JP2000074988A - Production of semiconductor device - Google Patents
Production of semiconductor deviceInfo
- Publication number
- JP2000074988A JP2000074988A JP10241314A JP24131498A JP2000074988A JP 2000074988 A JP2000074988 A JP 2000074988A JP 10241314 A JP10241314 A JP 10241314A JP 24131498 A JP24131498 A JP 24131498A JP 2000074988 A JP2000074988 A JP 2000074988A
- Authority
- JP
- Japan
- Prior art keywords
- igbt
- chips
- semiconductor
- semiconductor chip
- turn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Testing Of Individual Semiconductor Devices (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、絶縁ゲート型バ
イポーラトランジスタ(以下、IGBTと称す)など第
一の主面に第一の主電極および制御電極、第二の主面に
第二の主電極を有する半導体チップを複数個、平形パッ
ケージ内に並置した加圧接触構造の半導体装置の製造方
法に関する。The present invention relates to a first main electrode and a control electrode on a first main surface such as an insulated gate bipolar transistor (hereinafter referred to as IGBT), and a second main electrode on a second main surface. The present invention relates to a method of manufacturing a semiconductor device having a pressure contact structure in which a plurality of semiconductor chips having the following are arranged in a flat package.
【0002】[0002]
【従来の技術】IGBTはパワースイッチングデバイス
として、幅広い分野で適用されている。また、電圧駆動
素子であるため制御が簡単で使いやすく、安全動作領域
が広いなどの点から、大容量装置の分野での適用を目的
に、複数個のIGBTチップを同一パッケージ内に集積
したモジュール構造を採用し、素子容量の増加を図って
いる。2. Description of the Related Art IGBTs have been applied in a wide range of fields as power switching devices. In addition, since it is a voltage drive element, it is easy to control and easy to use, and the safe operation area is wide. For this reason, a module in which a plurality of IGBT chips are integrated in the same package for the purpose of application in the field of large capacity devices. The structure is adopted to increase the element capacitance.
【0003】しかし、モジュール構造では、パッケージ
内のチップ数が増えるに従い、ボンディングワイヤの本
数が多くなり、内部インダクタンスが大きくなるとうい
う欠点や、放熱が片面でしかできないという欠点があ
る。これらの欠点を解決すべく加圧接触構造を有するM
OSデバイスとして、平形IGBTが登場してきた。半
導体装置の大電流化については、平形IGBTにおいて
もモジュール構造のIGBTと同様で、複数個のIGB
Tチップを組み込むことにより大電流化を達成してい
る。[0003] However, the module structure has the disadvantage that the number of bonding wires increases as the number of chips in the package increases and the internal inductance increases, and that heat can be dissipated only on one side. To solve these disadvantages, M
A flat IGBT has appeared as an OS device. Regarding the increase in the current of the semiconductor device, a plurality of IGBs are used in the flat type IGBT in the same manner as the module type IGBT.
A large current is achieved by incorporating a T chip.
【0004】そして、平形パッケージに組み込む複数個
のIGBTチップの組み合わせは、プロセス終了後のウ
エハの状態での静特性チェックデータを基に、しきい値
電圧、飽和電圧(VCE(sat) )のばらつきが小さくなる
ように組み合わせており、同一パッケージ内に並置する
複数個のフリーホイールダイオードについても、各々の
ダイオードの順電圧降下(VF )のばらつきが小さくな
るように組み合わせている。The combination of a plurality of IGBT chips to be incorporated in a flat package is based on the static characteristic check data in the state of the wafer after the process, and the variation of the threshold voltage and the saturation voltage (VCE (sat)). And a plurality of freewheeling diodes juxtaposed in the same package are also combined so as to reduce the variation in forward voltage drop (VF) of each diode.
