EP1098234B1 - Dispositif électronique et procédé de contrôle pour ce dispositif - Google Patents

Dispositif électronique et procédé de contrôle pour ce dispositif Download PDF

Info

Publication number
EP1098234B1
EP1098234B1 EP00925666A EP00925666A EP1098234B1 EP 1098234 B1 EP1098234 B1 EP 1098234B1 EP 00925666 A EP00925666 A EP 00925666A EP 00925666 A EP00925666 A EP 00925666A EP 1098234 B1 EP1098234 B1 EP 1098234B1
Authority
EP
European Patent Office
Prior art keywords
power
electrical energy
electronic device
drive
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00925666A
Other languages
German (de)
English (en)
Other versions
EP1098234A4 (fr
EP1098234A1 (fr
Inventor
Teruhiko Seiko Epson Corporation FUJISAWA
Makoto Seiko Epson Corporation Okeya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of EP1098234A1 publication Critical patent/EP1098234A1/fr
Publication of EP1098234A4 publication Critical patent/EP1098234A4/fr
Application granted granted Critical
Publication of EP1098234B1 publication Critical patent/EP1098234B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G19/00Electric power supply circuits specially adapted for use in electronic time-pieces
    • G04G19/12Arrangements for reducing power consumption during storage
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G19/00Electric power supply circuits specially adapted for use in electronic time-pieces
    • G04G19/08Arrangements for preventing voltage drop due to overloading the power supply

