TW200822484A - Method for battery pack protection - Google Patents
Method for battery pack protection Download PDFInfo
- Publication number
- TW200822484A TW200822484A TW096136105A TW96136105A TW200822484A TW 200822484 A TW200822484 A TW 200822484A TW 096136105 A TW096136105 A TW 096136105A TW 96136105 A TW96136105 A TW 96136105A TW 200822484 A TW200822484 A TW 200822484A
- Authority
- TW
- Taiwan
- Prior art keywords
- current
- discharge
- control signal
- voltage
- control
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
Description
200822484 九、發明說明: 【發明所屬之技術領域】 本發明係關於電池充/放電電路和電池組保護方法,更具體而 5 言,係指一種能夠進行涓流預先充電和/或涓流放電的電池充/放電 電路和保護方法。本發明的實用性可在用於可攜式電子設備中的^ 放電/保護系統中發現,例如:膝上型電腦、個人數位助理(Pers〇nal200822484 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD The present invention relates to a battery charging/discharging circuit and a battery pack protection method, and more particularly to a method capable of performing trickle precharge and/or turbulent discharge. Battery charge/discharge circuit and protection method. The utility of the present invention can be found in a discharge/protection system for use in portable electronic devices, such as laptops, personal digital assistants (Pers〇nal).
Digital Assistant,PDA)、手機、和/或具有可再充電電池的任意 類型的電子t灸備。 ^ 10 【先前技術】 可再充電電池,尤其是雜子電池,必触電量健之狀態下 方能進行預先充電(恢復充電)以避免損壞電池。t可再充電&池 之電量被耗盡並且其電池電壓變得臨界電壓術時,不能使用 15 A的充電電流對電池進行直接充電。相反地,需要利用預先充電模 式對電池充電。翔絲賴式,伽小充電電賴電池充電,直 到電池電壓被充電到大於臨界電壓Vuv,然後它方能以正常模式被充 電’也就是,利驗大的充電電流進行充電。對於鋰離子電池,一 個電芯(cell)的臨界電壓Vuv接近2.4V〜3. 〇v,取決於電池類型和 衣私。預充電電流大約1〇牆〜1〇〇11^。然而,正常的充電電流可以 是幾百毫安培至幾安培, —圖1A不出了鋰離子可再充電電池的充電分佈圖5〇。當電池電 壓尚於Vuv,則電池進入定電流(〇〇_时c町賊c〇充電模式, —大的定魏崎觀撕快速絲(電池也隨著電池電量增 加而增加)。胃電池電壓增加到·,其代表職壓(對鱗子電池 200822484 正常的過電壓約為帽左右),則電池進人定電壓⑼祕时 Voltage,CV)充電模式。在這種模式中,充電器保持在電壓v〇v。當 充龟電流減少到預定最小值,例如5碰,充電程式程序終止。在cv 充電模式中,充電器必須將電壓精確地調整到v〇v (誤差在 5 ㈣· _)’否則充電電流將無法隨著增大之電池電量而逐漸減 少。如果’充電輸出大於V〇v,那麼將會發生對電池過度充電,這會 導致鐘離子電池的安全問題。 圖1B中示出了實現預先充電的傳統電路10。與電阻(Rpre) 14 串聯的預先充電金屬氧化物半導體場效電晶體(Metal 〇xide 10 Semi⑽Field Effect Transistor,M〇SFET)12 係用於預先 充電。在預先充電的時刻,充電場效電晶體(Field Effect Transistor,FET) 16關閉,預先充電FET 12開啟。因此,預充電 電流大致是由充電器輸入電壓VPACK+和總電芯電壓VceU之間的電 壓差除以串聯電阻(Rpre) 14決定。當存在AC轉壓器(圖中未示^ 15 且慨^+南於電芯電壓Vce11時,充電或預先充電將根據每一電芯 的初始電壓而開始。如果任意電芯中的電壓低於臨界電壓Vw,電池 組將進入預先充電模式。反之,將開始正常充電。Digital Assistant, PDA), cell phone, and/or any type of electronic moxibustion with rechargeable battery. ^ 10 [Prior Art] Rechargeable batteries, especially miscellaneous batteries, must be precharged (recharged) to avoid damage to the battery. When the battery is depleted and the battery voltage is depleted and its battery voltage becomes critical, the battery cannot be directly charged with a charging current of 15 A. Conversely, the battery needs to be charged using a pre-charge mode. Xiangsi Lai, the gamma charging battery is charged until the battery voltage is charged to be greater than the threshold voltage Vuv, and then it can be charged in the normal mode 'that is, charging a large charging current for charging. For a lithium-ion battery, the threshold voltage Vuv of a cell is close to 2.4V~3. 〇v, depending on the type of battery and the privacy of the device. The precharge current is about 1 〇 wall ~1〇〇11^. However, the normal charging current can be several hundred milliamperes to several amperes, and Figure 1A shows the charging profile of the lithium ion rechargeable battery. When the battery voltage is still at Vuv, the battery enters a constant current (〇〇 时 时 町 町 町 〇 〇 〇 〇 〇 〇 〇 — — — — — — — — — — — — — — 魏 ( ( ( ( ( ( ( ( ( ( ( ( Increased to ·, which represents the occupational pressure (the normal overvoltage of the scale battery 200822484 is about the cap), then the battery enters the fixed voltage (9) secret time, CV) charging mode. In this mode, the charger remains at voltage v〇v. When the charge current is reduced to a predetermined minimum value, such as 5 touches, the charging program terminates. In the cv charging mode, the charger must accurately adjust the voltage to v〇v (with an error of 5 (four)· _)' or the charging current will not gradually decrease with increasing battery power. If the 'charge output is greater than V〇v, then overcharging of the battery will occur, which can lead to safety issues for the battery. A conventional circuit 10 that implements pre-charging is shown in FIG. 1B. A Metal 〇xide 10 Semi (10) Field Effect Transistor (M〇SFET) 12 in series with a resistor (Rpre) 14 is used for precharging. At the time of pre-charging, the Field Effect Transistor (FET) 16 is turned off, and the pre-charging FET 12 is turned on. Therefore, the precharge current is roughly determined by the voltage difference between the charger input voltage VPACK+ and the total cell voltage VceU divided by the series resistance (Rpre) 14. When there is an AC converter (not shown in the figure and the voltage is +1 south of the cell voltage Vce11, charging or pre-charging will start according to the initial voltage of each cell. If the voltage in any cell is lower than At the threshold voltage Vw, the battery pack will enter the pre-charge mode. Otherwise, normal charging will begin.
本領域技術人員將認同圖1B中的電路1〇包括一電池監視器IC 20,其包括監視電池組2中每一電芯(celll,Cell2“.Cell4)的電 20 壓和電流的電路。這樣的電路可以包括用以取樣每一電芯電壓的一 開關網路24。為了控制預先充電M0SFET 12的操作,傳統電路1〇 包括一比較器26,其可以透過開關30比較一定電壓參考源28(Vuv) 與每一電芯電壓。 然而,圖1B中所示電路的缺陷是需要一額外的功率m〇sfet(也 就是,M0SFET 12)和電阻(Rpre) 14,它們會增加額外的成本並且 25 200822484 增加了印刷電路板(Printed Circuit Board, PCB)的面積。另外, 這種電路拓撲中,較低的電芯電壓導致更大的預充電電流。而且, 預充電電流隨著電芯電壓的增加而減少,這意味著需要更長的時間 方能完成預先充電。 另外,電阻(Rpre) 14的值通常是固定的,預充電電流的最大 值和最小值通常也是固定的,因此不能被調整用以提供不同的電池 組需要。 _ 該電路拓撲的另一缺陷是電池組22和MOSFETs容易在異常情況 1〇 下被損壞,例如VPACK+端與VPACK-端短接,或者外部的充電器被反 向加到VPACK+和VPACK-端。這種拓撲中,放電FET 18被開啟以允 許放電或者被關閉而不能放電。當放電FET18被開啟時,如果發生 了異常情況,從電池組22流出的大電流流經放電FET18和充電FET 16 ’這將依次破壞電池組22和/或MOSFETs。 此夕卜’荽電池組22從電子糸統中被移除,例如,放在一架上, 放電FET 18可以被關閉用以保護電池組22免遭異常情況。然而, % 由於放電FET 18被關閉,當電池組22被插回電子系統中時,電池 組22將無法立即對電子系統供電,因此需要一機械方法或電子電路 來通知電路10以開啟放電FET 18。額外的機械方法或者電子電路 2〇 將增加電路10的複雜性、價格、和/或尺寸。另外,電池組22在被 插進電子系統後仍然會因異常情況被損壞。 傳統用於保護電池組22的辦法是關閉放電FET 18,以避免當 發生異常情況時產生大電流。放電FET18被關閉一預定時間後,例 如30秒’放電FET18被再次開啟。如果當放電FET18被重新開啟 2s 後異常情況仍然存在,大電流將流經放電FET 18並且再次觸發電池 組防濩之機制。因此,放電FET 18被再次關閉。否則,電池組22 200822484Those skilled in the art will recognize that circuit 1A of FIG. 1B includes a battery monitor IC 20 that includes circuitry for monitoring the electrical 20 voltage and current of each cell (cell1, Cell2 ".Cell 4) in battery pack 2. The circuit can include a switching network 24 for sampling each cell voltage. To control the operation of the pre-charged MOSFET 12, the conventional circuit 1 includes a comparator 26 that can compare a certain voltage reference source 28 through the switch 30 ( Vuv) with each cell voltage. However, the circuit shown in Figure 1B has the drawback of requiring an additional power m〇sfet (ie, MOSFET 12) and resistor (Rpre) 14, which adds extra cost and 25 200822484 adds the area of the Printed Circuit Board (PCB). In addition, in this circuit topology, the lower cell voltage results in a larger precharge current. Moreover, the precharge current increases with the cell voltage. The reduction means that it takes longer to complete the pre-charging. In addition, the value of the resistor (Rpre) 14 is usually fixed, and the maximum and minimum values of the pre-charging current are usually fixed as well. This cannot be adjusted to provide different battery pack needs. _ Another drawback of this circuit topology is that battery pack 22 and MOSFETs are easily damaged under abnormal conditions, such as VPACK+ terminal shorted to VPACK-end, or external The charger is reversely applied to the VPACK+ and VPACK- terminals. In this