【0005】これは、モジュールの組立工程を参考にし
たものであるが、従来のモジュール構造では、ワイヤボ
ンディングするために、パッケージに内蔵する前には、
各々のIGBTチップでの、定格相当のターンオフやタ
ーンオンおよび逆回復などのダイナミック試験はできな
かった。図5は従来の製造工程のブロック図である。半
導体ウエハにp形拡散、n形拡散、ゲート酸化膜付け、
各種電極形成などの各工程を施して、多数のIGBT単
位体が形成された半導体ウエハの各IGBT単位体の静
特性を測定するウエハでの静特性測定工程、半導体ウエ
ハをカッテングして、IGBTチップにするウエハカッ
ト工程、、IGBTチップの静特性を再測定し、選別す
る静特性選別工程、特性の揃った複数個のIGBTチッ
プを組み合わせる組合せ工程、組み合わされたIGBT
チップを平形パッケージに組み込む組立工程などを経て
平形IGBTは完成する。[0005] This is based on a module assembling process. However, in a conventional module structure, wire-bonding is performed before mounting in a package.
For each IGBT chip, a dynamic test such as turn-off, turn-on, and reverse recovery corresponding to the rating could not be performed. FIG. 5 is a block diagram of a conventional manufacturing process. P-type diffusion, n-type diffusion, gate oxide coating on semiconductor wafers,
A static characteristic measuring step for measuring the static characteristics of each IGBT unit of a semiconductor wafer on which a large number of IGBT units are formed by performing various steps such as forming various electrodes, and cutting the semiconductor wafer to form an IGBT chip Wafer cutting step, static characteristic selection step of re-measuring and selecting static characteristics of IGBT chips, combination step of combining a plurality of IGBT chips with uniform characteristics, combined IGBT
The flat IGBT is completed through an assembly process of incorporating the chip into a flat package.
【0006】[0006]
【発明が解決しようとする課題】前記のように静特性の
ばらつきを小さくして、複数個のIGBTチップを組み
合わせても、各々のIGBTチップのスイッチング特性
のばらつきが小さいかどうか判断できない。実際、平形
IGBTでは前記の組立工程にて組み立てた素子におい
て、試験工程でのターンオフ試験良品率は約50%程度
に留まっている。このため、ターンオフ破壊の原因を調
査した結果、静特性のばらつきを小さくしIGBTチッ
プの組み合わせを行っても、IGBTチップ間ではター
ンオフ時間のばらつきが最大約40%程度となり、スイ
ッチング時間のばらつきによる電流集中が原因となって
破壊していることが判明した。この結果から、平形IG
BTのように電流容量が大きく、内蔵するIGBTチッ
プを増やすことにより、電流容量を大きくするような半
導体装置においては、組立時にパッケージ内に組み込ま
れる複数個のIGBTチップのダイナミックな電流分担
の均一化、すなわちスイッチング特性、特にターンオフ
特性のばらつきを小さくしなければ、大電流遮断時に特
定のIGBTチップに電流が集中して、ターンオフ破壊
する可能性が非常に高い。As described above, even if the variation in static characteristics is reduced and a plurality of IGBT chips are combined, it cannot be determined whether the variation in switching characteristics of each IGBT chip is small. Actually, in the flat IGBT, in the device assembled in the above-described assembling process, the non-defective rate of the turn-off test in the test process is only about 50%. For this reason, as a result of investigating the cause of the turn-off breakdown, even if the variation in static characteristics is reduced and the IGBT chips are combined, the variation in the turn-off time between the IGBT chips is about 40% at the maximum, and the current due to the variation in the switching time is reduced. It turned out to be destroyed due to concentration. From these results, the flat IG
In a semiconductor device having a large current capacity such as a BT and having a large current capacity by increasing the number of built-in IGBT chips, the dynamic current sharing of a plurality of IGBT chips incorporated in a package at the time of assembly is made uniform. That is, unless the variation in the switching characteristics, especially the turn-off characteristics is reduced, there is a very high possibility that the current concentrates on a specific IGBT chip at the time of interrupting a large current to cause a turn-off breakdown.
