JP2000058820A - Power semiconductor element and power module - Google Patents

Power semiconductor element and power module

Info

Publication number
JP2000058820A
JP2000058820A JP10224028A JP22402898A JP2000058820A JP 2000058820 A JP2000058820 A JP 2000058820A JP 10224028 A JP10224028 A JP 10224028A JP 22402898 A JP22402898 A JP 22402898A JP 2000058820 A JP2000058820 A JP 2000058820A
Authority
JP
Japan
Prior art keywords
electrode
igbt
region
layer
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10224028A
Other languages
Japanese (ja)
Inventor
Akihiro Tanba
昭浩 丹波
Ryoichi Kajiwara
良一 梶原
Koichi Inoue
広一 井上
Kazuji Yamada
一二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10224028A priority Critical patent/JP2000058820A/en
Publication of JP2000058820A publication Critical patent/JP2000058820A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide electrode structure where capability and reliability in an element can be improved in a power semiconductor element. SOLUTION: In a power semiconductor element, first electrodes 12 are installed on the surface of a semiconductor layer, interlayer insulating layers 11 are formed on the surfaces of the first electrodes 12, and a second electrode 10 is installed just above the first electrodes 11 on the surface of the interlayer insulating layers 11. Since the area utilization factor of the element is improved and the damage to bonding is relieved, the capability and reliability of the power semiconductor element can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、インバータ等の電
力変換装置に用いられるパワー半導体素子及びパワーモ
ジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power semiconductor device and a power module used for a power converter such as an inverter.

【0002】[0002]

【従来の技術】代表的パワー半導体素子であるIGBT
は、ライフタイム制御,微細化等の手法により、スイッ
チング時間短縮、及び低飽和電圧化の低損失化が着実に
進んでいる。しかしながら、低飽和電圧化の結果、IG
BTの飽和電流も増大し、負荷短絡,上下アーム短絡、
等によりIGBTに飽和電流が流れた場合の素子破壊が
問題になってきている。いわゆる短絡耐量の低下であ
る。この問題を解決するために、IGBTとゲート駆動
回路,過電流保護回路等の各種保護回路を一つのパッケ
ージに封止した、インテリジェントパワーモジュール
(IPM)が、IGBTモジュールにおいて一般的になっ
てきている。
2. Description of the Related Art IGBT which is a typical power semiconductor device
With the use of techniques such as lifetime control and miniaturization, reduction of switching time and reduction of loss due to low saturation voltage are steadily progressing. However, as a result of the low saturation voltage, IG
The saturation current of the BT also increases, shorting the load, shorting the upper and lower arms,
For example, device destruction when a saturation current flows through the IGBT has become a problem. This is a reduction in short-circuit withstand capability. In order to solve this problem, an intelligent power module in which various protection circuits such as an IGBT and a gate drive circuit and an overcurrent protection circuit are sealed in one package
(IPM) is becoming popular in IGBT modules.

【0003】IPMを実現するためには、IGBT中に
流れる電流をモニタしなければならない。このために、
主電流の数千分の一の電流を検出する端子を備えたIG
BT(センス端子付きIGBT)が必要である。図4に
センス端子付きIGBTの等価回路を示す。ゲート端子
43,コレクタ端子42共通で、センスIGBT40と主IGBT
41が並列接続された構造である。センスIGBT40の電流は
主IGBT41の数千分の一のため、通電に寄与する、いわゆ
るアクティブ領域の面積は主IGBT41の数千分の一であ
る。センスIGBT40のエミッタ端子がセンス端子44とな
り、電流検出回路(通常、抵抗)へ接続される。
In order to realize the IPM, it is necessary to monitor a current flowing in the IGBT. For this,
IG equipped with a terminal for detecting a current of one thousandth of the main current
BT (IGBT with sense terminal) is required. FIG. 4 shows an equivalent circuit of an IGBT with a sense terminal. Common to the gate terminal 43 and the collector terminal 42, the sense IGBT 40 and the main IGBT
41 is a structure connected in parallel. Since the current of the sense IGBT 40 is several thousandths of that of the main IGBT 41, the area of the so-called active region that contributes to energization is several thousandths of that of the main IGBT 41. The emitter terminal of the sense IGBT 40 becomes the sense terminal 44 and is connected to a current detection circuit (usually a resistor).

【0004】図2はセンス端子付きIGBTの平面構造
模式図である。アルミ電極パタンを模式的に示してい
る。ゲート電極のワイヤボンディング領域(ゲートパッ
ド)21からチップ全体にゲート電極Al配線24が形
成され、その他、ほとんどの領域が主IGBT41のエミッタ
電極20である。ゲートパッド21とほぼ同面積の電極
パッド22がセンス端子(センスIGBT40のエミッタ端子
44)のワイヤボンディング領域(センスパッド)であ
る。ゲートパッド21とセンスパッド22の大きさは、
Alワイヤをボンディングするために必要な面積で決定
される。例えば、線経0.3mm のAlワイヤをボンディ
ングする場合、パッドの大きさは概略、1mm2 程度であ
る。矩形で囲んだ領域23はセンスIGBT40のアクティブ
領域を示している。前述のように、このアクティブ領域
は主IGBT41(ほぼチップ全体)の数千分の一であるた
め、ボンディングに必要な面積1mm2 程度よりもはるか
に小さい。
FIG. 2 is a schematic plan view of an IGBT with a sense terminal. 5 schematically shows an aluminum electrode pattern. A gate electrode Al wiring 24 is formed on the entire chip from a wire bonding region (gate pad) 21 of the gate electrode, and most other regions are the emitter electrode 20 of the main IGBT 41. The electrode pad 22 having substantially the same area as the gate pad 21 is a wire bonding region (sense pad) of the sense terminal (the emitter terminal 44 of the sense IGBT 40). The size of the gate pad 21 and the sense pad 22
It is determined by the area required for bonding the Al wire. For example, when bonding an Al wire having a meridian of 0.3 mm, the size of the pad is approximately 1 mm 2 . An area 23 surrounded by a rectangle indicates an active area of the sense IGBT 40. As described above, since this active region is one-thousandth of the main IGBT 41 (almost the entire chip), it is much smaller than the area required for bonding of about 1 mm 2 .

【0005】また、IGBTの実装上キーとなる、電気
的接続は、低コストであることから、Alワイヤの超音
波ボンディングが一般的である。これはIGBTのAl
電極にAlワイヤを数百グラムの圧力で加圧しながら超
音波で溶接するものである。
[0005] In addition, ultrasonic bonding of an Al wire is generally used because the electrical connection, which is a key in mounting the IGBT, is inexpensive. This is Al of IGBT
An ultrasonic welding is performed while pressing an Al wire on the electrode with a pressure of several hundred grams.