topology, the discharge FET 18 is turned on to allow discharge or is turned off and cannot be discharged. When the discharge FET 18 is turned on, if an abnormality occurs, from the battery pack 22 The large current flowing out flows through the discharge FET 18 and the charge FET 16 ' which will in turn destroy the battery pack 22 and/or the MOSFETs. Further, the battery pack 22 is removed from the electronic system, for example, placed on a rack, The discharge FET 18 can be turned off to protect the battery pack 22 from abnormal conditions. However, since the discharge FET 18 is turned off, the battery pack 22 cannot immediately supply power to the electronic system when the battery pack 22 is inserted back into the electronic system. A mechanical or electronic circuit is therefore required to inform circuit 10 to turn on discharge FET 18. Additional mechanical methods or electronic circuits 2 will increase the complexity, price, and/or size of circuit 10. The battery pack 22 will still be damaged due to abnormal conditions after being inserted into the electronic system. The conventional method for protecting the battery pack 22 is to turn off the discharge FET 18 to avoid generating a large current when an abnormality occurs. The discharge FET 18 is turned off. After a predetermined time, for example 30 seconds, the discharge FET 18 is turned back on. If an abnormal condition persists after the discharge FET 18 is turned back on for 2 s, a large current will flow through the discharge FET 18 and trigger the battery pack tampering mechanism again. Therefore, the discharge FET 18 is turned off again. Otherwise, battery pack 22 200822484
10 1510 15
20 將隨著放電FET18的開啟而工作在—正常放電模式。然而,如果異 常情況存在-段時期’大電流將持續地流敝電卿18,最終將破 壞電池組22和/或MOSFETs。 因此,需要有一種電路和其方法能約進行舰酿充電和/或須 流放電’树敝要難了雜—種電路和方法。【發明内容】 在-實施例中,本發明提供了一種用以保護電池組避免大電流 過流情況的綠。财純絲―_控姆職生—鋪信號的 步以及如果大電流過流情況發生,在該控制信號的控制下產生 -涓流放電航的麵。職放钱流能夠防止大電流從電池組中 流通。 在另貝鉍例中,本發明提供了另一種保護電池組避免電流過 流情況的方法。該方法包括步驟a)當—大電流過流情況發生時, 酬-放電開關;b)在-開關控制電路產生一控制信號,該控制信 號具有一預$又隶大位準;c )在該控制信號之控制下產生一涓流放電 電流,獅放電電流财-臨界電流轉並且簡電池組的大 電流流通;d)根據涓流放電電流、臨界電流位準、和預設最大位準 檢測大電流過流情況是否仍然存在;e)如果大電流過流情況仍然存 在’則重複步驟a)至d);以及f)如果大電流過流情況消除,則 開啟放電開關。20 will operate in the normal discharge mode as the discharge FET 18 is turned on. However, if an abnormal condition exists - a period of time, a large current will continue to flow through the battery 18, which will eventually destroy the battery pack 22 and/or MOSFETs. Therefore, there is a need for a circuit and method for performing a charge and/or a current discharge. SUMMARY OF THE INVENTION In an embodiment, the present invention provides a green color for protecting a battery pack from large current overcurrent conditions. Wealth pure silk _ _ control the students - the step of the signal and if the large current overcurrent occurs, under the control of the control signal - the surface of the turbulent discharge. The job stream can prevent large currents from circulating from the battery pack. In another example, the present invention provides another method of protecting a battery pack from current overcurrent conditions. The method includes the steps a) when a large current overcurrent condition occurs, the pay-discharge switch; b) the -switch control circuit generates a control signal having a pre-$ and a large level; c) A turbulent discharge current is generated under the control of the control signal, the lion discharge current is - the critical current is turned and the large current of the battery pack is circulated; d) the detection is based on the turbulent discharge current, the critical current level, and the preset maximum level Whether the current overcurrent condition still exists; e) if there is still a large current overcurrent condition, then steps a) to d) are repeated; and f) if the large current overcurrent condition is eliminated, the discharge switch is turned on.
【實施方式】圖2A示出了根據本發明一實施例之涓流預先充電電路1⑻。在 此實施例中,使用了兩個M0SFET104和102 (充電FET (CHGJET) 25 和放電FET (DSG—FET))。在此實施例中,充電FET104和放電FET 200822484 」[Embodiment] FIG. 2A shows a trickle precharge circuit 1 (8) according to an embodiment of the present invention. In this embodiment, two MOSFETs 104 and 102 (charge FET (CHGJET) 25 and discharge FET (DSG-FET)) are used. In this embodiment, the charge FET 104 and the discharge FET 200822484"
10 1510 15
20 102主要以背對背串聯設置之方式描述。在涓流預先充電模式,故 電FET102是關閉的(不導通的),但是如果充電j?ET 104開啟(導 通)’電流仍然流經其本體二極體(l^y diode)到電池電芯。如果 充電FET 104關閉,那麼沒有電流流進或者流出電池電芯。 除了兩個M0SFET,電路100也可以包括一參考二極體(di) 110、一放電驅動器106、一充電驅動器108、以及一參考電流源(Iref) 112。每一充電驅動器1〇8和放電驅動器1〇6都包括各自的比較器。 在常規的充電模式下,開關(K1) 114和開關(1(2)116被設置到 位置2。在這個位置,一充電驅動電壓CHG被驅動至與參考電壓 CHG一REF相當,該參考電壓CHGJREF可以完全開啟充電FET104。因 此,參考電壓CHGJREF係根據充電FET 104的啟動要求來選擇。 在涓流預先充電模式,開關(K1) 114和開關(K2) 116可以 被設置到位置1。當AC轉壓器連接上時,電壓VPACK+會升高。充電 FET104可以被充電驅動器108驅動到飽和區,這也意味著充電 104可以作為一可變電阻,涓流充電電流可以流經充,fet1〇4。充 電驅動器108調節充電FET104使電壓Vc等於Vd,Vd由二極體(Dl) 110和參考電流源(Iref) 112決定。 Vc為M0SFET 102和104之間連接點的電壓。yc可以被設定為 充電驅動器108中比較器的負端輸入(-),同時Vd (由Iref和di 決定)可以被設為正端輸入(+)。輸出信號CHG是Vd-Vc。當vc幾乎 等於Vd,充電驅動器108的比較器增益係被選擇使得一大輪出作號 足以驅動充電FET 104在飽和區工作。這樣,充電驅動器1〇8可^ 涓流預先充電期間比較Vc以及固定信號Vd。 在順向偏壓條件下,流經二極體(Dl)ll〇的DC電流透過 給出: 25 20082248420 102 is primarily described in a back-to-back series arrangement. In the trickle precharge mode, the electrical FET 102 is off (non-conducting), but if the charge j?ET 104 is turned on (on) the current still flows through its body diode (l^y diode) to the battery cell . If the charge FET 104 is turned off, no current flows into or out of the battery cell. In addition to the two MOSFETs, the circuit 100 can also include a reference diode (di) 110, a discharge driver 106, a charge driver 108, and a reference current source (Iref) 112. Each of the charging driver 1〇8 and the discharging driver 1〇6 includes a respective comparator. In the normal charging mode, the switch (K1) 114 and the switch (1 (2) 116 are set to position 2. At this position, a charging driving voltage CHG is driven to be equivalent to the reference voltage CHG-REF, the reference voltage CHGJREF The charge FET 104 can be fully turned on. Therefore, the reference voltage CHGJREF is selected according to the startup requirements of the charge FET 104. In the trickle precharge mode, the switch (K1) 114 and the switch (K2) 116 can be set to position 1. When AC is turned When the voltage regulator is connected, the voltage VPACK+ will rise. The charge FET 104 can be driven to the saturation region by the charge driver 108, which also means that the charge 104 can be used as a variable resistor, and the trickle charge current can flow through the charge, fet1〇4. The charge driver 108 adjusts the charge FET 104 such that the voltage Vc is equal to Vd, which is determined by the diode (D1) 110 and the reference current source (Iref) 112. Vc is the voltage at the junction between the MOSFETs 102 and 104. yc can be set to charge. The negative input (-) of the comparator in driver 108, while Vd (determined by Iref and di) can be set to the positive input (+). The output signal CHG is Vd-Vc. When vc is almost equal to Vd, charging driver 108 of The comparator gain is selected such that a large round of output is sufficient to drive the charge FET 104 to operate in the saturation region. Thus, the charge driver 1 〇 8 can compare the Vc and the fixed signal Vd during the precharge period. The DC current flowing through the diode (Dl) 〇 is given by: 25 200822484
Iref = Al*ISl*(exp(Vdl/Vt)-l) e其中A1是沐體⑽110的接面積,IS1是^亟體(D1⑽ 早兀反向飽和電流,VdUVcen,是二極體(D1)11〇的跨壓,化 是二極體臨界電壓。 5 放電FET 102中的本體二^亟體的DC電流透過下式給出:Iref = Al*ISl*(exp(Vdl/Vt)-l) e where A1 is the area of the body (10)110, IS1 is the body (D1(10) early reverse saturation current, VdUVcen, is the diode (D1) The voltage across the 11 , is the diode threshold voltage. 5 The DC current of the body of the discharge FET 102 is given by:
Ipch = A2*IS2*(exp(Vd2/Vt)-1) 其中A2是本體Θ亟體的接面積,脱是本體4體單元反向飽 ,和電流’㈣c-VceU ’是放電FET本體4體兩端的壓降。⑸和 IS2由所選擇的半導體類型確定。如果化和&被強制實 1〇那麼須流預充電電流與參考電流1时成正比,由下式給出:、、Ipch = A2*IS2*(exp(Vd2/Vt)-1) where A2 is the joint area of the body body, the body is the body 4 body unit reverse saturating, and the current '(four) c-VceU 'is the discharge FET body 4 body Pressure drop across the ends. (5) and IS2 are determined by the type of semiconductor selected. If the sum and & are forced to be true, then the precharge current must be proportional to the reference current of 1, which is given by:
Ipch = A2/Al*(IS2/ISl)*Iref 杈佳的,雖然對於本發明不是必須的,通常因為低開啟電崎 大電流能力的要求,充電_g2械f顧G4的本體^體_ 面積A2通常比較大’同時為了節省晶片面積,沐體⑽ιι〇的 15接面積A1較小。因此,由於Μ遠大於A1,-小電流Iref (幾十微 女)可以被用於控制較大的電流(幾十到幾百毫安)。 圖2B示出了根據本發明一實施例之渴流放電電路2〇〇。本實施 例類似圖2A所描述的電路1〇0,除了參考電流源(丨时)112和二 極體(m)no係耦接到放電FET102端。在涓流放電時期,充電fet 20 1〇4關閉’涓流放電電流流經其本體二極體。電路200的工作原理 請多考圖2A之詳細描述。 、 圖3A示出了根據本發明另一實施例之涓流預先充電電路。 在此實施例中,充電FET 302和放電FET 304係採面對面串聯設置 而非背對背串聯設置(如圖2A中所示)。圖3A的實施例還包括一參 25 考二極體(D1) 310,在此實施例中,一充電驅動器306可以由開關 200822484 j (ΚΙ) 314和開關(K2) 316控制。 在正常的充電模式下,開關(ΚΙ) 314和開關(Κ2) 316可以 被設置到位置2 ’因此充電FET302的閘極電壓被驅動至卿, 完全開啟充電FET 302。在涓流預先充電模式,放電fet 3〇4關閉, 5 開關(K1) 314和開關(K2) 316被設到位置1。這樣充電驅動p 306動作以調節充電FET 302進而強制電壓vc大致上等於Vd。在順 向偏壓條件下,二4虽體(D1) 310的DC電流透過下式給出: 、Ipch = A2/Al*(IS2/ISl)*Iref is preferable, although it is not necessary for the present invention, usually due to the requirement of low turn-on electric current capability, the charging _g2 mechanically refers to the body of the G4. A2 is usually relatively large. At the same time, in order to save the wafer area, the 15 area A1 of the body (10) ιι〇 is small. Therefore, since Μ is much larger than A1, - small current Iref (tens of micro women) can be used to control a large current (tens to hundreds of milliamps). 2B shows a thirsty discharge circuit 2A in accordance with an embodiment of the present invention. This embodiment is similar to the circuit 1〇0 described in Fig. 2A except that the reference current source (丨) 112 and the diode (m) no are coupled to the discharge FET 102 terminal. During the turbulent discharge period, the charge fet 20 1〇4 is turned off. The choke discharge current flows through its body diode. The working principle of the circuit 200 Please refer to the detailed description of Figure 2A. FIG. 3A illustrates a trickle precharge circuit in accordance with another embodiment of the present invention. In this embodiment, the charge FET 302 and the discharge FET 304 are arranged in series face-to-face rather than in a back-to-back arrangement (as shown in Figure 2A). The embodiment of Figure 3A also includes a reference diode (D1) 310. In this embodiment, a charge driver 306 can be controlled by switches 200822484 j (ΚΙ) 314 and switch (K2) 316. In the normal charging mode, switch (ΚΙ) 314 and switch (Κ2) 316 can be set to position 2' so that the gate voltage of charge FET 302 is driven to clear, fully turning on charge FET 302. In the trickle precharge mode, the discharge fet 3〇4 is turned off, and the 5 switch (K1) 314 and the switch (K2) 316 are set to position 1. Thus, the charge drive p 306 acts to adjust the charge FET 302 and thereby force the voltage vc to be substantially equal to Vd. Under forward bias conditions, the DC current of the body 2 (D1) 310 is given by:
Iref=Al*ISl*(exp(Vdi/Vt)-1) 馨 其中A1疋二^虽體(D1) 310接面積,IS1是二極體(di) 31〇 ίο 單元反向飽和電流,V di二VPAK+ - Vd,是二極體(D1) 310的跨壓,Iref=Al*ISl*(exp(Vdi/Vt)-1) 馨中 A1疋二^ Although the body (D1) 310 is connected to the area, IS1 is a diode (di) 31〇ίο unit reverse saturation current, V di Two VPAK+ - Vd, is the cross-pressure of the diode (D1) 310,
Vt是二極體臨界電壓。 放電FET 304内本體4亟體的dc電流為: Ipch=A2*IS2(exp(Vd2/VtH ) 其中A2是本體二^亟體接面積,is2是本體二極體單元反向飽和 15 電流,Vd^VPACK+ - V。,是放電FET本體二極體的跨壓。IS1和 IS2由所選擇的半導體類型確定。如果化和Vc被強制相同,那麼渴 _ 流預充電電流透過下式給出:Vt is the diode threshold voltage. The dc current of the body 4 of the discharge FET 304 is: Ipch=A2*IS2(exp(Vd2/VtH) where A2 is the body junction area, is2 is the body diode unit reverse saturation 15 current, Vd ^VPACK+ - V. is the voltage across the body of the discharge FET body. IS1 and IS2 are determined by the selected semiconductor type. If the Vc is forced to be the same, then the thirst_current precharge current is given by:
Ipch 二 A2/Al*(IS2/ISl)*Iref 圖3B示出了根據本發明另一實施例之涓流放電電路4⑽。此實 20 施例類似圖3A所示之電路30〇,除了參考電流源(Iref)312和二極 體(D1) 310是耦接至充電FET 3〇2端。在涓流放電期間,充電FET 302是關閉的,放電電流可以流經充電FET 3〇2的本體二極體。電 路400的工作原理請參考圖3A之詳細描述。 為了加速舰預先充電過程,涓流預充電電流Ipch可以根據電 25 池電壓被迅速地調整。電池電壓越高,透過編輯參考電流Iref使得 11 200822484 涓流預充電電流越大。熟悉此技藝者皆知,圖4中之可程式化表 電流源適用於根據電池電壓而產生參考電流。> 圖4中還描述了另-須流預先充電電路5〇〇。在該實施例中, 充電FET 504和放電FET 502主要以習知之背對背串聯設置方式描 5 述。在涓流預先充電模式下,放電FET502關閉(不導通),但^ 果充電FET 504開啟(導通),那麼電流仍然流經其本體二極體^電 池電芯。如果充電FET 504 _,那麼沒有電流流進或流出: 芯。 /甩 此實施例還包括一參考電阻r卜一放電驅動器5〇6、一充電驅 10 動态508、以及一茶考電流源(Irefl ) 512。充電驅動器508和放電 驅動器506可以包括各自的比較器、。在常規的充電模式下,開關αι) 520和開關(Κ2) 518被設置到位置1。在這個位置,一閘極驅動電 壓CHG被驅動到等於-參考電壓chg—卿,以完全開啟充電贿 504。因此,應根據充電FET 504的啟動要求選擇參考電壓CHG—pgp。 15 當需要、肩流充電(也就是,消流預先充電)時,開關κι和K2 連接到節點2。這樣充電驅動·8中味器的輸人是制電阻‘ 上的跨壓⑴和R1的壓降(由Irefl 512所產生)㈠。充電驅動 裔508中比較器的增益應設計得夠大⑽如_)以使^流經電 阻R1所產生的壓降近似於涓流充電電流&流經感測電阻R獅的 20 所產生之壓降。 涓流預充電電流透過下式給出: I pch= I ref 1 *R1 /Rsens 其中^efl是-可程式化參考電流源。通常非常小(例如 10到20毫歐)’同時R1可以被選擇在1〇歐姆的範圍内。因此,R1 25 的比率(R1/Rsens)可以非常大,從而可以利用-很小的參考 200822484 電流1refl產生相對大的渴流預充電電流Ipch。 在圖4的實施例中,在谓流預先充賴式綱,放電 可以被完全開啟,從而消除VPACK+和電池組電壓之間的二極體順向 偏壓。,該模式中,開關(K4 ) 514和開關(K3 ) 516可以被設到 5位置1從而利用放電參考電壓DSG—REF驅動放電fET 5〇2以完全開 啟放電FET 502 〇 請繼續參考圖4,在正常的放賴式,_⑽)516和開關 垂 (K4 ) 514可以分別連接到節點卜這樣,放電驅動器5〇6被設置 作為-緩衝器、且驅動放電FET 5〇2完全開啟。當在賊放電模式, 川 ,(K3 ) 516和開關(K4 ) 514可以連接到節點2。由於放電驅 動态506的回增兌,因iref2流過電阻尬所造成的壓降近似於流過 感測電阻Rsens所造成的壓降。這樣,涓流放電電流由下式給出:Ipch II A2/Al*(IS2/IS1)*Iref FIG. 3B shows a choke discharge circuit 4 (10) according to another embodiment of the present invention. This embodiment 20 is similar to the circuit 30A shown in FIG. 3A except that the reference current source (Iref) 312 and the diode (D1) 310 are coupled to the charge FET 3〇2 terminal. During the trickle discharge, the charge FET 302 is turned off and the discharge current can flow through the body diode of the charge FET 3〇2. The operation of circuit 400 is described in detail with reference to Figure 3A. In order to speed up the ship pre-charging process, the trickle pre-charge current Ipch can be quickly adjusted according to the battery voltage. The higher the battery voltage, the greater the turbulent precharge current of 11 200822484 by editing the reference current Iref. As is well known to those skilled in the art, the programmable current source of Figure 4 is suitable for generating a reference current based on the battery voltage. > Another-flow pre-charging circuit 5A is also described in FIG. In this embodiment, charge FET 504 and discharge FET 502 are primarily described in a conventional back-to-back series arrangement. In the trickle precharge mode, the discharge FET 502 is turned off (non-conducting), but if the charge FET 504 is turned "on", current is still flowing through its body diode cell. If the FET 504 _ is charged, then no current flows in or out: the core. /甩 This embodiment further includes a reference resistor, a discharge driver 5〇6, a charge drive 10 dynamics 508, and a tea test current source (Iref1) 512. Charge driver 508 and discharge driver 506 can include respective comparators. In the normal charging mode, switch αι) 520 and switch (Κ2) 518 are set to position 1. In this position, a gate drive voltage CHG is driven to be equal to - the reference voltage chg - qing to fully turn on the charge bribe 504. Therefore, the reference voltage CHG_pgp should be selected according to the startup requirements of the charging FET 504. 