【0007】この発明の目的は、前記の課題を解決し
て、ターンオフ破壊耐量の大きな平形パッケージに複数
個のIGBTチップを収納した半導体装置の製造方法を
提供することにある。An object of the present invention is to solve the above-mentioned problems and to provide a method of manufacturing a semiconductor device in which a plurality of IGBT chips are housed in a flat package having a large turn-off breakdown resistance.
【0008】[0008]
【課題を解決するための手段】前記の目的を達成するた
めに、第一の主面に第一の主電極と制御電極、第二の主
面に第二の主電極を有する半導体チップを複数個並置し
て平形パッケージに組み込んだ半導体装置で、両面に露
出する一対の共通電極板と、両共通電極板に具備された
絶縁ケースからなる平形パッケージに組み込む半導体チ
ップに対し、一方の共通電極板と各半導体チップの第一
の主電極との間に加圧・導電・放熱体を兼ねたコンタク
ト端子体を具備した加圧接触構造の半導体装置の製造方
法において、各半導体チップのスイッチング特性を測定
する工程と、特性の揃った半導体チップを選別する工程
と、選別された半導体チップを平形パッケージに組み込
む工程とを含む製造工程とする。In order to achieve the above object, a semiconductor chip having a first main electrode and a control electrode on a first main surface and a second main electrode on a second main surface is provided. A semiconductor device incorporated in a flat package by juxtaposition with a pair of common electrode plates exposed on both sides and a semiconductor chip incorporated in a flat package consisting of an insulating case provided on both common electrode plates. The switching characteristic of each semiconductor chip is measured in a method of manufacturing a semiconductor device having a pressure contact structure having a contact terminal body serving also as a pressurizing, conducting, and radiating member between the semiconductor device and a first main electrode of each semiconductor chip. And a step of selecting a semiconductor chip having uniform characteristics, and a step of incorporating the selected semiconductor chip into a flat package.
【0009】前記スイッチング特性が、ターンオフ動作
時の遅延時間(td(off)) で、該遅延時間のばらつきが
10%以内である半導体チップを選別する工程を含むと
よい。前記半導体チップが絶縁ゲート型バイポーラトラ
ンジスタ、MOS制御型サイリスタおよびMOSトラン
ジスタのいずれかであるとよい。Preferably, the method includes a step of selecting a semiconductor chip whose switching characteristic is a delay time (td (off)) at the time of a turn-off operation and the variation of the delay time is within 10%. The semiconductor chip may be any one of an insulated gate bipolar transistor, a MOS controlled thyristor, and a MOS transistor.
【0010】前記のように、組立前に各々の半導体チッ
プのスイッチング特性の測定を行い、スイッチング特
性、特にtd(off)のばらつきを小さくするように、IG
BTチップの組み合わせを行う。td(off)のばらつきが
小さいとIGBTチップ間のターンオフ時の電流分担が
均一化される。その結果、特定のIGBTチップに電流
集中して素子が破壊することを防止できる。As described above, the switching characteristics of each semiconductor chip are measured before assembling, and the switching characteristics, in particular, the IG values are set so as to reduce variations in td (off).
BT chips are combined. If the variation of td (off) is small, the current sharing between the IGBT chips at the time of turn-off becomes uniform. As a result, it is possible to prevent the current from being concentrated on a specific IGBT chip and the element from being broken.