【0006】[0006]

【発明が解決しようとする課題】上記、従来のセンス端
子付きIGBTは、低損失化に関して以下の問題があ
る。上述のように、センスパッド22下のアクティブ領
域23の面積は、センスパッド22の大きさよりもはる
かに小さい。この部分の断面構造の一例を模式図で図3
に示す。領域19がセンスIGBT40のアクティブ領域23
であり、いわゆる通常のIGBT構造である。n+−エ
ミッタ13,p−ベース14,p+−領域15,ゲート
電極(poly−Si)102,n- −ベース16、p+
コレクタ17から構成されている。Al電極33がセン
スIGBTのエミッタ電極であるセンスパッド22であ
る。センスIGBT領域19以外の領域32は素子分離
用酸化膜31、深いp+ −層(p−well層)30より構
成されている。p−well層30は主IGBT41のエミッタ端
子45と短絡されている。この領域には、本来、主IGBT
41のアクティブ領域が存在すべきであるが、この領域上
にはセンスパッド22が存在するために、エミッタ電極
を形成することができないのである。そこで、エミッタ
電極をフローティングにしたIGBTセルを多数存在さ
せることはラッチアップ等の問題があり、センスパッド
22下のセンスIGBT領域19以外の領域はすべて領
域32となっている。従って、センスパッド下にIGB
Tはほとんど形成されない。つまり、センスパッド22
の下のほとんどの領域は通電に寄与しないデッドスペー
スになっているのである。このことはIGBTチップの
飽和電圧を増大させることになり、低飽和電圧が高性能
化の重要な指針であるパワー半導体デバイスにとって重
大な欠点になる。
The above-mentioned conventional IGBT with a sense terminal has the following problems with regard to low loss. As described above, the area of the active region 23 below the sense pad 22 is much smaller than the size of the sense pad 22. FIG. 3 is a schematic diagram showing an example of a cross-sectional structure of this portion.
Shown in Region 19 is active region 23 of sense IGBT 40
Which is a so-called normal IGBT structure. n + - emitter 13, p-base 14, p + - region 15, the gate electrode (poly-Si) 102, n - - the base 16, p + -
It is composed of a collector 17. The Al electrode 33 is the sense pad 22 which is the emitter electrode of the sense IGBT. A region 32 other than the sense IGBT region 19 is constituted by an element isolation oxide film 31 and a deep p + -layer (p-well layer) 30. The p-well layer 30 is short-circuited to the emitter terminal 45 of the main IGBT 41. In this area, the primary IGBT
There should be 41 active areas, but the emitter pads cannot be formed because of the presence of the sense pads 22 on this area. Therefore, the presence of a large number of IGBT cells with the emitter electrode floating causes a problem such as latch-up, and all regions other than the sense IGBT region 19 under the sense pad 22 are regions 32. Therefore, IGB under the sense pad
T is hardly formed. That is, the sense pad 22
Most of the area under is a dead space that does not contribute to energization. This leads to an increase in the saturation voltage of the IGBT chip, which is a serious drawback for power semiconductor devices where low saturation voltage is an important indicator of high performance.

【0007】また、上記理由により、センスIGBT領
域23をチップ中複数設けることは現実的に不可能であ
り、一箇所のみとなる。従って、主IGBT41とセンスIGBT
40のゲート抵抗等の差が顕著となり、両者の動作に不均
一が生じ、電流比が過渡的に異なってしまう、等の問題
も生じる。
Further, for the above-mentioned reason, it is practically impossible to provide a plurality of sense IGBT regions 23 in a chip, but only at one place. Therefore, the main IGBT41 and the sense IGBT
For example, the difference between the gate resistances and the like of 40 is remarkable, and the operations of the two become non-uniform, causing a problem that the current ratio changes transiently.

【0008】さらには、温度検出等、その他の機能をI
GBTチップ中に持たせてチップ外の制御回路と接続す
る場合、Al電極パッドが多数となり、主IGBT41領域の
減少は顕著となる。
Further, other functions such as temperature detection are provided by I
When it is provided in a GBT chip and connected to a control circuit outside the chip, the number of Al electrode pads becomes large, and the area of the main IGBT 41 is significantly reduced.

【0009】次に、上記IGBT実装上の問題として、
Alワイヤボンディングによる素子耐圧劣化が挙げられ
る。この原因は以下のとおりである。IGBTのAl電
極中には微量にSiが存在する。このSiは電極膜中、
局所的に析出し(Siノジュール)、くさび型の形状に
なる場合がある。すると、この析出したSiは、超音波
ボンディング時に激しくゆさぶられ、IGBTのパッシ
ベーション膜を突き破り、IGBTの拡散層中につき刺
さる。この現象が生じると、例えば、エミッタ,コレク
タ間の短絡が発生し、IGBTは動作不良となる。この
現象は、IGBTの高性能化のために拡散層が浅くなると発
生しやすくなり、Alワイヤボンディングによる歩留り
低下は顕著になる。
Next, as a problem in mounting the IGBT,
Degradation of element breakdown voltage due to Al wire bonding can be cited. The cause is as follows. A small amount of Si exists in the Al electrode of the IGBT. This Si is contained in the electrode film.
It may locally precipitate (Si nodule) and form a wedge shape. Then, the deposited Si is violently shaken during the ultrasonic bonding, breaks through the passivation film of the IGBT, and penetrates into the diffusion layer of the IGBT. When this phenomenon occurs, for example, a short circuit occurs between the emitter and the collector, and the IGBT malfunctions. This phenomenon is more likely to occur when the diffusion layer is shallower for higher performance of the IGBT, and the yield reduction due to Al wire bonding becomes remarkable.

【0010】本発明は、上記のような問題を考慮してな
されたものであり、パワー半導体素子において、素子の
性能や信頼性を向上できる電極構造を提供することを目
的とする。
The present invention has been made in consideration of the above problems, and has as its object to provide an electrode structure in a power semiconductor device that can improve the performance and reliability of the device.

【0011】[0011]

【課題を解決するための手段】本発明によるパワー半導
体素子の主要構成は、半導体層の表面上に設けられる第
1の電極と、第1の電極の表面上に位置する層間絶縁層
と、層間絶縁層の表面上において第1の電極の直上に位
置する第2の電極を有する。このような構成により、パ
ワー半導体素子における素子領域及び電極の配置の自由
度が向上する。より具体的な構成としては、次の各構成
が有る。
The main components of the power semiconductor device according to the present invention are a first electrode provided on the surface of a semiconductor layer, an interlayer insulating layer located on the surface of the first electrode, and an interlayer insulating layer. A second electrode located directly above the first electrode on the surface of the insulating layer; With such a configuration, the degree of freedom in the arrangement of the element region and the electrodes in the power semiconductor element is improved. More specific configurations include the following configurations.

【0012】上記主要構成において、半導体層が第1の
素子領域と第2の素子領域を有し、第1の電極は第1の
素子領域に接触し、第2の電極は、第1の電極に電気的
に接続されるとともに、第2の素子領域の直上の層間絶
縁膜の表面上に位置する。そして、第2の電極が外部リ
ードを接続するためのパッドとなる。本構成によれば、
第1の素子領域に接続されるパッドの直下に第2の素子
領域を設けることができる。従って、第2の素子領域の
利用面積を増やすことができる。本構成は、第1の素子
領域がセンスIGBT領域であり、第2の素子領域が主
IGBT領域である場合に好適である。
In the above main structure, the semiconductor layer has a first element region and a second element region, the first electrode is in contact with the first element region, and the second electrode is a first electrode region. And is located on the surface of the interlayer insulating film immediately above the second element region. Then, the second electrode becomes a pad for connecting an external lead. According to this configuration,
A second element region can be provided directly below a pad connected to the first element region. Therefore, it is possible to increase the use area of the second element region. This configuration is suitable when the first element region is a sense IGBT region and the second element region is a main IGBT region.

【0013】上記主要構成において、第2の電極をボン
ディングパッドとする。本構成によれば、層間絶縁膜に
より、ボンディングによって半導体層が受けるダメージ
が緩和される。
In the above main structure, the second electrode is a bonding pad. According to this structure, the damage to the semiconductor layer due to bonding is reduced by the interlayer insulating film.

【0014】上記主要構成において、半導体層が素子領
域を有し、さらに半導体層の表面上に位置する他の素子
を有し、第2の電極は、素子に接続されるとともに、前
記素子領域の直上の前記層間絶縁膜の表面上に位置させ
る。本構成は、他の素子が、酸化膜上に形成されるダイ
オードである場合に好適である。本構成によれば、半導
体層上に他の素子を形成する場合に、素子領域及び電極
の配置の自由度が大きくできる。
In the above main structure, the semiconductor layer has an element region, and further has another element located on the surface of the semiconductor layer. A second electrode is connected to the element and the second electrode is connected to the element region. It is located on the surface of the interlayer insulating film immediately above. This configuration is suitable when the other element is a diode formed on an oxide film. According to this configuration, when another element is formed on the semiconductor layer, the degree of freedom in the arrangement of the element region and the electrode can be increased.