15 Switches κι and K2 are connected to Node 2 when required, shoulder charging (ie, current drain pre-charging). Thus, the input of the charge driver 8 odorizer is the voltage drop across the resistor (1) and R1 (generated by Irefl 512) (1). The gain of the comparator in charge driver 508 should be designed to be large enough (10) such as _) so that the voltage drop generated by the resistor R1 is approximately the same as the trickle charge current & Pressure drop. The trickle precharge current is given by: I pch = I ref 1 *R1 /Rsens where ^efl is - a programmable reference current source. Usually very small (e.g. 10 to 20 milliohms)' while R1 can be chosen to be in the range of 1 ohm. Therefore, the ratio of R1 25 (R1/Rsens) can be very large, so that a relatively small thirteen current precharge current Ipch can be generated with a small reference of 200822484 current 1refl. In the embodiment of Fig. 4, in the pre-flow mode, the discharge can be fully turned on, thereby eliminating the diode forward bias between VPACK+ and the battery voltage. In this mode, the switch (K4) 514 and the switch (K3) 516 can be set to the 5 position 1 to drive the discharge fET 5〇2 with the discharge reference voltage DSG_REF to fully turn on the discharge FET 502. Please continue to refer to FIG. In the normal arbitrage mode, _(10) 516 and switch sag (K4) 514 can be respectively connected to the node. Thus, the discharge driver 5 〇 6 is set as the - snubber, and the drive discharge FET 5 〇 2 is fully turned on. When in the thief discharge mode, Chuan, (K3) 516 and switch (K4) 514 can be connected to node 2. Due to the back-up of the discharge drive dynamics 506, the voltage drop due to the flow of the resistor 尬 by iref2 approximates the voltage drop caused by the flow of the sense resistor Rsens. Thus, the choke discharge current is given by:
Idsg=Iref2^R2/Rsens 其中1时2是一可程式化參考電流源。通常Rsens可以非常小, 15 這樣R2對Rsens的比率(R2/R_)可以非常大,因此一小的參考電 /a Iref2可以產生相對大的涓流放電電流idsg。由於在放電期間電流 瞻方向被反轉,感測電阻Rsens上的跨壓和R2上的跨壓具有反極性。 因此,極性反轉電路522用以反轉流過Rsens的電流極性。 在此實施例中,在涓流充電期間,放電FET 5〇2可以被完全開 2〇 啟°這樣在VPACK+和電池組電壓之間的二極體的順向偏壓被消除。 同樣的,在涓流放電期間,充電FET 504可以被完全開啟以消除電 池組電壓和VPACK+之間的二極體的順向偏壓。 在本發明中,一旦M0SFETs和二^體被固定,丨_仍然可以被 可权式化茶考電流源(Iref)112、312、510、和/或512調整。圖5 中描述了一可程式化參考電流源的一電路拓撲。圖5的電路係用於 13 25 200822484 產生具有比率電流鏡(ratiQ e_nt mirrQr)的電流^。當然, 除了圖5中所示的電路,可程式化參考電流源在本領域中是:的 並且可以透過多種模式呈現。 圖6描述了-谓流預先充電和赖放電電路_。在此實施例 5中,充電FET 604和放電附6〇2以背對背串聯設置,或者以上述 之面對面串聯設置之方式描述。在此實施例中,數位/類比轉換器電 路(DAC)議可以被用以產生—卿驅動電壓,下面進行更全面的描 述。 驁 此實施例包括一類比/數位轉換器電路(ADC) 614、一控制單元 10 612、以及一數位/類比轉換器、電路(DAC)616所組成的控制環路。流 過感測電阻(Rsens) 618的電流由ADC 614接收。接著,胤614可 以產生代械_流峨健號並且傳送這些信號至控制單元 612。在操作口中,如果流經感測電阻(Rsens)618的電流小於預設的臨 界值,控制單元612可以發送數據到DAC 616以增加相應的FET驅 15動電壓。反之,控制單元⑽將發送數據到DAC 616以減少FET驅 動電壓,直到感測電流和預設電流近似相等。 ► 在正系的充電或放電模式,以匸被失能(由以c 所接 $的DAC—EN信號來控制),充電FET 6〇4和放電順6〇2之驅動電 壓此時為高位準(High)。充電驅動器驅動充電FET _的閘極 2〇電壓至一 CHG-®值,並且完全開啟充電卩£丁604。放電驅動器606 驅動放電FET 602的閘極電壓至DSG—膠值,並且完全開啟放電FET 602 〇 在〉月流放電模式,開關(Kl)620連接到節點1。放電驅動器606 被失旎(DSG—ΕΝ為低位準)且具有一高阻抗之輸出,且放電FET 6〇2 25的導電狀恶可以由DAC 616所控制。因此,放電FET 602、感測電 14 200822484 阻(Rsens)618、ADC 614、和DAC 616可以組成控制環路。透過控制 放電FET 602的開啟電阻,本實施例能夠調整涓流放電電流到一預 設值(可以預先編輯至控制單元612 )。M0SFET的開啟電阻可以透過 調整閘極驅動電壓而調整。 5 在一實施例中,如果需要的涓流放電電流被設定為ltd,那麼使 用逐次逼近暫存器方式(Successive Approximation Register, SAR)可以獲得控制聽圆的相應控制碼。DAC的最高位元(M〇stIdsg=Iref2^R2/Rsens where 1:2 is a programmable reference current source. Usually Rsens can be very small, 15 so that the ratio of R2 to Rsens (R2/R_) can be very large, so a small reference power /a Iref2 can produce a relatively large turbulent discharge current idsg. Since the current direction is reversed during discharge, the voltage across the sense resistor Rsens and the voltage across R2 have opposite polarities. Therefore, the polarity inversion circuit 522 is used to invert the polarity of the current flowing through Rsens. In this embodiment, during trickle charging, the discharge FET 5〇2 can be fully turned on so that the forward bias of the diode between the VPACK+ and the battery voltage is eliminated. Similarly, during trickle discharge, charge FET 504 can be fully turned on to eliminate the forward bias of the diode between the bank voltage and VPACK+. In the present invention, once the MOSFETs and the NMOS are fixed, 丨_ can still be adjusted by the weighted tea reference current source (Iref) 112, 312, 510, and/or 512. A circuit topology of a programmable reference current source is depicted in FIG. The circuit of Figure 5 is used for 13 25 200822484 to generate a current ^ with a ratio current mirror (ratiQ e_nt mirrQr). Of course, in addition to the circuitry shown in Figure 5, the programmable reference current source is: and can be presented in a variety of modes. Figure 6 depicts a pre-charge and drain circuit _. In this embodiment 5, the charge FET 604 and the discharge attachment 6〇2 are arranged in series in back-to-back or in a face-to-face arrangement as described above. In this embodiment, a digital/analog converter circuit (DAC) can be used to generate the sigma drive voltage, as described more fully below.骜 This embodiment includes an analog/digital converter circuit (ADC) 614, a control unit 10 612, and a control loop formed by a digital/analog converter, circuit (DAC) 616. Current flowing through the sense resistor (Rsens) 618 is received by the ADC 614. Next, 胤 614 can generate the _ 峨 峨 并且 and transmit these signals to control unit 612. In the operational port, if the current flowing through the sense resistor (Rsens) 618 is less than a preset threshold value, control unit 612 can send data to DAC 616 to increase the corresponding FET drive voltage. Conversely, the control unit (10) will send data to the DAC 616 to reduce the FET drive voltage until the sense current and the preset current are approximately equal. ► In the positive charging or discharging mode, the driving voltage of the charging FET 6〇4 and the discharging cis6〇2 is high at this time, because the 匸 is disabled (controlled by the DAC-EN signal connected by c). (High). The charging driver drives the gate of the charging FET _ 2 〇 to a value of CHG-® and fully turns on the charging 604. The discharge driver 606 drives the gate voltage of the discharge FET 602 to the DSG-gel value and fully turns on the discharge FET 602. In the >month flow discharge mode, the switch (K1) 620 is connected to the node 1. The discharge driver 606 is de-asserted (DSG-ΕΝ is low level) and has a high impedance output, and the conductive nuisance of the discharge FET 6〇2 25 can be controlled by the DAC 616. Thus, discharge FET 602, senser 14 200822484 Rsens 618, ADC 614, and DAC 616 can form a control loop. By controlling the turn-on resistance of the discharge FET 602, the present embodiment is capable of adjusting the choke discharge current to a preset value (which can be edited to the control unit 612 in advance). The turn-on resistance of the M0SFET can be adjusted by adjusting the gate drive voltage. In an embodiment, if the required choke discharge current is set to [ltd], the corresponding control code for controlling the listening circle can be obtained using the Successive Approximation Register (SAR). The highest bit of the DAC (M〇st