Definitions

  • the present invention relates to an electronic device and control method for the electronic device, and particularly relates to an electronic device wherein the operating modes of the electronic device can be switched between a drive mode and an power saving mode, and a control method for the electronic device.
  • An example of an electronic device of recent years is the electronic wristwatch.
  • These wristwatches contain power supply means, the power supply means including a power generating device having a rotating weight, and storage means (high-capacity capacitor) for storing electrical energy generated by the power generating device.
  • This type of electronic timepiece is capable of operating as a watch for long periods of time without battery replacement because the time display is performed by supplying electrical energy released from the capacitor to the time display unit.
  • electronic timepieces having power generating devices supply stable electrical energy for long periods of time.
  • the power generating device has been in a non-generating state for a predetermined period of time or when the electronic timepiece is put on the user, the condition is detected, and the operating mode of the electronic timepiece is switched from an active mode (display mode) in which time display is performed to a power saving mode in which time display is not performed.
  • time display is not performed, and electrical energy is supplied only to a control circuit for keeping track of the current time.
  • display mode active mode
  • electrical energy is also supplied to the drive circuit for moving the hands.
  • a switch is made from the power-saving mode to the display mode, and in the time display unit, the display is restored to the current time based on the data stored in the counter. For example, in an analog watch using hands, the hands are sped forward to restore it to the current time.
  • EP 0855633 discloses an electronic watch provided with an electric power generator for generating electric energy using external energy, an electric power charger for charging the electric energy generated by the electric power generator, a watch driving system comprising a watch driving circuit and a time display sub-system, operated by electric energy supplied by the electric power charger, a stored electric power detector for detecting an amount of electric energy charged in the electric power charger, and a controller. Operation of at least the time display sub-system of the watch driving system is suspended when the amount of electric energy stored as detected by the stored electric power detector falls below a preset standard value, and thereafter, operation of the suspended portion of the watch driving system is resumed upon detecting conditions for reactivation, such operation being continued at least for a period when preset conditions are met. Thus, when the electronic watch is put to use again after it is left unused for a long time, the watch driving system does not come to a stop immediately after resumption of operation of time display, ensuring stable display of time.
  • GB 2037025 discloses an analog electronic timepiece comprising an oscillator circuit which produces a standard time signal.
  • a frequency divider circuit frequency divides the standard time signal.
  • a driving circuit produces a driving signal from the output signal of the divider circuit and drives a stepping motor, which itself drives time indicating hands.
  • a touch sensitive switch produces a signal indicative that the electronic timepiece is not being worn and causes an AND gate to block the driving signal so as to render the stepping motor inoperative.
  • a time counting circuit determines the period for which the stepping motor is rendered inoperative and when the timepiece is worn again setting to the correct time is automatically effected, the time indication being advanced at a rapid rate to compensate for the period for which the stepping motor was rendered inoperative.
  • the present invention has been made in consideration of the above-described situation, and offers an electronic device and control method for the electronic device wherein, when there is not enough electrical energy to return to the current time in the power supply means during the power-saving mode, the consumption of electrical energy is reduced to preserve the electrical energy of the power supply means, thus enabling the driven means to be quickly reactivated.
  • an electronic device comprising:
  • a control method for an electronic device comprising:
  • Fig. 1 shows the schematic structure of an electronic timepiece 1 according to one embodiment.
  • the electronic timepiece 1 is a wristwatch, used by strapping a band connected to the device itself around the wrist of a user.
  • the electronic timepiece 1 comprises a power generating portion A, power supply portion B, a power generation state detecting portion 91 (see Fig. 2), a control circuit 23, a second hand moving mechanism CS, an hour-minute hand moving mechanism CHM, a second hand drive portion 30S and an external input device 100 (see Fig. 2).
  • the power generating portion A generates AC power.
  • the power supply portion B rectifies the AC voltage outputted from the power generating portion A, raises the rectified voltage, stores the raised voltage and supplies the mechanical portions with electrical energy.
  • the power generation state detecting portion 91 (see Fig. 2) detects the state of power generation of the power generating portion A.
  • the control circuit 23 controls the entire device based on detected results outputted from the power generation state detecting portion 91.
  • the second hand moving mechanism CS drives the second hand 55 using a stepping motor 10.
  • the hour-minute hand moving mechanism CHM drives the minute and hour hands using a stepping motor.
  • the second hand drive portion 30S receives the control signals outputted from the control circuit 23 and drives the second hand moving mechanism CS.
  • the hour-minute hand moving mechanism 30HM receives the control signals outputted from the control circuit 23 and drives the hour-minute hand moving mechanism CHM.
  • the external input device 100 (see Fig. 2) performs an instruction operation for transferring the operating mode of the electronic timepiece 1 from a time display mode to a calendar correcting mode, a time correcting mode or forcibly to a power-saving mode to be described below.
  • the control circuit 23 switches between a display mode (operating mode) for performing a time display and a power-saving mode by supplying power to the control circuit 23 and the drive portions 30S, 30HM (drive circuits) of the hand moving mechanisms CS, CHM according to the power generation state of the power generating portion A.
  • the power-saving mode is a mode for suspending the power supply to the second hand moving mechanism CS and the hour-minute hand moving mechanism CHM and supplying power to only the control circuit 23. Additionally, when a user picks up the electronic timepiece 1 and shakes it to generate power, and the generation voltage exceeding a predetermined voltage is detected, the control circuit 23 switches the mode from the power-saving mode to the display mode.
  • control circuit 23 shall be explained later using functional blocks.
  • the power generating portion A comprises a power generating device 40, a rotating weight 45 and a step-up gear 46.
  • an electromagnetic induction type AC power generating device capable of supplying to the outside power induced in a power generating coil 44 connected to a power generating stator 42 due to rotation of a power generating rotor 43 inside the power generating stator 42 is employed.
  • the rotating weight 45 functions as an element for transmitting kinetic energy to the power generating rotor 43. Then, the movement of the rotating weight 45 is transmitted through the step-up gear 46 to the power generating rotor 43.
  • this rotating weight 45 is capable of turning inside the device in response to the movement of the users wrist, thus acquiring kinetic energy by taking advantage of external energy arising in the course of the user's daily life.
  • the power generating device 40 generates power using this kinetic energy, and drives the electronic timepiece 1 using this power.
  • the power supply portion B comprises a limiter circuit LM, a rectifying circuit 47, a high-capacity capacitor 48 and a voltage raising/lowering circuit 49.
  • the limiter circuit LM prevents excessive voltages from being applied to latter-stage circuits.
  • the rectifying circuit 47 is a half-wave rectifying circuit or full-wave rectifying circuit composed of Schottky diodes, silicon diodes, parasitic diodes of MOSFETs in IC's which are commonly known or functional elements using switching devices such as transistors.
  • the voltage raising/lowering circuit 49 is constructed using a plurality of capacitors 49a, 49b and 49c, receives a charged voltage Vc from the high-capacity capacitor 48, performs multiple stages voltage raising or lowering operations on the received voltage Vc, and outputs a power supply voltage Vss which is to be a low potential side voltage. Then, the voltage raising/lowering circuit 49 raises or lowers the charge voltage Vc to the power supply voltage Vss according to the control signal ⁇ 11 outputted from the control circuit 23, and supplies this power supply voltage Vss to the integrated circuit portion 23A of the control circuit 23, the pulse synthesizing circuit 22 and the second hand drive portion 30S and hour-minute hand drive portion 30MH.
  • the power supply portion B takes Vdd (high potential side voltage) as the reference potential (GND), and outputs Vss (low potential side voltage) as the power supply voltage.
  • the stepping motor 10 used in the second hand moving mechanism CS is also called a pulse motor, a step motor or a digital motor, often used as actuators in digital control devices.
  • the stepping motor 10 is driven by a pulse signal.
  • this type of stepping motor which has been made more compact in size and light in weight for use as actuators in compact electronic devices or information devices suitable for carrying have been widely employed. Typical of these types of electronic devices are electronic timepieces, time switches and chronographs.
  • the stepping motor 10 of the present embodiment comprises a drive coil 11 which generates magnetic force by means of a drive pulse supplied from the second hand drive portion 30S, a stator 12 which is excited by the drive coil 11 and a rotor 13 which is rotated by the magnetic field induced inside the stator 12.
  • the rotor 13 is of the PM type (permanent magnetrotating type) having a disc-shaped bipolar permanent magnet.
  • the stator 12 is provided with magnetic saturation portions 17 and the phases (poles) 15 and 16 around the rotor 13 by the different magnetic poles are generated by the magnetic force generated by the drive coil 11.
  • an inner notch 18 is provided at a suitable position on the inside circumference of the stator 12, and a cogging torque is generated to stop the rotor 13 at a suitable position.
  • the rotation of the rotor 13 due to the stepping motor 10 is transmitted to the second hand 55 by means of the gear train 50 comprising the second intermediary gear 51 which is engaged with the rotor 13 and the second gear (second indicating gear) 52, thus enabling the second hand 55 to indicate the seconds.
  • the stepping motor 60 used in the hour-minute hand moving mechanism CHM has roughly the same structure as the stepping motor 10.
  • the stepping motor 60 of the present embodiment comprises a drive coil 61 for generating magnetic force in response to a drive pulse supplied form the hour-minute hand drive portion 30HM, a stator 62 which is excited by the drive coil 61 and a rotor 63 which rotates according to the magnetic field induced inside the stator 62.