【0015】上記主要構成において、半導体層がスイッ
チング素子領域を有し、第1の電極がスイッチング素子
領域の制御電極配線であり、制御電極配線が層間絶縁膜
により被覆され、第2の電極がスイッチング素子領域に
接続される。本構成は、スイッチング素子領域IGBT
領域であり、制御電極配線がゲート配線である場合に好
適である。本構成によれば、制御電極配線があってもス
イッチング素子領域に接続される電極パターンを広くす
ることができる。このため、スイッチング素子領域に接
続される電極パターンに、電気抵抗の低い板状の外部リ
ード電極、例えばブスバー電極配線を接続することがで
きる。このような板状の外部リード電極が接続されるパ
ワー半導体素子を収納するパワーモジュール、例えばI
GBTモジュールは、配線抵抗や配線インダクタンスが
低減される。
In the above main configuration, the semiconductor layer has a switching element region, the first electrode is a control electrode wiring in the switching element region, the control electrode wiring is covered with an interlayer insulating film, and the second electrode is a switching electrode. Connected to the element region. This configuration is based on the switching element region IGBT
This is a region, and is suitable when the control electrode wiring is a gate wiring. According to this configuration, the electrode pattern connected to the switching element region can be widened even if there is a control electrode wiring. Therefore, a plate-shaped external lead electrode having low electric resistance, for example, a bus bar electrode wiring can be connected to the electrode pattern connected to the switching element region. A power module containing a power semiconductor element to which such a plate-shaped external lead electrode is connected, for example, I
In the GBT module, wiring resistance and wiring inductance are reduced.

【0016】なお、本発明は、IGBT,パワーMOSFE
T,バイポーラトランジスタ等の各種のパワー素子に適
用できる。
The present invention relates to an IGBT, a power MOSFET,
It can be applied to various power devices such as T and bipolar transistors.

【0017】[0017]

【発明の実施の形態】本発明の実施例を、以下図面を使
用して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings.

【0018】(実施例1)図1,図18を使用して基本
構成を説明する。図1は、本発明によるセンス端子付I
GBTのセンスIGBT領域19及びその周囲近傍の主
IGBT領域18の断面構造を模式的に示したものであ
る。IGBTのゲート及び拡散層の構造は通常のIGB
Tと同一である。すなわち、p+ −コレクタ層17,n
- −ベース層16,ゲート酸化膜104,ゲート電極po
ly−Si層102が形成され、p−ベース14,n+
エミッタ13,オーミックコンタクトを得るためのp+
−層15が形成される。ゲート電極パッシベーション酸
化膜101が形成された後、エミッタ電極12(Al
膜)とp−ベース14、n+ −エミッタ13が接続され
る。Al膜12は、従来IGBTのエミッタ電極膜より
も薄く、1μm以下の厚さである。さらに、Al膜12
上にはプラズマCVD等で堆積される層間絶縁膜(酸化
膜)11が、膜厚0.5μm 程度形成され、スルーホー
ル103が形成される。このスルーホール103で第二
Al層10と第一Al層12が接続される。本実施例で
は、第二Al層10の厚さは従来IGBTのエミッタ電
極と同程度の5μmである。
(Embodiment 1) The basic configuration will be described with reference to FIGS. FIG. 1 shows an I-type terminal with a sense terminal according to the present invention.
FIG. 3 schematically shows a cross-sectional structure of a sense IGBT region 19 of the GBT and a main IGBT region 18 near the periphery thereof. The structure of the gate and the diffusion layer of the IGBT is a conventional
Same as T. That is, the p + − collector layer 17, n
- - the base layer 16, a gate oxide film 104, the gate electrode po
The ly-Si layer 102 is formed, and the p-base 14, n +
Emitter 13, p + for obtaining ohmic contact
A layer 15 is formed; After the gate electrode passivation oxide film 101 is formed, the emitter electrode 12 (Al
Film) and the p-base 14 and the n + -emitter 13 are connected. The Al film 12 is thinner than a conventional IGBT emitter electrode film and has a thickness of 1 μm or less. Further, the Al film 12
An interlayer insulating film (oxide film) 11 deposited by plasma CVD or the like is formed thereon to a thickness of about 0.5 μm, and a through hole 103 is formed. The through hole 103 connects the second Al layer 10 and the first Al layer 12. In this embodiment, the thickness of the second Al layer 10 is 5 μm, which is almost the same as that of a conventional IGBT emitter electrode.

【0019】本実施例の固有の特徴は、センスIGBT
領域19のごく近傍から主IGBT領域18が形成され
ることである。すなわち、主IGBTのデッドスペース
は存在しない。比較のため、通常のセンス端子付IGB
TのセンスIGBT領域19近傍の断面構造模式図を図
3に示す(図1に相当)。従来例ではセンスIGBT領
域19の近傍は、前述のように深いp+ −層(p−well
層)30が形成され(領域32)、主IGBTは形成さ
れない。この理由は既述したが、図19で詳細に説明す
る。図19は図2のセンスパッド22領域の断面構造模
式図を示している。簡単のため、ゲート配線24の領域
は省略し、また、エミッタコンタクト領域はp−ベース
14のみで示し、n+ −エミッタ13,p+ −層15は
省略している。従来、IGBTのエミッタ電極は膜厚5
μm以上の厚いAl層33一層のみで形成される。従っ
て、Alワイヤボンディングのため、大面積を必要とす
るセンスパッド22下にはエミッタ電極20を形成でき
ないため、p−well層30は基本的にデッドスペースと
なってしまう。
The unique feature of this embodiment is that the sense IGBT
The main IGBT region 18 is formed very close to the region 19. That is, there is no dead space of the main IGBT. For comparison, IGB with normal sense terminal
FIG. 3 shows a schematic sectional view of the vicinity of the sense IGBT region 19 of T (corresponding to FIG. 1). In the conventional example, the vicinity of the sense IGBT region 19 is close to the deep p + − layer (p-well
Layer 30 is formed (region 32) and the main IGBT is not formed. The reason for this has already been described, and will be described in detail with reference to FIG. FIG. 19 is a schematic sectional view of the sense pad 22 region of FIG. For simplicity, the region of the gate wiring 24 is omitted, the emitter contact region is shown only by the p-base 14, and the n + -emitter 13 and the p + -layer 15 are omitted. Conventionally, the IGBT emitter electrode has a thickness of 5
It is formed of only one thick Al layer 33 of not less than μm. Therefore, the emitter electrode 20 cannot be formed under the sense pad 22 which requires a large area due to Al wire bonding, so that the p-well layer 30 basically becomes a dead space.

【0020】一方、図19に相当する本実施例の図を図
18に示す。本実施例の場合、エミッタ電極は第一,第
二のAl層で形成されるため、第二のAl層で構成され
るセンスパッド180下に層間酸化膜11を配置して、
第一のAl層を配置することができる。従って、主IG
BTをセンスIGBTのごく近傍より配置し、主IGBTの
エミッタ電極を第一のAl層12で構成し、センスパッ
ド180周囲のエミッタ電極(第二Al層)181へ接
続することができる。
On the other hand, FIG. 18 shows a diagram of this embodiment corresponding to FIG. In the case of this embodiment, since the emitter electrode is formed of the first and second Al layers, the interlayer oxide film 11 is disposed below the sense pad 180 formed of the second Al layer.
A first Al layer can be provided. Therefore, the main IG
The BT can be arranged very close to the sense IGBT, the emitter electrode of the main IGBT can be composed of the first Al layer 12, and can be connected to the emitter electrode (second Al layer) 181 around the sense pad 180.

