EP0249087B1 - Wärmestrahler zur Grossraumbeheizung - Google Patents

Wärmestrahler zur Grossraumbeheizung Download PDF

Info

Publication number
EP0249087B1
EP0249087B1 EP87107646A EP87107646A EP0249087B1 EP 0249087 B1 EP0249087 B1 EP 0249087B1 EP 87107646 A EP87107646 A EP 87107646A EP 87107646 A EP87107646 A EP 87107646A EP 0249087 B1 EP0249087 B1 EP 0249087B1
Authority
EP
European Patent Office
Prior art keywords
radiation tube
radiation
burner
constructed
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87107646A
Other languages
English (en)
French (fr)
Other versions
EP0249087A1 (de
Inventor
Haiko Paul Künzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUENZEL, HAIKO PAUL
Original Assignee
Kuenzel Haiko Paul
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuenzel Haiko Paul filed Critical Kuenzel Haiko Paul
Priority to AT87107646T priority Critical patent/ATE54742T1/de
Publication of EP0249087A1 publication Critical patent/EP0249087A1/de
Application granted granted Critical
Publication of EP0249087B1 publication Critical patent/EP0249087B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/06Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated
    • F24D5/08Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated with hot air led through radiators

Definitions

  • the invention relates to a radiant heater for large-scale heating with at least one radiant tube at one end of which a burner device is arranged and at the other end of which a flue gas outlet can be connected to a chimney extractor, the radiant tube in the area of the burner device for shielding against direct flame exposure and overheating, fire-proof insulation and has a large diameter suitable for radiation of long-wave heat radiation.
  • Such radiant heaters are suspended from the ceiling of a room to be heated under a reflector and operated with an atmospheric gas burner device which burns LPG or natural gas.
  • Heaters of this type emit heat in the form of infrared heat radiation and are therefore suitable for use in heating large rooms such as work or sports halls or the like.
  • infrared radiators with exhaust gas temperatures of around 500 ° ; is, however, associated with significant disadvantages in terms of efficiency compared to radiators that work in a medium temperature range while emitting long-wave heat radiation, since the lower exhaust gas temperatures of approximately 200 ° in medium-temperature radiators allow a much better utilization of the heat of combustion.
  • gas-powered radiant heaters also precludes the fact that a gas connection or a gas storage device is not available everywhere.
  • infrared radiators are also associated with disadvantages, since not only the exhaust gas losses are very high, but also that the efficiency of heating the rooms is considerably lower than with long-wave medium-temperature radiation.
  • radiant heaters for large-scale heating with a radiant tube have already been proposed, they have only been used for operation with an atmospheric gas burner.
  • the burner device is provided at one end of the jet pipe, while the suction device which generates a vacuum is arranged at the other end and serves to draw the relatively soft flame of the atmospheric gas burner over the entire length of the jet pipe.
  • the radiant tube is designed with a large diameter suitable for radiating long-wave heat radiation and has a fire-proof insulation in the area of the burner device for shielding against direct flame exposure and overheating (US Pat. No. 4,529,123).
  • FIG. 1 shows a heat radiator with a U-shaped radiation tube 10, at one end of which a burner device 20 and at the other end of which an exhaust pipe 30 which can be connected to a chimney exhaust is arranged and which generates a negative pressure in the radiation tube 10. Due to this negative pressure, the burner flame generated by the burner device 20 and the combustion gas / air mixture which is produced in the process are drawn from the burner side of the jet pipe 10 to the exhaust gas nozzle 30 and sucked out through the latter.