  • the rotor 63 is of the PM type (permanent magnet rotating type) having a disc-shaped bipolar permanent magnet. Furthermore, the stator 62 is provided with a magnetic saturation portion 67 generated at the respective phases (poles) 65 and 66 around the rotor 63 by the different magnetic poles due to the magnetic force generated by the drive coil 61.
  • an inner notch 68 is provided at a suitable position on the inside circumference of the stator 62, and a cogging torque is generated to stop the rotor 63 at a suitable position.
  • the rotation of the rotor 63 of the stepping motor 60 is transmitted to the hands through the gear train 70 comprising the number four gear 71 which is engaged with the rotor 63, the number three gear 72, the number two gear (minute indicating gear) 73, the minute gear 74 and the cylindrical gear (hour indicating gear) 75.
  • the minute hand 76 is connected to the number two gear 73, and the hour hand 77 is connected to the cylindrical gear 75. The hour and minute are indicated by these hands moving in conjunction with the rotation of the rotor 63.
  • gear train 70 it is of course also possible to connect a transmission system (for example, in order to display the date, a cylindrical intermediary gear, a daily rotating intermediary gear, a daily rotating fear and a day gear), not shown, for displaying the date (calendar).
  • a calendar correcting gear train for example, a first calendar correction transmitting fear, a second calendar correction transmitting gear, a calendar correcting gear and a day gear
  • a transmission system for example, in order to display the date, a cylindrical intermediary gear, a daily rotating intermediary gear, a daily rotating fear and a day gear
  • the second hand drive portion 30S supplies the stepping motor 10 with various drive pulses under the control of the control circuit 23.
  • the second hand drive portion 30S comprises a bridge circuit composed of a serially connected P-channel transistor 33a and N-channel transistor 32a connected, and a P-channel transistor 33b and N-channel transistor 32b.
  • the second hand drive portion 30S comprises rotation detecting resistors 35a and 35b respectively connected in parallel with the transistors 33a and 33b, and sampling P-channel transistors 34a, 34b for supplying chopper pulses to the resistors 35a and 35b.
  • the second hand drive portion 30S supplies drive pulses of different polarities to the drive coil 11, or supplies detecting pulses for generating an induction voltage for detecting rotation of the rotor 13 and detecting the magnetic field, by applying control pulses of different polarity and pulse width at various timings from the control circuits 23 to the gate electrodes of the transistors 32a, 32b, 33a, 33b, 34a and 34b.
  • control circuit 23 shall be explained with reference to Fig. 2, wherein the functional block diagram of Fig. 2 shows the control circuit 23 and its peripheral structure.
  • control circuit 23 comprises a pulse synthesizing circuit 22, a mode setting portion 90, a time information memory portion 96, a drive control circuit 24 and the like. Additionally, the mode setting portion 90, time information memory portion 96, drive control circuit 24 and the like are mounted on a chip and constitute a Vss drive portion 23A driven by the power supply voltage Vss, the power supply voltage Vss of the voltage raising/lowering circuit 49 being supplied to the Vss drive portion 23A. Furthermore, a constant voltage outputted from the regulated voltage generating circuit (not shown) is supplied to the pulse synthesizing circuit 22. The regulated voltage generating circuit receives the power supply voltage Vss and generates a stable constant voltage.
  • the pulse synthesizing circuit 22 comprises an oscillator circuit for generating a reference pulse with a stable frequency using a reference oscillation source 21 such as a quartz resonator, a dividing circuit for dividing the reference pulse, and a synthesizing circuit for generating pulses having different pulse widths and waveforms by combining the divided pulses and the reference pulse.
  • a constant voltage is supplied to the pulse generating circuit 22.
  • This constant voltage is generated by the regulated voltage circuit (not shown) which receives the power supply voltage Vss (charge voltage Vc) outputted from the power supply portion B and outputs a constant voltage.
  • the pulse synthesizing circuit 22 suspends the generation of the pulse signals when the supply of the power supply voltage (constant voltage) is suspended, thus suspending the operation of the entire control circuit 23.
  • the mode setting portion 90 comprises a power generation state detecting portion 91, a set value switching portion 95 for switching set values used for detection of the power generation state, a voltage detecting circuit 92 for detecting the charge voltage Vc of the high-capacity capacitor 48, a central control circuit 93 for controlling the time display mode according to the power generation state and controlling the voltage gain based on the charge voltage Vc, and a mode memory portion 94 for storing the mode.
  • This power generation state detecting portion 91 comprises a first detecting circuit 97 and a second detecting circuit 98.
  • the first detecting circuit 97 determines whether or not power is being generated by comparing the generated voltage Vgen of the power generating device 40 and a set voltage value V0.
  • the second detecting circuit 98 determines whether or not a stable power generation state has been achieved by taking the time over which the power generating device 40 is determined by the first detecting circuit 97 to be in a power generating state as the power generation maintenance time Tgen, and comparing this time Tgen with a set time value T0.
  • Fig. 10 is a circuit structure example of the periphery of the power generation state detecting circuit when full-wave rectification is being performed.
  • Fig. 10 shows the power generation state detecting portion 91, and as peripheral circuits of the power generation state detecting portion 91, a power generating device 40 and a high-capacity auxiliary power supply 48.
  • the power generating device 40 generates AC power.
  • the high-capacity auxiliary power supply 48 accumulates energy by a DC current outputted from a rectifying circuit 47 which rectifies the AC current outputted form the power generating device 40 to convert it to a DC current.
  • the power generation state detecting portion 91 comprises a first comparator COMP1A, a second comparator COMP2A and an OR circuit OR1.
  • the first comparator COMP1A compares the voltage V1 of the first output terminal AG1 of the power generating device 40 and the high potential side terminal voltage VDD of the high-capacity auxiliary power supply 48, and outputs first comparison result data DC1.
  • the second comparator COMP2A compares the voltage V2 of the second output terminal AG2 of the power generating device 40 and the high potential side terminal voltage VDD of the high-capacity auxiliary power supply 48, and outputs second comparison result data DC2.
  • the OR circuit OR1 takes the logical sum of the first comparison result data DC1 and the second comparison result data DC2, and outputs the result as power generation detection data DDET.
  • the power generation state detecting portion 91 upon power generation by the power generating device 40, discriminates whether or not sufficient power generation is being performed to charge the high-capacity auxiliary power supply 48 based on the power generation state of the power generating device 40 and the operating state of the limiter circuit LM, and outputs power generation detection data DDET having a frequency in accordance with the power generation period to the central control circuit 93.
  • This power generation state detecting circuit portion 91 comprises transistors 91A, 91B, a pull-down resistor 91C, a detecting inverter 91E and a charge current detecting circuit DET.
  • the transistor 91A and transistor 91B are serially connected between the signal line having the high potential side voltage Vdd and the signal line having the low potential side voltage Vss.
  • the pull-down resistor 91C is connected to both ends of the capacitor 91B.
  • the detecting inverter 91E is connected to the connection point 91D between the transistor 91A and the capacitor 91B.
  • the charge current detecting circuit DET is connected between the positive side of the high-capacity capacitor 48 and Vdd.
  • a current also flows to the charge current detecting circuit DET.
  • the charge current detecting circuit DET is constructed of diodes, a forward voltage VF is generated.
  • this forward voltage VF is greater than the threshold voltage Vth of the transistor 91A, the transistor 91A is turned on and the capacitor 91B is charged.
  • the set voltage value V0 and set time value T0 to be explained are set by appropriately selecting the threshold voltage Vth of the transistor 91A, the pull-down resistor 91C and also the threshold value of the detecting inverter 91, to detect the power generation state of the power generating device 40.
  • the power generating portion A is judged to be in a power generating state.
  • the set voltage value V0 used in the first detection circuit 97 is switch-controlled by the set value switching portion 95, the set value switching portion 95 changing the set voltage value V0 used in the first detection circuit 97 when the display mode is switched to the power-saving mode. That is, in the present example, the set voltage value is Va when in the display mode, and the set voltage value is Vb when in the power-saving mode, their relationship being set as Va ⁇ Vb. Consequently, considerable power generation is necessary to switch from the power-saving mode to the display mode.
  • the set value switching portion 95 can also be made to switch the set time value T0 used in the second detection circuit 98.
  • the voltage detecting circuit 92 comprises resistors comprises resistors R1, R2, a reference voltage generating portion 92A, a comparator 92B, a first P-channel MOS transistor 92C and a second P-channel MOS transistor 92D.
  • the serially connected resistors R1 and R2 divide the voltage between the high potential side power supply VDD and the low potential side power supply VSS with a predetermined voltage division ratio to generate a detection voltage VDET.
  • the reference voltage generating portion 92A generates a predetermined reference voltage VREF from the high potential side power supply VDD.
  • the comparator 92B compares the detection voltage VDET which is the voltage at the connection point between the resistor R1 and the resistor R2 with the reference voltage VREF, and outputs voltage detection data DV to the central control circuit 93.
  • the first P-channel MOS transistor 92C is turned on at the voltage detection timing by the sampling signal SP (at level “L” on detection) outputted from the central control circuit 93 and supplies a current to the resistors R1, R2.
  • the second P-channel MOS transistor 92D is turned on at the voltage detection timing by the sampling signal SP (at level "L” on detection) outputted from the central control circuit 93, putting the enable terminal EN of the comparator 92B at the level "H” to put the comparator 92B into an operating state.
  • the enable terminal EN of the comparator 92B also goes to "H" level, and the comparator 92B compares the detection voltage VDET and the reference voltage VREF, then outputs the voltage detection data DV to the central control circuit 93.
