The charging voltage of each charging circuit is controlled at a constant voltage, and the charging current is controlled at a constant current.

【0003】即ち、一対の充電端子11と12との間に
接続された電池10を充電する第1充電回路は、そのコ
レクタが電流検出用抵抗Rを経て充電端子11に接続
され且つそのエミッタが電源30の電源端子31に接続
された第1トランジスタQと、第1トランジスタQ
を制御する第1制御回路と、充電端子11と12との間
の電圧Vを常時検出し、検出した電圧をその基準値と
比較して電圧制御用指令信号を発生する第1電圧比較回
路と、及び充電電流Iを常時検出し、検出した電流を
基準値と比較して電流制御用指令信号を発生する第1電
流比較回路とから構成されている。
[0003] That is, the first charging circuit, and its emitter is connected to the charging terminal 11 via a current detection resistor R 1 is its collector to charge the connected battery 10 between a pair of charging terminals 11 and 12 There the first transistor Q 1 which is connected to the power supply terminal 31 of the power source 30, the first transistor Q 1
A first control circuit for controlling the first voltage comparison circuit that constantly detects the voltage V 1, to generate a voltage control command signal by comparing the detected voltage with the reference value between the charging terminals 11 and 12 If, and detects the charging current I 1 at all times, the detected current is compared with a reference value and a first current comparator circuit for generating a command signal for current control.

【0004】上記第1制御回路は、その出力端子が抵抗
25を経てトランジスタQのベースに接続されたオペ
アンプICと、オペアンプICの反転入力端子に基
準電圧Vref1を印加する第1トランジスタ制御用基準電
圧回路とからなる。この第1トランジスタ制御用基準電
圧回路は電源30のコモン側電源端子32と基準電圧端
子33との間に接続された抵抗R17と抵抗R19の抵抗分
圧回路からなる。
[0004] The first control circuit includes a first output terminal for applying an operational amplifier IC 5 which is connected to the base of the transistor Q 1 via a resistor R 25, a reference voltage V ref1 to the inverting input terminal of the operational amplifier IC 5 And a reference voltage circuit for transistor control. The first transistor control reference voltage circuit includes a resistor voltage dividing circuit including a resistor R 17 and a resistor R 19 connected between the common side power supply terminal 32 of the power supply 30 and the reference voltage terminal 33.

【0005】第1電圧比較回路は、その出力端子が抵抗
23とダイオードDの直列回路を経てオペアンプIC
の非反転入力端子に接続されたオペアンプICと、
このオペアンプICの反転入力端子に基準電圧Vref2
を印加する第1電圧制御用基準電圧回路と、第1充電回
路の充電端子11の電圧を前記オペアンプICの非反
転入力端子に伝える抵抗R15とからなる。この第1電圧
制御用基準電圧回路は電源30のコモン側電源端子32
と基準電圧端子33との間に接続された抵抗R 11と抵抗
13の抵抗分圧回路からなる。
The first voltage comparison circuit has an output terminal connected to a resistor.
Rtwenty threeAnd diode D3Operational amplifier IC through a series circuit
5Operational amplifier IC connected to the non-inverting input terminal3When,
This operational amplifier IC3Reference voltage Vref2
A first voltage control reference voltage circuit for applying
The voltage of the charging terminal 11 of the road to the operational amplifier IC3Non-anti
Resistor R transmitted to the input terminal15Consists of This first voltage
The control reference voltage circuit is a common side power supply terminal 32 of the power supply 30.
And a resistor R connected between the 11And resistance
R13And a resistor voltage dividing circuit.

【0006】第1電流比較回路は、トランジスタQ
コレクタと充電端子11との間に挿入された電流検出用
抵抗Rと、その出力端子が抵抗R21とダイオードD1
の直列回路を経てオペアンプICの非反転入力端子に
接続されたオペアンプIC1と、このオペアンプIC1
反転入力端子に基準電圧Vrefを伝える抵抗Rと、同
じくこのオペアンプIC1の反転入力端子と電流検出用
抵抗Rの一端との間に接続された抵抗Rと、電流検
出用抵抗Rの他端とコモン線との間の電圧を分圧して
オペアンプIC1の非反転入力端子に与える抵抗R
抵抗Rの抵抗分圧回路とから構成されている。
[0006] The first current comparator circuit, the collector of the transistor Q 1 and the current detection resistor R 1 which is inserted between the charging terminal 11, the output terminal resistor R 21 and diode D 1
An operational amplifier IC 1 which is connected to the non-inverting input terminal of the operational amplifier IC 5 via a series circuit of a resistor R 9 to convey the reference voltage V ref to the inverting input terminal of the operational amplifier IC 1, also the inverting input of the operational amplifier IC 1 a resistor R 7 connected between one end of the terminal and the current detection resistor R 1, by applying a voltage between the other end and the common line of the current detection resistor R 1 minute non-inverting input of the operational amplifier IC 1 It is composed of a resistor R 3 to give the terminal a resistor divider resistor R 5.