【0021】以上のように、第一,第二のAl層10,
12を利用し、層間酸化膜11の下に主IGBTを配置
することにより、センスパッド下のデッドスペースを無
くすことができる。
As described above, the first and second Al layers 10,
By arranging the main IGBT below the interlayer oxide film 11 using the IGBT 12, the dead space below the sense pad can be eliminated.

【0022】電力変換用パワー半導体であるIGBTに
おいて、エミッタ電流は素子上面全体に形成されたAl
電極から素子上方へ通電される。従って、Al電極の抵
抗による損失は無視できる。しかしながら、本実施例の
場合、層間酸化膜11下の主IGBTの電流は、その他
の領域と異なり、素子上方へ通電することはできず、周
囲のAl電極181までは素子表面に平行に通電しなけ
ればならない。よって、Al電極12の膜厚は、この部
分の抵抗も考慮して決定しなければならない。本実施例
では、Al電極12の膜厚は1μmとしている。
In an IGBT which is a power semiconductor for power conversion, the emitter current is caused by Al formed on the entire upper surface of the device.
Electric current is supplied from the electrode to the upper side of the element. Therefore, the loss due to the resistance of the Al electrode can be ignored. However, in the case of the present embodiment, the current of the main IGBT under the interlayer oxide film 11 cannot be applied to the upper side of the device unlike the other regions. There must be. Therefore, the thickness of the Al electrode 12 must be determined in consideration of the resistance of this portion. In this embodiment, the thickness of the Al electrode 12 is 1 μm.

【0023】(実施例2)本発明によると、従来問題で
あったセンスパッド22下のデッドスペースは基本的に
無くすことができる。従って、センスIGBTを1チッ
プ中に多数形成することができる(図6)。従来構造で
は、デッドスペースが存在するために、多数形成するこ
とは、主IGBT領域の面積を著しく減少させることか
ら、到底不可能なことであった。エミッタ・コレクタ飽
和電圧(VCE(sat))を大幅に増大させ、損失を著し
く増大させるからである。例えば、定格電圧/電流、6
00V/50AのIGBTの場合、エミッタ電極中、セ
ンスパッドの占める割合は約6%であった(1パッドの
場合)。従って、センスIGBT領域を4パッドとした
場合、その割合は25%程度にもなってしまい、到底許
容できないのである。図6に示した実施例は、エミッタ
電極20が4パッドの場合を示しており、そのエミッタ
電極20各々の領域に対応して、センスIGBTを配置
し、センスパッド22を4パッド配置している。本構造
で、独立した4つのIGBT領域各々にセンス領域を設
けることができるので、より精度良い電流検出ができ
る。
(Embodiment 2) According to the present invention, the dead space under the sense pad 22 which has conventionally been a problem can be basically eliminated. Therefore, many sense IGBTs can be formed in one chip (FIG. 6). In the conventional structure, since there is a dead space, it is impossible at all to form a large number because the area of the main IGBT region is significantly reduced. This is because the emitter-collector saturation voltage (VCE (sat)) is greatly increased, and the loss is significantly increased. For example, rated voltage / current, 6
In the case of the IGBT of 00V / 50A, the ratio of the sense pad in the emitter electrode was about 6% (in the case of one pad). Therefore, if the sense IGBT region is made up of four pads, the ratio becomes about 25%, which is completely unacceptable. The embodiment shown in FIG. 6 shows a case where the emitter electrode 20 has four pads, and a sense IGBT is arranged corresponding to each region of the emitter electrode 20 and four sense pads 22 are arranged. . With this structure, since a sense region can be provided in each of the four independent IGBT regions, more accurate current detection can be performed.

【0024】本実施例では、ゲートパッド21はチップ
の中央に配置されているが、もちろんチップ端等、別の
配置でもいっこうに構わない。
In this embodiment, the gate pad 21 is arranged at the center of the chip. However, another arrangement such as the end of the chip may be used.

【0025】(実施例3)本発明によると、センスパッ
ド下のデッドスペースを解消すること以外にも、IGB
Tモジュールの信頼性を大幅に向上できる、という極め
て重要な効果がある。図10を使用して本効果を実現し
た実施例を説明する。
(Embodiment 3) According to the present invention, in addition to eliminating the dead space under the sense pad,
There is an extremely important effect that the reliability of the T module can be greatly improved. An embodiment in which this effect is realized will be described with reference to FIG.

【0026】Alワイヤボンディング領域1001の断
面構造模式図を示している。特徴は、IGBTチップ電
極のAl2層化に必要な層間酸化膜11を、Alワイヤ
ボンディング領域1001に配置していることである。
従来構造はAl電極一層のため、Al電極中に発生した
Siノジュール1003は、Alワイヤが超音波溶接さ
れる際、Si基板に直接ダメージを与え、場合によって
は、基板パッシベーション層を破壊して、基板内部に侵
入する。しかしながら、本実施例では、たとえAlワイ
ヤボンディング部にSiノジュール1003が発生して
も、その下には硬い酸化膜11が存在するため、Si基
板中に侵入することは殆どなく、また、ダメージも硬い
酸化膜11で分散されるため、集中すること無く、極め
て高信頼のワイヤボンディング部が実現できる。本例で
は、層間酸化膜11の膜厚は0.5μmとしている。この
厚さは、Siノジュール1003のダメージに耐えられ
る剛性を持つように設計される。従って、本例ではプラ
ズマCVD等で堆積された酸化膜としているが、シリコ
ンナイトライド膜等、その絶縁膜の種類によって、適宜
厚さが決定されるものである。
FIG. 2 is a schematic cross-sectional view of the Al wire bonding region 1001. The feature is that an interlayer oxide film 11 necessary for forming an IGBT chip electrode into an Al2 layer is arranged in an Al wire bonding region 1001.
Since the conventional structure has one Al electrode, the Si nodule 1003 generated in the Al electrode directly damages the Si substrate when the Al wire is ultrasonically welded, and in some cases, destroys the substrate passivation layer, Penetrates inside the substrate. However, in the present embodiment, even if the Si nodule 1003 is generated in the Al wire bonding portion, the hard oxide film 11 exists under the Si nodule 1003, and therefore hardly penetrates into the Si substrate. Since the hard oxide film 11 is dispersed, a highly reliable wire bonding portion can be realized without concentration. In this example, the thickness of the interlayer oxide film 11 is 0.5 μm. This thickness is designed to have a rigidity that can withstand the damage of the Si nodule 1003. Therefore, in this example, the oxide film is deposited by plasma CVD or the like, but the thickness is appropriately determined according to the type of the insulating film such as a silicon nitride film.

【0027】図11はエミッタパッド20が6パッド構
成の場合の従来構造IGBTチップ平面模式図を示して
いる。Alワイヤ1002の線経は0.3mm である。線
経は、太いほど電流容量を大きくできるため本数を少な
くできるので、実装上は太くすることが望ましい。しか
しながら、線経を太くすることは、超音波溶接する際の
パワーを大きくしなければならず、前記問題を顕在化さ
せる。そこで、0.3mmと比較的細くして本数を各パッ
ド3本と多くしている。一方、本実施例の場合を図12
に示す。この場合、前述のようにワイヤボンディングの
ダメージはほとんど考慮しなくても良いので、超音波パ
ワーを大きくできる。従って、Alワイヤ1002の線
経は0.5mm と、従来と比べて大きくし、本数を各パッ
ド1本と少なくしている。この時、ワイヤボンディング
1001下には、もちろん層間酸化膜11を配置してい
る。
FIG. 11 is a schematic plan view of a conventional structure IGBT chip when the emitter pad 20 has a six-pad structure. The diameter of the Al wire 1002 is 0.3 mm. The thicker the wire, the larger the current capacity can be and the number of wires can be reduced. Therefore, it is desirable to make the wire thicker for mounting. However, making the wire thicker requires increasing the power at the time of ultrasonic welding, and this causes the above problem to become apparent. In view of this, the thickness is made comparatively thin at 0.3 mm and the number of pads is increased to three pads. On the other hand, FIG.
Shown in In this case, as described above, it is not necessary to consider the damage of wire bonding, so that the ultrasonic power can be increased. Therefore, the diameter of the Al wire 1002 is 0.5 mm, which is larger than that of the conventional wire, and the number of wires is reduced to one for each pad. At this time, the interlayer oxide film 11 is of course disposed below the wire bonding 1001.