  • the jet pipe 10 is constructed from longitudinal elements 11 and 12 and a connecting piece 13. In the area of the exhaust pipe 30, the end of the radiation tube 10 is closed by a cleaning cover 12c.
  • the burner device 20 which consists of a pressure oil burner 21 and a blower 22, is fastened to a swivel device or a door at the end of the radiation tube 10 on the burner side in order to facilitate an inspection.
  • the radiation tube 10 is provided with an insulation layer 60 over its entire length L, which has an effectiveness that decreases from the burner side of the radiation tube 10.
  • the gradation of the effectiveness can either be selected linearly or is adapted to the decrease in the temperature of the combustion gas-air mixture, whereby the arrangement of the insulation layer 60 makes it possible to achieve a relatively high combustion gas-air mixture in the entire passage area through the radiation tube 10 Has temperature, so that a uniform heating of the radiation tube 10 and thus a uniform radiation is possible.
  • the insulation 50 in the area of the radiation tube on the burner side can be implemented by a pipe socket 150 arranged concentrically in the radiation pipe near the burner device 20, which is connected to the burner device 20, the annular space 151 formed between the radiation pipe 10 and the pipe socket 150 on that of the burner device 20 facing side is closed.
  • An additional insulation layer 152 can be arranged in the annular space 151.
  • a trapezoidal reflector 40 is arranged above the radiator, the inside of which can be mirrored in order to enable better radiation reflection.
  • the refector 40 is preferably provided on its side facing away from the radiator with an additional insulation layer 41, so that insulation takes place towards the ceiling so that almost all of the thermal energy is available for heating the room.
  • the radiation tube 10 which has a diameter D such that there is a boring heat radiation due to the amount of heat available, can additionally in the region of its opposite sides 11 a, 12 a and / or in the region of the downward sides 11 b, 12 b be provided with additional insulations which bring about uniform heat radiation downwards and towards the reflector 40, so that overall a uniform heat radiation is made possible.
  • the heat radiator 100 is suspended on a ceiling 31 at a suitable distance via support strips 42. At one end it is connected with the suction device 30 to a chimney 130, while the burner 20 arranged at the opposite end of the radiation pipe 10 is connected to an oil tank 70 via an oil line 72 which has an oil filter 73 and an oil pump 71.
  • the burner device 20 is controlled in a manner known per se via a room sensor 81 and / or a time control device 80 (FIG. 4).
  • the energy saved 3 is purely qualitative if the temperature curve 1 of a heat radiator, which has a temperature of 15 ° C. at the desired measuring point, for example , is compared with the temperature door curve 2 of an air heater which has a temperature of approximately 18 ° C. at the desired measuring point.
  • the entire design of the heat radiator is designed such that the burner device can be operated in the overpressure range.
  • the radiation tube 10 is made gas-tight over its entire length L, and flow resistances are provided in the radiation tube.
  • a flow resistance designed as an orifice 170 can be arranged in the area of the exhaust port 30. This results in a significant improvement in the overall efficiency.
  • turbolators are arranged in the radiation tube 10.
  • These turbulators designed as baffles or swirling devices, destroy the laminar flow, so that swirling is achieved in the amount of gas flowing through the radiation tube 10 from the burner device 20 such that the hot core gases of the gas jet also act on the inner wall of the radiation tube 10 and the heat emission in relation accelerate to the gas. This results in a significant reduction in the exhaust gas temperatures while maintaining the desired radiation, which significantly improves the efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Resistance Heating (AREA)
  • Direct Air Heating By Heater Or Combustion Gas (AREA)