  • the central control circuit 93 comprises a power non-generating time measuring circuit 99 for measuring the power non-generating time Tn during which power generation is not detected at the detection circuits 97, 98, and if the power non-generating time Tn continues for at least a predetermined set period of time, then a switch is made from the display mode to the power-saving mode (first condition).
  • the restoration from the power-saving mode to the display mode is performed when the power generation state detecting portion 91 detects that the power generating portion A is in a power generating state, and enough electrical energy remains in the charge voltage Vc of the high-capacity capacitor 48 to return from the power-saving mode to the display mode (first condition).
  • the limiter circuit when in thepower-saving mode, the limiter circuit is turned off (open) regardless of the power generation state of the power generating portion A, and the power generation state detecting portion 91 is enabled to reliably detect the power generation state of the power generating portion A.
  • the power supply portion B of the present embodiment comprises a voltage raising/lowering circuit 49, it is possible to drive the hand moving mechanisms CS, CHM by raising the power supply voltage using the voltage raising/lowering circuit 49 even if the charge voltage Vc is somewhat low.
  • the hand moving mechanisms CS, CHM can be driven by lowering the power supply voltage using the voltage raising/lowering circuit 49 to lower the power supply voltage.
  • the central control circuit 93 determines the voltage raising/lowering factor based on the charge voltage Vc to control the voltage raising/lowering circuit 49.
  • the charge voltage Vc is sufficient by comparing the charge voltage Vc with a predetermined set voltage value Vb, and this is made the first condition for transferring from the power-saving mode to the display mode.
  • the central control circuit 93 comprises a power-saving mode counter 101 for monitoring whether or not a preset instruction operation for forcible transfer to the power-saving mode has been performed within a predetermined time, if the external input device 100 is operated by the user or if a power non-generating state is detected by the power generation detecting portion 91.
  • the mode set in this way is stored in the mode memory portion 94, and the information is supplied to the drive control circuit 24, the time information memory portion 96 and the set value switching portion 95.
  • the drive control circuit 24 suspends the supply of the control signal to the second hand drive portion 30S and the hour-minute hand drive portion 30HM. As a result, the motors, 10, 60 stop rotating, thus suspending the time display.
  • the central control circuit 93 has the function of operation suspending means for suspending the supply of voltage from the power supply portion B to the control circuit 23 and drive portions 30S, 30HM when the power supply voltage has become lower than a predetermined amount of electricity necessary to return from the power-saving mode to the display mode by a procedure described below.
  • the electrical discharge from the high-capacity capacitor 48 can be reduced even when enough electrical energy remains in the high-capacity capacitor 48 to return from the power-saving mode to the display mode, thus considerably eliminating unnecessary expenditure of electrical charge.
  • the time information memory portion 96 is more specifically composed of an up-down counter (not shown), such that after switching from the display mode to the power-saving mode, it receives a reference signal generated by the pulse synthesizing circuit 22, begins measuring time, increments the count value (up-count), and measures the duration of the power-saving mode as the count value.
  • the up-down counter decrements the count value (down-count), and during the down-count, outputs an acceleration pulse supplied from the drive control circuit to the second hand drive portion 30S and hour-minute drive portion 30HM.
  • the time information memory portion 96 also has the function of a portion of current time restoring means for restoring the redisplayed time display to the current time.
  • the drive control circuit 24 generates a drive pulse according to the mode based on the various types of pulses outputted from the pulse synthesizing circuit 22.
  • the supply of the drive pulse is suspended.
  • acceleration pulses with a short pulse interval are supplied as drive pulses to the second hand drive portion 30S and hour-minute hand drive portion 30HM in order to restore the redisplayed time display to the current time (current time restoring means).
  • drive pulses of a normal pulse interval are supplied to the second hand drive portion 30S and hour-minute hand drive portion 30HM.
  • Reference number 120 denotes a carriage state detecting circuit composed of an angular velocity sensor, a thermal sensor or the like, wherein the carriage state detecting circuit 120 detects whether or not the electronic timepiece 1 is wound around the user's wrist in order to indirectly detect whether or not the power generating device 40 is in a power generating state. Additionally, the carriage state detecting circuit 120 is connected to a non-carrying time measuring circuit 121 provided inside the central control circuit 93. This non-carrying time measuring circuit 121 measures the time of not being carried in a manner roughly similar to that of the power non-generating time measuring circuit 99 descried above.
  • the carriage state detecting circuit 120 and non-carrying time measuring circuit 121 are applied to replace the power generation state detecting portion 91 and the power non-generating time measuring circuit 99.
  • step S1 judges whether or not the electronic timepiece 1 is in power-saving mode. If in the judgment of step S1, the electronic timepiece 1 is found to be in power-saving mode (step S1; YES), then the procedure jumps to step S5 to be described below.
  • step S1 finds that the watch is not in power-saving mode, i.e. in the display mode (step S1; NO)
  • the central control circuit 93 determines whether or not there is a power supply voltage, i.e. whether or not the power generating device 40 is generating power based on the detected signal from the power generation state detecting device 91 (step S2). If it is determined in step S2 that the power generating device 40 is in a power generating state, then a time display procedure is performed according to step S10 to be described below.
  • step S2 If the power generating device 40 is found to be in a non-generating state in step S2 (step S2; NO), then the non-generating time Tn is counted by the non-generating time measuring circuit 99 of the central processing circuit 93 (step S3). Then, the central processing circuit 93 determines whether or not the non-generating time Tn continues past a predetermined set time (step S4).
  • step S4 if the non-generating time Tn does not continue past the predetermined set time (step S4; NO), then the procedure is returned to step S2, and the procedure from step S2 to step S4 is repeated.
  • step S4 If in the judgment of step S4, the non-generating time Tn is found to continue past the predetermined set time (step S4; YES), then the mode is switched to the power-saving mode (step S5).
  • time information corresponding to the elapsed time of the power-saving mode is counted in the time information memory portion 96 (step S6) in order to perform a time restoration process (step S9) to be described below.
  • step S7 it is determined whether or not the power supply voltage (charge voltage Vc of the high-capacity capacitor 48 in the present embodiment) is larger than the criterion voltage V1 which is required to switch from the power-saving mode to the display mode (step S7) (second condition). If the charge voltage Vc is found to be greater than the criterion voltage V1 in step S7 (step S7; YES), i.e. it is possible to switch from the power-saving mode back to the display mode, then it is determined whether or not the power generating device 40 is generating power once again (step S8). If it is determined in step S8 that there is no power generation (step S8; NO), then steps S6 and S7 are repeated.
  • step S8 when it is found in step S8 that power generation has begun (step S8; YES), then the mode is switched from the power-saving mode to the display mode, a time restoration process for restoring the time to the count value of the time information memory portion 96 is performed, and the hands 55, 76, 77 are driven as normal (step S10).
  • the time restoration process from the power-saving mode to the display mode is a current time restoration process which is performed faster than the normal drive operation.
  • step S7 it is found that the charge voltage Vc accumulated in the high-capacity capacitor 48 is less then or equal to the criterion voltage V1 (step S7; NO), i.e. the charge voltage Vc of the high-capacity capacitor 48 has fallen to a voltage which is not capable of restoring the display mode from the power-saving mode, then the supply of the charge voltage Vc supplied from the high-capacity capacitor 48 to the voltage raising/lowering circuit 49 is cut off, and the supply of the power supply voltage Vss outputted from the voltage raising/lowering circuit 49 to the Vss drive portion 23A of the control circuit 23, pulse synthesizing circuit 22 and drive portions 30S, 30HM is cut off (step S11).
  • step S11 the generation of the pulse signal by the pulse synthesizing circuit 22 is stopped and the count by the time information memory portion 96 is suspended by cutting off the supply of the power supply voltage Vss to the Vss drive portion 23A of the control circuit 23, pulse synthesizing circuit 49 and drive portions 30S, 30HM.
  • the consumption of electrical energy in the control circuit 23 is made zero.
  • the electrical energy consumption rate when in the power-saving mode can be cut to approximately 80% with respect to the power consumption when in the display mode, but in this state, it can be cut further to 99.5%.
  • the supply of the power supply voltage Vss is not cut off to only the power generation state detecting portion 91, and by continuing to supply the power supply voltage Vss, it is possible to stabilize the circuit operations at reactivation.
  • step S12 the power generation state detecting portion 91 monitors whether or not the power generating device 40 has resumed power generation (third condition), and the procedure is held at step S12 until the power generation state detecting portion 91 detects that power generation has begun.
  • step S12 when the power generation state detecting portion 91 detects that power generation has resumed (step S12; YES), the charge voltage Vc from the high-capacity capacitor 48 is supplied to the voltage raising/lowering circuit 49, the power supply voltage Vss is supplied from the voltage raising/lowering circuit 49 to the Vss drive portion 23A, pulse synthesizing circuit 22 and the drive portions 30A, 30HM to reactivate the electronic timepiece 1.
  • step S12 the charge voltage Vc of the high-capacity capacitor 48 is detected from the voltage detecting circuit 92 to determine whether or not the minimum required voltage for reactivation is present, and the supply of the charge voltage Vc is suspended until this voltage value is reached, thereby enabling the high-capacity capacitor 48 to be charged quicker.
  • the electronic timepiece 1 since the high-capacity capacitor 48 is put into a fully charged state after power generation is started when the charge voltage Vc of the high-capacity capacitor 48 is reduced to approximately 0.45 V under the conventional art, the electronic timepiece 1 must to shaken about 300 times.