【0028】以上の様に、本実施例によると、信頼性を
維持して、かつ、Alワイヤ本数を少なくできるので、
IGBTモジュールの製造コストを削減できる効果もあ
る。 (実施例4)IPMを構成するIGBTチップに、電流
検出機能のみでなく、チップの温度を検出するためのダ
イオードを内蔵した場合が有る。ダイオード内蔵IGB
Tチップの等価回路を図7に、断面構造模式図を図9
に、チップ平面摸式図を図8に示す。動作原理は、ダイ
オード71のアノード,カソード間に一定電流を通電
し、ダイオード71のオン電圧の変化で温度を検出する
ものである。
As described above, according to this embodiment, since the reliability can be maintained and the number of Al wires can be reduced,
There is also an effect that the manufacturing cost of the IGBT module can be reduced. (Embodiment 4) In some cases, not only the current detection function but also a diode for detecting the temperature of the chip is built in the IGBT chip constituting the IPM. IGB with built-in diode
FIG. 7 shows an equivalent circuit of the T chip, and FIG.
FIG. 8 is a schematic plan view of the chip. The principle of operation is to apply a constant current between the anode and the cathode of the diode 71, and to detect the temperature by the change in the on-voltage of the diode 71.

【0029】このダイオード71を、本実施例ではpoly
−Si層で形成している。p型poly−Si層91,n型
poly−Si層92を素子分離用酸化膜31上に形成し、
第一Al層12,第二Al層10で配線している。前述
のセンスIGBT領域と同じ理由で、Al一層の場合、
アノード80,カソード81パッドの下は、デッドスペ
ースとなってしまう。この場合、センスパッド22も含
めて、3パッド下の領域がデッドスペースとなる。低損
失が特徴のIGBTでは問題になる。そこで、第二Al
層10で形成したアノード80,カソード81電極下に
層間酸化膜11を配置し、主IGBTを形成している。
In this embodiment, the diode 71 is made of poly.
-Si layer. p-type poly-Si layer 91, n-type
forming a poly-Si layer 92 on the isolation oxide film 31;
The wiring is performed by the first Al layer 12 and the second Al layer 10. For the same reason as the sense IGBT region described above, in the case of a single Al layer,
A dead space is formed under the anode 80 and cathode 81 pads. In this case, a region below the three pads including the sense pad 22 becomes a dead space. This is a problem for IGBTs characterized by low loss. Therefore, the second Al
An interlayer oxide film 11 is arranged below the anode 80 and cathode 81 electrodes formed of the layer 10 to form a main IGBT.

【0030】以上、本実施例ではダイオードを内蔵した
場合について示した。今後のIGBTのインテリジェント化
を考えると、ダイオードの他にも、様々な周辺素子、及
び、回路が内蔵される可能性がある。その場合にも、内
蔵素子、及び、回路の電極パッド(第二Al層)の下に
層間酸化膜を配置し、主IGBTをその下に配置するこ
とは極めて有効になる。
As described above, the present embodiment has shown the case where a diode is built in. Considering future intelligent IGBTs, various peripheral elements and circuits may be incorporated in addition to diodes. Also in this case, it is extremely effective to arrange the interlayer oxide film below the built-in element and the electrode pad (second Al layer) of the circuit and arrange the main IGBT thereunder.

【0031】(実施例5)これまで述べてきたように、
IGBTのエミッタ電極は1チップ中、複数に分割され
ている。例えば、定格電圧600V素子の場合、4パッ
ド(50A),12パッド(100A)である。この理
由は、ゲートのAl配線をチップ中に配線する必要があ
るからである。従来構造IGBTチップのAl配線近傍
の断面構造摸式図を図5に示す。Al一層33のみしか
使用できないため、Al配線24とエミッタ電極20は
分離する必要があるため、エミッタ電極は必然的に分離
してしまうのである。
(Embodiment 5) As described above,
The emitter electrode of the IGBT is divided into a plurality in one chip. For example, in the case of a device with a rated voltage of 600 V, there are four pads (50 A) and twelve pads (100 A). The reason for this is that it is necessary to wire the Al wiring of the gate in the chip. FIG. 5 shows a schematic diagram of a cross-sectional structure near the Al wiring of a conventional IGBT chip. Since only the Al layer 33 can be used, the Al wiring 24 and the emitter electrode 20 need to be separated, and the emitter electrode is inevitably separated.

【0032】このAl配線24が存在しない場合、ゲー
ト配線はゲート電極材料であるpoly−Siのみで配線さ
れ、極めて高抵抗となってしまう。これでは、チップ一
辺の長さが最大1cm以上あるIGBTチップでは、もは
やチップ中の各IGBTセルの均一動作は全く期待でき
ない。
If the Al wiring 24 does not exist, the gate wiring is formed only of poly-Si which is a gate electrode material, resulting in an extremely high resistance. In this case, with an IGBT chip having a side length of 1 cm or more at the maximum, uniform operation of each IGBT cell in the chip can no longer be expected.

【0033】そこで、ゲートAl配線部にも本発明を適
用する。図13に断面構造模式図を示す。ゲートAl配
線部130において、Al配線を第一Al層12で配線
し、この配線を層間酸化膜11で絶縁し、エミッタ電極
を第二Al層10でチップ一面に形成するのである。も
ちろん、ゲートパッド、及び、センス端子付IGBTの
場合、センスパッドは分離する必要はある。
Therefore, the present invention is also applied to the gate Al wiring portion. FIG. 13 shows a schematic diagram of a cross-sectional structure. In the gate Al wiring section 130, the Al wiring is wired by the first Al layer 12, the wiring is insulated by the interlayer oxide film 11, and the emitter electrode is formed on the entire surface of the chip by the second Al layer 10. Of course, in the case of a gate pad and an IGBT with a sense terminal, the sense pad needs to be separated.

【0034】以上の様に、本実施例の場合、電流定格に
かかわらず、エミッタ電極をチップ中分離すること無
く、1パッドで形成できる。このことは、ワイヤボンデ
ィングの線経,本数,位置等の自由度が大きくなり、実
装形態に自由度を増すとともに、IGBTモジュールの
小型化等にも寄与する。
As described above, in the case of this embodiment, regardless of the current rating, the emitter electrode can be formed by one pad without being separated in the chip. This increases the degree of freedom of the wire bonding, the number of wires, the number of positions, and the like, thereby increasing the degree of freedom in the mounting form, and contributing to downsizing of the IGBT module.

【0035】(実施例6)実施例5によると、エミッタ
電極を分離すること無く、1パッドにできる。このこと
を利用すると、従来のAlワイヤボンディング法ではな
く、IGBTチップへの様々な配線接続法が考えられ
る。
(Embodiment 6) According to Embodiment 5, one pad can be formed without separating the emitter electrode. By utilizing this, various wiring connection methods to the IGBT chip can be considered instead of the conventional Al wire bonding method.