Description

  • Die Erfindung betrifft einen Wärmestrahler zur Großraumbeheizung mit mindestens einem Strahlungsrohr an dessen einem Ende eine Brennereinrichtung und an dessen anderem Ende ein an einem Kaminabzug anschließbarer Abgasstutzen angeordnet ist, wobei das Strahlungsrohr im Bereich der Brennereinrichtung zur Abschirmung gegen eine direkte Flammbeaufschlagung und Uberhitzung eine feuerfeste Isolierung und einen zur Abstrahlung langwelliger Wärmestrahlung geignet großen Durchmesser aufweist.
  • Derartige Wärmestrahler werden an der Decke eines zu beheizendes Raumes unter einem Reflektor aufgehängt und mit einer atmosphärischen Gasbrennereinrichtung betrieben, welche Flüssiggas oder Erdgas verbrennt.
  • Strahler dieser Art geben Wärme in Form von Infrarotwärmestrahlung ab und sind daher geeignet zur Verwendung beim Heizen von Großräumen wie Arbeits- oder Sporthallen od.dgl.
  • Die Anwendung von Infrarotstrahlern, bei denen Abgastemperaturen von etwa 500° auftreten; ist jedoch im Hinblick auf den Wirkungsgrad gegenüber Strahlern, die in einem mittleren Temperaturbereich unter Abstrahlung einer langwelligen Wärmestrahlung arbeiten, mit deutlichen Nachteilen verbunden, da die bei Mitteltemperaturstrahlern niedrigeren Abgastemperaturen von etwa 200° eine wesentlich bessere Ausnutzung der Verbrennungswärme ermöglichen. Der Anwendung von gasbetriebenen Wärmestrahlern steht in Einzelfällen auch entgegen, daß nicht überall ein Gasanschluß oder ein Gasspeicher zur Verfügung steht.
  • Auch ist die Anwendung von, Infrarotstrahlern mit Nachteilen verbunden, da nicht nur die Abgasverluste sehr hoch sind, sondern daß auch der Wirkungsgrad der Aufheizung der Räume erheblich geringer ist als bei einer langwelligen Mitteltemperaturstrahlung.
  • Es sind zwar bereits Wärmestrahler zur Großraumbeheizung mit einem Strahlrohr vorgeschlagen worden, jedoch nur für den Betrieb mit einem atmosphärischen Gasbrenner. Dabei ist an einem Ende des Strahlrohres die Brennereinrichtung vorgesehen, während am anderen Ende die einen Unterdruck erzeugende Saugeinrichtung angeordnet ist die dazu dient, die relativ weiche Flamme des atmosphärischen Gasbrenners über die ganze Länge des Strahlrohres zu ziehen. Hierbei ist das Strahlrohr mit einem zur Abstrahlung langwelliger Wärmestrahlung geeigneten großen Durchmesser ausgebildet und weist im Bereich der Brennereinrichtung zur Abschirmung gegen eine direkte Flammbeaufschlagung und Überhitzung eine feuerfeste Isolierung auf (US-PS 4 529 123).
  • Eine derartige Vorrichtung kann jedoch nicht ohne weiteres mit einem Gebläsebrenner betrieben werden, wie er beispielsweise aus der EP-A 132 153 bekannt ist, da bei den Gebläsebrennern ein kurzer, sehr heißer Flammstrahl erzeugt wird, der zu einer Zerstörung des Strahlrohres und - aufgrund der Rückstrahlung auf den Brenner - des Brenners führen würde.
  • Es ist jedoch schwierig, die bekannten Druck-ÖI-Düsenbrenner mit einem Gebläse bei den bekannten Wärmestrahlern einzusetzen, da hier ja erhebliche technische Schwierigkeiten zu überwinden sind. Ein atmosphärischer Brenner erzeugt eine weiche, relativ kalte Flamme, die sich langziehen läßt und daher eine gleichmäßige Wärmeabstrahlung erzeugt. Ein Gebläsebrenner dagegen schafft eine kurze buschige Flamme mit hohen Flammtemperaturen von beispielsweise etwa 1300°C. Hierdurch entsteht eine sehr hohe Temperatur im Bereich der Brennereinrichtung, die mit wachsendem Abstand zur Brennereinrichtung stark abnimmt. Andererseits sind mit den atmosphärischen Brennern keine hohen Leistungen übertragbar, so daß bekannte Vorrichtungen nach der Art der US-PS 4 529 123 üblicherweise bis maximal 30 Kw ausgelegt werden.