【0011】[0011]
【発明の実施の形態】以下、この発明の実施例を図面を
基に説明する。MOSデバイスとしてIGBTを例とし
て説明する。図1はこの発明の一実施例の製造工程を示
すブロック図である。ウエハカット工程で、各種拡散工
程を経たIGBTチップが集積しているシリコンウエハ
を、各IGBTチップに切断分離する。スイッチング特
性測定工程で、各IGBTチップのスイッチング特性
(ターンオフ時間、ターンオン時間など)を測定し、規
格値内のIGBTチップを選別する。td(off)選別工程
で、選別されたこのIGBTチップのうち、td(off)の
ばらつきが10%以内になるIGBTチップを選別す
る。つぎに、静特性測定工程で、選別されたこのIGB
Tチップの静特性(飽和電圧(VCE(sat) )、コレクタ
・エミッタ間耐圧(VCEO )、ゲート・エミッタ耐圧
(VGE)など)を測定し、規格値内のIGBTチップを
選別する。組合工程で、スイッチング特性および静特性
が規格値内で、且つ、td(off)のばらつきが10%以内
にあるIGBTチップを組み合わせる。組立工程で、組
み合わされた複数個のIGBTチップを平形パッケージ
に収納する。以下に、さらに詳細に説明する。Embodiments of the present invention will be described below with reference to the drawings. An IGBT will be described as an example of a MOS device. FIG. 1 is a block diagram showing a manufacturing process according to one embodiment of the present invention. In a wafer cutting step, a silicon wafer on which IGBT chips that have undergone various diffusion steps are integrated is cut and separated into individual IGBT chips. In the switching characteristic measuring step, the switching characteristics (turn-off time, turn-on time, etc.) of each IGBT chip are measured, and IGBT chips within the standard value are selected. In the td (off) selection step, among the IGBT chips selected, the IGBT chips whose variation in td (off) is within 10% are selected. Next, the IGB selected in the static characteristic measurement step
The static characteristics (saturation voltage (VCE (sat)), collector-emitter breakdown voltage (VCEO), gate-emitter breakdown voltage (VGE), etc.) of the T chip are measured, and IGBT chips within the standard value are selected. In the combining step, IGBT chips whose switching characteristics and static characteristics are within specified values and whose variation in td (off) is within 10% are combined. In the assembling process, a plurality of IGBT chips combined are housed in a flat package. The details will be described below.
【0012】図2はスイッチング特性を測定するIGB
Tエレメントの要部断面図である。ベース板1上にIG
BTチップ2、加圧・導電・放熱の役割をするコンタク
ト端子体3を積み上げる。これらは位置決めガイド4に
より正確に位置決めされ、IGBTエレメント10とな
る。位置決め用つば6はコンタクト端子体3に固着さ
れ、コンタクト端子体4を位置決めする。スイッチング
特性や静特性を測定し、選別した後、このIGBTチッ
プ2を組み込んだIGBTエレメント10を平形パッケ
ージに収納される。FIG. 2 shows an IGB for measuring switching characteristics.
It is principal part sectional drawing of a T element. IG on base plate 1
The BT chip 2 and the contact terminals 3 which play the role of pressurization, conduction and heat dissipation are stacked. These are accurately positioned by the positioning guide 4 and become the IGBT element 10. The positioning collar 6 is fixed to the contact terminal body 3 and positions the contact terminal body 4. After measuring and sorting the switching characteristics and static characteristics, the IGBT element 10 incorporating the IGBT chip 2 is housed in a flat package.
【0013】図3はIGBTチップのスイッチング特性
および静特性を測定する状態を示す図である。前記のI
GBTエレメント10を上下加圧プレス電極11、12
で構成される加圧プレス20にセットし、IGBTエレ
メント10を加圧する。また、IGBTチップ2の図示
されないゲート電極には、ゲートプローブ5を介してゲ
ート駆動回路23から制御信号が送られる。この加圧プ
レス20にはスイッチング特性測定回路21が接続され
ている。このスイッチング特性測定回路21でターンオ
フ時間、ターンオン時間やダイオードの逆回復特性など
を測定する。また、切り換えスイッチ24で、静特性測
定回路22にも接続できるようになる。スイッチング特
性測定においては、IGBTエレメント10を多数個用
意しておき、IGBTエレメント10すべてについてス
イッチング特性の測定を行う。測定条件としては、IG
BTチップ2の定格から数倍を保証する条件の電流と電
圧を供給する。FIG. 3 is a diagram showing a state in which the switching characteristics and the static characteristics of the IGBT chip are measured. Said I
The GBT element 10 is vertically pressed by pressing electrodes 11 and 12.