  • the criterion voltage V1 is set to 1 V, thus making it difficult for the charge voltage Vc to fall below 1 V, so that in order to put the high-capacity capacitor 48 into a fully charged state since beginning power generation, it is sufficient to shake the electronic timepiece 1 about 100 times, thus enabling the electronic timepiece to be readily reactivated.
  • the electronic timepiece 1 of the present embodiment is such that when the electronic timepiece 1 is in the power-saving mode, i.e. the charge voltage Vc is outputted from the high-capacity capacitor 48 to the voltage raising/lowering circuit 49, and the power supply voltage Vss raised or lowered from the charge voltage Vc by the voltage raising/lowering circuit 49 is supplied to only the control circuit 23, if the charge voltage Vc from the high-capacity capacitor 48 goes to less than or equal to the criterion voltage V1 which is required to return from the power-saving mode to the display mode, then the supply of the charge voltage Vc which is outputted from the high-capacity capacitor 48 to the voltage raising/lowering circuit 47 is suspended, and the supply of the power supply voltage Vss from the power supply portion B (voltage raising/lowering circuit 47) to the drive portion 23A of the control circuit 23, the pulse synthesizing circuit 22 and the drive portions 30S, 30HM is suspended.
  • the charge voltage Vc is outputted from the high-capacity capacitor 48 to the voltage raising/lowering circuit
  • the needless consumption of electrical energy in the high-capacity capacitor 48 can be eliminated, and the charge voltage Vc maintained in the high-capacity capacitor 48.
  • the charge voltage Vc of the high-capacity capacitor 48 can be outputted to the voltage raising/lowering circuit 49, whereby the power supply voltage Vss is supplied from the voltage raising/lowering circuit 49 to the Vss drive potion 23A of the control circuit 23, the pulse synthesizing circuit 22 and the drive portions 30S, 30HM, to quickly reactivate the electronic timepiece 1.
  • the hands 55 can be quickly activated when the power generating device 40 begins to generate power when a user carries the electronic timepiece 1, thus preventing users from jumping to the conclusion that the electronic timepiece 1 is broken.
  • the voltage supplied to the regulated voltage drive circuit 200 (e.g. oscillator circuit, dividing circuit, etc.) is made a regulated voltage Vreg set by the regulated voltage generating circuit 201.
  • the regulated voltage generating circuit 201 shall be described.
  • FIG. 12 A structural diagram of the regulated voltage generating circuit 201 is shown in Fig. 12.
  • the constant current generating circuit 201 can be largely divided into a constant current source 220, a first current mirror circuit 221, a differential amplifier circuit 222, a second current mirror circuit 223 and a regulated voltage generating portion 224.
  • the constant current source 220 is a depression transistor or the like which generates a constant current IREF.
  • the first current mirror circuit 221 generates a current which is identical to the constant current IREF.
  • the differential amplifier circuit 222 performs differential amplification of the reference voltage V1 and generated voltage V2 generated when the constant current IREF flows.
  • the second current mirror circuit 223 makes the currents flowing in the various portions of the differential amplifier circuit 222 into constant currents.
  • the regulated voltage generating portion 224 generates and outputs a regulated voltage based on the output of the differential amplifier circuit 222.
  • the first current mirror circuit 221 has P-channel MOS transistors MP1, MP2 and MP3 having their source S commonly connected to a high potential side power supply VDD and the gate terminal G connected together, with the gate G and drain D of the P-channel MOS transistor MP1 being saturation-connected.
  • the differential amplifier circuit 222 comprises a P-channel MOS transistor MP4, a P-channel MOS transistor MP5 and a gate potential maintaining capacitor CGK.
  • the P-channel MOS transistor MP4 has its source S connected to the drain D of the P-channel MOS transistor MP2 and its gate G connected to the drain D of the P-channel MOS transistor MP1.
  • the P-channel MOS transistor MP5 has its source S connected to the drain D of the P-channel MOS transistor MP2 and its gate G connected to the drain D of the P-channel MOS transistor MP3.
  • the gate potential maintaining capacitor CGK has one end connected to the drain of the P-channel MOS transistor.
  • the second current mirror circuit 223 comprises an N-channel MOS transistor MN3 and an N-channel MOS transistor MN4.
  • the N-channel MOS transistor MN3 has its drain D connected to the drain D of the P-channel MOS transistor MP4 and its source S connected to the low potential side power supply VSS side.
  • the N-channel MOS transistor MN4 has its gate G connected to the gate G of the N-channel MOS transistor MN3, its drain D connected to the drain of the P-channel MOS transistor MP5 and the gate G of the N-channel MOS transistor MN3, and its source S connected to the low potential side power supply VSS side.
  • the regulated voltage generating portion 224 comprises an N-channel MOS transistor MN1 and an N-channel MOS transistor MN2.
  • the N-channel MOS transistor MN1 has its gate G saturation-connected to its drain D, its drain D connected to the drain D of the P-channel MOS transistor MP3 and its source S connected to the other end of the gate potential maintaining capacitor CGK.
  • the N-channel MOS transistor MN2 has its drain D connected to the source S of the N-channel MOS transistor MN1, its source S connected to the low potential side power supply VSS, and its gate G connected to one end of the gate potential maintaining capacitor CGK. Additionally, the connection point between the source S of the N-channel MOS transistor MN1 and the drain of the N-channel MOS transistor MN2 is the output terminal of the regulated voltage VREG.
  • the first current mirror circuit 221 generates a current (in the drawing, indicated by the same reference IREF) identical to the constant current IREF generated by the constant current supply 220 as the source-drain current of the P-channel MOS transistor MP3, which is supplied to the regulated voltage generating portion 224.
  • Ids ⁇ ⁇ W / 2 ⁇ L ⁇ Vgs - Vth ⁇ 2
  • represents the gain constant
  • the differential amplifier circuit 222 performs a differential amplification of the reference voltage V1 and voltage V2, and outputs to the regulated voltage generating portion 224.
  • the source-drain current of the P-channel MOS transistor MP4 and P-channel MOS transistor MP5 have current values which are identical due to the second current mirror circuit.
  • a regulated voltage Vreg which is determined by the threshold voltage VTP of the P-channel MOS transistor MP1 forming the first current mirror circuit 221, the threshold value VTN of the N-channel MOS transistor MN1 of the regulated voltage generating portion 224 and the constant current IREF is generated.
  • the voltage supplied to the regulated voltage drive circuit 200 (e.g. the oscillator circuit, dividing circuit etc.) is made the regulated voltage Vreg set by the regulated voltage generating circuit 201, an operation suspending means separate from the central control circuit 93 is formed by a latch circuit 202 and the P-channel transistor 203 connected between the output side of the latch circuit 202 and the middle of the high potential side Vdd line is formed between the high-capacity capacitor 48 and the central control circuit 93.
  • the high potential side voltage Vdd is taken as the reference voltage (GND)
  • the low potential voltage Vss becomes the power supply voltage and the potential difference becomes equal to the charge voltage Vc.
  • the oscillator circuit and divider circuit are driven by the regulated voltage Vreg outputted from the regulated voltage generating circuit 201.
  • the central control circuit 93 monitors the power supply voltage (charge voltage Vc of the high-capacity capacitor 47) by means of the voltage detecting circuit 92, and outputs an"L" to the latch circuit 202 when the voltage drops below a predetermined value. Then, at the latch circuit 202, the signal outputted from the power generation state detecting portion 91 and the signal outputted from the central control circuit 93 are received, a signal putting the transistor 203 to"H" is outputted, and the transistor 203 is put into an off state. Then, the supply of the charge voltage Vc of the high-capacity capacitor 48 to the central control circuit 93, the voltage detecting circuit 92, the regulated voltage generating circuit 201 and the like is cut off. As a result, the regulated voltage Vreg which is outputted from the regulated voltage generating circuit 201 upon receiving the charge voltage Vc is suspended and the operation of the regulated voltage drive circuit 200 is suspended.
  • the drive portions 30S, 30HM are suspended, and most of the power consumption on the circuit is consumed by the regulated voltage drive circuit 200 such as the oscillator circuit for generating the reference pulse signal and the divider circuit, and the regulated voltage generating circuit 201, so that by suspending the supply of the regulated voltage Vreg to the regulated voltage drive circuit 200, the power consumption on the regulated voltage drive circuit 200 can be reduced to zero. Furthermore, the power consumption of the entire circuit can be made close to zero by suspending the supply of the power supply voltage Vss to the regulated voltage generating circuit 201.
  • the power generation state detecting portion 91 detects that power generation has begun at the power generating portion A and inputs a signal "H" to the latch circuit 202, the transistor 203 goes to an off state, and the charge voltage Vc is supplied tot e central control circuit 93, the voltage detecting circuit 92, and the regulated voltage generating circuit 201. Since a sufficient voltage is held in the high-capacity capacitor 48 when oscillation begins, the initiation of the oscillation can be quickened. Consequently, the electronic timepiece 1 can be readily reactivated.
  • a pull-up resistor having a high resistance value should preferably be connected to the gate terminal side of the transistor 203 in order to ensure that the transistor 203 is in an off state.
  • the transistor 203 is connected on the line through which the high potential side voltage Vdd is supplied so as to cut off the supplied current. Therefore, in the first modification example, a transistor 203 with a comparatively large capacity must be used. Thus, in the second modification example, the same can be achieved by forming an operation suspending means as shown in Fig. 6.
  • the oscillator circuit 301, divider circuit 302 and level shifter 303 are detailed specifics of the regulated voltage drive circuit 200 driven by the regulated voltage Vreg. Additionally, in this modification example, the line having the high potential side voltage Vdd is made the reference line a , the line having the low potential side voltage Vss is made the power supply line b and the line having the regulated voltage Vreg which is a constant potential is made the regulated voltage line c.
  • a P-channel type transistor 304 is connected between lines a and c
  • a P-channel type transistor 305 is connected between the line b and the regulated voltage circuit 92
  • the gate of the transistor 305 is connected to the output side of the central control circuit 92.
  • the gate of the transistor 304 is connected to the output side of the central control circuit 92.
  • the transistor 304 and transistor 305 form operation suspension means.
  • the power generation state detecting portion 91 monitors the power generation state of the power generating portion A when the electronic timepiece 1 is in the power-saving mode, and when the power generating portion goes into a non-power generating state, outputs an "L" signal to the transistor 304 and transistor 305.