【0007】また、一対の出力端子21と22との間に
接続された電池20を充電する第2充電回路は、そのコ
レクタが電流検出用抵抗Rを経て充電端子21に接続
され且つそのエミッタが電源30の電源端子31に接続
された第2トランジスタQと、第2トランジスタQ
を制御する第2制御回路と、充電端子21と22との間
の電圧Vを常時検出し、検出した電圧をその基準値と
比較して電圧制御用指令信号を発生する第2電圧比較回
路と、及び充電電流Iを常時検出し、検出した電流を
基準値と比較して電流制御用指令信号を発生する第2電
流比較回路とから構成されている。
[0007] The second charging circuit for charging the battery connected 20 between the pair of output terminals 21 and 22, and its emitter is connected to the charging terminal 21 via a collector current detection resistor R 2 There a second transistor Q 2 to which is connected to the power supply terminal 31 of the power supply 30, the second transistor Q 2
A second control circuit for controlling the second voltage comparison circuit that constantly detects the voltage V 2, to generate a voltage control command signal by comparing the detected voltage with the reference value between the charging terminal 21 and 22 If, and detects the charging current I 2 at all times, the detected current is compared with a reference value and a second current comparator circuit for generating a command signal for current control.

【0008】上記第2制御回路は、その出力端子が抵抗
26を経てトランジスタQのベースに接続されたオペ
アンプICと、オペアンプICの反転入力端子に基
準電圧Vref1を印加する第2トランジスタ制御用基準電
圧回路とからなる。この第2トランジスタ制御用基準電
圧回路は電源30のコモン側電源端子32と基準電圧端
子33との間に接続された抵抗R18と抵抗R20の抵抗分
圧回路からなる。
[0008] The second control circuit includes an operational amplifier IC 6 connected to the base of the transistor Q 2 through the output terminal of the resistor R 26, the second to apply a reference voltage V ref1 to the inverting input terminal of the operational amplifier IC 6 And a reference voltage circuit for transistor control. The reference voltage circuit for controlling the second transistor comprises a resistor voltage dividing circuit of a resistor R 18 and a resistor R 20 connected between the common side power supply terminal 32 of the power supply 30 and the reference voltage terminal 33.

【0009】第2電圧比較回路は、その出力端子が抵抗
24とダイオードDの直列回路を経てオペアンプIC
の非反転入力端子に接続されたオペアンプICと、
このオペアンプICの反転入力端子に基準電圧Vref2
を印加する第2電圧制御用基準電圧回路と、第2充電回
路の充電端子21の電圧を前記オペアンプICの非反
転入力端子に伝える抵抗R16とからなる。この第2電圧
制御用基準電圧回路は電源30のコモン側電源端子32
と基準電圧端子33との間に接続された抵抗R 12と抵抗
14の抵抗分圧回路からなる。
The output terminal of the second voltage comparison circuit is a resistor.
Rtwenty fourAnd diode D4Operational amplifier IC through a series circuit
6Operational amplifier IC connected to the non-inverting input terminal4When,
This operational amplifier IC4Reference voltage Vref2
A second voltage control reference voltage circuit for applying
The voltage of the charging terminal 21 of the road to the operational amplifier IC4Non-anti
Resistor R transmitted to the input terminal16Consists of This second voltage
The control reference voltage circuit is a common side power supply terminal 32 of the power supply 30.
And a resistor R connected between the 12And resistance
R14And a resistor voltage dividing circuit.

【0010】第2電流比較回路は、トランジスタQ
コレクタと充電端子21との間に挿入された電流検出用
抵抗Rと、その出力端子が抵抗R22とダイオードD
の直列回路を経てオペアンプICの非反転入力端子に
接続されたオペアンプICと、このオペアンプIC
の反転入力端子に基準電圧Vrefを伝える抵抗R10と、
同じくこのオペアンプICの反転入力端子と電流検出
用抵抗Rの一端との間に接続された抵抗Rと、電流
検出用抵抗Rの他端とコモン線との間の電圧を分圧し
てオペアンプICの非反転入力端子に与える抵抗R
と抵抗Rの抵抗分圧回路とから構成されている。
[0010] The second current comparator circuit, the transistor Q and the current detection resistor R 2 that is inserted between the collector and the charging terminal 21 of 2, the output terminal resistor R 22 and diode D 2
An operational amplifier IC 2 connected to the non-inverting input terminal of the operational amplifier IC 6 via a series circuit of, the operational amplifier IC 2
A resistor R 10 to convey the reference voltage V ref to the inverting input terminal of
Similarly voltage dividing between the resistors R 8, which are connected between one end of the inverting input terminal and the current detection resistor R 2 of the operational amplifier IC 2, the other end and the common line of the current detection resistor R 2 Resistor R 4 applied to the non-inverting input terminal of the operational amplifier IC 2
And a and the resistor divider resistor R 6.