And pressurizes the IGBT element 10. Further, a control signal is sent from the gate drive circuit 23 to the gate electrode (not shown) of the IGBT chip 2 via the gate probe 5. A switching characteristic measuring circuit 21 is connected to the press press 20. The switching characteristic measuring circuit 21 measures the turn-off time, the turn-on time, the reverse recovery characteristic of the diode, and the like. Further, the changeover switch 24 enables connection to the static characteristic measurement circuit 22. In the switching characteristic measurement, a large number of IGBT elements 10 are prepared, and the switching characteristics of all the IGBT elements 10 are measured. The measurement conditions were IG
The BT chip 2 is supplied with a current and a voltage under conditions that guarantee several times the rating.
【0014】図4はIGBTのターンオフ時間の定義を
示した図で、同図(a)はゲートエミッタ電圧波形、同
図(b)はコレクタ電流波形である。スイッチング特性
測定回路21で、IGBTエレメント10にゲート電圧
とコレクタ電流を供給する。ターンオフ動作時のゲート
電圧波形とコレクタ電流波形からターンオフ時間toff
、遅延時間td(off)、下降時間tf のデータを取得す
ることができる。これらはつぎのように定義される。
(1)td(off)はゲート電圧が最大値の90%になって
から、コレクタ電流が最大値の90%になるまでの時間
である。(2)tfはコレクタ電流が最大値の90%か
ら10%になるまでの時間である。(3)toff はtd
(off)とtf を足した時間である。FIG. 4 shows the definition of the turn-off time of the IGBT. FIG. 4A shows the gate-emitter voltage waveform, and FIG. 4B shows the collector current waveform. The switching characteristic measuring circuit 21 supplies a gate voltage and a collector current to the IGBT element 10. Turn-off time toff from gate voltage waveform and collector current waveform during turn-off operation
, Delay time td (off) and fall time tf. These are defined as follows:
(1) td (off) is the time from when the gate voltage becomes 90% of the maximum value to when the collector current becomes 90% of the maximum value. (2) tf is the time required for the collector current to change from 90% to 10% of the maximum value. (3) toff is td
This is the time obtained by adding (off) and tf.
【0015】これらのデータの中でターンオフ動作時の
電流分担に最も影響のあるのはtd(off)であり、このt
d(off)のばらつぎが10%以内になるようにIGBTエ
レメントを選別して組み合わせる。また、定格の数倍の
コレクタ電流を遮断する試験を行うことにより、IGB
Tチップ2として、十分なターンオフ耐量を有している
かを確認する。尚、td(off)のばらつぎを10%以内と
したのは、数倍のコレクタ電流遮断試験で、良品率を9
0%以上とするためである。Of these data, td (off) has the greatest influence on the current sharing during the turn-off operation.
IGBT elements are selected and combined so that the variation of d (off) is within 10%. In addition, by conducting a test to cut off the collector current several times the rated current,
It is checked whether the T chip 2 has a sufficient turn-off capability. The reason why the variation of td (off) was set within 10% was that the non-defective rate was 9% in the collector current cutoff test of several times.
This is because it is set to 0% or more.