  • the transistor 304 goes into an on state and short-circuits the reference line a and the regulated voltage line c , thereby cutting off the regulated voltage reg supplied to the oscillator circuit 301, the divider circuit 302 and the level shifter 303.
  • an "L" signal is inputted to the transistor 305, putting the transistor 305 into an off state, cutting off the charge voltage Vc supplied from the high-capacity capacitor 48 to the regulated voltage generating circuit 92, and also cutting off the supply of the regulated voltage Vreg.
  • a transistor with relatively low voltage resistance can be used as the transistor, and the power consumption on the regulated voltage generating circuit 92 can be made roughly zero by cutting off the supply of the charge voltage Vc.
  • the transistor 304 was turned on to cut off the supply of the regulated voltage Vreg, it is also possible to connect a transistor on the regulated voltage line c and turn this transistor off to cut off the supply of the charge voltage. Additionally, the latch circuit 202 shown in the first modification example can be internalized in the central control circuit 92.
  • the on/offoperation of the transistor 304 and the on/off operation of the transistor 305 were performed simultaneously, but it is more preferable to provide a delay circuit before the gate of the transistor 304 and operate the transistor 305 first.
  • This modification example is one where the reference pulse generated from the oscillator circuit is cut off.
  • the operation suspending means composed of the transistor 304 and the transistor 305 is not connected, and the central control circuit 93 and oscillator circuit 401 are connected by a signal line d over which the oscillator circuit drive signal is outputted.
  • Both ends of the quartz oscillator 402 are connected through a drain capacitor 403 and a gate capacitor 404 to a reference line a which has the high potential side voltage Vdd, and is further connected to the series circuit composed of the drain resistor 405 and the feedback resistor 406. Additionally, between the reference line a and the regulated voltage line c , beginning from the reference line a side, a P-channel transistor 407, an N-channel transistor 408 and a P-channel transistor 409 are connected in that order.
  • the gates of the transistors 407, 408 are connected to the connection point between the gate capacitor 404 and the feedback resistor 406, the drain of the transistor 407 and the drain of the transistor 408 are connected to the drain resistor 405, and the gate of the transistor 409 is connected to the output side of the central control circuit 93.
  • the connection point between the drain resistor 405 and the feedback resistor 406 is connected to the divider circuit 302.
  • this oscillator circuit401 the parts other than the quartz oscillator 402 are integrated, forming an oscillation inverter by means of the circuit elements aside from the quartz oscillator 402, the transistor 409 and the feedback resistor 406.
  • the oscillator circuit drive signal which is outputted from the central control circuit 93 through the signal lined to the gate of the transistor 409 goes to "H"
  • a regulated voltage Vreg is supplied to the oscillation inverter and a specific vibration due to the quartz oscillator 402 is used to output a reference pulse to the divider circuit 302.
  • the power generation state detecting portion 91 monitors the power generation state of the power generating portion A, and when the power generating portion A goes into a non-power generating state, an oscillator circuit drive signal which is at "L" is outputted toward the gate of the transistor 409 to turn the transistor 409 off. Then, the supply of the regulated voltage Vreg to the oscillator inverter is suspended and the reference pulse generated from the oscillator circuit 401 is stopped. As a result, the power consumption of each circuit can be reduced.
  • the criterion voltage for shifting from a power-saving mode to cutting off the supply of voltage is determined by a second criterion voltage V2 (hereinafter referred to as the second criterion voltage V2) which is lower than the criterion voltage V1 (hereinafter referred to as the first criterion voltage V1), and a criterion count value T1, the second criterion voltage V2 being the voltage value necessary for the hands 55, 76, 77 to rotate roughly 180 degrees in returning from the power-saving mode to the display mode, and the criterion counter value T1 being the counter value at this time.
  • step S21 to step S30 is roughly the same as the procedure from step S1 to step S10 in Fig. 4, and its description shall be omitted.
  • step S27 if the charge voltage Vc of the high-capacity capacitor 48 is less than or equal to the first criterion voltage V1 (step S27; NO), i.e. the voltage of the high-capacity capacitor 48 is a voltage such that it is not possible to return from the power-saving mode to the display mode, then it is determined whether or not the value of the time counter T has exceeded the criterion counter value T1 (step S31).
  • step S31 if the value of the counter T has exceeded the criterion counter value T1, then the procedure shifts to step S33, and the procedures following step S33 are performed, whereas if it has not exceeded the value, then the procedure of step S32 is performed. That is, in step S32, it is determined whether or not the charge voltage Vc is larger than the second criterion voltage V2, and if the charge voltage Vc is smaller than the second criterion voltage V2 (step S32; NO), i.e. if there is not enough electrical energy left in the high-capacity capacitor 48 to restore the hands 55, 76, 77, then in step S33, the supply of voltage to the control circuit 23 and the drive portions 30S, 30HM is cut off.
  • step S34 the power generation state detecting portion 91 monitors whether or not the power generating device 40has started to generate power, and the process stands by in step S34 until the power generation state detecting portion 91 detects that power generation has begun. On the other hand, if the power generation state detecting portion 91 detects that power generation has begun (step S34; YES), the charge voltage Vc supplied from the high-capacity capacitor 48 is supplied to the control circuit 23 and the drive portions 30S, 30HM to activate the electronic timepiece 1 (step S35).
  • step S32 determines whether or not power generation has begun in step S37, and if power generation is not detected, then the procedure is repeated from step S31.
  • step S37 if there is power generation in the determination of step S37, then the procedure shifts to step S38 to perform a current time restoration process.
  • the voltage supply is cut off if after the charge voltage Vc has become smaller than the first criterion voltage V1, the value T of the time counter becomes larger than the criterion counter value T1 or the charge voltage Vc become smaller than the second criterion voltage V2.
  • a time delay can be added before cutting off the supply of the charge voltage Vc, thus considerably suppressing cases where the supply of the charge voltage Vc is cut off, and enabling restoration from the power-saving mode to the display mode for displaying the current time when power generation begins.
  • the present invention can also be applied to an electronic timepiece having 3 or more motors (motors for separately controlling the second hand, minute hand, hour hand, calendar, chronograph, etc.).
  • the watch automatically switches between the display mode and power-saving mode, but it may be such as to detect an operation by the user on an external input device 100 such as a specific operation on a crown, and to then switch forcibly from the display to the power-saving mode or switch from the power-saving mode to voltage supply suspension. Furthermore, the cutoff and initiation of the supply of electrical energy from the power supply portion B can be made to be performed according to operating conditions of the external input device 100.
  • the power generation state detecting portion 91 monitors whether the power generating device 40 is in a power generating state or a non-power generating state, but the invention is not so limited, and the monitoring can be performed indirectly by means of the carriage state detecting circuit 120 shown in Fig. 2 such as to find that the power generating device 40 is in a non-power generating state when in an uncarried state.
  • the charge voltage Vc of the high-capacity capacitor 48 is monitored by the voltage detecting circuit 92, and the supply of electrical energy is cut off if the charge voltage Vc goes to the criterion voltage V1 or below, but the present invention is not so limited, and may be such as to supply and cut off the electrical energy by monitoring the power supply voltage Vss outputted from the voltage raising/lowering circuit 49.
  • wristwatch-type electronic timepiece 1 an example of a wristwatch-type electronic timepiece 1 was used, but the present invention is not so restricted, and may be applied to other types of portable electronic devices aside from wristwatches, such as calculators, portable telephones, portable computers, PDA's, liquid crystal televisions and portable video decks.
  • an electromagnetic power generating device which generates power Vgen in an output coil 44 by the rotation of a rotor 43 which is transmitted to the rotor 43 by rotational motion of a rotating weight 45 is employed as the power generating device 40, but the present invention is not so limited, and, for example may use a power generating device which generates power by rotational motion generated by the return force of a spring (corresponding to external energy), or a power generating device which generates power by means of a piezoelectric effect by applying external or auto-induced vibration or displacement (corresponding to external energy) of a piezoelectric element.
  • the power generating device may be such as to generate power by photoelectric conversion using light energy (corresponding to external energy) from sunlight or the like.
  • the power generating device may generate power by means of thermal power generation due to a temperature difference (thermal energy; corresponding to external energy) between a certain portion and another portion.
  • the structure may be such as to use an electromagnetic induction type power generating device which receives freely propagating electromagnetic waves such as those for broadcast or communication, and uses these for energy (corresponding to external energy).
  • the reference potential (GND) was set to Vdd (high potential side voltage), but the reference potential (GND) may of course be set to Vss (low potential side voltage).
  • the set voltage values V0 and Vgen, etc. represent potential differences from a detected level set on the high potential side with Vss as a reference.
  • chargeable electrical storage devices such as auxiliary batteries and capacitors were used to store power generated by the power generating device as the power supply, but it is possible to use primary batteries, or else to use both a chargeable electrical storage device and a primary battery together, or to use a power generating device and a primary battery together.
  • the supply of power to the digital display device is cutoff when in the power-saving mode, so that there is no display.
  • a portion of a display can be left so as to prevent the user from making the mistaken assumption that the watch has broken. For example, a mark which blinks every 2-3 seconds can be displayed on the display screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromechanical Clocks (AREA)
  • Electric Clocks (AREA)