Significant Bit,MSB)首先被設為高位準(high),如果流過感測 電阻(Rsens) 618的電流isen大於Itd,則將MSB設為低位準(1〇w), ίο 否則MSB將被保持為高位準。然後第二最高位元被設為高位準,如 果Isen大於Itd,則將第二最高位元設為低位準(1〇w),否則第二最 高位元將被保持為高位準。這種逐次逼近的方式將持續到MC的最 低位元(Least Significant Bit,LSB)被設定。相應的控制碼可 以被保存在暫存財㈤巾未示)進而可以被控制單元612存取。 15 如果1 td係為一給定電池組所設定之固定值,那麼控制碼也是固定 值。無論何時f魏流放電,控鮮元612可峰送被經過程式編 輯的^制碼到DAC 616,因此,電池組將可以傳送Itd到一外部負載。 如果敎放電電流需要被調整,上述之控制環路可以被相 〇 β〇8 2〇此或失此。其區別係在於渴流放電電流將分別流經充電FET 604或 其本體二極體。 fin« ΐίί充電模式’開關⑽620連接到節點2。充電驅動器 夺失月匕(CHQ_EN為低位準)。充電FET 6〇4的導電狀態可以由 25 fiU 〇 ^ ^ΡΕΤ 604 ' ^^Rsens 618 > 和DAC 616係組成控制環路。透過控制充電FET舰的開 15 200822484 啟電阻,本實施例能夠調整渴流充電電流至一預設值。預充電電流 通常是-固定值。在這種模式中,本實施例可以產生_控制碼(使 用上述的SAR方法)並且將控制碼儲存在一記憶體中。對於渭流預 充電電流,其值可以在一上限到下限之範圍間變化,因此,控制碼 5 亦在CTCH (代表涓流預充電電流之上限值)和CTCL (代表涓流預充電 電流之下限值)之間變化,以允許涓流充電電流被相應地調整。在須 抓充電模式’放電驅動器β〇6也可以被致能或失能。其區別係在於 涓流充電電流將分別流經放電FET 6〇2或者其本體二極體。 上面所述的涓流放電模式可以被進一步應用以實現電池組短路 1〇 /過電流保護。當電池組從電子系統中被取出時(也即電池組處於空 閒狀態時),第-饌電敝彳緩的實酬是有_。不像傳統保持 放電FET 602關閉的方法,第一種實施例將放電順6〇2設定為一 種可控的導通狀態。當放電FET 處於可控的導通狀態時,即使 發生短路情況,例如徽邙+端短接到ypACK 一 u放㈣6〇2之開啟電阻阻止。類似的,㈣流情 生之大電流突波健阻止。實際上,當短路/過電流情況發生時,涓 /碰電電流將流敝電FET 6〇2,渭流放電電流可以被設定為一預 ^以便確保電池組和M〇SFET的安全。涓流放電電流,例如1〇〇心, 能夠驅_嵌在電子系統中的外部控制單元(其不圖6中所示 之控制單元612)。當電池組被插入到電子系統中,内嵌之控制單元 即能偵測到電池組的插入並且通知電池組進^^常的放電模式。這 樣,就^需要額外的機械方法或者電子電路來檢測電池組的插入。 如此並不轉撕之機械方法或電子電路來細以及通知電池組 之插入。然而,當電池組被插入電子系統中時,第一種實施例沒有 25進一步提供電池短路/過電流保護。因此,第-種實施例僅在當電池 16 200822484 組被從電子錢中取辦是有。 f 流糊漏描述爾組傾的 入到電子系統中時均是有效的。一開始池組: (例如’電池組從電子系財被取出),或者:正二 电核式(例如,電池組被插入到電子系 帝 々丨山况,那麼電池組將停留在电 ===那麼細6立即關閉放電觸 η β以在幾微秒内關閉。接著,在步驟雇中,如果放電FET 門一預設的時間,例如’ 25秒,不像傳統馬上完全 15 20 瞻輸_侧‘ :田放电順602處於可控導電狀態,在步驟71〇中,隨著 放電電流流触電FET 602,電池組將工作在渴流放電模式。如ς 預疋時間尚未終止,放電FET 6Q2則仍然停留在酬狀態。 本«技術人員將認可為了實現步驟7〇8,圖6中示出的實施 二包括一電池管理韌體和—定時器。電池管理韌體能夠監_ $作。定時器具有-預設時間(例如25秒)。如果發生短路/過電 4況’電池管理韌體將會告知放電FET 6〇2已被關閉,然後啟動 鱗器。如果辦器的預設時間終止,電池管理物體就會知悉放電 FET 602已被關閉了預設時間長之久。 在流放電模式中,圖6中的DAC 616提供閘極驅動電壓給放 電FET 602。透過閘極驅動電壓的驅動,使得放電FET 6〇2工作於 可控導通狀態。透過調節閘極驅動電壓,放電FET 的開啟電阻 25被調節’因此流經放電1^ 602的涓流放電電流被相應地調節。 17 200822484 單元式中’可以包括下面的子步驟。一開始,在控制 _ 、、工1: ’來自DAC 616的間極驅動賴在步驟712中被 二μ接者’在步驟714 * ’閘極驅動電壓逐漸增加。根據 阻_二寸’本領域技術人員容易理解,放電FET 602的開啟電 =^者閘極驅動電壓的增加而逐漸降低,因此流敝電fet =二放電電趣逐漸增加。每—次閘極驅_壓增加,相對應之 電流係在電阻(R雲)⑽的兩端被檢測到,然後被用於決 疋Μ路/過電流情況是否仍然存在。 15 20 尤其是,在步驟716中,透過比較賊放電電流與預設的電流, :40笔安,用以確定短路/過電流情況是否仍然存在。如果谓 電流大於預設電流,可以推斷出短路/過電流情況仍然存在。 接著,6中示出的系統透過步驟薦的操作重新啟動電池組之保 果賊放電電流小於預設的電流,在步驟718巾,閘極驅動 :壓將與-預設之最大控制位準相比。實際上,間極鶴電壓不會 無限制地增加,而會限制在預設之最大控制位準。在步驟718中, 閘極驅動電壓達到預設之最大控制位準,可以推斷出短路/過電 流情況不再存在,電池組將返回閒置模式或者正常放電模式(步驟 702)。否則,電池組將重複執行步驟714、716和718直到步驟則 判定短路/過電流情況存在或步驟718判定短路/過電流情況不存在 而退出涓流放電模式。 ” 此處所提及之預設的電流係透過考慮MOSFET的功率耗散性能 來設定。對於圖6中示出之具有四個電芯的電池組,預設的電流可 以被設定為40毫安,因此放電FET 602的最大功率耗散接近68〇 毫瓦,這對於功率MOSFET來說是一安全值。 此外,VPACK+端的電壓可以被應用於確定短路/過電流情況是否 18 25 200822484The Significant Bit (MSB) is first set to a high level. If the current isen of the sense resistor (Rsens) 618 is greater than Itd, the MSB is set to a low level (1〇w), otherwise the MSB will be held. High level. The second highest bit is then set to a high level, and if Isen is greater than Itd, the second highest bit is set to a low level (1〇w), otherwise the second highest bit will be held at a high level. This successive approximation will continue until the Least Significant Bit (LSB) of the MC is set. The corresponding control code can be stored in the temporary memory (not shown) and can be accessed by the control unit 612. 15 If 1 td is a fixed value set for a given battery pack, then the control code is also a fixed value. Whenever the f-stream discharges, the control element 612 can send a programmed code to the DAC 616, so the battery pack can transmit Itd to an external load. If the 敎 discharge current needs to be adjusted, the above control loop can be 相β〇8 2 or this is lost. The difference is that the thirst discharge current will flow through the charge FET 604 or its body diode, respectively. The fin« ΐίί charging mode 'switch (10) 620 is connected to node 2. The charging driver lost the moon (CHQ_EN is low). The conduction state of the charging FET 6〇4 can be composed of 25 fiU 〇 ^ ^ ΡΕΤ 604 ' ^ ^ Rsens 618 > and the DAC 616 system constitutes a control loop. By controlling the opening of the charging FET ship 15 200822484, this embodiment can adjust the thirst charging current to a preset value. The precharge current is usually - fixed value. In this mode, the present embodiment can generate a _ control code (using the SAR method described above) and store the control code in a memory. For turbulent precharge currents, the value can vary from an upper limit to a lower limit. Therefore, control code 5 is also in CTCH (representing the upper limit of the turbulent precharge current) and CTCL (representing the turbulent precharge current). The change between the lower limit values) allows the trickle charge current to be adjusted accordingly. In the charge mode, the discharge driver β〇6 can also be enabled or disabled. The difference is that the trickle charge current will flow through the discharge FET 6〇2 or its body diode, respectively. The trickle discharge mode described above can be further applied to achieve battery pack short circuit 1 〇 / over current protection. When the battery pack is removed from the electronic system (that is, when the battery pack is in an idle state), the first payoff is that there is _. Unlike the conventional method of keeping the discharge FET 602 off, the first embodiment sets the discharge cis 6 〇 2 to a controllable conduction state. When the discharge FET is in a controlled conduction state, even if a short circuit condition occurs, for example, the 邙 邙 + terminal is shortly connected to the ypACK-u (four) 6 〇 2 opening resistance block. Similarly, (iv) the flow of high current surges to prevent health. In fact, when a short-circuit/overcurrent condition occurs, the 涓/bump current will flow through the FET 6〇2, and the choke discharge current can be set to a pre-compensation to ensure the safety of the battery pack and the M〇SFET. A choke discharge current, such as 1 〇〇, can drive an external control unit embedded in the electronic system (which is not the control unit 612 shown in Figure 6). When the battery pack is inserted into the electronic system, the embedded control unit can detect the insertion of the battery pack and notify the battery pack of the normal discharge mode. In this way, additional mechanical methods or electronic circuits are required to detect the insertion of the battery pack. This does not tear the mechanical method or electronic circuitry to detail and inform the insertion of the battery pack. However, when the battery pack is inserted into an electronic system, the first embodiment does not further provide battery short/overcurrent protection. Therefore, the first embodiment is only available when the battery 16 200822484 group is taken from the electronic money. f Flow lags are described as effective when entering the electronic system. At the beginning of the pool group: (for example, 'the battery pack is taken out from the electronic system'), or: the second battery type (for example, the battery pack is inserted into the electronic system, then the battery pack will stay in the electricity === Then fine 6 immediately closes the discharge touch η β to turn off within a few microseconds. Then, in the step hire, if the discharge FET gate is a preset time, for example '25 seconds, unlike the traditional immediately complete 15 20 ' : Field discharge shun 602 is in a controlled conduction state. In step 71, as the discharge current flows to the FET 602, the battery pack will operate in the thirst discharge mode. If the ς pre-timing time has not expired, the discharge FET 6Q2 Still in the state of remuneration. The technician will recognize that in order to implement step 7〇8, the implementation 2 shown in Figure 6 includes a battery management firmware and a timer. The battery management firmware can monitor the timer. With - preset time (eg 25 seconds). If short circuit / over power condition 4 occurs, the battery management firmware will inform the discharge FET 6 〇 2 has been turned off, then start the scale. If the preset time of the device is terminated, The battery management object will know the discharge FET 60 2 has been turned off for a preset period of time. In the stream discharge mode, the DAC 616 of Figure 6 provides a gate drive voltage to the discharge FET 602. The drive of the gate drive voltage causes the discharge FET 6〇2 to operate Controllable conduction state. By adjusting the gate drive voltage, the discharge resistor 25 of the discharge FET is adjusted 'so that the choke discharge current flowing through the discharge 1^ 602 is adjusted accordingly. 