【0016】すべてのIGBTチップ2のスイッチング
特性の測定と、td(off)の選別が終了した後、静特性測
定回路22に切り換えて、VCE(sat) 、VCEO 、VGEに
異常がないことを確認する。また、フリーホイールダイ
オードを同一パッケージ内に組み込む場合には、ダイオ
ードの静特性および逆回復特性の測定を行い、これらの
特性が規格値内であるものを選別し、さらに、逆回復特
性であるtrr(逆回復時間)、Irp(逆回復ピーク電
流)のそれぞれのばらつきが10%以内になるようにダ
イオードチップを選別して組み合わせる。勿論、ダイオ
ードについても、十分な逆回復耐量を有することを確認
し、逆回復特性の測定後のアノード・カソード間耐圧を
確認する。After the measurement of the switching characteristics of all the IGBT chips 2 and the selection of td (off) are completed, the operation is switched to the static characteristic measuring circuit 22 to confirm that VCE (sat), VCEO, and VGE are normal. I do. When the freewheeling diode is incorporated in the same package, the static characteristics and the reverse recovery characteristics of the diode are measured, and those having these characteristics within the specified values are selected. (Reverse recovery time) and diode chips are selected and combined so that each variation of Irp (reverse recovery peak current) is within 10%. Of course, the diode is also confirmed to have a sufficient reverse recovery withstand voltage, and the anode-cathode breakdown voltage after the measurement of the reverse recovery characteristic is confirmed.
【0017】前記の工程にて、td(off)のばらつきを1
0%以内とした組み合わせのIGBTチップを 次工程
である組立工程に送る。また、ダイオードを組み込む場
合は選別をした後、ダイオードチップも組立工程に送
る。In the above process, the variation of td (off) is reduced by 1
The IGBT chip with the combination within 0% is sent to the next assembly process. In the case of incorporating a diode, after sorting, the diode chip is also sent to the assembling process.
【0018】[0018]
【発明の効果】この発明により、平形パッケージ内に内
蔵する複数個の加圧接触構造を有するMOSデバイスに
ついて、スイッチング特性を揃えた半導体チップを組み
合わせることができ、半導体チップ間の電流分担を均等
化できるだけでなく、半導体装置としての定格電流の数
倍の電流に対しても破壊することなく遮断できて、良品
率を大幅にに向上できる。また、スイッチング特性の測
定を、組み立て前のすべてのチップについて行うことに
より、スイッチング特性が不良である半導体チップを組
立て前に除くことができ、半導体装置の良品率を向上さ
せることができる。さらに、フリーホイールダイオード
を同一パッケージに収納する場合も、同様に、ダイオー
ドチップのスイッチング特性を揃えて、平形パッケージ
に収納できるので、フリーホイールダイオードを有する
半導体装置の良品率を向上させることができる。According to the present invention, for a MOS device having a plurality of pressure contact structures built in a flat package, semiconductor chips having the same switching characteristics can be combined, and current sharing between the semiconductor chips can be equalized. Not only can it cut off a current several times higher than the rated current of the semiconductor device without breaking it, and the non-defective product rate can be greatly improved. In addition, by measuring the switching characteristics of all the chips before assembly, semiconductor chips having poor switching characteristics can be removed before assembly, and the yield of semiconductor devices can be improved. Further, even when the freewheel diode is housed in the same package, the switching characteristics of the diode chips can be similarly adjusted and housed in a flat package, so that the yield of semiconductor devices having the freewheel diode can be improved.
【図1】この発明の一実施例の製造工程を示すブロック
図FIG. 1 is a block diagram showing a manufacturing process according to an embodiment of the present invention.
【図2】スイッチング特性を測定するIGBTエレメン
トの要部断面図FIG. 2 is a sectional view of a main part of an IGBT element for measuring switching characteristics.
【図3】IGBTチップのスイッチング特性および静特
性を測定する状態を示す図FIG. 3 is a diagram showing a state in which switching characteristics and static characteristics of an IGBT chip are measured.
【図4】IGBTのターンオフ時間の定義を示した図FIG. 4 is a diagram showing a definition of a turn-off time of the IGBT.
【図5】従来の製造工程を示すブロック図FIG. 5 is a block diagram showing a conventional manufacturing process.