Claims (32)

  1. Dispositif électronique (1) comprenant :
    une section d'alimentation en courant chargeable (A, B) pour fournir de l'énergie électrique ;
    une section de contrôle motrice (23) actionnée par l'énergie électrique fournie par ladite section d'alimentation en courant (A, B) et conçue pour émettre un signal moteur ;
    une section menée (CS, CHM) entraînée par ledit signal moteur ;
    une section de commutation de mode (90) conçue pour commuter le mode de fonctionnement de ladite section menée (CS, CHM) entre un mode moteur pour le fonctionnement normal et un mode d'économie de courant en partant d'une première condition préétablie ; et caractérisé par
    une section de suspension de fonctionnement (93) conçue pour suspendre le fonctionnement de ladite section de contrôle motrice (23) lorsqu'il est déterminé que la quantité d'énergie électrique accumulée dans ladite section d'alimentation en courant (A, B) est inférieure à une quantité prédéterminée d'énergie électrique en partant d'une seconde condition préétablie lorsqu'on est en mode d'économie de courant du fait de ladite section de commutation de mode (90).
  2. Dispositif électronique (1) selon la revendication 1, dans lequel
    ladite section de suspension de fonctionnement (93) est conçue pour suspendre la fourniture d'énergie électrique par ladite section d'alimentation en courant (A, B) à ladite section de contrôle motrice (23) lors de la suspension du fonctionnement de ladite section de contrôle motrice (23).
  3. Dispositif électronique (1) selon la revendication 1, dans lequel
    ladite section de contrôle motrice (23) comprend un circuit de contrôle (24) fonctionnant à l'énergie électrique fournie par ladite section d'alimentation en courant (A, B) et conçu pour émettre un signal de contrôle, et un circuit moteur (30S, 30HM) fonctionnant à l'énergie électrique fournie par ladite section d'alimentation en courant (A, B) et conçu pour émettre un signal moteur vers ladite section menée (CS, CHM) en partant du signal de contrôle ; et
    ladite section de commutation de mode (90) est conçue pour fournir de l'énergie électrique audit circuit de contrôle (24) et audit circuit moteur (30S, 30H) dans ledit mode moteur et est conçue pour fournir de l'énergie électrique uniquement audit circuit de contrôle (24) en mode d'économie de courant.
  4. Dispositif électronique (1) selon la revendication 1, dans lequel
    ladite section d'alimentation en courant (A, B) comprend une section de génération de courant (A) conçue pour convertir l'énergie externe en énergie interne et une section d'accumulation de courant (B) conçue pour accumuler de l'énergie électrique fournie par ladite section de génération de courant (A) et pour fournir l'énergie électrique à ladite section de contrôle motrice (23).
  5. Dispositif électronique (1) selon la revendication 4, dans lequel
    ladite section d'accumulation de courant (B) comprend une batterie auxiliaire ou une capacité.
  6. Dispositif électronique (1) selon la revendication 4, dans lequel
    il est prévu une section de détection d'état de génération de courant (91) conçue pour détecter si oui ou non ladite section de génération de courant (A) est en état de génération de courant; et
    ladite première condition est si oui ou non ladite section de génération de courant (A) est en état de génération de courant comme déterminé par ladite section de détection d'état de génération de courant (91) .
  7. Dispositif électronique (1) selon la revendication 6, dans lequel
    ladite section de détection d'état de génération de courant (91) comprend une section de détermination de quantité d'énergie (97) conçue pou déterminer si oui ou non la quantité d'énergie électrique émise par ladite section de génération de courant (A) excède un critère de quantité d'énergie ; et
    une section de détermination de temps de génération de courant (98) conçue pour déterminer si oui ou non une durée, sur laquelle il est déterminé par ladite section de détermination de quantité de courant (97) que la quantité d'énergie électrique excède le critère de quantité d'énergie, excède un critère de valeur temporelle.
  8. Dispositif électronique (1) selon la revendication 1, dans lequel
    il est prévu une section de détection d'état de portage (120) conçue pour déterminer si oui ou non ledit dispositif électrique (1) est en état porté ;
    ladite première condition exige, pour commuter le mode de fonctionnement de ladite section menée (CS, CHM) dudit mode moteur audit mode d'économie de courant, qu'il soit détecté par ladite section de détection d'état de portage (120) que ledit dispositif électrique (1) soit en état non porté et que la durée pendant laquelle le dispositif électrique (1) est en état non porté se poursuive pendant un temps prédéterminé ; et
    ladite première condition exige, pour commuter le mode de fonctionnement de ladite section menée (CS, CHM) dudit mode d'économie de courant audit mode moteur, que le dispositif électronique (1) soit passé d'un état non porté à un état porté suivant ladite section de détection d'état de portage (120).
  9. Dispositif électronique (1) selon la revendication 1, dans lequel
    il est prévu une section de détection de tension (92) conçue pour détecter la tension de ladite section d'alimentation en courant (A, B) ; et
    ladite seconde condition exige que la tension de ladite section d'alimentation en courant (A, B) détectée par ladite section de détection de tension (92) passe en dessous d'une tension prédéterminée.
  10. Dispositif électronique (1) selon la revendication 1, dans lequel
    il est prévu une section de détection d'énergie électrique conçue pour détecter la quantité d'énergie électrique fournie par ladite section d'alimentation en courant (A, B) ; et
    ladite seconde condition exige que la quantité d'énergie électrique pouvant être fournie par ladite section d'alimentation en courant (A, B) et détectée par ladite section de détection d'énergie électrique devienne inférieure à une quantité prédéterminée d'énergie électrique requise pour repasser le mode de fonctionnement de ladite section motrice dudit mode d'économie de courant audit mode moteur.
  11. Dispositif électronique (1) selon la revendication 4, dans lequel
    il est prévu une section de détection d'état de génération de courant (91) conçue pour détecter si oui ou non ladite section de génération de courant (A) est en état de génération de courant ;
    une section d'initiation de fonctionnement conçue pour initier le fonctionnement de ladite section de contrôle motrice (23) lorsqu'une troisième condition préétablie est remplie pendant que le fonctionnement de ladite section de contrôle motrice (23) est à l'état suspendu du fait de ladite section de suspension de fonctionnement (93) ; et
    ladite troisième condition exige que l'initiation de la génération de courant par ladite section de génération de courant (A) soit détectée par ladite section de détection d'état de génération de courant (91) .
  12. Dispositif électronique (1) selon la revendication 11, dans lequel
    l'initiation de génération de courant de ladite troisième condition signifie que la quantité d'énergie électrique émise par ladite section de génération de courant (A) excède une quantité d'énergie suffisante pour la réactivation et que cet état se poursuit pendant une durée prédéterminée.
  13. Dispositif électronique (1) selon la revendication 1, dans lequel
    il est prévu une section de détection d'état de portage (120) conçue pour détecter si oui ou non ledit dispositif électronique (1) est en état porté ;
    une section d'initiation de fonctionnement conçue pour initier le fonctionnement de ladite section de contrôle motrice (23) en partant d'une troisième condition préétablie lorsque le fonctionnement de ladite section de contrôle motrice (23) est à l'état suspendu du fait de ladite section de suspension de fonctionnement (93) ; et
    ladite section d'initiation de fonctionnement est conçue pour déterminer quand ledit dispositif électronique (1) passe d'un état non porté à un état porté en utilisant ladite section de détection d'état de portage (120) en tant que dite troisième condition.
  14. Dispositif électronique (1) selon la revendication 13, dans lequel
    la commutation dudit état non porté à l'état porté a lieu lorsque l'état porté se poursuit pendant une durée prédéterminée après la commutation d'un état non porté à un état porté.
  15. Dispositif électronique (1) selon la revendication 1, dans lequel
    il est prévu une section d'entrée à fonctionnement externe (100) conçue pour permettre à un utilisateur de réaliser des opérations de l'extérieur ; et
    la commutation dudit mode moteur audit mode d'économie de courant est réalisée par ladite section de commutation de mode (90) en partant des conditions de fonctionnement de ladite section d'entrée à fonctionnement externe (100).
  16. Dispositif électronique (1) selon la revendication 1, dans lequel
    il est prévu une section d'entrée à fonctionnement externe (100) conçue pour permettre à un utilisateur de réaliser des opérations de l'extérieur ; et
    il est prévu une section d'initiation de fonctionnement conçue pour initier le fonctionnement de ladite section de contrôle motrice (23) en partant des conditions de fonctionnement de ladite section d'entrée à fonctionnement externe (100) lorsque ladite section de suspension de fonctionnement (93) détecte que les opérations de ladite section de contrôle motrice (23) sont à l'état suspendu.
  17. Dispositif électronique (1) selon l'une quelconque des revendications 1 à 16, dans lequel
    ladite section menée (CS, CHM) comporte une section d'affichage d'heure pour afficher l'heure.
  18. Dispositif électronique (1) selon la revendication 17, dans lequel
    ladite section de contrôle motrice (23) comprend une section de rétablissement d'heure momentanée, conçue pour remettre l'affichage de l'heure à l'heure momentanée lorsque le mode de fonctionnement de la section menée (CS, CHM) est commuté dudit mode d'économie de courant audit mode moteur par la section de commutation de mode (90).
  19. Dispositif électronique (1) selon la revendication 18, dans lequel
    ladite quantité prédéterminée d'énergie électrique est fixée à une quantité d'énergie électrique requise pour rétablir l'heure momentanée à partir du mode d'économie d'énergie en utilisant ladite section de rétablissement d'heure momentanée.
  20. Dispositif électronique (1) selon la revendication 18, dans lequel
    la quantité d'énergie suffisante pour réaliser le rétablissement est fixée à une quantité minimale requise pour permettre l'affichage de l'heure en utilisant ladite section de rétablissement d'heure en initiant le fonctionnement de ladite section de contrôle motrice (23).
  21. Dispositif électronique (1) selon la revendication 18, dans lequel
    ladite section d'affichage d'heure a des aiguilles (55, 76, 77) conçues pour afficher l'heure et un moteur (10, 60) conçu pour entraîner lesdites aiguilles (55, 76, 77) ; et
    ladite section de rétablissement d'heure momentanée est conçue pour rétablir le mouvement des aiguilles (55, 76, 77) au moyen dudit moteur en les remettant à une vitesse de mouvement d'aiguilles à grande vitesse qui est supérieure à la vitesse normale de mouvement des aiguilles.
  22. Dispositif électronique (1) selon la revendication 1, dans lequel
    ladite section de contrôle motrice (23) comprend un circuit de contrôle (24) fonctionnant à l'énergie électrique fournie par ladite section d'alimentation en courant (A, B) et conçu pour émettre un signal de contrôle ; et un circuit moteur (30S, 30HM) fonctionnant à l'énergie électrique fournie par ladite section d'alimentation en courant (A, B) et conçu pour recevoir le signal de contrôle et émettre un signal moteur vers ladite section menée (CS, CHM) ;
    ledit circuit de contrôle (24) comprend un circuit oscillateur (21) conçu pour générer une impulsion de référence ; et
    ladite section de suspension de fonctionnement (93) est conçue pour suspendre le fonctionnement dudit circuit oscillateur (21).
  23. Dispositif électronique (1) selon la revendication 1, dans lequel
    ladite section de suspension de fonctionnement (93) est conçue pour suspendre la fourniture d'énergie électrique audit circuit oscillateur (21).
  24. Dispositif électronique (1) selon la revendication 1, dans lequel
    ladite section de contrôle motrice (23) comprend un circuit de contrôle (24) fonctionnant à l'énergie électrique fournie par ladite section d'alimentation en courant (A, B) et conçu pour émettre un signal de contrôle, et un circuit moteur (30S, 30HM) fonctionnant à l'énergie électrique fournie par ladite section d'alimentation en courant (A, B) et conçu pour recevoir le signal de contrôle et émettre un signal moteur vers ladite section menée (CS, CHM) ;
    ledit circuit de contrôle (24) comprend un circuit oscillateur (21) conçu pour générer une impulsion de référence et un circuit diviseur conçu pour diviser l'impulsion de référence émise par ledit circuit oscillateur (21) ; et
    ladite section de suspension de fonctionnement (93) est conçue pour suspendre le fonctionnement dudit circuit oscillateur (21) ou dudit circuit diviseur.
  25. Dispositif électronique (1) selon la revendication 24, dans lequel
    ladite section de suspension de fonctionnement (93) comprend un circuit de génération de tension régulée conçu pour générer une tension régulée inférieure à la tension d'alimentation en courant pour entraîner au moins un élément sur le circuit oscillateur (21) et le circuit diviseur ; et
    ladite section de suspension de fonctionnement (93) est conçue pour suspendre la fourniture d'énergie électrique audit circuit de génération de tension régulée.
  26. Procédé de contrôle pour dispositif électronique (1), comprenant :
    une unité d'alimentation en courant chargeable (A, B) pour fournir de l'énergie électrique ;
    un circuit de contrôle moteur (23) fonctionnant à l'énergie électrique fournie par ladite unité d'alimentation en courant (A, B) pour émettre un signal moteur ; et
    une unité menée (CS, CHM) entraînée du fait qu'elle reçoit le signal moteur émis par ladite unité de contrôle motrice (23) ;
    ce procédé de contrôle comprenant :
    une étape de commutation de mode pour commuter un mode de fonctionnement de ladite unité menée (CS, CHM) entre un mode moteur et un mode d'économie de courant en partant d'une première condition préétablie ; et
    caractérisé par
    une étape de suspension de commande pour suspendre le fonctionnement de ladite unité de contrôle motrice (23) lorsqu'il est déterminé que la quantité d'énergie électrique accumulée dans ladite unité d'alimentation en courant (A, B) est inférieure à une quantité prédéterminée d'énergie électrique suivant une seconde condition préétablie, alors que le mode de fonctionnement est mis en mode d'économie de courant par ladite étape de commutation de mode.
  27. Procédé de contrôle pour dispositif électronique (1) selon la revendication 26, dans lequel :
    ladite unité d'alimentation en courant (A, B) comprend un dispositif de génération de courant (A) pour convertir l'énergie externe en énergie électrique et un dispositif d'accumulation de courant (B) pour accumuler de l'énergie électrique fournie par ledit dispositif de génération de courant (A) et fournir ladite énergie électrique à ladite unité de contrôle motrice (23) ;
    ledit procédé comprend en outre une étape de détection d'état de génération de courant pour déterminer si oui ou non du courant est généré par le dispositif de génération de courant (A) ; et
    ladite première condition exige que du courant généré par ledit dispositif de génération de courant (A) soit détecté pendant ladite étape de détection d'état de génération de courant.
  28. Procédé de contrôle pour dispositif électronique (1) selon la revendication 27, dans lequel :
    ladite étape de détection d'état de génération de courant comprend une étape de détermination de quantité de courant pour déterminer si oui ou non la quantité d'énergie électrique émise par ledit dispositif de génération de courant (A) a excédé un critère de quantité d'énergie ; et
    une étape de détermination de temps de génération de courant pour déterminer si oui ou non la durée pendant laquelle la quantité d'énergie électrique excédant le critère de quantité d'énergie telle que déterminé pendant ladite étape de détermination de quantité d'énergie excède un critère de valeur temporelle.
  29. Procédé de contrôle pour dispositif électronique (1) selon la revendication 26, dans lequel :
    ledit procédé comprend en outre une étape de détection d'état de portage pour détecter si oui ou non le dispositif électronique (1) est porté ;
    ladite première condition exige, pour commuter le mode de fonctionnement de ladite unité menée (CS, CHM) dudit mode moteur audit mode d'économie de courant, qu'il soit détecté que ledit dispositif électronique (1) est en état non porté pendant ladite étape de détection d'état de portage et que le temps pendant lequel ledit dispositif électronique (1) est en état non porté se poursuive pendant un temps prédéterminé et ladite première condition exige, pour commuter le mode de fonctionnement de ladite unité motrice dudit mode d'économie de courant audit mode moteur, qu'une commutation de l'état non porté à un état porté soit détectée pendant ladite étape de détection d'état de portage.
  30. Procédé de contrôle pour dispositif électronique (1) selon la revendication 26, comprenant :
    une étape de détection de quantité d'énergie électrique pour détecter une quantité d'énergie électrique fournie par ladite unité d'alimentation en courant (A, B) ; et
    ladite seconde condition exige que la quantité d'énergie électrique pouvant être fournie par ladite unité d'alimentation en courant (A, B) détectée par ladite étape de détection d'énergie électrique soit inférieure à une quantité prédéterminée d'énergie électrique requise pour repasser le mode de fonctionnement de ladite unité menée (CS, CHM) dudit mode d'économie de courant audit mode moteur.
  31. Procédé de contrôle pour dispositif électronique (1) selon la revendication 26, dans lequel :
    ladite unité d'alimentation en courant (A, B) comprend un dispositif de génération de courant (A) pour convertir l'énergie externe en énergie électrique et un dispositif d'accumulation de courant (B) pour accumuler l'énergie électrique fournie par ledit dispositif de génération de courant (A) et fournir ladite énergie électrique à ladite unité de contrôle motrice (23) ;
    ce procédé comprend une étape de détection d'état de génération de courant pour détecter si oui ou non ledit dispositif de génération de courant (A) est en état de génération de courant ; et
    comprend en outre une étape d'initiation de fonctionnement pour initier le fonctionnement de l'unité de contrôle motrice (23) à partir d'une troisième condition préétablie lorsqu'il est déterminé que le fonctionnement de ladite unité de contrôle motrice (23) est à l'état suspendu pendant ladite étape de suspension de fonctionnement ; et
    ladite troisième condition exige que ledit dispositif de génération de courant (A) initiant la génération de courant soit détecté pendant ladite étape de détection d'état de génération de courant.
  32. Procédé de contrôle pour dispositif électronique (1) selon la revendication 26, dans lequel :
    ladite unité d'alimentation en courant (A, B) comprend un dispositif de génération de courant (A) pour convertir l'énergie externe en énergie électrique et un dispositif d'accumulation de courant (B) pour accumuler l'énergie électrique fournie par ledit dispositif de génération de courant (A) et fournir ladite énergie électrique à ladite unité de contrôle motrice (23) ;
    ledit procédé comprend une étape de détection d'état de portage pour détecter si oui ou non ledit dispositif électronique (1) est en état porté ; et
    comprend en outre une étape d'initiation de fonctionnement pour initier le fonctionnement de l'unité de contrôle motrice (23) en partant d'une troisième condition préétablie lorsque le fonctionnement de ladite unité de contrôle motrice (23) est à l'état suspendu du fait de ladite étape de suspension de fonctionnement ;
    ladite troisième condition exige qu'il soit détecté que ledit dispositif électronique (1) soit passé d'un état non porté à un état porté pendant ladite étape de détection d'état de portage.
EP00925666A 1999-05-14 2000-05-15 Dispositif électronique et procédé de contrôle pour ce dispositif Expired - Lifetime EP1098234B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13476199 1999-05-14
JP13476199 1999-05-14
PCT/JP2000/003104 WO2000070411A1 (fr) 1999-05-14 2000-05-15 Materiel electronique et son procede de commande