17 200822484 The unit can include the following substeps Initially, in control _ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , It will be readily understood by those skilled in the art that the turn-on voltage of the discharge FET 602 is gradually decreased as the gate drive voltage is increased, so that the flow of electricity fet = two discharges is gradually increased. The voltage of each of the gates is increased, corresponding to The current is detected at both ends of the resistor (R cloud) (10) and is then used to determine if the loop/overcurrent condition still exists. 15 20 In particular, in step 716, by comparing the thief discharge current with the pre- Set the current, :4 0 pen safety, to determine whether the short circuit / over current condition is still present. If the current is greater than the preset current, it can be inferred that the short circuit / over current condition still exists. Next, the system shown in 6 is restarted through the recommended operation of the step The battery pack's thief discharge current is less than the preset current. In step 718, the gate drive: the pressure will be compared with the preset maximum control level. In fact, the voltage between the poles will not increase without limit. And will be limited to the preset maximum control level. In step 718, the gate drive voltage reaches the preset maximum control level, it can be inferred that the short circuit/overcurrent condition no longer exists, and the battery pack will return to the idle mode or Normal discharge mode (step 702). Otherwise, the battery pack will repeat steps 714, 716, and 718 until the step determines that the short/overcurrent condition exists or step 718 determines that the short/over current condition is absent and exits the choke discharge mode. The preset current mentioned here is set by considering the power dissipation performance of the MOSFET. For the battery pack with four cells shown in Figure 6, the preset current can be set to 40 mA. Therefore, the maximum power dissipation of the discharge FET 602 is close to 68 mA, which is a safe value for the power MOSFET. In addition, the voltage at the VPACK+ terminal can be used to determine whether the short/over current condition is 18 25 200822484
10 15 存在。在步驟716中,VPACK+端的電壓被檢測並且與 二例如,100毫伏。如果刪觸购、於預設電壓 二過電,_乃然存在。否則’在步驟718中,閘極驅動電壓 断峨。霞_____ :隹。孔和内部阻抗而設定。對於圖6的實施例,預設電壓被設定為 毫伏,這是考慮短路/過電流情況和雜訊以部重 要性之間之一較佳折衷值。 丨P抗的重 從圖1A中’我們知道在預先充電期間和定電壓(cv)充電期間, ^電電流需要被控制。在傳統電路中’需要—額外的預先充電順 來控制預充電電流。在這樣的傳統電路巾,cv充電必須完全依靠充 電器械確的調節充電電壓至Vgv,然後充電電流將會遞減。 在本發明中,預先充電的功能可在不需增加額外的預先充電 FET的情況下被實現。另外,為了加翻先充電過程,預充電電流 1础可以根據電池電壓而被容易地調節。電池電壓越高,透過程式 化參考電流lrcf而得之就電赖越大,修圖2A、圖Μ和圖4 中所或者圖6中描述的控制碼方法。10 15 exists. In step 716, the voltage at the VPACK+ terminal is detected and, for example, 100 millivolts. If you delete the purchase, the default voltage is 2, and _ is there. Otherwise 'in step 718, the gate drive voltage is broken. Xia _____: Hey. Set by hole and internal impedance. For the embodiment of Figure 6, the preset voltage is set to millivolts, which is a preferred compromise between short-circuit/overcurrent conditions and noise-critical. The weight of the 丨P resistance is shown from Fig. 1A', we know that during the pre-charging period and during the constant voltage (cv) charging, the electric current needs to be controlled. In conventional circuits, 'required-additional pre-charging is followed to control the pre-charging current. In such a conventional circuit towel, the cv charging must rely entirely on the charging device to adjust the charging voltage to Vgv, and then the charging current will be decremented. In the present invention, the pre-charging function can be implemented without adding additional pre-charged FETs. In addition, in order to increase the charging process, the precharge current 1 can be easily adjusted according to the battery voltage. The higher the battery voltage, the greater the power supply through the stylized reference current lrcf, the control code method described in Figure 2A, Figure Μ and Figure 4 or Figure 6.
20 、更進、y也如4人夕只祕]中所描述的,渭流預充電電流控制 方法也可以在cv充電期間内被利用,在這期間,須流預先充電電路 能夠根據電池岐㈣流絲電流。如此,cv充電電流的遞減 不需要倚賴充電器來精確地調節電壓ν〇ν。因此,本發明提供的幾個 實施例都可料需要昂貴的、精確的電壓爾充糕。實際上,一 簡易的AC雛脚可概麟對_子電喊電。由於在⑺充電 期間,即使充電財能將定電翻定在%,但是総電流被限制於 根據電池«而定的預先程式化之秘電流值。所以,不會發生過 度充电的狀況充電電流的限制可以被用作第二層過電壓保護(透 19 25 20082248420, more advanced, y is also as described in 4 people, the turbulent precharge current control method can also be used during the cv charging period, during which the pre-charge circuit must be based on the battery (4) Stream current. Thus, the decrement of the cv charging current does not need to rely on the charger to accurately adjust the voltage ν 〇 ν. Thus, several embodiments provided by the present invention are expected to require expensive, accurate voltage filling. In fact, a simple AC chick can be shouted at the _ sub-electricity. Since (7) charging, even if the charging energy is set to % in the power, the current is limited to the pre-programmed secret current value according to the battery «. Therefore, the condition of overcharging does not occur. The charging current limit can be used as the second layer of overvoltage protection (through 19 25 200822484
10 1510 15
20 過將電流極限設定得比在期望電壓_時實際觀測而得之電流值稍 微大一些)’或者作為第一層過電壓保護(透過調節充電電流直到庐 得精確的期望電壓Vuv)。 運用本發明的涓流放電性能,對於電池組的較佳短路/過電流保 護是可能的。在現有技術中,放電FET係完全地開啟以允許或 完全地關閉以禁止放電。當電池組從電子系統中被取$,例如电放 在架子上,那麼放電FET係保持在開啟狀態以準備在任何魏# 電子祕時爲電子纽供電。在這種情況下,如 異常情況’例如VPACK+端被短接到VPACK_端,則一大電^^池中 液出’如此-來’將破壞電池;或者放電FET保持關閉狀態以防止 電池遭受短路/過電讀況。蚁魏使#電敝被插縣统中時防 止電池向彡祕電。需要-銳術方法通知電池细糊啟放電 FET的狀態。這將導致客戶的不便並增加成本。 也 使用本發明’當電·f子系統中被取出時,我們可以將電池 組設定為職放賴式。舰域電祕可峨選擇得 100毫安,當電池組被插進電子系統树足夠為内嵌控制單元的系 t供電。然後峨控制單元的系統將檢測電池的存在並且通知電池 3赃常放電模式。隨著放電FET將電流限制到預設滅放電電 ⑽毫安,即使麵端被短接到mcK,,大電流 太伽管電池組是在電子系統中或者從電子系統中被取出 本舍月之电池組在異常情況下可受保護,例如,短 3=放_被奴為可控的導通狀態,而非如傳統紗 I王開啟。因此,電池組將被操作在模式中。隨細 20 25 200822484 驅動電壓逐漸增加,相對應的涓流放電電流也相應增加。在這個過 程中,如果相對應的涓流放電電流大於預設電流,假設4〇亳安,則 可以推斷出異常情況持續存在,因此放電FET將再次關閉且電池組 將重複上述操作。如果閘極驅動電壓增加到一預設最大控制位準, 5 而相應的涓流放電電流還沒有達到預設電流,則可以確定異常情況 已經消除且電池組可以在正常放電模式下操作。 涓流放電和涓流充電性能對於支援多電池系統是非常有用的。 *毛子系統需要更多電力和更多特性時,多重電池組將變得更力口普 • 及。當多重電池組目時放電,它們可以提供更多的電力給系統,而 10 且由於多重電池組並行也將減少電池内部之阻抗以提升效率。但是 夕重电池組同時放電具有一嚴格的前提,這些電池必須精確地具有 相同的電壓。否則,即使僅有兩個電池組具有微小的電壓差異,假 :又10笔伏’由於電力匯流排的電阻很小,假設2毫歐姆,那麼電力 匯流排也將具有-大的電流,5安培,從具有較高電壓的電池組流 15向具有較低電壓的電池組。實際上,多重電池組很難具_同電壓, 因為電池組電壓隨著放電電流而變化,所辦使兩個電池組具有一 ❿ 很精確的就來監視電池電壓,也很難確定它們具有相同的電壓。 隨魏流放電魏_用,_可贿決下面_題(我們以兩個 電池組為例)。 20 一系統具有兩個電池纽’電池組A和電池組B。一開始,電池 組A的電壓南於電池組B的電壓;電池組A首献電以供電給系統, 貝i電的電壓逐漸降低。電池組B的放電FET被關閉以禁止放 电,虽電池組Α的電屢降到與電池組Β的電壓相同時,我們將電池 Ϊ上設ί為赖細_者驗翊試。如果我們將電池組Β 25 5又疋為〉月流充電模式’可以完全開啟放電FET,而驅動充電FET到 200822484 其飽和區且把充電FET作為一限流電阻;如果我們將電池組B設定 為渭流放電模式,則完全開啟充電FET,且驅動放電FET到其飽和 區並且把放電FET作為一限流電阻。基於更多安全因素,我們可以 將f流充制碼Ctc (代表渴流充電)或者谓流放電控制碼CTO(代 表/局机放电)5又疋為一小電流值。因此充電順或者放電卿的等效 電阻變得較大。