1 ベース板 2 IGBTチップ 3 コンタクト端子体 4 位置決めガイド 5 ゲートプローブ 6 位置決め用つば 10 IGBTエレメント 11 下部プレス電極 12 上部プレス電極 20 加圧プレス 21 スイッチング特性測定回路 22 静特性測定回路 23 ゲート駆動回路 24 切り換えスイッチ Reference Signs List 1 base plate 2 IGBT chip 3 contact terminal body 4 positioning guide 5 gate probe 6 positioning collar 10 IGBT element 11 lower press electrode 12 upper press electrode 20 press press 21 switching characteristic measuring circuit 22 static characteristic measuring circuit 23 gate driving circuit 24 Switch
Claims (3)
二の主面に第二の主電極を有する半導体チップを複数個
並置して平形パッケージに組み込んだ半導体装置で、両
面に露出する一対の共通電極板と、両共通電極板に具備
された絶縁ケースからなる平形パッケージに組み込む半
導体チップに対し、一方の共通電極板と各半導体チップ
の第一の主電極との間に加圧・導電・放熱体を兼ねたコ
ンタクト端子体を具備した加圧接触構造の半導体装置の
製造方法において、各半導体チップのスイッチング特性
を測定する工程と、特性の揃った半導体チップを選別す
る工程と、選別された半導体チップを平形パッケージに
組み込む工程とを含む半導体装置の製造方法。1. A semiconductor device comprising: a plurality of semiconductor chips having a first main electrode and a control electrode on a first main surface and a plurality of semiconductor chips having a second main electrode on a second main surface, which are incorporated in a flat package; A pair of common electrode plates exposed on both sides, and a semiconductor chip incorporated in a flat package consisting of an insulating case provided on both common electrode plates, between one common electrode plate and the first main electrode of each semiconductor chip. In a method of manufacturing a semiconductor device having a pressure contact structure having a contact terminal body also serving as a pressure, conduction, and heat radiator, a step of measuring switching characteristics of each semiconductor chip and a step of selecting semiconductor chips having uniform characteristics. A method for manufacturing a semiconductor device, comprising: a step of incorporating a selected semiconductor chip into a flat package.
の遅延時間(td(off)) で、該遅延時間のばらつきが1
0%以内である半導体チップを選別する工程を含むこと
を特徴とする請求項1に記載の半導体装置の製造方法。2. The switching characteristic is a delay time (td (off)) at the time of turn-off operation, and the variation of the delay time is 1
2. The method for manufacturing a semiconductor device according to claim 1, further comprising a step of selecting a semiconductor chip that is within 0%.
ラトランジスタ、MOS制御型サイリスタおよびMOS
トランジスタのいずれかであることを特徴とする請求項
1に記載の半導体装置の製造方法。3. The semiconductor chip according to claim 1, wherein said semiconductor chip is an insulated gate bipolar transistor, a MOS controlled thyristor and a MOS transistor.
The method according to claim 1, wherein the method is any one of a transistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10241314A JP2000074988A (en) | 1998-08-27 | 1998-08-27 | Production of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10241314A JP2000074988A (en) | 1998-08-27 | 1998-08-27 | Production of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000074988A true JP2000074988A (en) | 2000-03-14 |
Family
ID=17072458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10241314A Withdrawn JP2000074988A (en) | 1998-08-27 | 1998-08-27 | Production of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000074988A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2006041059A1 (en) * | 2004-10-12 | 2008-05-15 | 株式会社アドバンテスト | Test apparatus, test method, and electronic device |
JP2008157695A (en) * | 2006-12-22 | 2008-07-10 | Fuji Electric Device Technology Co Ltd | Semiconductor element evaluation device, and semiconductor element evaluating method |
JP2008235308A (en) * | 2007-03-16 | 2008-10-02 | Shindengen Electric Mfg Co Ltd | Inspection method and apparatus of semiconductor device |
JP2011047782A (en) * | 2009-08-27 | 2011-03-10 | Tokyo Electron Ltd | Method for evaluating semiconductor device |
JP2012198127A (en) * | 2011-03-22 | 2012-10-18 | Shindengen Electric Mfg Co Ltd | Inspection circuit for semiconductor device, inspection method for semiconductor device, and semiconductor device inspected by the inspection method |