【0011】図4の特性曲線図は、上述の如く構成され
た従来の充電器でリチウムイオン電池10と20を同時
に充電した場合のものである。即ち、図4(A)は完全
放電のリチウムイオン電池10の充電特性曲線、図4
(B)は50%放電のリチウムイオン電池20の充電特
性曲線であり、また、図中のtは50%放電のリチウ
ムイオン電池10の端子電圧が設定電圧に達した時刻、
は完全放電のリチウムイオン電池20の端子電圧が
設定電圧に達した時刻である。図4から明らかな如く、
はtの約2倍となっている。これは従来の充電器
では第1充電回路と第2充電回路が夫々独立に定電流定
電圧制御しているためである。従って、各充電回路を独
立に定電流定電圧制御している従来の充電器では、完全
放電のリチウムイオン電池10の充電時間を短くするこ
とができないという問題があった。
FIG. 4 is a characteristic curve diagram when the lithium ion batteries 10 and 20 are simultaneously charged by the conventional charger configured as described above. That is, FIG. 4A shows a charge characteristic curve of the fully-discharged lithium-ion battery 10, and FIG.
(B) is a charging characteristic curve of the lithium ion battery 20 of 50% discharge, the time t 1 is the 50% discharge terminal voltage of the lithium ion battery 10 has reached the set voltage in the drawing,
t 2 is the time when the terminal voltage of the lithium ion battery 20 of the full discharge has reached the set voltage. As is clear from FIG.
t 2 is about 2 times of t 1. This is because in the conventional charger, the first charging circuit and the second charging circuit independently perform constant current and constant voltage control. Therefore, the conventional charger in which each charging circuit is independently controlled at a constant current and a constant voltage has a problem that the charging time of the completely discharged lithium ion battery 10 cannot be shortened.

【0012】[0012]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、定電圧制御が必要な電池を複数個同時に充
電する充電器において、充電時間を短縮することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to reduce the charging time in a charger for simultaneously charging a plurality of batteries requiring constant voltage control.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に、複数個の電池を同時に充電する充電器において、各
充電端子間の充電電圧を一定の電圧値に保持するように
個別に定電圧制御を行うと共に、各充電電流の和の電流
を一定の電流値に保持するように定電流制御を行うよう
に構成した。
In order to solve the above-mentioned problems, in a charger for charging a plurality of batteries at the same time, a constant voltage is individually set so that a charging voltage between respective charging terminals is maintained at a constant voltage value. The control is performed, and the constant current control is performed such that the sum of the respective charging currents is maintained at a constant current value.

【0014】また、上記課題を解決するために、夫々が
メイントランジスタを有する複数の充電回路からなる充
電器において、各充電回路の充電電圧を個別の電圧監視
手段と前記メイントランジスタを含むフィードバック回
路により定電圧制御を行い、且つ各充電回路の充電電流
の和の電流を共通の電流監視手段と各充電回路のメイン
トランジスタを含む複数のフィードバック回路により定
電流制御を行うように構成した。
In order to solve the above-mentioned problem, in a charger comprising a plurality of charging circuits each having a main transistor, the charging voltage of each charging circuit is controlled by individual voltage monitoring means and a feedback circuit including the main transistor. The configuration is such that the constant voltage control is performed, and the constant current control of the sum of the charging currents of the charging circuits is performed by a plurality of feedback circuits including a common current monitoring unit and a main transistor of each charging circuit.

【0015】[0015]

【発明の実施の形態】本発明の一実施形態の回路図であ
る図1において、一対の充電端子11と12との間に接
続された電池10を充電する第1充電回路は、そのコレ
クタがプラス側充電端子11に接続され且つそのエミッ
タが電流検出用抵抗Rを経て電源30の電源端子31
に接続された第1トランジスタQと、第1トランジス
タQのベースに接続されて第1トランジスタを制御す
る第1制御回路と、充電端子11と12との間の電圧V
を常時検出し、検出した電圧をその基準値と比較して
電圧制御用指令信号を発生する第1電圧比較回路と、及
び充電電流Iを常時検出し、検出した電流を基準値と
比較して電流制御用指令信号を発生する共用の定電流比
較回路とから構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1 which is a circuit diagram of one embodiment of the present invention, a first charging circuit for charging a battery 10 connected between a pair of charging terminals 11 and 12 has a collector. power supply terminal 31 of the plus side connected to the charging terminal 11 and the power source 30 through the emitter of the current detection resistor R 1
Voltage V between the first transistor Q 1 which is connected, a first control circuit for controlling the first transistor is connected to the first base of the transistor Q 1, the charging terminals 11 and 12 to
1 constantly detect, compare the detected voltage and the first voltage comparison circuit that generates a command signal for voltage controlled as compared with the reference value, and detects the charging current I 1 at all times, the detected current with a reference value And a shared constant current comparison circuit for generating a current control command signal.