【0036】従来よりダイオード等では行われていた、
ブスバーをチップ電極へ直接接着させた場合について、
図14,図15に示す。図14はチップとブスバー14
0のみを示した平面模式図、図15は、モジュールの例
で、モジュールベース151までの断面構造模式図を示
している。
Conventionally, it has been performed in a diode or the like.
For the case where the busbar is directly bonded to the chip electrode,
This is shown in FIGS. Fig. 14 shows the tip and busbar 14.
FIG. 15 is a schematic plan view showing only 0, and FIG. 15 is a schematic cross-sectional structure up to a module base 151, which is an example of a module.

【0037】本実施例では定格電圧/電流、600V/
50Aの場合について示しており、チップサイズは6mm
である。ゲート配線はAlワイヤ111を超音波ボンデ
ィングして行い(従来と同一)、エミッタ配線は幅5mm
のAlリボン140を同じく超音波ボンディングしてい
る。このエミッタ配線で、従来のAlワイヤボンディン
グでは実現困難な、低抵抗,低インダクタンスが実現で
きる。このように、チップサイズと同程度の幅の広いブ
スバーは、ゲート配線とエミッタ電極を異なる金属層で
形成することで実現できる。また、本実施例では、ブス
バー140の接着はAlリボンの超音波溶接で実現して
いるが、その他、Niメッキ銅板のはんだ接着等の方法
も考えられる。この場合、エミッタ電極20はAl層で
は困難であり、Ni/Ti/Ni/Au積層構造等にし
なければならない。第一Al層はそのままで、第二Al
層を、このはんだづけ用のメタライズ層にすることが考
えられる。
In this embodiment, the rated voltage / current, 600 V /
Shown for 50A case, chip size is 6mm
It is. The gate wiring is performed by ultrasonic bonding of the Al wire 111 (same as the conventional), and the emitter wiring is 5 mm in width.
Al ribbon 140 is also ultrasonically bonded. With this emitter wiring, low resistance and low inductance, which are difficult to realize by conventional Al wire bonding, can be realized. As described above, a bus bar as wide as the chip size can be realized by forming the gate wiring and the emitter electrode with different metal layers. Further, in the present embodiment, the bonding of the bus bar 140 is realized by ultrasonic welding of the Al ribbon, but other methods such as solder bonding of a Ni-plated copper plate are also conceivable. In this case, it is difficult to form the emitter electrode 20 with an Al layer, and the emitter electrode 20 must have a Ni / Ti / Ni / Au laminated structure or the like. The first Al layer remains as it is, and the second Al layer
It is conceivable that the layer is a metallized layer for this soldering.

【0038】(実施例7)実施例6に示した、ブスバー
をIGBTチップに接続した場合の構造について、等価
回路を図16に示す三相インバータモジュールを構成し
た場合の実施例を図17に示す。モジュールの形態は、
N,P,U,V,Wのパワー端子、及び、制御端子(図
示せず)をケースにインサート成型した、いわゆるイン
サートケースを使用した場合について示している。すな
わち、ケース170には、P配線173、N配線17
4、U,V,W配線175,176,177がインサー
ト成型されている。
(Embodiment 7) FIG. 17 shows an embodiment in which the bus bar is connected to the IGBT chip shown in Embodiment 6 and the equivalent circuit is a three-phase inverter module shown in FIG. . The form of the module is
This figure shows a case where a so-called insert case is used in which N, P, U, V, and W power terminals and control terminals (not shown) are insert-molded in a case. That is, the case 170 includes the P wiring 173 and the N wiring 17.
4. The U, V, and W wirings 175, 176, and 177 are insert-molded.

【0039】従来のIGBTモジュールと同様、セラミ
ック基板150には、フライホイーリングダイオード
(FWD)172、IGBT152がはんだ接着されて
いる。一つのセラミック基板150が、図15中の1ア
ーム160に相当する。この基板がヒートシンクである
銅ベース151にはんだ接着され、Siチップからヒー
トシンクへの放熱系が完成している。以上、素子,セラ
ミック基板が搭載された銅ベース151に、前記ケース
170がシリコーン系の熱硬化性接着剤により接着され
ている。ゲート配線、及び、その他の制御系の配線は、
従来と同様Alワイヤボンディングにより、制御端子1
71に接続されているが、以下のパワー系の配線接続法
が特徴である。
As in the conventional IGBT module, a flywheeling diode (FWD) 172 and an IGBT 152 are soldered to the ceramic substrate 150. One ceramic substrate 150 corresponds to one arm 160 in FIG. This substrate is solder-bonded to a copper base 151 serving as a heat sink, and a heat radiation system from the Si chip to the heat sink is completed. As described above, the case 170 is bonded to the copper base 151 on which the element and the ceramic substrate are mounted by using a silicone-based thermosetting adhesive. Gate wiring and other control system wiring
Control terminal 1 by Al wire bonding as before
71, which is characterized by the following power connection method.

【0040】本実施例の場合、Siチップの電極は前述
のはんだ接着用にメタライズされており、インサート成
型された厚さ0.8mm のNiメッキ銅板174,17
3,175が一つのセラミック基板150及びその基板
に搭載されたSiチップにはんだ接着される。具体的に
は、P配線173はセラミック基板150上の銅箔17
8に、N配線174はIGBT152に、W配線175
はセラミック基板150上の銅箔179,FWD172,IGBT
153 にはんだ接着される。セラミック基板,インサート
ケース170は、銅ベース151にアラインメントされ
ているため、これらのはんだ接着は、位置合わせをする
必要が無く、容易に接着できる。
In the case of the present embodiment, the electrodes of the Si chip are metallized for solder bonding as described above, and are 0.8 mm thick insert-molded Ni-plated copper plates 174, 17
3,175 are solder-bonded to one ceramic substrate 150 and a Si chip mounted on the substrate. Specifically, the P wiring 173 is formed of a copper foil 17 on the ceramic substrate 150.
8, the N wiring 174 is connected to the IGBT 152, and the W wiring 175 is connected to the IGBT 152.
Is copper foil 179, FWD172, IGBT on ceramic substrate 150
153 is soldered. Since the ceramic substrate and the insert case 170 are aligned with the copper base 151, these solders do not need to be aligned and can be easily bonded.

【0041】以上、パワー系の配線にAlワイヤを使用
するかわりに、銅のブスバー配線を使用するため、低抵
抗,低インダクタンスのIGBTモジュールが実現でき
る。
As described above, since the copper busbar wiring is used instead of the Al wiring for the power system wiring, an IGBT module with low resistance and low inductance can be realized.

【0042】[0042]

【発明の効果】本発明によれば、素子の面積利用率向上
したり、ボンディングのダメージが緩和できるので、素
子の性能や信頼性が向上する。
According to the present invention, the area utilization of the device can be improved and the damage of bonding can be reduced, so that the performance and reliability of the device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す断面構造模式図。FIG. 1 is a schematic sectional view showing one embodiment of the present invention.

【図2】従来のセンス端子付きIGBTの平面模式図。FIG. 2 is a schematic plan view of a conventional IGBT with a sense terminal.

【図3】従来のセンス端子付きIGBTの断面構造模式
図。
FIG. 3 is a schematic sectional view of a conventional IGBT with a sense terminal.

【図4】センス端子付きIGBTの等価回路図。FIG. 4 is an equivalent circuit diagram of an IGBT with a sense terminal.

【図5】従来IGBTのゲート電極配線領域の断面構造
模式図。
FIG. 5 is a schematic sectional view of a gate electrode wiring region of a conventional IGBT.

【図6】本発明センス端子付きIGBTの一実施例。FIG. 6 shows an embodiment of an IGBT with a sense terminal according to the present invention.

【図7】温度検出端子付きIGBTの等価回路。FIG. 7 is an equivalent circuit of an IGBT with a temperature detection terminal.