JP2013231626A (en) * | 2012-04-27 | 2013-11-14 | Honda Motor Co Ltd | Electrification inspection apparatus for semiconductor chip and electrification inspection method of semiconductor chip |
JP2020101410A (en) * | 2018-12-20 | 2020-07-02 | 三菱電機株式会社 | Device and method for inspecting electronic component |
-
1998
- 1998-08-27 JP JP10241314A patent/JP2000074988A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2006041059A1 (en) * | 2004-10-12 | 2008-05-15 | 株式会社アドバンテスト | Test apparatus, test method, and electronic device |
JP4644205B2 (en) * | 2004-10-12 | 2011-03-02 | 株式会社アドバンテスト | Test apparatus, test method, and electronic device |
JP2008157695A (en) * | 2006-12-22 | 2008-07-10 | Fuji Electric Device Technology Co Ltd | Semiconductor element evaluation device, and semiconductor element evaluating method |
JP2008235308A (en) * | 2007-03-16 | 2008-10-02 | Shindengen Electric Mfg Co Ltd | Inspection method and apparatus of semiconductor device |
JP2011047782A (en) * | 2009-08-27 | 2011-03-10 | Tokyo Electron Ltd | Method for evaluating semiconductor device |
US8471585B2 (en) | 2009-08-27 | 2013-06-25 | Tokyo Electron Limited | Method for evaluating semiconductor device |
JP2012198127A (en) * | 2011-03-22 | 2012-10-18 | Shindengen Electric Mfg Co Ltd | Inspection circuit for semiconductor device, inspection method for semiconductor device, and semiconductor device inspected by the inspection method |
JP2013231626A (en) * | 2012-04-27 | 2013-11-14 | Honda Motor Co Ltd | Electrification inspection apparatus for semiconductor chip and electrification inspection method of semiconductor chip |
JP2020101410A (en) * | 2018-12-20 | 2020-07-02 | 三菱電機株式会社 | Device and method for inspecting electronic component |
JP7006578B2 (en) | 2018-12-20 | 2022-01-24 | 三菱電機株式会社 | Inspection equipment and inspection method for electronic components |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3256636B2 (en) | Pressure contact type semiconductor device | |
US6605830B1 (en) | Power semiconductor device including an IGBT with a MOS transistor as a current suppressing device incorporated therein | |
US9806029B2 (en) | Transistor arrangement with semiconductor chips between two substrates | |
JPH04311064A (en) | Turnoff-control type high-power semiconductor component | |
US20150069463A1 (en) | Substrate for mounting multiple power transistors thereon and power semiconductor module | |
US5436502A (en) | Semiconductor component and method for the manufacturing thereof | |
JPH0758782B2 (en) | Semiconductor device | |
US6281569B1 (en) | Pressure-contact semiconductor device | |
US20190214333A1 (en) | Serially-connected transistor device | |
JP2000074988A (en) | Production of semiconductor device | |
US4862239A (en) | Power semiconductor component | |
JP4706551B2 (en) | Power semiconductor element and power module | |
US20070069252A1 (en) | Insulated gate semiconductor device having a clamping element to clamp gate-emitter voltage and method of manufacturing thereof | |
WO2022177617A1 (en) | Double-sided chip stack assembly with multiple topside connections | |
JP2000058820A (en) | Power semiconductor element and power module | |
JP3973832B2 (en) | Pressure contact type semiconductor device | |
US11545479B2 (en) | Semiconductor device module and method of assembly | |
JP2000183282A (en) | Device and module of semiconductor | |
JP3525823B2 (en) | Mounting structure of complementary IGBT | |
JP4218479B2 (en) | Semiconductor device | |
JP3507714B2 (en) | Multi-chip module type semiconductor device | |
JP2002505525A (en) | Insulated gate bipolar transistor | |
CN219811493U (en) | Power device packaging structure | |
JPH0878619A (en) | Semiconductor device for electric power | |
KR102434465B1 (en) | Flip-stack type semiconductor package and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050304 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051018 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20051219 |