【0016】第1トランジスタを制御する第1制御回路
は、その出力端子が抵抗R25を経てトランジスタQ
ベースに接続されたオペアンプICと、オペアンプI
の反転入力端子に基準電圧Vref1を印加する共用の
トランジスタ制御用基準電圧回路とからなる。この共用
のトランジスタ制御用基準電圧回路は電源30のコモン
側電源端子32と基準電圧端子33との間に接続された
抵抗R17と抵抗R19の抵抗分圧回路からなる。
The first control circuit for controlling the first transistor, an operational amplifier IC 5 whose output terminal is connected to the base of the transistor Q 1 via a resistor R 25, the operational amplifier I
Consisting of the transistor control reference voltage circuit shared for applying a reference voltage V ref1 to the inverting input terminal of the C 5. This shared transistor control reference voltage circuit includes a resistor voltage dividing circuit of a resistor R 17 and a resistor R 19 connected between the common side power supply terminal 32 of the power supply 30 and the reference voltage terminal 33.

【0017】第1電圧比較回路は、その出力端子が抵抗
23とダイオードDの直列回路を経てオペアンプIC
の非反転入力端子に接続されたオペアンプICと、
このオペアンプICの反転入力端子に基準電圧Vref2
を印加する共用の電圧制御用基準電圧回路と、第1充電
回路のプラス側充電端子11の電圧を前記オペアンプI
の非反転入力端子に伝える抵抗R15とからなる。こ
の共用の電圧制御用基準電圧回路は電源30のコモン側
電源端子32と基準電圧端子33との間に接続された抵
抗R11と抵抗R13の抵抗分圧回路からなる。
[0017] The first voltage comparator circuit comprises an operational amplifier IC its output terminal through a series circuit of a resistor R 23 and diode D 3
5 , an operational amplifier IC 3 connected to the non-inverting input terminal of
Reference voltage V ref2 to the inverting input terminal of the operational amplifier IC 3
And a common voltage control reference voltage circuit for applying a voltage, and the voltage of the plus side charging terminal 11 of the first charging circuit to the operational amplifier I
And a resistor R 15 Metropolitan convey to the non-inverting input terminal of C 3. The voltage control reference voltage circuit for sharing a resistor divider common side power supply terminal 32 and the resistor connected between the reference voltage terminal 33 R 11 and the resistor R 13 of the power supply 30.

【0018】また、一対の充電端子21と22との間に
接続された電池20を充電する第2充電回路は、そのコ
レクタがプラス側充電端子21に接続され且つそのエミ
ッタが電流検出用抵抗Rを経て電源30の電源端子3
1に接続された第2トランジスタQと、第2トランジ
スタQのベースに接続されて第2トランジスタを制御
する第2制御回路と、充電端子21と22との間の電圧
を常時検出し、検出した電圧をその基準値と比較し
て電圧制御指令信号を発生する第2電圧比較回路と、及
び充電電流Iを常時検出し、検出した電流を基準値と
比較して電流制御指令信号を発生する共用の電流比較回
路とから構成されている。
The second charging circuit for charging the battery 20 connected between the pair of charging terminals 21 and 22 has a collector connected to the positive charging terminal 21 and an emitter connected to the current detecting resistor R. Power supply terminal 3 of power supply 30 through 1
A second transistor Q 2 to which are connected to one, and a second control circuit for controlling the second transistor is connected to the second transistor Q 2 of the base, constantly detects the voltage V 2 between the charging terminal 21 and 22 and, a second voltage comparator circuit the detected voltage to generate a voltage control command signal by comparing with the reference value, and detects the charging current I 2 at all times, the current control command by comparing the detected current with a reference value And a shared current comparison circuit for generating a signal.

【0019】第2トランジスタを制御する第2制御回路
は、その出力端子が抵抗R26を経てトランジスタQ
ベースに接続されたオペアンプICと、このオペアン
プICの反転入力端子に基準電圧Vref1を印加する上
述の共用のトランジスタ制御用基準電圧回路とからな
る。
A second control circuit for controlling the second transistor has an operational amplifier IC 6 whose output terminal is connected to the base of the transistor Q 2 via a resistor R 26 , and a reference voltage V which is applied to an inverting input terminal of the operational amplifier IC 6. ref1 is applied to the above-mentioned common transistor control reference voltage circuit.