  • Wenn nun versucht würde einen Gebläsebrenner für Öl oder Gas einzusetzen wäre zu berücksichtigen, daß dieser nur eine kurze Flamme mit einem starken Flammkern aufweist. Die hierin liegende Problematik dieser Brenner wurde bisher noch nicht gelöst, weshalb diese Brenner bisher auch noch keine Verwendung bei derartigen Wärmestrahlern gefunden haben. Atmosphärische Brenner können Gas und Verbrennunngsluft laminar in das Brennrohr leiten und so die Flamme über mehrere Meter ausdehnen, was die Temperaturbelastung auf das Rohr automatisch gleichmäßig verteilt, so daß eine Isolierung über die Strahlrohrlänge weder üblich noch erforderlich ist.
  • Andererseits ist es erst durch moderne Isolationsmaterialien, die über 1800°C aushalten, überhaupt möglich geworden, Gebläsebrenner einzusetzen. Hierbei waren aber diverse Probleme zu lösen. Ein Problem besteht darin, dar eine Abstimmung des Brenners mit dem Isoliermaterial und dem Rohrdurchmesser erfolgen muß. Die Isolierung war dabei so zu wählen, daß das Strahlrohr an keiner Stelle 420°C überschreitet, um die gewünschte Wäremestrahlung zu erreichen und andererseits auch die Rückstrahlung auf den Brenner nicht zu groß wird. So war einer der Abstimmungspunkte, daß die Strahler gegen Überhitzen einen Sicherheitstemperaturbegrenzer aufweisen müssen.
  • Es ist daher Aufgabe der Erfindung, einen Wärmestrahler der eingangs genannten Art so weiterzubilden daß die Anwendung eines Drucköl-Düsenbrenners mit einem Gebläse möglich wird daß die an die Umgebung abzugebende Wärmemenge in bezug auf den Energieaufwand vergrößert wird, der insgesamt eine große Heizleistung bringt und durch Anpassung der heizwirksamen Oberfläche eine möglichst große Wärmemenge gezielt und gleichmäßig auf zu beheizende Objekte übertragen kann.
  • Diese Aufgabe wird erfindungsgemäß bei einem Wärmestrahler der eingangs genannten Art dadurch gelöst, daß
    • a) die Brennereinrichtung als Drucköl-Düsenbrenner mit einem Gebläse ausgebildet ist,
    • b) das Strahlungsrohr über seine gesamte Länge mit einer mit zunehmendem Abstand zur Brennereinrichtung eine abnehmende Dicke und/oder Wirksamkeit aufweisende Isolationsschicht versehen ist, und
    • c) das Strahlungsrohr über seine gesamte Länge gasdicht ausgebildet ist und die Brennereinrichtung im Überdruckbereich betreibbar ausgebildet ist, wobei im Strahlungsrohr und/oder im Bereich des Abgasstutzens ein Strömungswiderstand angeordnet ist.
  • Mit dieser Ausbildung ist erreichbar, daß in den Bereichen, wo eine hohe Wärmemenge geballt auftritt, eine Abstrahlung im Infrarotbereich verhindert wird und diese Wärme noch zur Aufheizung der von der Brennereinrichtung weiter entfernten Partien des Strahlrohres zur Verfügung steht. Durch die Verringerung der Wirksamkeit der Isolation kann damit eine ganz gleichmäßige Wärmestrahlung erreicht werden.
  • Weitere bevorzugte Ausführungsformen sind in den Unteransprüchen gekennzeichnet.
  • Ausführungsbeispiele der Erfindung werden nachstehend anhand der Zeichnung näher erläutert. Es zeigt
    • Fig. 1 in einer schaubildlichen Ansicht von unten eine Ausführungsform eines Wärmestrahlers,
    • Fig. 2 in einer schematischen Seitendarstellung den Wäremestrahler gemäß Fig.1,