Publications (3)

Publication Number Publication Date
EP1098234A1 EP1098234A1 (fr) 2001-05-09
EP1098234A4 EP1098234A4 (fr) 2005-05-11
EP1098234B1 true EP1098234B1 (fr) 2006-12-27

Family

ID=15135952

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00925666A Expired - Lifetime EP1098234B1 (fr) 1999-05-14 2000-05-15 Dispositif électronique et procédé de contrôle pour ce dispositif

Country Status (6)

Country Link
EP (1) EP1098234B1 (fr)
JP (1) JP3525897B2 (fr)
CN (1) CN1145087C (fr)
DE (1) DE60032557T2 (fr)
HK (1) HK1033982A1 (fr)
WO (1) WO2000070411A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11281163B2 (en) 2019-03-22 2022-03-22 Eta Sa Manufacture Horlogere Suisse Electronic timepiece with a motion sensor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098843A1 (fr) * 2000-06-21 2001-12-27 Citizen Watch Co.,Ltd. Horloge electronique generatrice d'energie et son procede de commande
US8552588B2 (en) * 2009-11-05 2013-10-08 Tai-Her Yang Battery charging coaction and output system with current limit supply
JP4834172B2 (ja) * 2010-07-26 2011-12-14 シチズンホールディングス株式会社 ソーラセル付電子時計
JP5260706B2 (ja) 2011-06-24 2013-08-14 レノボ・シンガポール・プライベート・リミテッド 計時回路を備える携帯式電子機器の電力システム
JP6054755B2 (ja) * 2013-01-23 2016-12-27 エスアイアイ・セミコンダクタ株式会社 定電圧回路及びアナログ電子時計
CN104978002A (zh) * 2014-04-08 2015-10-14 鸿富锦精密工业(武汉)有限公司 电源控制系统及方法
US11656580B2 (en) 2018-03-27 2023-05-23 Citizen Watch Co., Ltd. Electronic watch
JP7203642B2 (ja) * 2018-03-27 2023-01-13 シチズン時計株式会社 電子時計

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH609520B (fr) * 1976-07-16 Ebauches Electroniques Sa Montre electronique pourvue d'un circuit de declenchement pour reduire la consommation d'energie lors du stockage.
JPS5563781A (en) * 1978-11-06 1980-05-14 Seiko Instr & Electronics Ltd Analog electronic watch
JPH09304555A (ja) * 1996-05-15 1997-11-28 Seiko Epson Corp 電子時計
EP0855633B1 (fr) * 1996-08-01 2008-01-09 Citizen Holdings Co., Ltd. Montre electronique
JP3830289B2 (ja) * 1997-11-20 2006-10-04 セイコーエプソン株式会社 電子機器および計時装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11281163B2 (en) 2019-03-22 2022-03-22 Eta Sa Manufacture Horlogere Suisse Electronic timepiece with a motion sensor

Also Published As

Publication number Publication date
EP1098234A4 (fr) 2005-05-11
EP1098234A1 (fr) 2001-05-09
JP3525897B2 (ja) 2004-05-10
WO2000070411A1 (fr) 2000-11-23
DE60032557T2 (de) 2007-10-04
HK1033982A1 (en) 2001-10-05
CN1304499A (zh) 2001-07-18
CN1145087C (zh) 2004-04-07
DE60032557D1 (de) 2007-02-08

Similar Documents

Publication Publication Date Title
US6693851B1 (en) Electronic device and control method for electronic device
JP3472879B2 (ja) 過充電防止方法、充電回路、電子機器および時計
US6563766B1 (en) Voltage detecting device, battery remaining voltage detecting device, voltage detecting method, battery remaining voltage detecting method, electronic timepiece and electronic device
JP3678075B2 (ja) 電源装置およびその制御方法、携帯型電子機器、計時装置およびその制御方法
US6396772B1 (en) Electronic apparatus and control method for electronic apparatus
US6476580B1 (en) Electronic apparatus and control method for electronic apparatus
EP0942341B1 (fr) Horloge mecanique a commande electronique et son procede de commande
EP1098234B1 (fr) Dispositif électronique et procédé de contrôle pour ce dispositif
EP1093203B1 (fr) Equipement electronique et son procede de commande
JP3601376B2 (ja) 電子機器及び電子機器の制御方法
JP3816197B2 (ja) 充電式電子時計
JP3601375B2 (ja) 携帯用電子機器及び携帯用電子機器の制御方法
JP3472878B2 (ja) 過充電防止方法、充電回路、電子機器および時計
JP3654018B2 (ja) 計時装置および計時装置の制御方法
US6452358B1 (en) Electronic apparatus and control method for electronic apparatus
JP3906720B2 (ja) 携帯用電子機器及び携帯用電子機器の制御方法
JP2004004137A (ja) 電子機器および電子機器の制御方法
JP2004032980A (ja) 過充電防止方法、充電回路、電子機器および時計
JP3680697B2 (ja) 電子時計およびその駆動制御方法
JP2002156474A (ja) 電子機器及び電子機器の制御方法
JP3906715B2 (ja) 電子機器及び電子機器の制御方法
JP2004140992A (ja) 発電検出回路、電子機器および発電検出方法
JP2003294872A (ja) 電子機器及び電子機器の制御方法
JP2001356180A (ja) 電子時計及び電子時計の制御方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20010423

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB LI

A4 Supplementary search report drawn up and despatched

Effective date: 20050331

RIC1 Information provided on ipc code assigned before grant

Ipc: 7G 04C 3/14 A

Ipc: 7G 04G 19/12 B

Ipc: 7G 04C 10/00 B

RTI1 Title (correction)

Free format text: ELECTRONIC EQUIPMENT AND METHOD OF CONTROLLING THE SAME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60032557

Country of ref document: DE

Date of ref document: 20070208

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

ET Fr: translation filed
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1033982

Country of ref document: HK

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150512

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160511

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170509

Year of fee payment: 18

Ref country code: FR

Payment date: 20170413

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60032557

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201