【0020】第2電圧比較回路は、その出力端子が抵抗
24とダイオードDの直列回路を経てオペアンプIC
の非反転入力端子に接続されたオペアンプICと、
このオペアンプICの反転入力端子に基準電圧Vref2
を印加する上述の共用の電圧制御用基準電圧回路と、第
2充電回路のプラス側充電端子21の電圧を前記オペア
ンプICの非反転入力端子に伝える抵抗R16とからな
る。
[0020] The second voltage comparator circuit comprises an operational amplifier IC its output terminal through a series circuit of a resistor R 24 and diode D 4
6 , an operational amplifier IC 4 connected to the non-inverting input terminal of
The reference voltage V ref2 is applied to the inverting input terminal of the operational amplifier IC 4.
A voltage control reference voltage circuit shared above for applying a, a resistor R 16 Metropolitan convey a voltage of positive charge terminal 21 of the second charging circuit to the non-inverting input terminal of the operational amplifier IC 4.

【0021】上記共用の電流比較回路は、電源30の電
源端子31とトランジスタQとトランジスタQの夫
々のエミッタとの間に挿入された電流検出用抵抗R
と、その出力端子が抵抗R21とダイオードD1の直列
回路を経てオペアンプICの非反転入力端子に接続さ
れ且つ抵抗R22とダイオードDの直列回路を経てオペ
アンプICの非反転入力端子に接続されたオペアンプ
IC1と、このオペアンプIC1の反転入力端子に基準電
圧Vrefを伝える抵抗Rと、同じくこのオペアンプI
1の反転入力端子と電流検出用抵抗Rの一端との間
に接続された抵抗R と、電流検出用抵抗Rの他端と
コモン線との間の電圧を分圧してオペアンプIC1の非
反転入力端子に与える抵抗Rと抵抗Rからなる分圧
回路とから構成されている。
The above-mentioned common current comparison circuit is provided with a power supply 30.
Source terminal 31 and transistor Q1And transistor Q2husband of
Current detecting resistor R inserted between each emitter
1And its output terminal is a resistor Rtwenty oneAnd diode D1Series
Operational amplifier IC through circuit5Connected to the non-inverting input terminal of
And resistance Rtwenty twoAnd diode D2Through a series circuit of
Amplifier IC6Operational amplifier connected to the non-inverting input terminal of
IC1And this operational amplifier IC1To the inverting input terminal of
Pressure VrefThe resistance R that conveys9And this operational amplifier I
C1Input terminal and current detection resistor R1Between one end of
The resistor R connected to 7And the current detection resistor R1And the other end of
Divide voltage between common line and operational amplifier IC1Non
Resistance R given to inverting input terminal5And resistance R6Partial pressure consisting of
And a circuit.

【0022】次に、図1の如く構成された本発明の一実
施形態の充電器によって完全放電のリチウムイオン電池
10と、50%放電のリチウムイオン電池20を同時に
充電する場合の第1充電回路と第2充電回路の動作を図
3の特性曲線図を参照して説明する。尚、ここでは前記
充電器の設定電圧は4.2V、設定電流は1Aとする。
Next, a first charging circuit in the case where a fully-discharged lithium ion battery 10 and a 50% -discharged lithium ion battery 20 are simultaneously charged by the charger of one embodiment of the present invention configured as shown in FIG. And the operation of the second charging circuit will be described with reference to the characteristic curve diagram of FIG. Here, the set voltage of the charger is 4.2 V, and the set current is 1 A.

【0023】充電開始時から時刻tまでは、オペアン
プICとオペアンプICは、その反転入力端子に設
定電圧4.2V以下の電圧が印加されているから、その
出力はいずれもLOWである。また、電流検出用抵抗R
が設定電流の1Aとなっており、オペアンプIC
その反転入力がHIGHで且つその出力がHIGHとな
っている。従って、オペアンプICとオペアンプIC
は、いずれも、その反転入力端子にはオペアンプIC
の出力電圧が印加されている。これによって、第1充
電回路においては、第1トランジスタQはオペアンプ
ICにより制御されて電池10に充電電流Iを供給
する。同時に、第2充電回路においては、第2トランジ
スタQはオペアンプICにより制御されて電池20
に充電電流Iを供給する。
[0023] From the start of charging until the time t 1, an operational amplifier IC 3 and the operational amplifier IC 4, since the configuration to the inverted input terminal voltage 4.2V less voltage is applied, the output is either LOW . Also, the current detection resistor R
1 has become a 1A set current, the operational amplifier IC 1 'and its output and its inverting input is HIGH has become HIGH. Therefore, the operational amplifier IC 5 and the operational amplifier IC
6 has an operational amplifier IC at its inverting input terminal.
1 output voltage is applied. Thus, in the first charging circuit supplies a charging current I 1 first transistor Q 1 is controlled by operational amplifier IC 5 to the battery 10. At the same time, in the second charging circuit, a second transistor Q 2 is controlled by the operational amplifier IC 6 cell 20
Supplying the charging current I 2 in.