【図8】図7の平面構造模式図。FIG. 8 is a schematic plan view of FIG. 7;

【図9】本実施例による図7の断面構造模式図。FIG. 9 is a schematic cross-sectional view of FIG. 7 according to the present embodiment.

【図10】本発明の低ダメージ電極の一実施例。FIG. 10 shows an embodiment of the low damage electrode of the present invention.

【図11】従来IGBTのワイヤボンディング模式図。FIG. 11 is a schematic diagram of a conventional IGBT wire bonding.

【図12】本発明IGBTのワイヤボンディング模式
図。
FIG. 12 is a schematic diagram of wire bonding of the IGBT of the present invention.

【図13】本発明IGBTのゲート電極配線部の断面構
造模式図。
FIG. 13 is a schematic sectional view of a gate electrode wiring portion of the IGBT of the present invention.

【図14】本発明IGBTの電極配線の一実施例。FIG. 14 shows an embodiment of the electrode wiring of the IGBT of the present invention.

【図15】図14の断面構造模式図。FIG. 15 is a schematic sectional view of FIG. 14;

【図16】三相インバータモジュールの等価回路。FIG. 16 is an equivalent circuit of a three-phase inverter module.

【図17】本発明IGBTチップを搭載した三相インバ
ータモジュールの実施例。
FIG. 17 shows an embodiment of a three-phase inverter module equipped with the IGBT chip of the present invention.

【図18】図1をズームアウトした図。FIG. 18 is an enlarged view of FIG. 1;

【図19】図3をズームアウトした図。FIG. 19 is an enlarged view of FIG. 3;

【符号の説明】[Explanation of symbols]

10…第二Al層、11…層間絶縁膜、12…第一Al
層、13…n+ −エミッタ層、14…p−ベース層、1
5…p+ −層、16…n- −ベース、17…p+ −コレ
クタ層、18…主IGBT領域、19…センスIGBT
領域、101…パッシベーション膜、102…ゲート電
極(poly−Si)、103…スルーホール、104…ゲ
ート酸化膜、20…主IGBTエミッタ電極、21…ゲ
ート電極、22…センスIGBTエミッタ電極(センス
電極)、23…センスIGBTアクティブ領域、24,
130…ゲート電極Al配線、30…深いp+ 層(p−
well層)、31…素子分離酸化膜、32…p−well層領
域、33…Al層、40…センスIGBT、41…主I
GBT、42…コレクタ端子、43…ゲート端子、44
…センスIGBTエミッタ端子(センス端子)、45…
主IGBTエミッタ端子、70…温度検出ダイオード内
蔵IGBT、71…温度検出ダイオード、72…温度検
出端子、73…温度検出端子(グランド)、80…温度
検出端子電極、81…温度検出端子電極(グランド)、
90…温度検出ダイオード領域、91…温度検出ダイオ
ード(p層)、92…温度検出ダイオード(n層)、11
1,1002…Alワイヤ、140…ブスバー配線、1
50…セラミック基板、151…銅ベース、152,1
53…IGBTチップ、160…1アーム、170…モジ
ュールケース、171…制御端子用パッド、172…フ
ライホイーリングダイオード(FED)、173…P配
線、174…N配線、175…W配線、176…V配
線、177…U配線、178,179…セラミック基板
上銅箔、1001…Alワイヤボンディング領域、10
03…Siノジュール。
10: second Al layer, 11: interlayer insulating film, 12: first Al
Layers, 13... N + -emitter layers, 14.
5 ... p + -layer, 16 ... n -- base, 17 ... p + -collector layer, 18 ... main IGBT region, 19 ... sense IGBT
Region, 101: passivation film, 102: gate electrode (poly-Si), 103: through hole, 104: gate oxide film, 20: main IGBT emitter electrode, 21: gate electrode, 22: sense IGBT emitter electrode (sense electrode) , 23 ... Sense IGBT active area, 24,
130 ... gate electrode Al wiring, 30 ... deep p + layer (p−
well layer), 31 element isolation oxide film, 32 p-well layer region, 33 Al layer, 40 sense IGBT, 41 main I
GBT, 42: Collector terminal, 43: Gate terminal, 44
... Sensor IGBT emitter terminal (sense terminal), 45 ...
Main IGBT emitter terminal, 70: IGBT with built-in temperature detection diode, 71: Temperature detection diode, 72: Temperature detection terminal, 73: Temperature detection terminal (ground), 80: Temperature detection terminal electrode, 81: Temperature detection terminal electrode (ground) ,
90: temperature detection diode region, 91: temperature detection diode (p layer), 92: temperature detection diode (n layer), 11
1,1002: Al wire, 140: busbar wiring, 1
50: ceramic substrate, 151: copper base, 152, 1
53 ... IGBT chip, 160 ... 1 arm, 170 ... Module case, 171 ... Control terminal pad, 172 ... Fly wheeling diode (FED), 173 ... P wiring, 174 ... N wiring, 175 ... W wiring, 176 ... V Wiring, 177: U wiring, 178, 179: copper foil on ceramic substrate, 1001: Al wire bonding area, 10
03 ... Si nodule.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 広一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 山田 一二 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5F033 BA02 BA12 CA01 DA05 DA35 EA03 EA25 5F044 EE06 EE11  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Koichi Inoue 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory, Ltd. No. 1-1 F-term in Hitachi Research Laboratory, Hitachi, Ltd. F-term (reference) 5F033 BA02 BA12 CA01 DA05 DA35 EA03 EA25 5F044 EE06 EE11

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】半導体層の表面上に設けられる第1の電極
と、前記第1の電極の表面上に位置する層間絶縁層と、
前記層間絶縁層の表面上において前記第1の電極の直上
に位置する第2の電極を有することを特徴とするパワー
半導体素子。
A first electrode provided on a surface of the semiconductor layer; an interlayer insulating layer located on a surface of the first electrode;
A power semiconductor device, comprising: a second electrode located immediately above the first electrode on a surface of the interlayer insulating layer.
【請求項2】請求項1において、前記半導体層が第1の
素子領域と第2の素子領域を有し、前記第1の電極は第
1の素子領域に接触し、前記第2の電極は、前記第1の
電極に電気的に接続されるとともに、前記第2の素子領
域の直上の前記層間絶縁膜の表面上に位置し、前記第2
の電極が外部リードを接続するためのパッドであること
を特徴とするパワー半導体素子。
2. The semiconductor device according to claim 1, wherein the semiconductor layer has a first element region and a second element region, wherein the first electrode is in contact with the first element region, and the second electrode is , Electrically connected to the first electrode and located on the surface of the interlayer insulating film immediately above the second element region;
A power semiconductor element, wherein the electrode is a pad for connecting an external lead.
【請求項3】請求項2において、前記第1の素子領域が
センスIGBT領域であり、前記第2の素子領域が主I
GBT領域であることを特徴とするパワー半導体素子。
3. The semiconductor device according to claim 2, wherein said first device region is a sense IGBT region, and said second device region is
A power semiconductor device comprising a GBT region.
【請求項4】請求項1において、前記第2の電極がボン
ディングパッドであることを特徴とするパワー半導体素
子。
4. The power semiconductor device according to claim 1, wherein said second electrode is a bonding pad.
【請求項5】請求項1において、半導体層が素子領域を
有し、さらに前記半導体層の表面上に位置する酸化膜上
に形成されるダイオードを有し、前記第1の電極は前記
素子領域に接続され、前記第2の電極は、前記ダイオー
ドに接続されるとともに、前記素子領域の直上の前記層
間絶縁膜の表面上に位置することを特徴とするパワー半
導体素子。
5. The semiconductor device according to claim 1, wherein the semiconductor layer has an element region, and further has a diode formed on an oxide film located on a surface of the semiconductor layer, wherein the first electrode is provided in the element region. And the second electrode is connected to the diode, and is located on the surface of the interlayer insulating film immediately above the element region.
【請求項6】請求項1において、前記半導体層がスイッ
チング素子領域を有し、前記第1の電極が前記スイッチ
ング素子領域の制御電極配線であり、前記制御電極配線
が前記層間絶縁膜により被覆され、前記第2の電極が前
記スイッチング素子領域に接続されることを特徴とする
パワー半導体素子。
6. The semiconductor device according to claim 1, wherein the semiconductor layer has a switching element region, the first electrode is a control electrode wiring in the switching element region, and the control electrode wiring is covered with the interlayer insulating film. A power semiconductor element, wherein the second electrode is connected to the switching element region.
【請求項7】請求項6において、前記スイッチング素子
領域がIGBT領域であり、前記制御電極配線がゲート
配線であることを特徴とするパワー半導体素子。
7. A power semiconductor device according to claim 6, wherein said switching element region is an IGBT region, and said control electrode wiring is a gate wiring.
【請求項8】半導体素子がケースに収納されるパワーモ
ジュールであって、前記半導体素子が請求項6または7
に記載のパワー半導体素子であり、前記第2の電極に板
状の外部リード電極が接続されることを特徴とするパワ
ーモジュール。
8. A power module in which a semiconductor device is housed in a case, wherein the semiconductor device is a power module.
4. The power module according to claim 1, wherein a plate-shaped external lead electrode is connected to the second electrode.
JP10224028A 1998-08-07 1998-08-07 Power semiconductor element and power module Pending JP2000058820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10224028A JP2000058820A (en) 1998-08-07 1998-08-07 Power semiconductor element and power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10224028A JP2000058820A (en) 1998-08-07 1998-08-07 Power semiconductor element and power module