    • Fig. 3 den Wärmestrahler in einer senkrechten Schnittdarstellung gemäß Linie III-III in Fig. 2,
    • Fig. 4 in schematischer Darstellung einen in einem Gebäude angeordneten Wärmestrahler und
    • Fig. 5 in einer Diagrammdarstellung die Raumtemperatur in bezug auf die Raumhöhe für unterschiedliche Beheizungssysteme.
  • Fig. 1 zeigt einen Wärmestrahler mit einem U-förmig gebogenen Strahlungsrohr 10, an dessen einem Ende eine Brennereinrichtung 20 und an dessen anderem Ende ein an einen Kaminabzug anschließbarer Abgasstutzen 30 angeordnet ist, die im Strahlungsrohr 10 einen Unterdruck erzeugt. Durch diesen Unterdruck wird die durch die Brennereinrichtung 20 erzeugte Brennerflamme und das dabei entstehende Verbrennungsgas-Luft-Gemisch von der Brennerseite des Strahlrohres 10 zum Abgasstutzen 30 gezogen und durch diese hinausgesaugt. Das Strahlrohr 10 ist aus Längselementen 11 und 12 und einem Verbindungsstück 13 aufgebaut. Im Bereich des Abgasstutzens 30 ist das Ende des Strahlungsrohres 10 durch einen Reinigungsdeckel 12c verschlossen.
  • Die aus einem Druckölbrenner 21 und einem Gebläse 22 bestehende Brennereinrichtung 20 ist am brennerseitigen Ende des Strahlungsrohres 10 an einer Schwenkvorrichtung oder einer Tür befestigt, um eine Inspektion zu erleichtern.
  • Das Strahlungsrohr 10 ist, wie in Fig. 2 dargestellt über seine gesamte Länge L mit einer Isolationsschicht 60 versehen, die eine von der Brennerseite des Strahlungsrohrs 10 her abnehmende Wirksamkeit aufweist. Die Abstufung der Wirksamkeit kann entweder linear gewählt werden oder wird an die Abnahme der Temperatur des Verbrennungsgas-Luft-Gemisches angepaßt, wobei durch die Anordnung der Isolationsschicht 60 erreichbar ist daß das Verbrennungsgas-Luft-Gemisch im gesamten Durchlaufbereich durch das Strahlungsrohr 10 eine relativ hohe Temperatur aufweist, so daß eine gleichmäßige Erwärmung des Strahlungsrohres 10 und damit eine gleichmäßige Abstrahlung möglich ist.
  • Die Isolierung 50 im brennerseitigen Bereich des Strahlungsrohres kann durch einen konzentrisch im Strahlungsrohr nahe der Brennereinrichtung 20 angeordneten Rohrstutzen 150 ausgeführt werden, der mit der Brennereinrichtung 20 verbunden ist, wobei der zwischen dem Strahlungsrohr 10 und dem Rohrstutzen 150 gebildete Ringraum 151 auf der der Brennereinrichtung 20 zugewandten Seite verschlossen ist. In dem Ringraum 151 kann eine zusätzliche Isolationsschicht 152 angeordnet werden. Damit ergibt sich eine einfach aufgebaute, sehr wirksame Abschirmung, so daß die direkt vor der Brennereinrichtung 20 aufgebaute Flammfront das Strahlungsrohr nicht beaufschlagt, so daß auch in diesem Bereich eine Abstrahlung im Mitteltemperaturbereich über langweilige Abstrahlung ermöglicht wird.
  • Über dem Strahler ist ein trapezförmiger Reflektor 40 angeordnet, dessen Innenseite verspiegelt sein kann, um eine bessere Strahlungsreflexion zu ermöglichen. Bevorzugterweise ist der Refektor 40 auf seiner von dem Strahler abgewandten Seite mit einer zusätzlichen Isolationsschicht 41 versehen, so daß eine Isolation zur Raumdecke hin erfolgt, damit fast die gesamte Wärmeenergie zur Raumerwärmung zur Verfügung steht.
  • Das Strahlungsrohr 10, das einen Durchmesser D so aufweist, daß sich aufgrund der zur Verfügung stehenden Wärmemenge eine langweilige Wärmeabstrahlung ergibt, kann zusätzlich im Bereich seiner sich gegenüberliegenden Seiten 11 a, 12a und/oder im Bereich der nach unten gewandten Seiten 11 b, 12b mit zusätzlichen Isolationen versehen sein, die eine gleichmäßige Wärmeabstrahlung nach unten und zum Reflektor 40 hin bewirken, so daß insgesamt eine gleichmäßige Wärmeabstrahlung ermöglicht wird.
  • Der Wärmestrahler 100 wird bei einer Anordnung in einem Raum über Trägerleisten 42 an einer Raumdecke 31 in geeignetem Abstand aufgehängt. Einendseitig ist er mit der Saugeinrichtung 30 an einen Schornstein 130 angeschlossen, während der am entgegengesetzten Ende des Strahlungsrohrs 10 angeordnete Brenner 20 über eine Ölleitung 72 die einen Ölfilter 73 und eine Ölpumpe 71 aufweist mit einem Öltank 70 verbunden ist. Die Steuerung der Brennereinrichtung 20 erfolgt dabei in an sich bekannter Weise über einen Raumfühler 81 und/oder ein Zeitsteuerungsgerät 80 (Fig. 4).
  • Wenn ein derartiger Wärmestrahler zur Beheizung von Großräumen verwendet wird, ergeben sich gegenüber konventionellen Heizungssystemen wesentliche Vorteile. Durch die Umwandlung der langweiligen Strahlung beim Auftreffen auf den Körper wird ein Wohlbefinden schon etwa 3° C früher als bei anderen Heizungssystemen erreicht, was zu einem um ca. 15% verringerten Wärmebedarf führt. Da die Temperaturverteilung über die Raumhöhe auch gegenüber konventionellen Heizungen wesentlich günstiger ist, da die Wärme beim Auftreffen der Strahlung unten frei wird, während andere konventionelle Heizungen die Luft erwärmen, die in die Höhe steigt, ist eine weitere Energieeinsparung einer Beheizung mit Wärmestrahlern in Großräumen erreichbar.
  • Wie in Fig. 5, in der die Wärmeverteilung über der Raumhöhe in Abhängigkeit von der Raumtemperatur dargestellt ist, ergibt sich rein qualitativ die gesparte Energie 3, wenn die Temperaturkurve 1 eines Wärmestrahlers, die beispielsweise am Soll-Meßpunkt einer Temperatur von 15° C aufweist, mit der Temperatürkurve 2 einer Luftheizung verglichen wird, die am Soll-Meßpunkt eine Temperatur von ca. 18° C aufweist.
  • Diese optimale Wärmeverteilung in Großräumen ist jedoch nur dann erreichbar, wenn die Wärmeerzeugung nicht über einen Infrarotstrahler, sondern über einen Mitteltemperaturstrahler mit langwelliger Wärmeabstrahlung durchgeführt wird, und wenn die voranstehend beschriebenen Isolationsmöglichkeiten optimal zur Erreichung der Gleichmäßigkeit der Abstrahlung genutzt werden.
  • Die gesamte Ausbildung des Wärmestrahlers ist derart konzipiert, daß die Brennereinrichtung im Überdruckbereich betreibbar ist. Hierzu ist das Strahlungsrohr 10 über seine gesamte Länge L gasdicht ausgebildet, und es sind im Strahlungsrohr Strömungswiderstände vorgesehen. So kann beispielsweise ein als Blende 170 ausgebildeter Strömungswiderstand im Bereich des Abgasstutzens 30 angeordnet sein. Hierdurch ergibt sich eine erhebliche Verbesserung des Gesamtwirkungsgrades.
  • Weiterhin kann vorgesehen sein, daß im Strahlungsrohr 10 ein oder mehrere (in der Zeichnung nicht dargestellte) Turbolatoren angeordnet sind. Diese als Leitbleche oder Verwirbelungseinrichtungen ausgebildeten Turbolatoren zerstören die laminare Strömung, so daß in der das Strahlungsrohr 10 von der Brennereinrichtung 20 her durchströmenden Gasmenge eine Verwirbelung derart erreicht wird, daß auch die heißen Kerngase des Gasstrahles die Innenwandung des Strahlungsrohres 10 beaufschlagen und die Wärmeabgabe in bezug auf das Gas beschleunigen. Hierdurch wird eine wesentliche Senkung der Abgastemperaturen bei gleichzeitiger Aufrechterhaltung der gewünschten Strahlung erreicht, wodurch der Wirkungsgrad erheblich verbessert wird.

Claims (5)

1. Wärmestrahler zur Großraumbeheizung mit mindestens einem Strahlungsrohr (10), an dessen einem Ende eine Brennereinrichtung (20) und an dessen anderem Ende ein an einem Kaminabzug anschließbarer Abgasstutzen (30) angeordnet ist, wobei das Strahlungsrohr (10) im Bereich der Brennereinrichtung (20) zur Abschirmung gegen eine direkte Flammbeaufschlagung und Uberhitzung eine feuerfeste Isolierung (50; 150) und einen zur Abstrahlung langwelliger Wärmestrahlung geeignet großen Durchmesser (D) aufweist, dadurch gekennzeichnet, daß
a) die Brennereinrichtung (20) als Drucköl-Düsenbrenner (21) mit einem Gebläse (22) ausgebildet ist,
b) das Strahlungsrohr (10) über seine gesamte Länge (L) mit einer mit zunehmendem Abstand zur Brennereinrichtung eine abnehmende Dicke und/oder Wirksamkeit aufweisende Isolationsschicht (60) versehen ist, und
c) das Strahlungsrohr (10) über seine gesamte Länge (L) gasdicht ausgebildet ist und die Brennereinrichtung (20) im Uberdruckbereich betreibbar ausgebildet ist, wobei im Strahlungsrohr (10) und/oder im Bereich des Abgasstutzens (30) ein Strömungswiderstand (170) angeordnet ist.
2. Wärmestrahler nach Anspruch 1, dadurch gekennzeichnet, daß die Isolationsschicht (60) nur den halben Rohrumfang des Strahlungsrohres (10) bedeckend auf einer von einem Reflektor (40) abgewandten Seite angeordnet ist.
3. Wärmestrahler nach Anspruch 1, dadurch gekennzeichnet, daß die Isolation (50) als im Strahlungsrohr (10) konzentrisch angeordneter Rohrstutzen (150) mit im Ringraum (151) zwischen dem Rohrstutzen (150) und dem Strahlungsrohr (10) angeordneter Isolationsschicht (152) besteht.
4. Wärmestrahler nach einem der vorangegangenen Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Strahlungsrohr (10, 11, 12, 13) U-förmig ausgebildet ist und an seinen sich gegenüberliegenden Seiten (11 a, 12a) eine zusätzliche Isolation zur Abschirmung einer gegenseitigen Wärmestrahlungsbeaufschlagung aufweist.
5. Wärmestrahler nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dar im Strahlungsrohr (10) ein oder mehrere Turbolatoren angeordnet sind.
EP87107646A 1986-06-10 1987-05-26 Wärmestrahler zur Grossraumbeheizung Expired - Lifetime EP0249087B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87107646T ATE54742T1 (de) 1986-06-10 1987-05-26 Waermestrahler zur grossraumbeheizung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE8615565U DE8615565U1 (de) 1986-06-10 1986-06-10 Wärmestrahler zur Großraumbeheizung
DE8615565U 1986-06-10

Publications (2)

Publication Number Publication Date
EP0249087A1 EP0249087A1 (de) 1987-12-16
EP0249087B1 true EP0249087B1 (de) 1990-07-18

Family

ID=6795408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87107646A Expired - Lifetime EP0249087B1 (de) 1986-06-10 1987-05-26 Wärmestrahler zur Grossraumbeheizung

Country Status (3)

Country Link
EP (1) EP0249087B1 (de)
AT (1) ATE54742T1 (de)
DE (2) DE8615565U1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3925264C1 (en) * 1989-07-29 1990-10-18 Remko Gmbh & Co Kg, 4937 Lage, De Oil or gas fired IR and air heater - has combustion chamber enclosed in jacket to form heat exchange space fed by fan
GB2292214B (en) * 1994-08-10 1998-08-05 Ambi Rad Ltd Space heating appliances
US8656904B2 (en) 2009-09-25 2014-02-25 Detroit Radiant Products Co. Radiant heater

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2102555B (en) * 1981-07-17 1985-03-20 Phoenix Burners A heating system
GB2145218B (en) * 1983-07-19 1987-11-25 Admiral Dev Co Radiant heaters
US4529123A (en) * 1983-09-02 1985-07-16 Combustion Research Corporation Radiant heater system

Also Published As

Publication number Publication date
ATE54742T1 (de) 1990-08-15
EP0249087A1 (de) 1987-12-16
DE8615565U1 (de) 1986-07-31
DE3763756D1 (de) 1990-08-23

Similar Documents

Publication Publication Date Title
DE2519091C2 (de) Vorrichtung zur Beheizung eines Raumes
DE2846120C2 (de) Wasserspeichererhitzer
DE3147993C2 (de) Metall-Glühofen
DE1609529B2 (de) Heizanlage mit heizkammer und vorwaermung der zuluft
DE69821362T2 (de) Verfahren und vorrichtung zur verminderung der co- und nox-emissionen in einem heizgerät
DE1802196A1 (de) Brennereinheit fuer Heizkoerper
DE2819552A1 (de) Heizungsanlage
EP0249087B1 (de) Wärmestrahler zur Grossraumbeheizung
DE1778150A1 (de) Gasheizgeraet
DE2257982A1 (de) Warmluftofen und geblaese zur verwendung im zusammenhang mit einem warmluftofen
DE3012588A1 (de) Brenner, insbesondere mit gasfoermigem brennstoff betriebender infrarotstrahler
EP0518880B1 (de) Vorrichtung zur indirekten beheizung von fluiden
DE1164059B (de) Waermestrahler mit flammenloser Oberflaechenverbrennung, insbesondere zur Raumheizung
EP0162445A2 (de) Strahlungsbrenner
DE323972C (de) Vorrichtung an OEfen zur Ableitung hocherhitzter Gase
DE2307357C3 (de) Mit flüssigem Brennstoff betriebener Infrarotstrahler
DE1401165A1 (de) Katalytischer Strahlungserhitzer
DE102008007819B4 (de) Montagefähiger Wärmespeicherofen
DE3883138T2 (de) Strahlungsheizung.
AT259808B (de) Herdofen für feste, flüssige oder gasförmige Brennstoffe mit Warmlufterzeugung
AT248009B (de) Als Luftvorwärmer ausgebildete Feuertüre
DE1501968A1 (de) Gasheizbrenner
DE8026018U1 (de) Gasbetriebenes koch- und heizgeraet
DE2015908C3 (de) Strahlungsbrenner
DE2155583C3 (de) Wasserheizungskessel mit einem Sturzbrenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19871107

17Q First examination report despatched

Effective date: 19880728

ITF It: translation for a ep patent filed
DIN1 Information on inventor provided before grant (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KUENZEL, HAIKO PAUL

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KUENZEL, HAIKO PAUL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900718

REF Corresponds to:

Ref document number: 54742

Country of ref document: AT

Date of ref document: 19900815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3763756

Country of ref document: DE

Date of ref document: 19900823

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910531

26N No opposition filed
BERE Be: lapsed

Owner name: KUNZEL HAIKO PAUL

Effective date: 19910531

ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 87107646.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950330

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950331

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950419

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960510

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960527

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970131

EUG Se: european patent has lapsed

Ref document number: 87107646.9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980531

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030526

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050526