【0024】従って、充電開始時から時刻tまでは、
充電電流Iと端子間電圧Vは図3(A)に示す如
く、いずれも徐々に上昇する。同様に、充電開始時から
時刻t までは、充電電流Iと端子間電圧Vは図3
(B)に示す如く、いずれも徐々に上昇する。なお、電
流検出用抵抗Rを流れている電流1Aは充電電流I
と充電電流Iの和の電流であるが、図示を簡単にする
ためにIとIは共に0.5Aとした。
Therefore, the time t from the start of charging1Until
Charging current I1And terminal voltage V1Is as shown in FIG.
All of them gradually rise. Similarly, from the start of charging
Time t 1Until the charging current I2And terminal voltage V2Figure 3
As shown in (B), each of them gradually rises. In addition,
Flow detection resistor R11A flowing through the charging current I1
And charging current I2The current is the sum of
For I1And I2Were both set to 0.5A.

【0025】時刻tに充電端子間電圧Vが設定電圧
4.2Vに達したとすると、オペアンプICの出力は
オペアンプICの出力電圧よりも上昇する。すると、
オペアンプICの出力が上昇し、これによって第2ト
ランジスタQのコレクタ電流である充電電流Iを減
少させる。従って、時刻t以降は、充電電流Iは図
3(B)に示す如く、0.5Aから徐々に減少して行
く。
[0025] Time t charging terminal voltage V 2 to 1 is to have reached the set voltage 4.2 V, the output of the operational amplifier IC 4 is higher than the output voltage of the operational amplifier IC 1. Then
The output of the operational amplifier IC 6 is raised, thereby reducing the charging current I 2 is a second transistor Q 2 in the collector current. Therefore, after time t 1, the charging current I 2 is as shown in FIG. 3 (B), gradually decreases from 0.5A.

【0026】一方、充電端子間電圧VはオペアンプI
とオペアンプIC及び第2トランジスタQを含
む定電圧制御回路によって一定値に制御されるから、図
3(B)に示す如く、時刻t以降は設定電圧4.2V
に保持される。
[0026] On the other hand, voltage V 2 between the charging terminal operational amplifier I
Since the constant voltage is controlled by a constant voltage control circuit including C 4 , operational amplifier IC 6, and second transistor Q 2 , as shown in FIG. 3B, the set voltage is 4.2 V after time t 1.
Is held.

【0027】充電電流Iの減少分は充電電流Iの増
加分となる。即ち、電流検出用抵抗Rは充電電流I
の減少分を検出し、オペアンプICを経てオペアンプ
IC に伝える。従って、オペアンプICの出力電圧
はその分だけ低下するから、第1トランジスタQのコ
レクタ電流は上昇する。このようにして、時刻t以降
は、充電電流Iは図3(A)に示す如く、0.5Aか
ら増加率を高めて更に増加して行く。また、充電端子間
電圧Vは図3(A)に示す如く、増加率を高めて増加
して行く。
Charging current I2Is the charge current I1Increase
It will be added. That is, the current detection resistor R1Is the charging current I2
Operational amplifier IC1Through operational amplifier
IC 4Tell Therefore, the operational amplifier IC4Output voltage
Is reduced by that amount, so that the first transistor Q1No
Lector current rises. Thus, the time t1Or later
Is the charging current I1Is 0.5 A, as shown in FIG.
Then increase the rate of increase and further increase. Also, between the charging terminals
Voltage V1Is increased by increasing the rate of increase as shown in FIG.
Go.

【0028】そして、時刻tに充電端子間電圧V
設定電圧4.2Vに達したとすると、オペアンプIC
の出力はオペアンプICの出力電圧よりも上昇する。
すると、オペアンプICの出力が上昇し、これによっ
て第1トランジスタQのコレクタ電流、従って充電電
流Iを減少させる。即ち時刻t以降は第1充電回路
の充電電流Iは、図3(A)に示す如く、時刻t
ときのピーク値から徐々に減少して行く。時刻tは、
完全放電の電池10の端子間電圧が設定電圧に達した時
刻であり、この時刻以降は共用の定電流制御回路から流
れ出る電流は設定電流値以下となる。
[0028] Then, when the voltage V 1 between the charging terminals at the time t 3 has reached the set voltage 4.2V, the operational amplifier IC 3
The output is higher than the output voltage of the operational amplifier IC 1.
Then, the output of the operational amplifier IC 6 is raised, thereby the first transistor to Q 1 collector current, thus reducing the charging current I 1. That time t 3 after the charging current I 1 of the first charging circuit, as shown in FIG. 3 (A), gradually decreases from the peak value at time t 3. Time t 3 is,
This is the time when the terminal voltage of the completely discharged battery 10 reaches the set voltage, and after this time, the current flowing out of the shared constant current control circuit becomes equal to or less than the set current value.

【0029】一方、充電端子間電圧VはオペアンプI
とオペアンプIC及び第1トランジスタQを含
む定電圧制御回路によって一定値に制御されるから、図
3(A)に示す如く、時刻t以降は設定電圧4.2V
に保持される。
[0029] On the other hand, voltage V 1 between the charging terminal operational amplifier I
Since the constant voltage is controlled by a constant voltage control circuit including C 3 , the operational amplifier IC 5 and the first transistor Q 1 , as shown in FIG. 3A, the set voltage is 4.2 V after time t 3.
Is held.

【0030】図3と図4と比較すれば、複数個の電池を
同時に充電する場合、本発明に係る充電器の充電時間は
従来の充電器に比べて短縮されることが容易に理解され
よう。また、1個だけの電池を充電する場合も、本発明
に係る充電器の充電時間は従来の充電器に比べて短縮さ
れることは明らかであろう。
3 and 4, it can be easily understood that when a plurality of batteries are charged simultaneously, the charging time of the charger according to the present invention is shorter than that of the conventional charger. . Also, when charging only one battery, it is clear that the charging time of the charger according to the present invention is shorter than that of the conventional charger.

【0031】以上詳細に説明した通り、本発明は複数個
の電池を同時に充電する充電器において、夫々の充電端
子間の充電電圧を一定の電圧値に保持するように個別に
定電圧制御を行うと共に、夫々の充電電流をその和の電
流を一定の電流値に保持するように定電流制御を行うこ
とを特徴とするものである。
As described in detail above, in the present invention, in a charger for charging a plurality of batteries at the same time, constant voltage control is individually performed so as to maintain a charging voltage between respective charging terminals at a constant voltage value. In addition, constant current control is performed so that the sum of the respective charging currents is maintained at a constant current value.

【0032】そして、本発明の一実施形態の図1の回路
において、夫々がメイントランジスタを有する複数の充
電回路からなる充電器において、各充電回路の充電電圧
が個別の電圧監視手段と前記メイントランジスタを含む
フィードバック回路により定電圧制御され、且つ各充電
回路の充電電流はその和の電流が共通の電流監視手段と
各充電回路のメイントランジスタを含む複数のフィード
バック回路により定電流制御されるものである。上記電
圧監視手段は、第1充電回路においてはオペアンプIC
を含む回路であり、第2充電回路においてはオペアン
プICを含む回路である。更に、上記の共通の電流監
視手段は、電流検出用抵抗RとオペアンプICを含
む回路である。
In the circuit shown in FIG. 1 according to an embodiment of the present invention, in a charger comprising a plurality of charging circuits each having a main transistor, the charging voltage of each charging circuit is individually monitored by the voltage monitoring means and the main transistor. , And the sum of the charging currents of the charging circuits is controlled by a plurality of feedback circuits including a common current monitoring unit and a main transistor of each charging circuit. . The voltage monitoring means may include an operational amplifier IC in the first charging circuit.
3 and a circuit including the operational amplifier IC 4 in the second charging circuit. Furthermore, common current monitoring means described above, a circuit which includes a current detection resistor R 1 and an operational amplifier IC 1.

【0033】[0033]

【発明の効果】本発明により、定電圧制御が必要な電
池、例えばリチウムイオン電池を複数個同時に充電する
ための充電器において、充電時間を短くすることができ
るようになった。しかも、同時に充電する電池が多けれ
ば多い程、本発明に係る充電器による充電時間の短縮の
効果はより顕著になる。
According to the present invention, the charging time can be shortened in a charger for simultaneously charging a plurality of batteries requiring constant voltage control, for example, a plurality of lithium ion batteries. Moreover, the more batteries that are simultaneously charged, the more remarkable the effect of the charger of the present invention in reducing the charging time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る2出力充電器の一実施形態の回路
図である。
FIG. 1 is a circuit diagram of one embodiment of a two-output charger according to the present invention.

【図2】従来の2出力充電器の一実施形態の回路図であ
る。
FIG. 2 is a circuit diagram of one embodiment of a conventional two-output charger.

【図3】本発明に係る2出力充電器の充電特性曲線を示
した図である。
FIG. 3 is a diagram showing a charging characteristic curve of the two-output charger according to the present invention.

【図4】従来の2出力充電器の充電特性曲線を示した図
である。
FIG. 4 is a diagram showing a charging characteristic curve of a conventional two-output charger.

【符号の説明】 10 電池 11 充電端子 12 コモン側充電端子 20 電池 21 充電端子 22 コモン側充電端子 30 電源 31 電源端子 32 コモン側電源端子 33 基準電圧端子 Q 第1のメイントランジスタ Q 第2のメイントランジスタ IC 第1の電流監視用オペアンプ IC 第2の電流監視用オペアンプ IC 第1の電圧監視用オペアンプ IC 第2の電圧監視用オペアンプ IC 第1のトランジスタ制御用オペアンプ IC 第2のトランジスタ制御用オペアンプ R、R 電流検出用抵抗 R〜R26 抵抗 D〜D ダイオード[Description of Signs] 10 Battery 11 Charging Terminal 12 Common Charging Terminal 20 Battery 21 Charging Terminal 22 Common Charging Terminal 30 Power Supply 31 Power Supply Terminal 32 Common Power Supply Terminal 33 Reference Voltage Terminal Q 1 First Main Transistor Q 2 Second Main transistor IC 1 First current monitoring operational amplifier IC 2 Second current monitoring operational amplifier IC 3 First voltage monitoring operational amplifier IC 4 Second voltage monitoring operational amplifier IC 5 First transistor controlling operational amplifier IC 6 Second transistor control operational amplifiers R 1 , R 2 Current detecting resistors R 3 to R 26 Resistors D 1 to D 4 Diode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数個の電池を同時に充電する充電器に
おいて、各充電端子間の充電電圧を一定の電圧値に保持
するように個別に定電圧制御を行うと共に、各充電電流
の和の電流を一定の電流値に保持するように定電流制御
を行うように構成したことを特徴とする充電器。
In a charger for simultaneously charging a plurality of batteries, constant voltage control is individually performed so as to maintain a charging voltage between respective charging terminals at a constant voltage value, and a current equal to a sum of respective charging currents is provided. A constant current control is performed so as to maintain a constant current value.
【請求項2】 夫々がメイントランジスタを有する複数
の充電回路からなる充電器において、各充電回路の充電
電圧が個別の電圧監視手段と前記メイントランジスタを
含むフィードバック回路により定電圧制御され、且つ各
充電回路の充電電流の和の電流が共通の電流監視手段と
各充電回路のメイントランジスタを含む複数のフィード
バック回路により定電流制御されるように構成したこと
を特徴とする充電器。
2. A charger comprising a plurality of charging circuits each having a main transistor, wherein a charging voltage of each charging circuit is controlled by a constant voltage by an individual voltage monitoring means and a feedback circuit including the main transistor. A charger characterized in that the sum of the charging currents of the circuits is controlled by a plurality of feedback circuits including a common current monitoring means and a main transistor of each charging circuit.
JP2000344763A 2000-11-13 2000-11-13 Charger Pending JP2002152983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000344763A JP2002152983A (en) 2000-11-13 2000-11-13 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000344763A JP2002152983A (en) 2000-11-13 2000-11-13 Charger

Publications (1)

Publication Number Publication Date
JP2002152983A true JP2002152983A (en) 2002-05-24

Family

ID=18818913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000344763A Pending JP2002152983A (en) 2000-11-13 2000-11-13 Charger

Country Status (1)

Country Link
JP (1) JP2002152983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140731A (en) * 2008-12-11 2010-06-24 Shin Kobe Electric Mach Co Ltd Battery controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140731A (en) * 2008-12-11 2010-06-24 Shin Kobe Electric Mach Co Ltd Battery controller

Similar Documents

Publication Publication Date Title
US7180268B2 (en) Circuits capable of trickle precharge and/or trickle discharge
US10714947B2 (en) Systems and methods for controlling battery current
US6828757B2 (en) Circuit for adjusting charging rate of cells in combination
US8035354B2 (en) Battery full-charge detection for charge-and-play circuits
US5352970A (en) Power resource management system
KR970024434A (en) Combined Battery Charger and Control Method
TW200822484A (en) Method for battery pack protection
JP2003087990A (en) Charging circuit for secondary battery
JPH08237880A (en) Charger
KR19990037303A (en) Charge current adapter circuit or batteries for a cell
JPH11332116A (en) Charging/discharging control circuit and charging-type power supply device
JP3177955B2 (en) Rechargeable battery charging method and charging system
JP2002152983A (en) Charger
JPH0928042A (en) Device for controlling charging of battery assembly
JPH06284594A (en) Chargeable power supply apparatus
JP2004274874A (en) Charge control circuit
JPH1042484A (en) Charger
JPH08317571A (en) Charger circuit of secondary battery
JPH0787675A (en) Charging device for battery set
JPS58148633A (en) Automatic charger
JPH08214466A (en) Secondary battery charging circuit
JPH08294238A (en) Charging/discharging control circuit
JPH0974691A (en) Charger for li ion secondary battery
JP3082537B2 (en) Charger
JPH0721067Y2 (en) Lead acid battery charge control circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060314