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006128864A Division JP4706551B2 (en) 2006-05-08 2006-05-08 Power semiconductor element and power module

Publications (1)

Publication Number Publication Date
JP2000058820A true JP2000058820A (en) 2000-02-25

Family

ID=16807467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10224028A Pending JP2000058820A (en) 1998-08-07 1998-08-07 Power semiconductor element and power module

Country Status (1)

Country Link
JP (1) JP2000058820A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190531A (en) * 2000-12-21 2002-07-05 Toyota Industries Corp Semiconductor device
JP2006156479A (en) * 2004-11-25 2006-06-15 Toyota Motor Corp Power semiconductor device
JP2009194330A (en) * 2008-02-18 2009-08-27 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
DE102011112860A1 (en) 2010-09-08 2012-03-08 Advantest Corporation Device for testing e.g. insulated gate bipolar transistor, in power circuit, has control circuit changing threshold value of comparing circuit and/or detection time point for detecting characteristic value
JP2012094669A (en) * 2010-10-27 2012-05-17 Mitsubishi Electric Corp Semiconductor device
DE102011055545A1 (en) 2010-12-15 2012-06-21 Advantest Corporation test device
US8294244B2 (en) 2009-08-27 2012-10-23 Mitsubishi Electric Corporation Semiconductor device having an enlarged emitter electrode
WO2015025422A1 (en) * 2013-08-23 2015-02-26 三菱電機株式会社 Semiconductor device
WO2015198435A1 (en) * 2014-06-26 2015-12-30 三菱電機株式会社 Semiconductor device
JP2016111135A (en) * 2014-12-04 2016-06-20 富士電機株式会社 Semiconductor device and method of manufacturing the same
JP2019110183A (en) * 2017-12-18 2019-07-04 株式会社日立製作所 Power semiconductor device, module, and manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710131B2 (en) * 2000-12-21 2011-06-29 株式会社豊田自動織機 Semiconductor device
JP2002190531A (en) * 2000-12-21 2002-07-05 Toyota Industries Corp Semiconductor device
JP2006156479A (en) * 2004-11-25 2006-06-15 Toyota Motor Corp Power semiconductor device
JP2009194330A (en) * 2008-02-18 2009-08-27 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
US8294244B2 (en) 2009-08-27 2012-10-23 Mitsubishi Electric Corporation Semiconductor device having an enlarged emitter electrode
US8866489B2 (en) 2010-09-08 2014-10-21 Advantest Corporation Test apparatus with power cutoff section having variable maximum and minimum thresholds
DE102011112860A1 (en) 2010-09-08 2012-03-08 Advantest Corporation Device for testing e.g. insulated gate bipolar transistor, in power circuit, has control circuit changing threshold value of comparing circuit and/or detection time point for detecting characteristic value
JP2012094669A (en) * 2010-10-27 2012-05-17 Mitsubishi Electric Corp Semiconductor device
US9057756B2 (en) 2010-12-15 2015-06-16 Advantest Corporation Test apparatus
DE102011055545A1 (en) 2010-12-15 2012-06-21 Advantest Corporation test device
DE102011055545B4 (en) 2010-12-15 2023-09-14 Advantest Corporation Test device
WO2015025422A1 (en) * 2013-08-23 2015-02-26 三菱電機株式会社 Semiconductor device
US9530766B2 (en) 2013-08-23 2016-12-27 Mitsubishi Electric Corporation Semiconductor device
WO2015198435A1 (en) * 2014-06-26 2015-12-30 三菱電機株式会社 Semiconductor device
CN106463537A (en) * 2014-06-26 2017-02-22 三菱电机株式会社 Semiconductor device
JPWO2015198435A1 (en) * 2014-06-26 2017-04-20 三菱電機株式会社 Semiconductor device
US9859238B2 (en) 2014-06-26 2018-01-02 Mitsubishi Electric Corporation Semiconductor device comprising regions of different current drive capabilities
CN106463537B (en) * 2014-06-26 2020-01-03 三菱电机株式会社 Semiconductor device with a plurality of semiconductor chips
JP2016111135A (en) * 2014-12-04 2016-06-20 富士電機株式会社 Semiconductor device and method of manufacturing the same
JP2019110183A (en) * 2017-12-18 2019-07-04 株式会社日立製作所 Power semiconductor device, module, and manufacturing method
JP7045180B2 (en) 2017-12-18 2022-03-31 株式会社日立製作所 Power semiconductor devices, modules and manufacturing methods

Similar Documents

Publication Publication Date Title
US7443014B2 (en) Electronic module and method of assembling the same
JP3256636B2 (en) Pressure contact type semiconductor device
US8222651B2 (en) Semiconductor device
JP5232367B2 (en) Semiconductor device
JP5789264B2 (en) Circuit equipment
JP2002026251A (en) Semiconductor device
KR100983959B1 (en) Semiconductor device
JP2003197861A (en) Power semiconductor submodule and power semiconductor module
JP2000058820A (en) Power semiconductor element and power module
JP4706551B2 (en) Power semiconductor element and power module
JP2962136B2 (en) Insulated gate semiconductor device and power conversion device using the same
JP5098630B2 (en) Semiconductor device and manufacturing method thereof
KR102296270B1 (en) Dual side cooling power module and manufacturing method of the same
JP2009164288A (en) Semiconductor element and semiconductor device
JP3612226B2 (en) Semiconductor device and semiconductor module
JP4085639B2 (en) Semiconductor device and manufacturing method thereof
JP4293272B2 (en) Semiconductor device
JP3525823B2 (en) Mounting structure of complementary IGBT
EP3748851B1 (en) Semiconductor device and semiconductor arrangement comprising semiconductor devices
JP2000074988A (en) Production of semiconductor device
JPH0878619A (en) Semiconductor device for electric power
KR20120073302A (en) Circuit arrangement and manufacturing method thereof
JPH08186258A (en) Semiconductor device and its production
CN117238897B (en) IGBT device structure and preparation method thereof
JP2000114525A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060718