因為電池組A放電但是電池組B處於閒置模式,所 以^吏它們兩者被測量到之電壓是相同的,實際上電池組A的電麼 將南於電池組B的電壓。因此,電池組A將向電池組β充電。铁而, 充電電流被充電FET (如果將電池組B設定為渭流充賴幻或者 放電FET(如果將電池組B設定為渴流放電模式)的電阻所限制。受 ^?^值由控制碼⑶或者—決定。我們還透過電池組B中的 監測該充電n當電驗A和β的電壓差變得越m、時, 從電池組A到電池組B的充電魏將變得 電 15 20 25 小於預定值時,假設,我們可以將電池組β裕2 = 或者渭流放賴式轉變到正常的放賴式。心月抓充_式 路和所纟開的可程编、驗預先充電和/賴流放電電 、齡的鱗和紹敝率來完成 預先充电。絲電池組電池的電荷 } 充賴式),在圖2A和2B中,開咖^ 而要騎 過電池監測1C所控制,以將可程式:二f3和K4)可以透 充電模式或者正常充電模式^充電電路設定輸預先 可_個別的元件和/或積體電路::==: 可再^電電麵可狱奸雜(謂 d =吏用 在這裡提到的具體電路拓接輪口 于械腿4寺)。 限,其他的一電電喝架 20082248420 The current limit is set to be slightly larger than the current value actually observed at the desired voltage _ or as the first layer of overvoltage protection (by adjusting the charging current until the precise desired voltage Vuv is obtained). With the trickle discharge performance of the present invention, better short circuit/overcurrent protection for the battery pack is possible. In the prior art, the discharge FET is fully turned on to allow or completely turn off to inhibit discharge. When the battery pack is taken from the electronic system, for example, on a shelf, the discharge FET remains in the on state to prepare to power the electronic button at any time. In this case, if the abnormal condition 'such as VPACK+ is shorted to the VPACK_ terminal, the liquid out of the battery will 'destroy the battery'; or the discharge FET remains off to prevent the battery from being damaged. Short circuit / over-current reading. Ant Wei made #电敝 was inserted into the county to prevent the battery to the secret. Need - Sharp method to inform the battery to clear the state of the FET. This will lead to customer inconvenience and increase costs. Also using the present invention, when the power/f subsystem is taken out, we can set the battery pack to the job placement mode. The ship's electrical secret can be chosen to be 100 mAh, when the battery pack is plugged into the electronic system tree enough to power the embedded control unit. The system of the 峨 control unit will then detect the presence of the battery and inform the battery 3 of the normal discharge mode. As the discharge FET limits the current to a preset out-of-discharge (10) mA, even if the face is shorted to mcK, the high-current tera-tube battery is taken out of the electronic system or from the electronic system. The battery pack can be protected under abnormal conditions, for example, short 3 = put_ slave is controlled to be on, rather than the traditional yarn I king. Therefore, the battery pack will be operated in mode. With the gradual increase of the driving voltage with 20 25 200822484, the corresponding turbulent discharge current also increases accordingly. In this process, if the corresponding choke discharge current is greater than the preset current, assuming 4 amps, it can be inferred that the abnormal condition persists, so the discharge FET will be turned off again and the battery pack will repeat the above operation. If the gate drive voltage is increased to a predetermined maximum control level, 5 and the corresponding choke discharge current has not reached the preset current, it can be determined that the abnormal condition has been eliminated and the battery pack can operate in the normal discharge mode. Choke discharge and trickle charge performance are very useful for supporting multi-battery systems. * When the hair subsystem needs more power and more features, multiple battery packs will become more powerful. When multiple battery packs are discharged, they can provide more power to the system, and because multiple battery packs in parallel will also reduce the internal impedance of the battery to improve efficiency. However, the simultaneous discharge of the battery pack has a strict premise that these batteries must have exactly the same voltage. Otherwise, even if only two battery packs have a small voltage difference, false: 10 volts 'Because the resistance of the power busbar is small, assuming 2 milliohms, the power busbar will also have a large current, 5 amps. From a battery pack 15 having a higher voltage to a battery pack having a lower voltage. In fact, it is difficult for multiple battery packs to have the same voltage, because the battery pack voltage varies with the discharge current. It is difficult to make sure that the two battery packs have a very accurate one to monitor the battery voltage. Voltage. With the Wei flow discharge Wei _ use, _ can bribe the following _ question (we take two battery packs as an example). 20 One system has two battery packs, battery pack A and battery pack B. Initially, the voltage of battery pack A is souther than the voltage of battery pack B; battery pack A is first powered to supply power to the system, and the voltage of the battery is gradually reduced. The discharge FET of battery pack B is turned off to prohibit the discharge. Although the battery pack's power is repeatedly reduced to the same voltage as the battery pack, we set the battery pack to ί. If we turn the battery pack 25 into the > monthly flow charging mode, the discharge FET can be fully turned on, and the charging FET is driven to the saturation region of 200822484 and the charging FET is used as a current limiting resistor; if we set the battery pack B to In the trickle discharge mode, the charge FET is fully turned on and the discharge FET is driven to its saturation region and the discharge FET is used as a current limiting resistor. Based on more safety factors, we can convert the f-stream filling code Ctc (representing thirst charging) or the current-discharge control code CTO (representative/office discharge) 5 into a small current value. Therefore, the equivalent resistance of the charge cis or discharge becomes larger. Since the battery pack A is discharged but the battery pack B is in the idle mode, the voltages at which both of them are measured are the same, and in fact, the power of the battery pack A will be souther than the voltage of the battery pack B. Therefore, the battery pack A will charge the battery pack β. In addition, the charging current is limited by the charging FET (if the battery pack B is set to a sinusoidal charge or a discharge FET (if the battery pack B is set to the thirst discharge mode), the control value is controlled by the control code. (3) or - decision. We also monitor the charge through the battery pack B. When the voltage difference between the tests A and β becomes m, the charge from the battery pack A to the battery pack B will become electric 15 20 25 When it is less than the predetermined value, suppose that we can convert the battery pack β裕2 = or the 渭流放赖式 to the normal arbitrage type. The heart month catches the _ way and the open programmable code, pre-charge and / Lai flow discharge electricity, age scales and Shaohao rate to complete the pre-charge. The charge of the silk battery battery}, in the 2A and 2B, to open the coffee ^ and ride the battery monitoring 1C control, to Will be programmable: two f3 and K4) can be through the charging mode or normal charging mode ^ charging circuit settings can be pre- _ individual components and / or integrated circuit:: ==: can be ^ electric surface can be prisoner d = 吏 use the specific circuit mentioned here to extend the wheel to the temple 4). Limited, other electric kettles 200822484
【圖式簡單說明】 i路也可以有許多的電路變形及改 所有這些改進都§忍為是在本發明 儘管本領域技術人員知道 以下的詳細描诫所栋用沾&[Simple description of the diagram] The i-way can also have many circuit variations and modifications. All of these improvements are ought to be in the present invention, although those skilled in the art are aware of the following detailed descriptions.
A,4、导匕固Γ/Γ疋我。 巧拇明的其它特徵和優點將隨著下面的詳細描述並表 得更加明確,其料_數字_目_@,Μ# 本發明的 考附圖變 ’並且其中: 圖1A疋典型的鲤離子電池充電過程電流、電壓示意圖。 圖1B是傳統的電池預先充電電路。 圖2A是根據本發明一實施例之涓流預先充電電路。 囷2B疋根據本發明一實施例之須流放電電路。 固3A疋根據本發明另一實施例之涓流預先充電電路。 圖犯是根據本發明另一實施例之涓流放電電路。 Θ 4疋根據本發明的另一實施例之預先充電電路。 圖5是可程式化電流源之一實施例。 圖6是一實施例之涓流預先充電和涓流放電電路。 圖7是根據本發明其中一實施例的電池組短路/過電流保護的 控制流程圖。 【主要元件符號說明】 10 :預先充電傳統電路 12 :預先充電場效電晶體(FET) 14 =電阻A, 4, guide 匕 Γ / Γ疋 me. Other features and advantages of Qiao Thumbing will be more clearly described in the following detailed description, and the material of the present invention is changed to the figure of the present invention and wherein: FIG. Schematic diagram of current and voltage during battery charging process. FIG. 1B is a conventional battery precharge circuit. 2A is a trickle precharge circuit in accordance with an embodiment of the present invention.囷2B疋 A current-discharge circuit according to an embodiment of the present invention. Solid 3A A trickle precharge circuit in accordance with another embodiment of the present invention. The figure is a choke discharge circuit according to another embodiment of the present invention. A precharge circuit according to another embodiment of the present invention. Figure 5 is an embodiment of a programmable current source. Figure 6 is a diagram of a trickle precharge and choke discharge circuit of an embodiment. Figure 7 is a control flow diagram of battery pack short circuit/overcurrent protection in accordance with one embodiment of the present invention. [Main component symbol description] 10 : Precharged conventional circuit 12 : Precharge field effect transistor (FET) 14 = Resistor
16 :充電FET 23 200822484 18 :放電FET 20 :電池監視器IC 22 :電池組 24 :開關網路 5 26:比較器 28 :定電壓參考源 30 :開關 50 :充電分佈圖 Φ 100 :涓流預先充電電路16: Charging FET 23 200822484 18 : Discharge FET 20 : Battery monitor IC 22 : Battery pack 24 : Switching network 5 26 : Comparator 28 : Constant voltage reference source 30 : Switch 50 : Charging profile Φ 100 : Turbulent advance Charging circuit
ίο 102 ··放電 FET 104 ··充電 FET 106 :放電驅動器 108 :充電驅動器 110 ··參考二極體 15 112 :參考電流源 114、116 :開關 φ 200 :涓流放電電路Οο··Discharge FET 104 ··Charge FET 106 :Discharge Driver 108 :Charge Driver 110 ··Reference Diode 15 112 :Reference Current Source 114,116 :Switch φ 200 : Choke Discharge Circuit
300 :涓流預先充電電路 302 ··充電 FET 2〇 304 :放電 FET 306 :充電驅動器 310 :二極體 312 :參考電流源 314、316 :開關 400 :涓流放電電路 25 200822484 500 :涓流預先充電電路 502 ··放電 FET 504 :充電 FET 506 :放電驅動器 5 508 :充電驅動器 510 :參考電流源 512 ·爸考電流源 514、516、518、520 :開關 ⑩ 522 :極性反轉電路 ίο 600 :涓流預先充電和涓流放電電路 602 :放電 FET 604:充電 FET 606 :放電驅動器 608 :充電驅動器 15 612 :控制單元 614 :類比數位轉換器(ADC) ⑩ 616 ··數位類比轉換器(DAC) 618 :感測電阻 620 :開關 2〇 700 :控制流程圖 702〜718 :步驟 25300: trickle precharge circuit 302 ··charge FET 2〇304: discharge FET 306: charge driver 310: diode 312: reference current source 314, 316: switch 400: choke discharge circuit 25 200822484 500 : turbulence advance Charging circuit 502 · discharging FET 504 : charging FET 506 : discharging driver 5 508 : charging driver 510 : reference current source 512 · dad test current source 514, 516, 518, 520 : switch 10 522 : polarity inversion circuit ίο 600 : Trickle precharge and choke discharge circuit 602: discharge FET 604: charge FET 606: discharge driver 608: charge driver 15 612: control unit 614: analog to digital converter (ADC) 10 616 · digital analog converter (DAC) 618: sense resistor 620: switch 2〇700: control flow chart 702~718: step 25
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/540,236 US7646169B2 (en) | 2004-03-25 | 2006-09-29 | Trickle discharge for battery pack protection |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200822484A true TW200822484A (en) | 2008-05-16 |
TWI336158B TWI336158B (en) | 2011-01-11 |
Family
ID=39405335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096136105A TWI336158B (en) | 2006-09-29 | 2007-09-28 | Method for protecting a battery pack from a large current overdrawn condition |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN100589305C (en) |
HK (1) | HK1118643A1 (en) |
TW (1) | TWI336158B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI418114B (en) * | 2009-12-29 | 2013-12-01 | O2Micro Int Ltd | Compensating circuit and method in battery packs |
US9240696B2 (en) | 2010-07-15 | 2016-01-19 | Zpower, Llc | Method and apparatus for recharging a battery |
US9291680B2 (en) | 2009-12-29 | 2016-03-22 | O2Micro Inc. | Circuits and methods for measuring a cell voltage in a battery |
US9684362B2 (en) | 2014-12-29 | 2017-06-20 | Quanta Computer Inc. | Battery powered device |
US10291051B2 (en) | 2013-01-11 | 2019-05-14 | Zpower, Llc | Methods and systems for recharging a battery |
TWI661631B (en) * | 2014-11-20 | 2019-06-01 | 力智電子股份有限公司 | Battery protection device and operation method thereof |
US10547189B2 (en) | 2015-04-29 | 2020-01-28 | Zpower, Llc | Temperature dependent charge algorithm |
CN113972884A (en) * | 2020-07-22 | 2022-01-25 | 致新科技股份有限公司 | Overvoltage protection circuit |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012205144A1 (en) | 2012-03-29 | 2013-10-02 | Robert Bosch Gmbh | Method for interconnecting battery cells in a battery, battery and monitoring device |
TWI553998B (en) * | 2012-07-06 | 2016-10-11 | 緯創資通股份有限公司 | Dynamic charge device and dynamic charge method |
KR101975395B1 (en) * | 2012-08-29 | 2019-05-07 | 삼성에스디아이 주식회사 | Battery pack, and controlling method of the same |
CN104518534A (en) * | 2013-09-27 | 2015-04-15 | 中兴通讯股份有限公司 | Method and device for circuit protection, and charging device |
DE102017121441A1 (en) * | 2017-09-15 | 2019-03-21 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Protection circuit for a charging device |
GB2563311B (en) * | 2018-03-08 | 2020-03-04 | O2Micro Inc | Circuits, systems and methods for protecting batteries |
CN110838739B (en) | 2018-08-17 | 2023-03-14 | 群光电能科技(苏州)有限公司 | Charging device and operation method thereof |
CN110962630B (en) * | 2018-12-04 | 2021-06-25 | 宁德时代新能源科技股份有限公司 | Method and circuit for regulating and controlling precharge current |
CN111953082B (en) * | 2019-05-14 | 2023-12-22 | 伏达半导体(合肥)股份有限公司 | Efficient wireless charging system and method |
CN113949126A (en) * | 2021-10-14 | 2022-01-18 | 东莞新能安科技有限公司 | Charging protection circuit, battery management system, battery pack and circuit control method |
CN114725893B (en) * | 2022-05-13 | 2024-02-27 | 杭州华塑科技股份有限公司 | Short-circuit protection system and method for battery and electronic equipment |
CN115313564A (en) * | 2022-08-16 | 2022-11-08 | 昂宝电子(上海)有限公司 | Battery voltage and current regulating device used in charge pump charging mode |
-
2007
- 2007-09-28 TW TW096136105A patent/TWI336158B/en not_active IP Right Cessation
- 2007-09-28 CN CN200710152100A patent/CN100589305C/en active Active
-
2008
- 2008-09-16 HK HK08110237.4A patent/HK1118643A1/en unknown
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI418114B (en) * | 2009-12-29 | 2013-12-01 | O2Micro Int Ltd | Compensating circuit and method in battery packs |
US8629679B2 (en) | 2009-12-29 | 2014-01-14 | O2Micro, Inc. | Circuits and methods for measuring cell voltages in battery packs |
US9291680B2 (en) | 2009-12-29 | 2016-03-22 | O2Micro Inc. | Circuits and methods for measuring a cell voltage in a battery |
US9240696B2 (en) | 2010-07-15 | 2016-01-19 | Zpower, Llc | Method and apparatus for recharging a battery |
US10291051B2 (en) | 2013-01-11 | 2019-05-14 | Zpower, Llc | Methods and systems for recharging a battery |
US11735940B2 (en) | 2013-01-11 | 2023-08-22 | Riot Energy Inc. | Methods and systems for recharging a battery |
TWI661631B (en) * | 2014-11-20 | 2019-06-01 | 力智電子股份有限公司 | Battery protection device and operation method thereof |
US9684362B2 (en) | 2014-12-29 | 2017-06-20 | Quanta Computer Inc. | Battery powered device |
US10547189B2 (en) | 2015-04-29 | 2020-01-28 | Zpower, Llc | Temperature dependent charge algorithm |
CN113972884A (en) * | 2020-07-22 | 2022-01-25 | 致新科技股份有限公司 | Overvoltage protection circuit |
CN113972884B (en) * | 2020-07-22 | 2023-09-05 | 致新科技股份有限公司 | overvoltage protection circuit |
Also Published As
Publication number | Publication date |
---|---|
CN100589305C (en) | 2010-02-10 |
CN101179200A (en) | 2008-05-14 |
TWI336158B (en) | 2011-01-11 |
HK1118643A1 (en) | 2009-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200822484A (en) | Method for battery pack protection | |
TWI281299B (en) | Circuit for controlling precharge/discharge state and method, apparatus and system thereof | |
TWI273756B (en) | Power source device and charge controlling method to be used in same | |
US7646169B2 (en) | Trickle discharge for battery pack protection | |
TWI395964B (en) | Voltage detection circuit ,circuit and methods for multi-cell battery pack protection | |
JP5671595B2 (en) | Charge control device | |
TW513839B (en) | Charge circuit that performs charge control by comparing a plurality of battery voltages | |
CN100459366C (en) | Charging device for secondary cell and its charging method | |
JP4858378B2 (en) | Cell voltage monitoring device for multi-cell series batteries | |
TWI246215B (en) | Battery pack and a battery charging/discharging circuit incorporating the same | |
TWI436547B (en) | Method and apparatus for charging a battery system | |
US20090278501A1 (en) | Smart battery protector with impedance compensation | |
US20100253286A1 (en) | Power management circuit for rechargeable battery stack | |
JP2009044957A (en) | System and method for adjusting preliminary charging current in battery system | |
TW201830823A (en) | Control device, balance correction device, electric storage system and apparatus | |
TW200818656A (en) | Power surge filtering in over-current and short circuit protection | |
US11996714B2 (en) | Battery charger | |
TW201010245A (en) | Battery systems, charging /discharging circuits and methods for controlling battery charge /discharge | |
JP2010045963A (en) | Battery circuit and battery pack | |
JP2009077610A (en) | Charge/discharge protection circuit and battery pack | |
JP2003153460A (en) | Charging/discharging controller of storage battery | |
US6969997B2 (en) | Power source test instrument | |
KR20180114321A (en) | System for controlling a switching device | |
JPH06284594A (en) | Chargeable power supply apparatus | |
TW202324897A (en) | Power system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |