CN1756856B - 电介质阻挡层膜 - Google Patents

电介质阻挡层膜 Download PDF

Info

Publication number
CN1756856B
CN1756856B CN2004800055155A CN200480005515A CN1756856B CN 1756856 B CN1756856 B CN 1756856B CN 2004800055155 A CN2004800055155 A CN 2004800055155A CN 200480005515 A CN200480005515 A CN 200480005515A CN 1756856 B CN1756856 B CN 1756856B
Authority
CN
China
Prior art keywords
barrier structure
layer
substrate
dielectric
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004800055155A
Other languages
English (en)
Other versions
CN1756856A (zh
Inventor
穆昆丹·纳拉西姆汉
理查德·E·德马雷
彼得·布鲁克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
R. Ennest de Mare
Spring Waxman LLC
Original Assignee
Symmorphix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Symmorphix Inc filed Critical Symmorphix Inc
Publication of CN1756856A publication Critical patent/CN1756856A/zh
Application granted granted Critical
Publication of CN1756856B publication Critical patent/CN1756856B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • H01L21/02145Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides the material containing aluminium, e.g. AlSiOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31608Deposition of SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31608Deposition of SiO2
    • H01L21/31612Deposition of SiO2 on a silicon body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31616Deposition of Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31637Deposition of Tantalum oxides, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/958Passivation layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Optics & Photonics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

依照本发明,提出一种电介质阻挡层。依照本发明的阻挡层包含用脉冲-DC、衬底偏压的物理气相沉积法沉积在衬底上的致密化的无定形电介质层,其中致密化的无定形电介质层是阻挡层。依照本发明的形成阻挡层的方法包括提供衬底,并用脉冲-DC、偏压、宽靶物理气相沉积方法在衬底上沉积高度致密的、无定形的、电介质材料。而且,该方可以包括在衬底上进行软金属透气处理。这样的阻挡层可以用作电学层、光学层、免疫学层或摩擦层。

Description

电介质阻挡层膜
相关申请
本申请要求如下申请的优先权:由Richard E.Demaray,MukundanNarasimhan和Hongmei Zhang于2003年2月27日提交的美国临时申请60/451,178,“Dielectric Barrier Film,”,通过引用以将其全部内容结合在此,以及Mukundan Narasimhan和Peter Brooks于2003年9月25日提交的美国临时申请60/506,128,“Indium Nucleation Layer”,通过引用将其全部内容形式结合在此。 
技术领域
本发明涉及电介质阻挡膜,具体而言,涉及由高密度光学材料形成的用于光、电、摩擦和可生物植入器件的电介质阻挡膜。
背景技术
作为用于有机发光二极管(OLED)和其他光学或光电器件的保护层,电介质阻挡层变得日益重要。典型地,电介质阻挡层是具有合适的电、物理和光学性质的沉积薄膜,用于保护和增强其他器件的操作。电介质阻挡层可用于光、电和摩擦器件中。例如,触摸屏显示器需要光学透明保护层来防止大气污染物的透过以及防止物理磨损。
许多可用于形成这种电介质层的薄膜沉积技术包括某些形式的离子致密化或者衬底偏压致密化。致密化方法消除了真空沉积、化学气相沉积(CVD)或物理气相沉积(PVD)薄膜所典型具有的柱状薄膜结构。众所周知,可以通过安排二级离子源在沉积过程中“轰击”该膜来实现这种致密化。例如,参见W.Essinger“Ion sources for ion beam assisted thin filmdeposition,”Rev.Sci.Instruments(63)11-5217(1992)。还参见Hrvoje Zorc等,Proceedings of the Society of Vacuum Coaters,41st Annual Technical Conference Proceedings,243-247,1998,该论文讨论了湿气暴露对电子束蒸发膜(e-束)波长位移的影响。具体而言,Zorc等证明电子束蒸发的膜(e-束膜)与用直接离子束源沉积的e-束膜相比,在25℃下暴露于30%湿度后,前者的波长位移的改善系数为15左右。
D.E.Morton等证明了由交替的多层SiO2和TiO2组成的宽带电介质通道滤波器,这些层是用“冷阴极离子源”产生氧离子而沉积的,其目的是提供“作为低折射率材料的二氧化硅和二氧化钛、五氧化钽或者五氧化铌的致密光学膜的湿气稳定叠层”,D.E.Morton等,Proceedings of the Societyof Vacuum Coaters,41届技术年会,1998年4月18~23日。Morton等所述的结果表明如通过在安装于旋转台板上的衬底上沉积的单电介质层的光学性能而测量的,获得了对最高达100%湿度的室温耐湿性。Morton等测试的六种样品的消光系数从0.1变化到1.6ppt,表明在电介质层中存在显著浓度的缺陷或者吸收中心。另外,Morton等没有报道对于离子束能在134~632伏之间和离子束流最大为5安培时,膜厚度或者膜厚度均匀度的数据。因此,Morton等未能描述可以用作光学器件用的良好阻挡层工作的膜。
自偏压物理气相沉积,例如离子涂布或者活化反应沉积,是熟知的提供硬耐磨涂层的方法。但是,这些涂层或者是在几百伏偏压下沉积的并用离子流(ion flux)穿透表面以与衬底材料反应形成穿透表面处理,或者它们是离子辅助的,以减少膜的柱状结构。“滤过阴极真空电弧(filtered cathodevacuum arc)”(FCVA-参考文件-http://www.nanofilm-systems.com /eng/fcva_technology.htm)已经被用于从离子流形成致密膜。在这种情况下,产生离子,并且通过磁矢量将其从中性蒸气流分离,使只有带正电荷的物种碰撞衬底。可以预设偏压,以获得从约50伏到几百伏范围的平均平动能。更低的离子能未见报道,原因在于分离和引导具有有用空间电荷密度的低能离子流的问题。尽管由于在高离子能下再溅射而非常粗糙,但是可以用该方法在商业利用的水平上将氧化铝和其他材料例如四面体状碳的硬保护层沉积切削工具和螺旋钻上。由于涂层物种受离子流限制,涂布速度低。最好或者最硬的碳膜通常是用最低沉积速度沉积的,即在直径最大为12”的衬底上的最低沉积速度为0.3纳米/秒。
通过将沉积温度升高到230℃以上,用FCVA沉积的ZnO膜的单层膜在600nm波长处的透射率从室温下的约50%增加到80%以上,其中600nm处最大透射率约90%,是在430℃沉积温度而且衬底偏压不超过约50伏下获得的。这种高温处理显示了热退火方法用于修复对膜的离子诱导损伤的用途。对于使用200伏偏压的FCVA沉积而言,透射率得到极大的减小。已经显示用这种方式沉积的FCVA膜是多晶态的。这种FCVA层中表现出的缺陷结构太大而不能形成有效的光学阻挡层。另外,晶体膜的离子溅射依赖于晶体取向,导致更高的表面粗糙度。形成于保护层中的缺陷结构可能降低该层的光学质量,而且还提供了大气污染物扩散通过该层的路径,从而损害该层的保护性。
离子偏压膜已经显示出朝着提供用于保护电子和光学膜,例如光电膜、半导体膜和电致发光膜的满意阻挡层目标的显著进步。特别是用这种膜可以保护使用钙或者其他非常活泼金属掺杂的电极和其他吸湿性或活性材料的有机发光二极管。但是,据报道迄今为止的大多数偏压方法,滤过的阴极真空电弧涂层技术或者FCVAC法,制造的膜的粒子密度大于约1个缺陷/平方厘米。可能该方法中使用的该电压下的高再溅射速度造成表面粗糙化。当然,粒子的存在表示有缺陷,通过该缺陷,水蒸汽或者氧的扩散可以进行。用FCVAC法形成的表面的粗糙度同样也影响应力和形态,并且影响透明度,以及折射系数的均匀度。再溅射膜可以从处理室罩上剥落,或者被离子束方法中存在的大电场拉到膜表面。在任一情况下,对于大于膜厚度的粒子粒子缺陷密度也决定了针孔密度或者由膜的不连续沉积造成的其他缺陷,这种不连续沉积是因为视线膜(line of sight films)不能涂覆大于膜厚度的粒子,更不用说大小超过膜厚度许多倍的粒子。
在粒子-偏压或者自-偏压能超过几个电子伏特的情况下,参与偏压处理的离子的平动能可能超过膜的化学结合能。于是,撞击离子既可能向上散射已有膜的原子,又可能向后溅射已有膜的原子。同样,参与离子可能被吸附到生长膜中,也可能从膜表面散射或吸附。已有膜的溅射和从已有膜的散射在与水平方向成约45°的入射角下都是优选的。在大多数离子涂层方法中,离子束是沿着法线入射到所涂表面上的。但是,正如所指出的,在超过化学阈值的离子能下,特别是在超过约20伏的能量下,超过化学 结合能的离子能所造成的膜或者衬底的损害是显著的,并且导致表面粗糙,增强的光吸收特性和产生缺陷。
在FCVA方法的情况下,粗糙度是膜厚度的递增函数,从50纳米膜的约0.2纳米粗糙度增加到400纳米Cu膜的约3纳米粗糙度,表明由于被自偏入射的铜离子的区别溅射,多晶铜表面基本上是粗糙的。这样的膜将散射光,特别是在具有不同折射系数的两层之间的界面处。至今,还没有发现FCVA制造的膜的阻挡或者电介质性。
沉积膜的充电也是离子束沉积电介质的一个特殊问题。例如,至今已知没有低温电介质,也没有离子束电介质已经显示出能够提供晶体管栅极层所需的电质量。离子束将带电的离子嵌入膜中,导致大的负平面带电压和电场,这些在低于约450℃的温度下不能被钝化。电介质层表面电荷导致电容的缓慢积聚,阻止了在晶体管应用中灵敏地开始传导。因此,没有这样沉积的低温电介质,无论偏压还是未偏压的,被提出用于低温晶体管应用,或者是现今已知的。
所以,存在对在光、电、摩擦和生物医学应用中用作阻挡层的高质量致密电介质层的需求。
发明内容
依照本发明,提出由金属氧化物层形成的一层或多层电介质层,所述的金属氧化物层是用脉冲、偏压、大面积物理气相沉积法沉积的。依照本发明的电介质阻挡层可以由至少一层高致密化的金属氧化物层形成。依照本发明的电介质阻挡层可以是具有超低缺陷浓度的高度致密化的、高度均匀的、超光滑的无定形层,该层提供作为保护层的防止底下结构物理磨损和大气污染的优良性能,以及覆盖可以沉积以形成电学、光学或医学器件的结构。依照本发明的阻挡层还可以是自保护的光学层、电学层或者摩擦层,这些层可以灵活运用于光学或电学器件中。
因此,依照本发明的阻挡层包括通过脉冲-DC、衬底偏压的物理气相沉积法沉积在衬底上的致密无定形电介质层,其中致密无定形电介质层是阻挡层。该沉积还可以用大面积靶进行。依照本发明的形成阻挡层的方法包括:提供衬底,和在衬底上用脉冲-dc、偏压、宽靶物理气相沉积法沉积 高度致密的无定形电介质材料。此外,该方法可以包括衬底上进行软金属透气处理。
电介质阻挡层叠层可以包括任意数量的独立层,这些层包含一层或多层依照本发明的阻挡层。在一些实施方案中,独立的阻挡层可以是光学层。例如,可以典型地安排交替排列的低和高折射系数的金属氧化物材料层,以在光学器件中形成抗反射或者反射涂层。这样,依照本发明的电介质阻挡层在提供保护功能的同时也成为光学器件的一个功能部分。例如,在本发明的一些实施方案中,可以将依照本发明的电介质阻挡层用于空穴增强的LED应用中,或者用于晶体管结构的形成和保护。另外,依照本发明的阻挡层某些实施方案的有利电介质性质可以被用作电介质层,以形成电阻器或电容性电介质。
在一些实施方案中,可以在沉积阻挡层之前进行软金属(例如铟)透气处理。对于依照本发明的阻挡层的实施方案,表明这种透气处理显著改善了表面粗糙度并增强WVTR特性。
下面将参照如下附图对本发明的这些和其他实施方案进行进一步的讨论和解释。应当理解上述的概述和如下的详述都仅是示范和解释性的,对本发明所要求的没有限制意义。而且,关于依照本发明的阻挡层的沉积或性能或者软金属透气处理所提出的具体解释或理论仅用于解释,而不能认为是对本公开内容或者权利要求范围的限制。
附图说明
图1A和1B图示了用于沉积依照本发明的阻挡层膜的沉积装置。
图1C图示了依照本发明实施方案的沉积在衬底上的阻挡层。
图2A、2B、2C、2D、2E和2F图示了具有依照本发明实施方案的阻挡层电介质叠层的器件的实例。
图3显示了利用依照本发明实施方案的阻挡层电介质叠层的微腔增强的LED结构。
图4显示了具有依照本发明实施方案的阻挡层电介质叠层的底栅极晶体管器件。
图5显示了具有依照本发明实施方案的阻挡层电介质叠层的顶栅极晶 体管器件。
图6显示了类似于图3中所示的、用依照本发明实施方案的阻挡层电介质叠层进一步保护的微腔增强的LED结构的一个实例。
图7显示了类似于图3中所示的、用依照本发明实施方案的阻挡层电介质叠层进一步保护的微腔增强的LED结构的另一个实例。
图8显示了长时间暴露于高湿高温环境后的沉积在活性铝层上的依照本发明实施方案的TiO2阻挡层的一个实例。
图9显示了长时间暴露于高湿高温环境后的沉积在活性铝层上的依照本发明实施方案的二氧化硅/氧化铝阻挡层的一个实例。
图10显示了依照本发明实施方案的阻挡层电介质叠层一个实施方案的横截面的SEM照片。
图11显示了依照本发明实施方案的阻挡层电介质叠层的各种实例的透射率-波长曲线。
图12A和12B图示了依照本发明实施方案经过和不经过软金属透气处理而沉积的单个阻挡层结构。
图13显示了可用于测试阻挡层的Flexus应力测量装置。
图14图示了使用图13中所述Flexus应力测量装置的晶片弓的测量。
图15图示了在沉积后通过单个温度循环,依照本发明实施方案的各种沉积的阻挡层中作为温度函数的应力。
图16A、16B、16C和16D显示了依照本发明实施方案的一些阻挡层的表面粗糙度的原子力显微方法的测量结果。
图17图示了可用于表征依照本发明实施方案沉积的阻挡层的水蒸汽透过试验。
图18A到18D图示了不同In/Sn透气处理参数对依照本发明的沉积阻挡层表面粗糙度的影响。
图19A和19B图示了衬底对表面粗糙度的影响。
图20图示了进一步作为薄膜栅极氧化物工作的依照本发明的阻挡层。
图21A和21B图示了衬底组成对依照本发明的沉积阻挡层表面粗糙度的影响。
图22A和22B图示了依照本发明实施方案的阻挡层沉积特性影响表面 粗糙度。
图中,名称相同的元件具有相同或类似的功能。
具体实施方式
依照本发明某些实施方案的阻挡层是用脉冲-dc、衬底偏压的宽靶物理气相沉积方法沉积的,该方法将在下面这种阻挡层的一些具体实例中进一步描述。可以将依照本发明实施方案的阻挡层的一些实施方案表征为具有特别低缺陷浓度和高表面光滑度的高度致密化的、高度均匀的、高无定形的层。而且,依照本发明实施方案的阻挡层可以具有有利的光和电特性,使得这种阻挡层可以是用这些层形成的光或电器件中的自保护光学层或电学层。
例如,依照本发明的阻挡层的一些实施方案可以具有优异的光学透明性。而且,各个阻挡层的折射系数依赖于沉积材料,因此叠加依照本发明的多个阻挡层可以得到高度可控的和自保护的、反射或抗反射的光学器件用的涂层。另外,依照本发明一些实施方案的阻挡层可以掺杂光学活性杂质来形成光学活性层,这些层也是自保护的。例如,沉积稀土离子,例如铒和镱,可以得到光学放大器或者变频器。
另外,依照本发明的阻挡层的实施方案可以具有高度有利的电介质性质,因此可以用作自保护电学层。例如,依照本发明实施方案的一些阻挡层可以用作电阻层。其他实施方案可以在电容器件中用作高电介质常数层。下面将进一步讨论可以用于这种器件的电介质阻挡层的实施方案。
氧化物膜的RF溅射的讨论见Demaray等人于2001年7月10日提交的申请,申请序列号为09/903,050(‘050申请),标题为“Planar OpticalDevices and Methods for Their Manufacture”,转让给和本发明相同的受让人,通过引用将其全部内容结合在此。此外,可用于依照本发明的反应器中的靶的讨论见于2002年3月16日提交的美国申请序列号10/101,341,转让给和本发明相同的受让人,通过引用将其全部内容结合在此。用脉冲-dc、衬底偏压的宽靶物理气相沉积(PVD)方法沉积氧化物的方法进一步讨论于2002年3月16日提交的美国申请序列号10/101863(以下称作“脉冲偏压法”),转让给与本发明相同的受让人,通过引用将其全部内容结合在 此。
图1A和1B图示了依照本发明实施方案用于从靶12溅射物质的反应器装置10。在一些实施方案中,装置10可以是,例如从Applied Komatsu的AKT-1600PVD(400×500mm衬底大小)系统或者Applied Komatsu,Santa Clara,CA.的AKT-4300(600×720mm衬底大小)系统改装而来的。例如,AKT-1600反应器有三个或四个通过真空输送室连接的沉积室。可以改装这些AKT PVD反应器,使在材料膜的沉积过程中将脉冲DC电能供应在靶上而RF电能供应在衬底上。
装置10包含靶12,该靶通过滤波器15电耦合到脉冲DC电源14上。在一些实施方案中,靶12是大面积溅射源靶,提供将要沉积在衬底16上的物质。衬底16位于靶12对面,和靶平行。靶12在向其通电时起到阴极作用,同样也可称作阴极。通电到靶12在靶12下面产生等离子体53。将磁铁20横跨靶12上方扫描。衬底1通过绝缘体54和电极17电容性耦合。电极17可以耦合到RF电源18上。
对于脉冲无功dc磁控管溅射而言,当用装置10进行时,通过电源14供应到靶12的电能的极性在负电势和正电势之间振荡。在正电势期间,靶12表面上的绝缘层被放电,从而阻止了电弧放电。为了获得无电弧(arcfree)沉积,脉冲DC电源14的脉冲频率可以超过临界频率,临界频率可能至少部分地依赖于靶材料,阴极电流和反转时间。在装置10中使用无功脉冲DC磁控管溅射,可以制造高质量氧化物膜。
脉冲DC电源14可以是任何脉冲DC电源,例如,Advanced Energy,Inc.的AE Pinnacle plus 10K。使用这种实例电源,可以以0到350KHz的频率提供最大为10kW的DC功率。反向电压为负靶电压的10%。使用其他电源将导致不同的功率特性、频率特性和反向电压百分比。电源14的这种实施方案得到的反转时间可以被调节到0至5μs。
滤波器15防止来自电源18的偏压功率耦合到脉冲DC电源14中。在一些实施方案中,电源18是2MHz RF电源,且例如可以是由ENI,ColoradoSprings,Co.制造的Nova-25电源。因此,滤波器15是2MHz频带带阻滤波器。在一些实施方案中,滤波器的带宽可以为约100KHz。因此,滤波器15防止了来自对衬底16的偏压的2MHz功率损坏电源18。
但是,RF和脉冲DC沉积膜都不是完全致密的,很可能有柱状结构。这些柱状结构由于散射损失和该结构造成的针孔而不利于光学应用和阻挡层的形成。通过在沉积过程中在晶片16上施加RF偏压,通过高能离子轰击可以使沉积膜致密化,并且可以基本上消除柱状结构。
在依照本发明使用例如AKT-1600基系统的阻挡层一些实施方案的制造方法中,靶12可以具有约675.70×582.48乘4mm的有效大小,以在大小可以为400×500mm的衬底16上沉积膜。可以将衬底16的温度保持在约50C至500C之间。靶12和衬底16之间的距离可以在约3至约9cm之间。可以将处理气体(例如但不限于,Ar和O2的混合气)以最高约200sccm的速率接入至装置10室中,同时可以将装置10室中的压力保持在约0.7和6毫托之间。磁铁20提供定向于靶12平面内的强度约400至约600高斯之间的磁场,并且以小于约20-30sec/扫描的速率移动跨越靶12。在一些使用AKT1600反应器的实施方案中,磁铁20可以是大小约150mm乘600mm的跑道形状的磁铁。
图1C显示了依照本发明沉积在衬底120上的电介质阻挡层110。衬底120可以是任何衬底,例如塑料,玻璃,Si-晶片或其他材料。衬底120还可以包括可以用阻挡层110保护的器件或结构,例如有机发光二极管(OLED)结构,半导体结构或其他阻挡层结构。阻挡层可以是金属氧化物,其中金属可以是Al、Si、Ti、In、Sn,或者其他金属氧化物、氮化物、卤化物,或者其他电介质。例如,高折射系数阻挡层可以采用指定为7KW/200W/200KHz/60Ar/90O2/950s(7KW脉冲-dc靶功率,200W衬底偏压功率,200KHz是脉冲-dc靶功率的脉冲频率,60sccm Ar气流,90sccm O2气流,950s总沉积时间)的示例沉积参数,通过从钛靶沉积TiO2而形成。另一低折射系数阻挡层的实例可以由靶用如下方法形成:靶是92%Al和8%Si(即92-8或92/8层),工艺参数指定为3KW/200W/200KHz/85Ar/90O2/1025(3KW脉冲-dc靶功率,200W衬底偏压功率,200KHz脉冲-dc靶功率脉冲频率,85sccm Ar气流,90sccm O2气流,1025sec沉积时间)。正如下面将进一步讨论的,可以采用宽范围的工艺参数来沉积依照本发明的阻挡层。
依照本发明的阻挡层可以由任何氧化物材料形成。例如,MgO、Ta2O5、 TiO2、Ti4O7、Al2O3、SiO2、富硅SiO2和Y2O3。Nb、Ba、Sr和Hf的氧化物也可被用来形成依照本发明的阻挡层。而且,阻挡层可以掺杂有稀土离子以制造光学活性层。此处提供的用于沉积具体的层(例如上面讨论的TiO2层和92-8层)的参数仅是示范性的,而没有限制意图。而且,各个工艺参数也只是近似值。可以使用在这些规定值附近的宽范围的各个参数(例如功率,频率,气流和沉积时间),来形成依照本发明的阻挡层。
可以将电介质阻挡层110表征为高度致密的、均匀的、没有缺陷的无定形电介质层,该层还可以具有高光学透明度。可以在Ar/O2气流中从金属靶以脉冲-dc、衬底偏压PVD方法沉积这种膜。如下面将进一步讨论的,电介质阻挡层110的一些实施方案还具有优异的表面粗糙度特性。典型地,如下面将进一步讨论以及提供的实例和数据,在MOCON测试装置中(MOCON是指Minneapolis,MN的MOCON Testing Service)测试的依照本发明实施方案的电介质膜的水蒸汽透过率小于1×10-2gm/m2/天,通常小于3×10-3gm/m2/天。
可以在阻挡层110上再沉积阻挡层而形成电介质阻挡层叠层。可以采用任何数量的层叠阻挡层,以使所得到的结构不仅起到阻挡层作用,还可以在所得到的器件中具有其他用途。此外,还可以在沉积依照本发明实施方案的阻挡层之前进行软金属透气处理。如下面将进一步解释的,软金属透气处理是指将衬底暴露于软金属蒸气中。
图2A显示了可用作阻挡层结构以及提供更多光学功能的电介质叠层120的一个实施方案。依照本发明实施方案的电介质叠层120包含多个阻挡层101、102、103、104和105。阻挡层101、102、103、104和105中的每一个都可以采用如美国申请序列号10/101,863中更详细描述的沉积方法沉积。在上面装置10中对沉积方法作了一般性描述。通常,电介质叠层120可以包含任意数量的层。具体而言,电介质叠层120可以只包含单个阻挡层。图2A中显示的阻挡层叠层120的具体实例包含5层,101、102、103、104和105层。在图2A所示的阻挡层叠层120的具体实例中,电介质层101、103和105是用高指数材料例如二氧化钛(TiO2)形成的。102和104层可以是由低指数材料例如二氧化硅(SiO2)形成的,可能掺杂有氧化铝(例如,按阳离子百分比计,92%二氧化硅和8%氧化铝,92-8层)。可以将 阻挡层叠层120直接沉积在如图2A所示的衬底100上,或者沉积在如图2D所示的107层上。107层是防止大气污染或者物理损伤的层,可以包含光学或电器件或其他层。衬底100是在上面形成有107层或电介质叠层120的衬底。在一些实施方案中,衬底100还可以提供107层的大气污染屏蔽作用。在一些器件中,在阻挡层结构120上还可以沉积更多的结构。
表1举例说明了依照本发明的一些示例电介质叠层结构120的沉积参数。如上所述,表1中所举例说明的每个叠层120都是采用AKT4300PVD系统形成的,该系统使用偏压DC无功扫描磁控管PVD法,这种方法的更多描述见美国专利申请序列号10/101,863,该文在前面已经通过引用结合在此。此外,可以将如上所述的和图1A和1B的装置10集束于(beclustered)AKT 4300 PVD系统中,该系统具有真空进片室(loadlock)室、除气室,还可以装备有等离子体遮护板和遮护板加热器。如图2A所示,这些实施例的电介质叠层120包含5层--3个交替的TiO2层和2个92-8SiO2/Al2O3(9按阳离子浓度计,2%/8%)层。
表1中所示每个叠层的电介质叠层120都是直接层积在衬底100上的。首先,将用于形成每个叠层的衬底100装入装置10的真空进片室中。将装置10的真空进片室抽到小于约10-5托的基准压力。然后,将衬底100的板,这些板可以是玻璃或者塑料的,传递到装置10的加热室中,并在约300℃的温度下保持约20分钟,以除去已经被衬底100所积聚的任何湿气。例如,对于聚合物基的衬底,可以根据所用的塑料衬底,将预热步骤省略或者在低温下进行。在某些情况下,可能损坏衬底和装置10的遮护板加热器。表1的衬底栏显示了在沉积方法采用的衬底100的组成。
在表1所举例说明的叠层1到6的每个叠层中,电介质叠层120中电介质阻挡层的组成为TiO2/92-8/TiO2/92-8/TiO2,表示如图2A所示的101、103和105层是TiO2层,如图2A所示的102和104层是SiO2/Al2O3(按阳离子浓度计,92%/8%)。TiO2层是用TiO2沉积方法栏中所示的参数沉积的。其方法详细资料是以如下形式给出的:靶功率/偏压功率/脉冲频率/Ar流/O2流/沉积时间。靶功率是指供应到装置10靶12上的功率。偏压功率是指通过偏压发生器18供应到电极17的功率,在电极17上安装衬底100取代图1A中所示的衬底16,并且衬底100电容性耦合到电极17上。而且, 跨越衬底100的Ar和O2流速是用标准立方厘米/min单位(sccm)描述的。最后,给出的是沉积时间。例如,表1中所列的1号叠层的TiO2层是在下面的条件下沉积的:约7kW的靶RF功率,约200W的偏压功率,约200KHz的脉冲频率,约60sccms的Ar流速,约90sccms的O2流速,约950s的沉积时间。依照在TiO2沉积方法栏中所述的方法沉积的典型TiO2层的测量厚度显示在表1的TiO2测量厚度栏中。
类似地,表1所示每个电介质叠层120的二氧化硅/氧化铝层沉积方法的沉积参数显示在二氧化硅/氧化铝(92/8)沉积方法栏中。正如所显示的,表1所示的1-6号叠层的二氧化硅/氧化铝层每个都是具有按阳离子浓度计约92%二氧化硅和约8%氧化铝的层。例如,在表1所举例说明的1号叠层中,二氧化硅/氧化铝层是在下面的条件下沉积的:供给靶12的功率约3kW,加到电极17上的偏压功率约200W,脉冲DC电源14的频率约200kHz,Ar流速约85sccm,O2流速约90sccm,沉积时间为约1,005sec。
通常,在本公开内容中,称作92/8层的电介质阻挡层是指通过从92%二氧化硅/8%氧化铝靶连续沉积电介质阻挡层而形成的阻挡层。称作92-8层的电介质阻挡层是指从92%二氧化硅/8%氧化铝靶分步形成的阻挡层。例如,92-8层可以形成在塑料衬底上,而92/8层可以形成在对热不敏感的Si-晶片或者玻璃衬底上。
在表1所举例说明的每个叠层中,脉冲-DC电源14的反转时间都被固定在约2.3微秒。靶12和衬底100之间的距离为~60mm,磁铁20和靶12之间的距离为~4-5mm。衬底100的温度为约200℃,并且装置10遮护板加热器的温度被设置在约250℃。磁铁20的主偏移(home offset)被设置在约20mm,扫描长度约980mm。装置10室内部总压力,在等离子体53中,在TiO2层沉积过程中为约5-6mT。室内部总压力,在等离子体53中,在二氧化硅/氧化铝层沉积过程中为约8-9mT。
在依照本发明的一些阻挡叠层中,阻挡层是通过一层或多层反应溅射的(reactively sputtered)薄膜层而沉积的,这些层是用先前在脉冲偏压沉积方法,美国申请序列号10/101,863中所述的方法形成的。脉冲偏压沉积方法结合具有独特的致密形态没有柱状缺陷的光学质量真空膜和对光学指数和双折射的控制,这些柱状缺陷对于具有百万分之几均匀度非偏压的真 空薄膜是典型的。极高分辨率椭圆光度法也证实可以沉积宽范围的膜指数,其具有在可见和近IR区为0的消光系数,以及百万分之几数量级的提供近乎完美透明度的均匀性。作为高度致密化和低缺陷浓度的结果,如水蒸汽渗透测量所证实的,这些非常透明的膜还提供优良的防止湿气进入的扩散阻挡保护作用。最后,同样的膜在高电压应力下还显示出更高的电介质击穿,这也是低缺陷水平的结果。
图8显示了在长时间暴露于高湿高温环境后的一种样品。在图8所示的样品中,将约200nm的TiO2沉积在活性铝层上,该铝层事先沉积在4”的硅晶片上。将该样品在约85℃、相对湿度约100%的室中保存约500小时。如从图8可见,在晶片上看不到缺陷,表明对底下活性铝层起到高水平的保护作用。
图9显示了在长时间暴露于高湿高温环境后的具有依照本发明的二氧化硅/氧化铝层的一种样品。在图9所示的样品中,将约10nm的铝沉积在4”硅晶片上。将约100nm的二氧化硅/氧化铝沉积在铝上。然后将该样品放入约250℃、具有约3.5atm饱和水蒸汽的高压锅中约160小时。还是在晶片上看不到缺点,表明对底下的活性铝层有高度保护作用。在另一实施例中,在相同的条件下测试没有阻挡层的在Si晶片上的活性Al薄层,样品在测试数分钟内变得透明。
所选择的用先前公开的方法沉积的金属氧化物膜,从几十纳米到超过15微米,不仅是作为一层膜来防止湿气和化学品的渗透,而且在对底层或者器件提供防止气体或湿气进入的保护作用的同时,还充当光学层、电学层和/或摩擦层或器件,从而给各个层和器件留下相当大的制造和环境余量。已经证实将该方法用于大面积的玻璃和金属衬底,以及低温材料例如塑料。
表4显示了通过测试Si-晶片上的Al2O3阻挡层和Er-掺杂的氧化铝/硅酸盐(40%氧化铝/60%二氧化硅)膜而获得的维氏硬度(MPa)值。Al2O3阻挡层是3kW/100W/200KHz/30Ar/44O2/t方法沉积的,其中反转时间为2.2μs。Wr、Yb掺杂的Al2O3是6kW/100W/120KHz/60Ar/28O2/t方法沉积,其中反转时间为1.2μs。从表4可见,通常以维氏数表示的硬度大于常规沉积的氧化铝膜的硬度。
回到图2A,将电介质叠层120沉积在衬底100上。阻挡层101、102、103、104和105每个都可以是光学层(即光学用途的层)。衬底100可以是任何玻璃、塑料、金属或半导体衬底。可以改变电介质叠层120的101、102、103、104和105层的厚度,以形成抗反射涂层或者反射涂层。图2B显示了沉积在电介质叠层120上的透明传导层106。例如,透明传导层106可以是铟锡-氧化物层。图2C图示了在衬底100上表面和下表面都沉积有电介质叠层120的衬底100。图2C所示的具体实例包括两个电介质叠层120实施方案,一个实施方案是将101、102、103、104和105层沉积在衬底100的上表面上,图2C所示的另一实施方案是将108、109、110、111和112层沉积在衬底100的底表面上。同样,108、110和112层可以是依照本发明的高指数层(例如TiO2层),109和111层可以是低指数层,例如二氧化硅/氧化铝层。在表1中可以找到电介质叠层120的沉积参数的实例。提供良好透射特性的依照本发明的阻挡层叠层的另一实例是沉积在玻璃上TiO2/SiO2/TiO2/SiO2四层叠层,层厚分别为12.43nm、36.35nm、116.87nm和90.87nm,提供在约450nm至650nm波长范围内的高透明度。
图2D中显示保护107层的电介质叠层120。107层是任何应该被透明阻挡层保护的材料的层。例如,107层可以是活性金属,例如铝、钙或钡,107层可以是脆性层,例如传导的透明氧化物,或者107层可以包含活性光学器件或电学器件。如上所讨论的,电介质叠层120的各层可以提供的防止大气污染物的侵入的保护,以及防止107层的物理损伤的保护。在一些实施方案中,安排电介质叠层120的电介质层(例如图2D所示的101、102、103、104和105层)的层厚度,以形成在特定波长下是透明的或者反射的膜。本领域技术人员可以决定电介质叠层120中各个膜的厚度,以形成电介质叠层120的反射或抗反射膜。在107层是例如铝、钡或钙的金属的一些实施方案中,图2D所示的器件形成高度稳定的反射镜。图2E显示了保护107层的电介质叠层120,其中107层已经沉积在衬底100上。而且,还在叠层120上又沉积了透明的传导层106。图2F显示了在衬底100底表面上沉积了第二个阻挡层叠层120的结构。
图10显示了依照本发明的示例电介质叠层的横截面SEM视图。再次显示了5层TiO2/92-8叠层,其中TiO2层的厚度为550nm,92-8二氧化硅 /氧化铝层的厚度为970nm。图10所示的实例是例如用于形成微腔LED的电介质反射镜叠层。
尽管图2A至2F显示了含有5层的阻挡层叠层120的各种构造和应用,但是通常,依照本发明的阻挡层叠层120可以是由任意数量的阻挡层形成的。而且,图2A至2F所图示的阻挡层101、102、103、104和105的实例举例说明了依照本发明的光学层的实例,而这些光学层还起到了自保护阻挡层作用,原因在于它们不仅自我保护,还保护了它们所沉积在其上或其下的特殊表面或器件。另外,阻挡层101、102、103、104和105中的一层或多层可以包含光学活性掺杂离子,例如稀土离子,以提供更多的光学活性功能性能。此外,依照本发明,101、102、103、104和105层中的一层或多层可以是依照本发明的阻挡层以外的层。图2A到2F所述的阻挡层每一个都可以用美国申请序列号10/101,863所述的脉冲、偏压沉积方法沉积,以形成具有极低缺陷浓度的材料的高度致密层。
图3显示了应用依照本发明的阻挡层电介质叠层的另一结构321。如图3所示,结构321包含沉积在衬底316上的电介质叠层315。衬底316可以是由例如玻璃或塑料材料形成的。将透明传导层314,例如铟锡氧化物,沉积在电介质叠层315上。313层可以是场致发光层,例如磷掺杂的氧化物或氟化物材料,稀土掺杂的富硅氧化物发光器件,或者有机发光聚合物,OLED(有机发光二极管)或聚合物叠层。将金属层312,该金属可以是铝或者可以掺杂有钙或钡,沉积在接近313层的一侧。可以在衬底316底部形成第二电介质叠层317。
图3所示的结构是微腔增强的LED的一个实例,用电介质叠层315和317防护可能扩散通过衬底316的水和活泼气体。当312层是金属层时,在312层和电介质叠层315之间形成微腔。电介质叠层315可以向外耦合(out-couple)从场致发光层313发出的光。当313层作为施加在充当阳极的透明传导层314和充当阴极的传导层312之间的结果而被电偏压时,该层发出光线。可以这样安排电介质叠层315和电介质叠层317的层,使它们包含由介于317层和312金属层之间的313层发出的光线,形成一个标准具布置(etalon arrangement)将光线沿着衬底316引导。另外,可以这样安排电介质层317,使其透射由313层产生的光线,从而形成将光线基本上 垂直于衬底316发出的监视器布置。
图11图示了从依照本发明的电介质叠层实施例收集的透射数据。用于获取图11中得到的数据的度量设备是Perkin Elmer Lambda-6分光光度计。测量四个样品,每个样品均是如上所述的TiO2/92-8的5层叠层。两个样品含有相同厚度的层(55nm TiO2和100nm 92-8)。如图11所示,两次不同的试验具有几乎相同的透射光谱,证实了沉积方法的可重复性。第三个实施例具有不同的厚度布置,从而使透射光谱蓝移。第四个实施例是将第三个实施例在85/85(85℃、85%湿度)测试条件下保持120小时后得到的。可以观察到湿度和加热对反射镜叠层的透射特性没有明显的影响,再次证明这种电介质叠层作为保护层以及光学层(即没有可测量的湿-移)的功能性。在用85/85条件测试500小时后获得类似结果,其中没有可测量的湿-移。
图6显示了另一结构633的一个实例,其中用例如图2A至2F所示的结构622来覆盖和保护如图3所述的微腔增强LED结构321。在结构321中,如图6所示,已经将314、313和312层形成图案。可以单独地形成将电介质叠层618和620沉积在衬底619相反两侧的结构622。电介质叠层618和619是如图2A至2F的电介质叠层120所述形成的。然后,可以在结构321上将结构622环氧化,以密封和保护结果321。例如环氧层621可以是EVA环氧。
图7显示了另一结构700的一个实例,其中如图3所述的微腔增强LED结构321被例如图2A至2F所示的结构623所覆盖和保护。覆盖结构623包含衬底619,其中电介质叠层620沉积在衬底619,被环氧化,形成器件321。
图4图示了依照本发明的阻挡层的另一实例,这些层还起到电学层作用(即,具有电学功能的层,例如提供电阻或者在电容器结构中起电介质作用)。图4所示的结构举例说明了依照本发明的底部栅极晶体管结构422的一个实例。晶体管结构422是在衬底416上形成的,该衬底可以是塑料或玻璃材料。在图4所示的实施方案中,依照本发明的电介质叠层415被沉积在衬底116的上表面,而依照本发明的第二电介质叠层417被沉积在衬底116的底表面。如上所述,电介质叠层417和415每个都可以包含高 指数和低指数电介质材料。高指数和低指数电介质材料,例如如上所述的TiO2和二氧化硅/氧化铝层,每种都具有低电压平坦频带和低表面缺陷,因此适合用作薄膜晶体管结构。将半导体层423沉积在阻挡层叠层415上并形成图案。半导体层423可以是例如硅、锗的半导体,也可以是氧化锌或聚合物材料。424层和425层形成与半导体层423接触的源极层和漏极层。426层可以是由高电介质常数的材料形成的,例如形成电介质叠层415和417的任何电介质层,例如用此处所述方法沉积的高电介质强度TiO2材料。427层是中间层,428层是栅极金属。
图5显示了顶部栅极晶体管器件529的一个实例。晶体管器件529形成在衬底516上,衬底516被电介质叠层515和517保护,防止大气污染(例如水或气体)和物理磨损和磨蚀。电介质叠层515和517是由如上关于电介质叠层120所述的一层或多层光学材料层形成的。栅极层530沉积在电介质叠层515上。530层可以是金属层,例如铝或铬层。将栅极氧化物层531沉积在层530上。将半导体层532沉积在530层上面的栅极氧化物层531上。半导体层532可以类似于图4中的423层。533和534层分别是源极和漏极层,类似于图4器件422的424和428层,并且可以是由例如导电金属、导电氧化物或导电聚合物形成的。
具有依照本发明的阻挡层的电介质叠层可以有与膜厚度无关的原子级(atomically)的光滑膜表面。另外,具有依照本发明的阻挡层的电介质叠层可以有不同于零的不可测量的膜透明度。这些电介质叠层代表了偏压阻挡层缺陷水平和阻挡层保护的新性能。需要电介质阻挡层防护水和氧气的少数产品,例如OLED显示器,能够忍受每平方厘米有一个缺陷。已经沉积了2.5纳米的以及15微米厚的阻挡层的一些实施方案,显示出约0.2nm的平均表面粗糙度,表示这是一个无损方法。这种层对于沉积的所有膜厚度都显示出光学质量表面,表示用制造依照本发明的阻挡层实施方案的这些方法可以获得高度无定形膜均匀度。
依照本发明的电介质阻挡层已经显示出保护铝超薄活性金属膜不受在从125到250℃、3.5ATM纯蒸气压力下的几百小时的水蒸汽加热氧化,其中在100mm硅晶片上没有可见的缺陷。因此,显然此处所述的二氧化钛和氧化铝/硅酸盐阻挡层都可以长期保护活性膜,这些膜在最高至一个或 两个晶片的面积上没有针孔。在面积约75平方厘米的100mm晶片上的保护电介质阻挡层中的一个针孔,换算成针孔密度将为约0.0133个/平方厘米。如图8和9所示,有两个晶片,一个含有硅铝酸盐,一个含有二氧化钛电介质涂层,都是没有损坏的。两个晶片之间的总面积为150平方厘米。如果这两个晶片上有1个缺陷,则缺陷密度将为0.00666个/平方厘米。但是,由于晶片没有缺陷,无法只从这两个晶片的结果来测量实际缺陷密度。于是,如所显示的,实际缺陷密度小于0.0133个/平方厘米,并且很可能小于0.007个/平方厘米。
在本发明的一些实施方案中,可以在沉积如上所述的一层或多层阻挡层之前,进行软金属例如铟或铟-锡透气处理。可能的是,可以利用软金属透气处理来释放电介质阻挡层和衬底之间的应力。而且,软金属透气处理可以起到在衬底上进一步生长的无针孔或无缺陷的阻挡层膜的成核作用。
图12A和12B显示了在经过和未经依照本发明的软金属透气处理的衬底1201上沉积的单个阻挡层结构1200。图12A中,将如上所述的阻挡层1203直接沉积在衬底1201上。例如,衬底1201可以是任何合适的衬底材料,包括玻璃、塑料或Si晶片。例如,衬底1201可以包含OLED结构或要求高光学处理量的其他光学活性结构,或者可以利用阻挡层作为电学层的电学结构。阻挡层1203可以是如上所述的任何一种或多种个阻挡层。如图12A所示,阻挡层1203可以在沉积和使用过程中逐步显示应力释放的表面粗糙度。
图12B图示了依照本发明的一些实施方案在软金属透气处理之后沉积阻挡层1203的结果。如图12B所示,很显然应力被释放了,导致形成具有好很多的表面粗糙度的阻挡层。
依照本发明一些实施方案的软金属透气处理包括将衬底短时间暴露于软金属蒸气中,接着进行加热处理。例如,铟-锡透气处理包括将衬底暴露于来自脉冲-dc方法中铟-锡靶的铟-锡,随后进行加热处理。直接暴露于铟-锡氧化物蒸气不产生下面举例说明的特殊有利结果。不受本公开内容中可能存在的具体理论束缚,In/Sn透气处理可以释放在沉积的阻挡层中的应力,改善表面粗糙度和MOCON WVTR性能。
在形成阻挡层结构1200的一个具体实施例中,在塑料衬底1201上进 行软金属透气处理的一个实施方案。例如,可以从铟锡(90%/10%)靶进行铟/锡透气处理。可以将进行铟/锡透气处理的方法指定为750W/0W/200KHz/20Ar/0O2/10sec。换言之,在如下条件下进行脉冲-dc、偏压、宽靶PVD法:90%铟/10%锡靶,20sccms的Ar气流,在脉冲PVD系统10(图1A)(脉冲频率200KHz,反转时间2.2μsec)中,在使用PinnaclePlus PDC电源的AKT 1600 PVD系统中,以750W的恒定功率运行10秒。然后,继续透气处理,并将衬底1201传送到AKT4 300设备(Tool)的真空进片室中,将该设备抽至小于约1×10-5托的基准压力。然后将衬底传送到130℃、1×10-8托的加热室中,将其在130℃下进行热处理约25分钟。
然后,将衬底1201(经过如上所述的铟/锡透气处理)移到第二个室中,在那里沉积阻挡层1203。如上所示,可以采用在室温下沉积的方法,从92-8硅铝酸盐(92%Si/8%Al)靶形成阻挡层1203。
92-8阻挡层1203实施方案的沉积方法的工艺参数可以是3KW/200W/200KHz/85Ar/90O2/x。因此,进行该方法的条件为:约3KWPDC功率,约200KHz脉冲频率和约2.2微秒反转时间。可以将偏压功率保持在约200W。采用约85sccms的Ar气流和约90sccms的O2气流。在该具体实施方案的沉积中,沉积方法可以是功率循环的,其中开循环长约180秒,关循环长约600秒,循环9次。于是,所得到的阻挡层1203的厚度约1600。在具体测试中,采用如上所述的方法来沉积阻挡层结构1200,其中衬底1201是三块大小为6英寸乘6英寸的塑料片(Dupont Teijin PEN膜200μm厚,称作PEN衬底)。通常,在软金属透气处理后,可以沉积任何阻挡层(例如,如上所述的92-8或TiO2层)。如前面所讨论的,此处显示了依照本发明的阻挡层实施方案的实例,但是宽范围的工艺参数可以得到依照本发明的阻挡层。
然后可以使用各种技术,其中一些是如下讨论的,来测试衬底1201上的阻挡层结构1200。具体而言,1203层中的应力可以使用Flexus应力测量技术来测量。表面粗糙度可以用原子力显微方法(AFM)来测量,而水蒸汽透过率(WVTR)可以在高压、高湿高压锅装置中测量。
图13图示了可用于测试阻挡层结构1200的Flexus扫描装置(FlexusScanning Assembly)1300。在Flexus扫描装置1300中,激光器1310的光 束通过反射镜1312引导到阻挡层1203的上表面上。用监测器1314检测来自阻挡层1203的反射光束。监测器1314测量来自被反射镜1312反射的光束的光束偏转。可以将光学部分1316,该部分可以包含激光器1210、反射镜1312和监测器1314,横跨衬底1201和偏转角θ扫描,θ和衬底1202的曲率半径有关,其关系如1318相互关系所示。
利用衬底形变的改变可以计算阻挡层1203中的薄膜应力,衬底变形是用Flexus装置1300在光学部分1316扫描时测量的。如相互关系1318所示,在扫描过程中可以监测反射束的角度,并且可以从该角度作为扫描位置的函数的导数来计算衬底1201曲率半径R的倒数。
在某些情况下,Flexus装置1300可以利用双波长技术来增加该设备能够测量的膜类型的范围。而且,每个Flexus装置1300可以有多于一个的可用于扫描晶片的激光器1310,因为不同的膜类型将反射不同波长的光。而且,反射的激光强度提供了测量质量的一个良好指标。通常,监测器1314处的低光强度表示测量条件差。
在Flexus装置1300中,可以用Stoney等式来确定应力。具体而言,可以通过测量沉积1203层之前的曲率半径和沉积1203层之后的曲率半径来确定1203层中的应力。具体而言,依照Stoney等式,可以通过如下等式给出应力:
σ = E s ( 1 - v s ) t s 2 6 t f ( 1 R s - 1 R f ) ,
其中Es/(1-vs)是衬底1201的双轴模数,σ是衬底1201的应力,ts是衬底厚度,tf是模厚度,Rs是沉积前的曲率半径,Rf是沉积后的曲率半径。为了获得最佳结果,应当用相同的设备来进行曲率半径的两次测量,以使测量的半径的系统误差最小化。另外,由于每个晶片的形状是唯一的,而且由于应力是基于衬底形变的变化而计算的,所以对于每个晶片必须进行基准半径测量。正的半径表示拉伸应力,负的半径表示压缩应力。如图14所示,可以通过测量离连接Flux装置1300扫描端点的弦的最大偏转点,来计算晶片弓。
对于阻挡层膜1203的几个实施方案,其中阻挡层膜1203是如上所述的92-8膜,含有或者不含通过软金属透气处理形成的成核层1202,进行的应力测量列表于表2中。如表2所示,样品1是沉积在Si-晶片衬底上的实际厚度为1706 的1.5K 92-8膜。所得到的在约室温下的应力为-446.2MPa。样品2是经过Al-透气沉积的实际厚度为1670 的1.5K 92-8膜,测得的应力为约-460.2MPa。在样品3中,在In-透气沉积后沉积1860 
Figure DEST_PATH_G04805515520060508D000015
厚的1.5K 92-8膜,测得的应力为-330.2MPa,比上述两个沉积中的任何一个都低了约100MPa。
图15所示为表1中所示经过一个温度循环的各种沉积样品1、样品2和样品3的编制数据。温度循环包括从室温加热到约160℃并冷却回到室温。在Si-晶片衬底中,假定晶片半径不随温度而变。在所示温度下读取每种情况下的应力数据。从图15可见,经过In-透气处理后沉积的92-8膜表现出的应力远小于Al-透气处理后沉积的92-8膜和在没有经过软金属透气处理的衬底上沉积的92-8膜中的任何一个。
原子力显微方法(AFM)可用于测量膜的表面粗糙度。AFM中,微型探头在膜表面上进行物理扫描,以使探头接触并沿着膜表面而移动。探头有一个小尖端,因此对于几个纳米数量级的特征,能够精确地监测表面粗糙度。
图16A显示了在沉积依照本发明的阻挡层前的PEN衬底(DupontTeijin PEN膜200μm厚度)的表面粗糙度。如图16A所示,PEN衬底典型地具有平均2.2nm的表面粗糙度,均方根平均RMS为3.6nm,典型的最大粗糙度为约41.0nm。如图16B所示,在铟-锡透气处理之后在PEN衬底上沉积1.5K 
Figure DEST_PATH_G04805515520060508D000017
92-8,导致平均表面粗糙度为1.0nm,RMS粗糙度为1.7nm,最大粗糙度为23.6nm。如图16C所示,在1.5K 
Figure DEST_PATH_G04805515520060508D000018
92-8阻挡层膜沉积之前进行铟-锡氧化物(ITO)透气处理,导致平均表面粗糙度为2.1nm,RMS粗糙度为3.4nm,最大粗糙度为55.4nm。图16C所示的沉积是用125μm PEN衬底而不是200μm PEN衬底进行的。因此,直接ITO处理没有进行,也没有进行铟-锡透气处理。如图16D所示,直接在125μm PEN衬底上沉积1.5K 
Figure DEST_PATH_G04805515520060508D000019
阻挡层得到的阻挡层平均表面粗糙度为约5.2nm,RMS粗糙度为8.5nm,最大粗糙度为76.0nm。因此,在表面粗糙度方面,尽管ITO透气 处理完全好于没有软金属处理,但是铟-锡透气处理导致最好的表面粗糙度,得到的平均表面粗糙度约1.0nm。
图17图示了可用于表征依照本发明实施方案的阻挡层膜的水蒸汽透过(WVTR)测试装置1700。可以将样品1701安装到1700装置中,使衬底1201的表面(图12)和阻挡层1203的表面(图12)分开。将不含湿气的气体输入孔1702,接触样品1701的一个表面,并导向传感器1703,用传感器1703测量来自样品表面的水蒸汽。将潮湿气体通过孔1705引导到样品1701的另一侧。可以用RH探头1704来监测输入孔1705的气体的水含量。然后,用传感器1703测量透过样品1701的水蒸汽。
这种测试是由Mocon Testing Service,7500Boone Avenue North,Minneapolis,MN 55428进行的。另外,Mocon测试是依照ASTM F1249标准进行的。典型地,Mocon用于WVTR测试的仪器可以检测从0.00006gm/100in2/天到4gm/100in2/天范围内的透过率。例如,Mocon 3/31仪器的检测下限为约0.0003gm/100in2/天。
用Al-透气处理,接着在200μm PEN衬底上沉积1.5K92-8阻挡层而形成的阻挡层沉积物导致在Mocon测试中WVTR为0.0631gm/100in2/天。用In-透气处理,接着在200μm PEN衬底上1.5K
Figure 10003_11
92-8而形成的阻挡层沉积物导致在Mocon 3/31仪器上测量不到WVTR(即透过率小于0.0003gm/100in2/天)。
如上面所进一步讨论的,图16A到D图示了软金属透气处理(特别是铟透气处理)在决定依照本发明沉积的阻挡层的表面粗糙度中可能起到的作用。阻挡层的表面粗糙度还可能影响阻挡层的WVTR性能。阻挡层越光滑,WVTR性能越好。同样,图16A显示了没有阻挡层的裸200μm PEN衬底。图16B显示了具有依照本发明在In/Sn透气处理后沉积的1500
Figure 10003_12
厚的92-8阻挡层的200μm PEN衬底。图16C图示了具有用ITO透气处理后沉积的150092-8阻挡层的200μm PEN衬底。图16D是具有直接沉积在衬底上的150092-8阻挡层的200μm PEN衬底。如图可见,图16B结构显示出最好的表面光滑度特性。
表3举例说明了阻挡层的一些实例,以及其表面光滑度特性和MOCON WVTR测试结果。表3中,第1-4行所述的样品是在700μm厚的 聚碳酸酯(General Electric,corp.制造的LEXAN)的一面或两面上沉积的厚度约2000的92-8层(如上所述)。数据显示双面涂层的阻挡层结构(1和2行)在MOCON WVTR测试中比单面结构(第3和4行)好约一个数量级。
第5到8行举例说明了在PEN衬底上的各种沉积(第5-6行描述在200μm PEN衬底上的沉积,第7和8行描述在125μm PEN衬底上的沉积)。In透气处理参数涉及如上所述的In/Sn透气处理。AFM参数如先前所述的图16B至16D中所示。如前面所讨论的,在In透气处理后沉积92-8层的第6行显示出最好的表面光滑度和最好的WVTR特性。第9行中的数据表示在更薄(125μm)PEN衬底上,用更高功率进行的In透气处理(In/Sn)。认为,125μm PEN衬底上的热应力行为比200μm PEN衬底的热应力行为差。第30到33行的数据以及图19A和19B显示了这种效应的更多指示。第30和31行中的数据包括在200μm PEN衬底上进行铟/锡透气处理(以750W的功率),接着是约1.5k92-8层的沉积,如图19A所示,该方法产生非常光滑的表面(例如平均约1.1nm),并且在MOCON 3/31测试设备上具有测量不到的MOCON WVTR特性。第32和33行中的数据,其中在125μm PEN衬底上的In/Sn透气处理后进行1.5k
Figure 10003_17
92-8层的沉积,显示更差的光滑度(约2.0nm平均粗糙度)且在MOCON装置中的WVTR测试结果为约1.7×10-2gm/m2/天。第30至33行所举例说明的92-8沉积是在单个操作中同时进行的。
表3第12和13行的数据表示在125μm PEN衬底上的In-透气处理加上1.5kTiO2沉积。第10和11行的数据表示在125μm PEN衬底上的In/Sn-透气处理加上1.5k92-8沉积。如从表3可见,92-8层的WVTR特性比TiO2层的WVTR特性好一个数量级。第12和13行的代表性光滑度显示在图22A中,而第10和11行的代表性光滑度显示在图22B中。如表3所示,92-8层的平均光滑度比TiO2的平均光滑度好约一个数量级。
表3第14和15行的数据举例说明了在125μm LEXAN衬底上的In/Sn透气处理,随后进行92-8层沉积。可以将第14和15行的数据与第32和33行的数据进行比较,后者是在125μm PEN衬底上的In/Sn-透气处理,随后进行1.5k
Figure 10003_20
92-8层的沉积。LEXAN和PEN衬底之间的光滑度是相当的,尽管从图21A和21B的比较可见它们的形态不同,即沉积在LEXAN 衬底上的依照本发明的阻挡层比沉积在PEN衬底上的阻挡层显示出更大的粒度。
表3的第16到18行的数据举例说明了在200μm PEN衬底上的In/Sn透气处理,随后进行1.5k
Figure 10003_21
92-8沉积的不同工艺参数。第16行中的数据举例说明了固定电流而不固定功率的一种设置。第16行的数据是在6.15安培电流下获得的。在第17行所述的阻挡层中,In/Sn透气处理是在1.5kW负载功率下进行的。在第18行所述的阻挡层中,In/Sn透气处理是在750W负载功率下进行的。在每一种情况下,所得到的阻挡层的MOCON WVTR特性均低于MOCON 3/31仪器的检测限。
表3中第19-29行的数据举例说明了不同的In/Sn透气处理以及它们对所得到的阻挡层表面光滑度的影响和对MOCON WVTR特性的影响。第19-22行的数据都是In/Sn透气处理被蒸发的In层接着130C预热处理所代替的实例。其表面粗糙度特性图示于图18A中,并且显示出的平均粗糙度为约1.1nm。但是,如18A所示,其形态是非常粒状的,据认为有许多孔隙,导致MOCON WVTR测试为约.8gm/m2/天。表3中第23行的数据举例说明了没有进行In/Sn透气处理,而是将200μm PEN衬底在沉积1.5k
Figure 10003_22
92-8沉积物之前进行预热,如图18C所示,其表面粗糙度平均为约5.2nm,MOCON WVTR为约0.8gm/m2/天,或者与第19-22行中所示铟蒸发蒸气数据所示的相同。因此,无论是否进行铟蒸发蒸气处理,所得到的特性是相同的。
表3中第24-29行举例说明了在280℃下而不是室温下进行In/Sn透气处理的数据。如图18B所示,其表面粗糙度平均为约1.1nm。但是,MOCON WVTR数据约3×10-2gm/m2/天。该数值远大于第30和31行的类似沉积方法中所示的数值,后者的数值低于MOCON 3/31仪器的检测限5×10-3gm/m2/天。
第34和35行的数据举例说明了在200μm PEN衬底上的In/Sn沉积后沉积1.5k
Figure 10003_23
35-65层(即用含有35%Si和65%Al的靶进行沉积)。如所示,MOCON WVTR为1.4×10-1gm/m2/天,这显示了用于制造依照本发明的阻挡层的偏压方法的可能的必要性。
图20图示了还可以作为沉积在衬底2001上的薄膜栅极氧化物工作的 阻挡层2002。可以如依照本发明的阻挡层那样,沉积薄膜栅极氧化物2002。这样的层具有保护对湿气和氧气敏感的晶体管层化合物的好处,所述化合物例如锗、氧化锡、氧化锌或并五苯化合物,同时还起到薄氧化物电学层的作用。衬底2001可以包含可以形成在例如硅晶片、塑料片、玻璃板或其他材料上的任何电学器件。阻挡层2002可以是薄层,例如厚度为25到500
Figure 10003_24
众所周知二氧化钛是生物移植的优选材料,因为二氧化钛没有免疫响应。另外还优选TiO2薄膜,该薄膜是免疫学上中性的阻挡层,由于其高电介质常数或其高光学指数,TiO2薄膜可以同时保护器件,例如电压传感器或电荷传感器或者例如波导管的光学器件,同时起到与器件电容性耦合或光学耦合的作用。
通过由于非常薄的高k电介质例如TiO2提供的传感器的接近所产生的高电容密度,可以耦合电容器阵列。实际上,可以使用微米或亚微米阵列来监测非常低的电信号的电活性、幅度和方向,这样的电信号例如在单个神经中枢的单个脑脊髓轴(axion)方向上电信号传播所伴随的那些电信号。反过来,它还可以使用该阵列来电耦合刺激相邻细胞或组织。利用这种电容性阻挡层膜,可以独特地在没有免疫反应的情况下实现与视神经、听觉神经或神经组织的5到50飞法拉/μm2的高分辨率高电容耦合。
对于本领域技术人员而言,考虑到在此处公开的本发明说明书和实践,本发明的其他实施方案将是显而易见的。本公开内容不限于用于解释任何所显示结果的操作的任何理论或假说。其意图是说明书和实施例仅被认为是示范性的,本发明的实际范围和精神是由后附权利要求表示的。同样,本申请仅受后附的权利要求所限制。
Figure G04805515519950413D000271
Figure G04805515519950413D000282
Figure G04805515519950413D000291
Figure G04805515519950413D000301
Figure G04805515519950413D000311
Figure G04805515519950413D000331

Claims (44)

1.一种阻挡结构,该阻挡结构包含:
以物理气相沉积溅射法沉积在衬底上的致密化的无定形电介质层,其中所述衬底在沉积过程中是偏压的,通过窄带阻滤波器,基于与衬底偏压相关的频率,靶接收脉冲DC电势,
其中所述致密化的无定形电介质层形成阻挡结构,所述阻挡结构包括至少一种阻挡层。
2.权利要求1的阻挡结构,其中所述靶包含大面积靶。
3.权利要求1的阻挡结构,其中阻挡结构起到光学层的作用。
4.权利要求3的阻挡结构,其中光学层包含TiO2层。
5.权利要求3的阻挡结构,其中光学层包含氧化铝/二氧化硅层。
6.权利要求3的阻挡结构,其中在进行物理气相沉积过程前对衬底进行软金属透气处理。
7.权利要求6的阻挡结构,其中软金属透气处理是铟-锡蒸气处理。
8.权利要求1的阻挡结构,其中阻挡结构起到电学层的作用。
9.权利要求8的阻挡结构,其中电学层包含电容层。
10.权利要求9的阻挡结构,其中电容层是TiO2层。
11.权利要求9的阻挡结构,其中电容层是氧化铝/二氧化硅层。
12.权利要求8的阻挡结构,其中电学层包含电阻层。
13.权利要求8的阻挡结构,其中在进行物理气相沉积过程前对衬底进行软金属透气处理。
14.权利要求13的阻挡结构,其中软金属透气处理是铟-锡蒸气处理。
15.权利要求1的阻挡结构,其中阻挡结构起到摩擦层的作用。
16.权利要求15的阻挡结构,其中摩擦层是TiO2层。
17.权利要求15的阻挡结构,其中摩擦层是氧化铝/二氧化硅。
18.权利要求15的阻挡结构,其中在进行物理气相沉积过程前对衬底进行软金属透气处理。
19.权利要求18的阻挡结构,其中软金属透气处理是铟-锡蒸气处理。
20.权利要求1的阻挡结构,其中阻挡结构起到生物免疫相容层的作用。
21.权利要求20的阻挡结构,其中生物免疫相容层是TiO2层。
22.权利要求20的阻挡结构,其中在进行物理气相沉积过程前对衬底进行软金属透气处理。
23.权利要求22的阻挡结构,其中软金属透气处理是铟-锡蒸气处理。
24.权利要求1的阻挡结构,其中电介质层是TiO2
25.权利要求1的阻挡结构,其中用于形成电介质层的靶含有92%浓度的Al和8%浓度的Si,基于阳离子浓度。
26.权利要求1的阻挡结构,其中用于形成电介质层的靶是由金属镁形成的。
27.权利要求1的阻挡结构,其中靶材料包含选自Mg、Ta、Ti、Al、Y、Zr、Si、Hf、Ba、Sr、Nb以及它们的组合的材料。
28.权利要求27的阻挡结构,其中靶材料包括一定浓度的稀土金属。
29.权利要求1的阻挡结构,其中靶材料包含低氧化物,所述低氧化物选自以下组成的组:Mg、Ta、Ti、Al、Y、Zr、Si、Hf、Ba、Sr、Nb和它们的组合。
30.权利要求1的阻挡结构,其中在进行物理气相沉积过程前对衬底进行软金属透气处理。
31.权利要求30的阻挡结构,其中软金属透气处理是铟-锡蒸气处理。
32.权利要求1的阻挡结构,其中电介质层具有的缺陷的浓度小于1每平方厘米。
33.权利要求1的阻挡结构,其中阻挡结构的水蒸汽透过率小于1×10-2gm/m2/天。
34.权利要求1的阻挡结构,其中阻挡结构在连续膜中光学衰减小于0.1dB/cm。
35.权利要求1的阻挡结构,其中阻挡结构具有的厚度小于500nm。
36.权利要求35的阻挡结构,其中阻挡结构的水蒸汽透过率小于1×10-2gm/m2/天。
37.权利要求1的阻挡结构,其中阻挡结构的厚度小于1微米且阻挡结构的水蒸汽透过率小于1×10-2gm/m2/天。
38.权利要求1的阻挡结构,其中阻挡结构作为薄膜晶体管用的栅极氧化物工作。
39.一种形成阻挡层的方法,该方法包括:
提供衬底;
用物理气相沉积溅射方法在衬底上沉积高度致密的、无定形的、电介质材料,其中所述衬底是偏压的,通过窄带阻滤波器,基于与衬底偏压相关的频率,宽靶接收脉冲DC电势,。
40.权利要求39的方法,该方法还包括:
在将电介质材料沉积到衬底上之前在衬底上进行软金属透气处理。
41.权利要求39的方法,其中电介质材料是由包含基于阳离子浓度92%Al和8%Si的靶形成的。
42.权利要求39的方法,其中电介质材料是由包含钛的靶形成的。
43.权利要求39的方法,其中电介质材料是由包含选自Mg、Ta、Ti、Al、Y、Zr、Si、Hf、Ba、Sr、Nb以及它们的组合的材料的靶材料形成的。
44.权利要求40的方法,其中软金属透气处理是铟/锡透气处理。
CN2004800055155A 2003-02-27 2004-02-26 电介质阻挡层膜 Expired - Fee Related CN1756856B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US45117803P 2003-02-27 2003-02-27
US60/451,178 2003-02-27
US50612803P 2003-09-25 2003-09-25
US60/506,128 2003-09-25
PCT/US2004/005531 WO2004077519A2 (en) 2003-02-27 2004-02-26 Dielectric barrier layer films

Publications (2)

Publication Number Publication Date
CN1756856A CN1756856A (zh) 2006-04-05
CN1756856B true CN1756856B (zh) 2011-10-12

Family

ID=32930591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800055155A Expired - Fee Related CN1756856B (zh) 2003-02-27 2004-02-26 电介质阻挡层膜

Country Status (5)

Country Link
US (2) US7205662B2 (zh)
EP (1) EP1597408B1 (zh)
KR (1) KR100691168B1 (zh)
CN (1) CN1756856B (zh)
WO (1) WO2004077519A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7469558B2 (en) * 2001-07-10 2008-12-30 Springworks, Llc As-deposited planar optical waveguides with low scattering loss and methods for their manufacture
US7404877B2 (en) * 2001-11-09 2008-07-29 Springworks, Llc Low temperature zirconia based thermal barrier layer by PVD
US6884327B2 (en) 2002-03-16 2005-04-26 Tao Pan Mode size converter for a planar waveguide
US20030175142A1 (en) * 2002-03-16 2003-09-18 Vassiliki Milonopoulou Rare-earth pre-alloyed PVD targets for dielectric planar applications
US7378356B2 (en) * 2002-03-16 2008-05-27 Springworks, Llc Biased pulse DC reactive sputtering of oxide films
US8394522B2 (en) * 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8236443B2 (en) * 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8431264B2 (en) * 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8445130B2 (en) * 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8021778B2 (en) * 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
TWI274199B (en) 2002-08-27 2007-02-21 Symmorphix Inc Optically coupling into highly uniform waveguides
WO2004077519A2 (en) * 2003-02-27 2004-09-10 Mukundan Narasimhan Dielectric barrier layer films
US7238628B2 (en) * 2003-05-23 2007-07-03 Symmorphix, Inc. Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides
US7495644B2 (en) * 2003-12-26 2009-02-24 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing display device
US7109068B2 (en) * 2004-08-31 2006-09-19 Micron Technology, Inc. Through-substrate interconnect fabrication methods
JP2006073069A (ja) * 2004-08-31 2006-03-16 Toshiba Corp 磁気ヘッド、ヘッドサスペンションアッセンブリ、および磁気再生装置
TWI276986B (en) * 2004-11-19 2007-03-21 Au Optronics Corp Handwriting input apparatus
KR100669778B1 (ko) * 2004-11-20 2007-01-16 삼성에스디아이 주식회사 기판 및 박막 트랜지스터를 구비한 기판
US20060121723A1 (en) * 2004-12-07 2006-06-08 Chin-Ta Su Semiconductor process and method of fabricating inter-layer dielectric
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US20060141804A1 (en) * 2004-12-28 2006-06-29 Goodman Cathryn E Method and apparatus to facilitate electrostatic discharge resiliency
KR100695154B1 (ko) * 2005-06-18 2007-03-14 삼성전자주식회사 실리콘 박막 트랜지스터 및 이의 제조방법
US7429529B2 (en) * 2005-08-05 2008-09-30 Farnworth Warren M Methods of forming through-wafer interconnects and structures resulting therefrom
US7517798B2 (en) 2005-09-01 2009-04-14 Micron Technology, Inc. Methods for forming through-wafer interconnects and structures resulting therefrom
US7838133B2 (en) 2005-09-02 2010-11-23 Springworks, Llc Deposition of perovskite and other compound ceramic films for dielectric applications
US7349187B2 (en) * 2005-09-07 2008-03-25 International Business Machines Corporation Tunnel barriers based on alkaline earth oxides
US7345855B2 (en) * 2005-09-07 2008-03-18 International Business Machines Corporation Tunnel barriers based on rare earth element oxides
KR100759805B1 (ko) * 2005-12-07 2007-09-20 한국전자통신연구원 광증폭 듀플렉서
US7892972B2 (en) * 2006-02-03 2011-02-22 Micron Technology, Inc. Methods for fabricating and filling conductive vias and conductive vias so formed
US7564137B2 (en) * 2006-04-27 2009-07-21 Atmel Corporation Stackable integrated circuit structures and systems devices and methods related thereto
US20070262435A1 (en) * 2006-04-27 2007-11-15 Atmel Corporation Three-dimensional packaging scheme for package types utilizing a sacrificial metal base
US7632761B2 (en) * 2006-06-01 2009-12-15 Wayne State University Method of making thin film anatase titanium dioxide
CN101523571A (zh) * 2006-09-29 2009-09-02 无穷动力解决方案股份有限公司 柔性基板上沉积的电池层的掩模和材料限制
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
JP5318857B2 (ja) 2007-05-16 2013-10-16 ザ ボード オブ トラスティーズ オブ ザ ユニバーシティ オブ イリノイ 機械的応力低減型のマイクロキャビティ・プラズマ装置アレイおよび電極
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
WO2009086038A1 (en) 2007-12-21 2009-07-09 Infinite Power Solutions, Inc. Method for sputter targets for electrolyte films
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
KR101672254B1 (ko) * 2008-04-02 2016-11-08 사푸라스트 리써치 엘엘씨 에너지 수확과 관련된 에너지 저장 장치를 위한 수동적인 과전압/부족전압 제어 및 보호
KR100953658B1 (ko) * 2008-06-05 2010-04-20 삼성모바일디스플레이주식회사 유기전계발광 표시장치
KR102155933B1 (ko) 2008-08-11 2020-09-14 사푸라스트 리써치 엘엘씨 전자기 에너지를 수확하기 위한 일체형 컬렉터 표면을 갖는 에너지 디바이스 및 전자기 에너지를 수확하는 방법
EP2332127A4 (en) * 2008-09-12 2011-11-09 Infinite Power Solutions Inc ENERGY DEVICE HAVING AN INTEGRATED CONDUCTIVE SURFACE FOR DATA COMMUNICATION VIA ELECTROMAGNETIC ENERGY AND ASSOCIATED METHOD
WO2010042594A1 (en) * 2008-10-08 2010-04-15 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
KR20110100618A (ko) * 2008-12-05 2011-09-14 로터스 어플라이드 테크놀로지, 엘엘씨 향상된 장벽 층 특성을 갖는 얇은 막의 고속 증착
US20100294428A1 (en) * 2009-05-20 2010-11-25 Snyder Shawn W Method of Integrating Electrochemical Devices Into and Onto Fixtures
US7951708B2 (en) * 2009-06-03 2011-05-31 International Business Machines Corporation Copper interconnect structure with amorphous tantalum iridium diffusion barrier
GB0909721D0 (en) * 2009-06-05 2009-07-22 Plastic Logic Ltd Dielectric seed layer
EP2474056B1 (en) 2009-09-01 2016-05-04 Sapurast Research LLC Printed circuit board with integrated thin film battery
GB2473655A (en) * 2009-09-21 2011-03-23 Mantis Deposition Ltd Magnetron sputtering techiques and apparatus
KR101065318B1 (ko) * 2009-12-03 2011-09-16 삼성모바일디스플레이주식회사 플렉서블 디스플레이 장치의 제조 방법
KR101135539B1 (ko) * 2010-03-05 2012-04-13 삼성모바일디스플레이주식회사 유기 발광 표시 장치
EP2577777B1 (en) 2010-06-07 2016-12-28 Sapurast Research LLC Rechargeable, high-density electrochemical device
WO2014075088A1 (en) 2012-11-12 2014-05-15 Demaray Llc Adiabatic planar waveguide coupler transformer
TWI514628B (zh) * 2013-10-24 2015-12-21 Lextar Electronics Corp 電極結構與具有電極結構的發光二極體結構
US10147906B2 (en) * 2014-02-06 2018-12-04 Emagin Corporation High efficacy seal for organic light emitting diode displays
KR102328525B1 (ko) * 2014-04-02 2021-11-19 프랭크 나탈리 도핑된 희토류 니트라이드 물질 및 이를 포함하는 장치
WO2017196892A1 (en) 2016-05-09 2017-11-16 Demaray, Llc Thin film battery with high capacity, energy density and cycle life
JP6322669B2 (ja) * 2016-06-23 2018-05-09 株式会社アルバック 応力調整方法
CN106802742A (zh) * 2017-02-27 2017-06-06 武汉华星光电技术有限公司 有机发光触控显示屏及其制作方法
GB2561865A (en) * 2017-04-25 2018-10-31 Univ Of The West Of Scotland Apparatus and methods for depositing durable optical coatings
US11773480B2 (en) 2017-10-16 2023-10-03 Drexel University MXene layers as substrates for growth of highly oriented perovskite thin films
CN111751916A (zh) * 2019-12-30 2020-10-09 宁波瑞凌新能源科技有限公司 一种阻隔层膜结构及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082569A (en) * 1977-02-22 1978-04-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solar cell collector

Family Cites Families (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309302A (en) * 1963-10-07 1967-03-14 Varian Associates Method of preparing an electron tube including sputtering a suboxide of titanium on dielectric components thereof
US3616403A (en) 1968-10-25 1971-10-26 Ibm Prevention of inversion of p-type semiconductor material during rf sputtering of quartz
US3850604A (en) 1972-12-11 1974-11-26 Gte Laboratories Inc Preparation of chalcogenide glass sputtering targets
US4111523A (en) 1973-07-23 1978-09-05 Bell Telephone Laboratories, Incorporated Thin film optical waveguide
US4437966A (en) 1982-09-30 1984-03-20 Gte Products Corporation Sputtering cathode apparatus
DE3345659A1 (de) * 1983-06-16 1984-12-20 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Keramikkoerper aus zirkoniumdioxid (zro(pfeil abwaerts)2(pfeil abwaerts)) und verfahren zu seiner herstellung
EP0140638B1 (en) * 1983-10-17 1988-06-29 Tosoh Corporation High-strength zirconia type sintered body and process for preparation thereof
DE3417732A1 (de) 1984-05-12 1986-07-10 Leybold-Heraeus GmbH, 5000 Köln Verfahren zum aufbringen von siliziumhaltigen schichten auf substraten durch katodenzerstaeubung und zerstaeubungskatode zur durchfuehrung des verfahrens
GB8414878D0 (en) 1984-06-11 1984-07-18 Gen Electric Co Plc Integrated optical waveguides
US4785459A (en) * 1985-05-01 1988-11-15 Baer Thomas M High efficiency mode matched solid state laser with transverse pumping
US4710940A (en) * 1985-10-01 1987-12-01 California Institute Of Technology Method and apparatus for efficient operation of optically pumped laser
US5173271A (en) * 1985-12-04 1992-12-22 Massachusetts Institute Of Technology Enhanced radiative zone-melting recrystallization method and apparatus
US5296089A (en) * 1985-12-04 1994-03-22 Massachusetts Institute Of Technology Enhanced radiative zone-melting recrystallization method and apparatus
US4915810A (en) 1988-04-25 1990-04-10 Unisys Corporation Target source for ion beam sputter deposition
US5792550A (en) 1989-10-24 1998-08-11 Flex Products, Inc. Barrier film having high colorless transparency and method
JP2758948B2 (ja) 1989-12-15 1998-05-28 キヤノン株式会社 薄膜形成方法
DE4022090A1 (de) 1989-12-18 1991-06-20 Forschungszentrum Juelich Gmbh Elektro-optisches bauelement und verfahren zu dessen herstellung
US5252194A (en) 1990-01-26 1993-10-12 Varian Associates, Inc. Rotating sputtering apparatus for selected erosion
US5085904A (en) 1990-04-20 1992-02-04 E. I. Du Pont De Nemours And Company Barrier materials useful for packaging
US5306569A (en) 1990-06-15 1994-04-26 Hitachi Metals, Ltd. Titanium-tungsten target material and manufacturing method thereof
JP2755471B2 (ja) 1990-06-29 1998-05-20 日立電線株式会社 希土類元素添加光導波路及びその製造方法
US5225288A (en) 1990-08-10 1993-07-06 E. I. Du Pont De Nemours And Company Solvent blockers and multilayer barrier coatings for thin films
US5645626A (en) * 1990-08-10 1997-07-08 Bend Research, Inc. Composite hydrogen separation element and module
US5110696A (en) * 1990-11-09 1992-05-05 Bell Communications Research Rechargeable lithiated thin film intercalation electrode battery
NL9002844A (nl) * 1990-12-21 1992-07-16 Philips Nv Systeem omvattende een apparaat en een cassette, alsmede een apparaat en een cassette geschikt voor toepassing in een dergelijk systeem.
US5200029A (en) 1991-04-25 1993-04-06 At&T Bell Laboratories Method of making a planar optical amplifier
US5119460A (en) 1991-04-25 1992-06-02 At&T Bell Laboratories Erbium-doped planar optical device
US5107538A (en) 1991-06-06 1992-04-21 At&T Bell Laboratories Optical waveguide system comprising a rare-earth Si-based optical device
US5196041A (en) 1991-09-17 1993-03-23 The Charles Stark Draper Laboratory, Inc. Method of forming an optical channel waveguide by gettering
US5355089A (en) 1992-07-22 1994-10-11 Duracell Inc. Moisture barrier for battery with electrochemical tester
JP2755844B2 (ja) 1991-09-30 1998-05-25 シャープ株式会社 プラスチック基板液晶表示素子
US5702829A (en) * 1991-10-14 1997-12-30 Commissariat A L'energie Atomique Multilayer material, anti-erosion and anti-abrasion coating incorporating said multilayer material
EP0546709B1 (en) 1991-12-11 1997-06-04 Mobil Oil Corporation High barrier film
US5287427A (en) 1992-05-05 1994-02-15 At&T Bell Laboratories Method of making an article comprising an optical component, and article comprising the component
US5338625A (en) * 1992-07-29 1994-08-16 Martin Marietta Energy Systems, Inc. Thin film battery and method for making same
JP3214910B2 (ja) 1992-08-18 2001-10-02 富士通株式会社 平面導波路型光増幅器の製造方法
US5538796A (en) * 1992-10-13 1996-07-23 General Electric Company Thermal barrier coating system having no bond coat
US5942089A (en) 1996-04-22 1999-08-24 Northwestern University Method for sputtering compounds on a substrate
JPH06158308A (ja) * 1992-11-24 1994-06-07 Hitachi Metals Ltd インジウム・スズ酸化物膜用スパッタリング用ターゲットおよびその製造方法
US6022458A (en) 1992-12-07 2000-02-08 Canon Kabushiki Kaisha Method of production of a semiconductor substrate
AU669754B2 (en) 1992-12-18 1996-06-20 Becton Dickinson & Company Barrier coating
US5303319A (en) 1992-12-28 1994-04-12 Honeywell Inc. Ion-beam deposited multilayer waveguides and resonators
US5427669A (en) 1992-12-30 1995-06-27 Advanced Energy Industries, Inc. Thin film DC plasma processing system
US5718813A (en) 1992-12-30 1998-02-17 Advanced Energy Industries, Inc. Enhanced reactive DC sputtering system
JPH06279185A (ja) 1993-03-25 1994-10-04 Canon Inc ダイヤモンド結晶およびダイヤモンド結晶膜の形成方法
US5613995A (en) 1993-04-23 1997-03-25 Lucent Technologies Inc. Method for making planar optical waveguides
US5499207A (en) 1993-08-06 1996-03-12 Hitachi, Ltd. Semiconductor memory device having improved isolation between electrodes, and process for fabricating the same
JP2642849B2 (ja) 1993-08-24 1997-08-20 株式会社フロンテック 薄膜の製造方法および製造装置
US5478456A (en) * 1993-10-01 1995-12-26 Minnesota Mining And Manufacturing Company Sputtering target
US5738731A (en) * 1993-11-19 1998-04-14 Mega Chips Corporation Photovoltaic device
US5433835B1 (en) 1993-11-24 1997-05-20 Applied Materials Inc Sputtering device and target with cover to hold cooling fluid
US5487822A (en) 1993-11-24 1996-01-30 Applied Materials, Inc. Integrated sputtering target assembly
US5654984A (en) 1993-12-03 1997-08-05 Silicon Systems, Inc. Signal modulation across capacitors
US5569520A (en) * 1994-01-12 1996-10-29 Martin Marietta Energy Systems, Inc. Rechargeable lithium battery for use in applications requiring a low to high power output
US5561004A (en) * 1994-02-25 1996-10-01 Bates; John B. Packaging material for thin film lithium batteries
US5475528A (en) 1994-03-25 1995-12-12 Corning Incorporated Optical signal amplifier glasses
US5472795A (en) * 1994-06-27 1995-12-05 Board Of Regents Of The University Of The University Of Wisconsin System, On Behalf Of The University Of Wisconsin-Milwaukee Multilayer nanolaminates containing polycrystalline zirconia
US5457569A (en) 1994-06-30 1995-10-10 At&T Ipm Corp. Semiconductor amplifier or laser having integrated lens
WO1996000996A1 (en) 1994-06-30 1996-01-11 The Whitaker Corporation Planar hybrid optical amplifier
JP3407409B2 (ja) 1994-07-27 2003-05-19 富士通株式会社 高誘電率薄膜の製造方法
US5483613A (en) 1994-08-16 1996-01-09 At&T Corp. Optical device with substrate and waveguide structure having thermal matching interfaces
US5909346A (en) * 1994-08-26 1999-06-01 Aiwa Research & Development, Inc. Thin magnetic film including multiple geometry gap structures on a common substrate
US5555342A (en) 1995-01-17 1996-09-10 Lucent Technologies Inc. Planar waveguide and a process for its fabrication
US5607789A (en) 1995-01-23 1997-03-04 Duracell Inc. Light transparent multilayer moisture barrier for electrochemical cell tester and cell employing same
EP0822996B1 (en) 1995-04-25 2003-07-02 VON ARDENNE ANLAGENTECHNIK GmbH Sputtering system using cylindrical rotating magnetron electrically powered using alternating current
US5771562A (en) 1995-05-02 1998-06-30 Motorola, Inc. Passivation of organic devices
KR100342189B1 (ko) 1995-07-12 2002-11-30 삼성전자 주식회사 휘발성복합체를사용한희토류원소첨가광섬유제조방법
ATE204029T1 (de) 1995-08-18 2001-08-15 Heraeus Gmbh W C Target für die kathodenzerstäubung und verfahren zur herstellung eines solchen targets
US5563979A (en) 1995-08-31 1996-10-08 Lucent Technologies Inc. Erbium-doped planar optical device
US5689522A (en) 1995-10-02 1997-11-18 The Regents Of The University Of California High efficiency 2 micrometer laser utilizing wing-pumped Tm3+ and a laser diode array end-pumping architecture
US5719976A (en) 1995-10-24 1998-02-17 Lucent Technologies, Inc. Optimized waveguide structure
JP3298799B2 (ja) 1995-11-22 2002-07-08 ルーセント テクノロジーズ インコーポレイテッド クラッディングポンプファイバとその製造方法
US5686360A (en) 1995-11-30 1997-11-11 Motorola Passivation of organic devices
US5811177A (en) 1995-11-30 1998-09-22 Motorola, Inc. Passivation of electroluminescent organic devices
US5930584A (en) 1996-04-10 1999-07-27 United Microelectronics Corp. Process for fabricating low leakage current electrode for LPCVD titanium oxide films
WO1997047695A1 (en) 1996-06-12 1997-12-18 Hoechst Trespaphan Gmbh Transparent barrier coatings exhibiting reduced thin film interference
US5731661A (en) 1996-07-15 1998-03-24 Motorola, Inc. Passivation of electroluminescent organic devices
US5855744A (en) 1996-07-19 1999-01-05 Applied Komatsu Technology, Inc. Non-planar magnet tracking during magnetron sputtering
US5693956A (en) 1996-07-29 1997-12-02 Motorola Inverted oleds on hard plastic substrate
JP3631341B2 (ja) 1996-10-18 2005-03-23 Tdk株式会社 積層型複合機能素子およびその製造方法
US5841931A (en) 1996-11-26 1998-11-24 Massachusetts Institute Of Technology Methods of forming polycrystalline semiconductor waveguides for optoelectronic integrated circuits, and devices formed thereby
JPH10195649A (ja) * 1996-12-27 1998-07-28 Sony Corp マグネトロンスパッタ装置および半導体装置の製造方法
US5944964A (en) * 1997-02-13 1999-08-31 Optical Coating Laboratory, Inc. Methods and apparatus for preparing low net stress multilayer thin film coatings
US5847865A (en) 1997-02-18 1998-12-08 Regents Of The University Of Minnesota Waveguide optical amplifier
US6039834A (en) * 1997-03-05 2000-03-21 Applied Materials, Inc. Apparatus and methods for upgraded substrate processing system with microwave plasma source
US5952778A (en) 1997-03-18 1999-09-14 International Business Machines Corporation Encapsulated organic light emitting device
JPH10265948A (ja) * 1997-03-25 1998-10-06 Rohm Co Ltd 半導体装置用基板およびその製法
US6242132B1 (en) * 1997-04-16 2001-06-05 Ut-Battelle, Llc Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery
US5948215A (en) 1997-04-21 1999-09-07 Tokyo Electron Limited Method and apparatus for ionized sputtering
US5830330A (en) 1997-05-22 1998-11-03 Tokyo Electron Limited Method and apparatus for low pressure sputtering
US6000603A (en) * 1997-05-23 1999-12-14 3M Innovative Properties Company Patterned array of metal balls and methods of making
US5977582A (en) 1997-05-23 1999-11-02 Lucent Technologies Inc. Capacitor comprising improved TaOx -based dielectric
US6051114A (en) 1997-06-23 2000-04-18 Applied Materials, Inc. Use of pulsed-DC wafer bias for filling vias/trenches with metal in HDP physical vapor deposition
US5831262A (en) 1997-06-27 1998-11-03 Lucent Technologies Inc. Article comprising an optical fiber attached to a micromechanical device
JP3813740B2 (ja) * 1997-07-11 2006-08-23 Tdk株式会社 電子デバイス用基板
US6052397A (en) 1997-12-05 2000-04-18 Sdl, Inc. Laser diode device having a substantially circular light output beam and a method of forming a tapered section in a semiconductor device to provide for a reproducible mode profile of the output beam
KR100474746B1 (ko) * 1998-02-12 2005-03-08 에이씨엠 리서치, 인코포레이티드 도금 장치 및 방법
US6004660A (en) 1998-03-12 1999-12-21 E.I. Du Pont De Nemours And Company Oxygen barrier composite film structure
US6177350B1 (en) * 1998-04-14 2001-01-23 Applied Materials, Inc. Method for forming a multilayered aluminum-comprising structure on a substrate
US6058233A (en) 1998-06-30 2000-05-02 Lucent Technologies Inc. Waveguide array with improved efficiency for wavelength routers and star couplers in integrated optics
DE19831719A1 (de) * 1998-07-15 2000-01-20 Alcatel Sa Verfahren zur Herstellung planarer Wellenleiterstrukturen sowie Wellenleiterstruktur
US6236793B1 (en) * 1998-09-23 2001-05-22 Molecular Optoelectronics Corporation Optical channel waveguide amplifier
KR100282487B1 (ko) * 1998-10-19 2001-02-15 윤종용 고유전 다층막을 이용한 셀 캐패시터 및 그 제조 방법
US6117279A (en) * 1998-11-12 2000-09-12 Tokyo Electron Limited Method and apparatus for increasing the metal ion fraction in ionized physical vapor deposition
US6365300B1 (en) * 1998-12-03 2002-04-02 Sumitomo Electric Industries, Ltd. Lithium secondary battery
EP1524708A3 (en) * 1998-12-16 2006-07-26 Battelle Memorial Institute Environmental barrier material and methods of making.
US6268695B1 (en) * 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6379835B1 (en) * 1999-01-12 2002-04-30 Morgan Adhesives Company Method of making a thin film battery
US6306265B1 (en) * 1999-02-12 2001-10-23 Applied Materials, Inc. High-density plasma for ionized metal deposition capable of exciting a plasma wave
US6280875B1 (en) * 1999-03-24 2001-08-28 Teledyne Technologies Incorporated Rechargeable battery structure with metal substrate
US6168884B1 (en) * 1999-04-02 2001-01-02 Lockheed Martin Energy Research Corporation Battery with an in-situ activation plated lithium anode
US6242129B1 (en) * 1999-04-02 2001-06-05 Excellatron Solid State, Llc Thin lithium film battery
US6281142B1 (en) * 1999-06-04 2001-08-28 Micron Technology, Inc. Dielectric cure for reducing oxygen vacancies
US6046081A (en) 1999-06-10 2000-04-04 United Microelectronics Corp. Method for forming dielectric layer of capacitor
US6133670A (en) * 1999-06-24 2000-10-17 Sandia Corporation Compact electrostatic comb actuator
US6358327B1 (en) * 1999-06-29 2002-03-19 Applied Materials, Inc. Method for endpoint detection using throttle valve position
US6290821B1 (en) * 1999-07-15 2001-09-18 Seagate Technology Llc Sputter deposition utilizing pulsed cathode and substrate bias power
WO2001040836A1 (en) * 1999-12-02 2001-06-07 Gemfire Corporation Photodefinition of optical devices
US6451177B1 (en) * 2000-01-21 2002-09-17 Applied Materials, Inc. Vault shaped target and magnetron operable in two sputtering modes
US6627056B2 (en) * 2000-02-16 2003-09-30 Applied Materials, Inc. Method and apparatus for ionized plasma deposition
TW523615B (en) * 2000-02-17 2003-03-11 L3 Optics Inc Guided wave optical switch based on an active semiconductor amplifier and a passive optical component
US20010032666A1 (en) * 2000-03-24 2001-10-25 Inegrated Power Solutions Inc. Integrated capacitor-like battery and associated method
CA2377619A1 (en) * 2000-04-20 2001-11-01 Koninklijke Philips Electronics N.V. Optical recording medium and use of such optical recording medium
KR100341407B1 (ko) * 2000-05-01 2002-06-22 윤덕용 플라즈마 처리에 의한 리튬전이금속 산화물 박막의 결정화방법
US6760520B1 (en) * 2000-05-09 2004-07-06 Teralux Corporation System and method for passively aligning and coupling optical devices
EP1160900A3 (en) * 2000-05-26 2007-12-12 Kabushiki Kaisha Riken Embossed current collector separator for electrochemical fuel cell
US6506289B2 (en) * 2000-08-07 2003-01-14 Symmorphix, Inc. Planar optical devices and methods for their manufacture
US6632563B1 (en) * 2000-09-07 2003-10-14 Front Edge Technology, Inc. Thin film battery and method of manufacture
DE10165080B4 (de) * 2000-09-20 2015-05-13 Hitachi Metals, Ltd. Siliciumnitrid-Pulver und -Sinterkörper sowie Verfahren zu deren Herstellung und Leiterplatte damit
US6660660B2 (en) * 2000-10-10 2003-12-09 Asm International, Nv. Methods for making a dielectric stack in an integrated circuit
JP4461656B2 (ja) * 2000-12-07 2010-05-12 セイコーエプソン株式会社 光電変換素子
US6673716B1 (en) * 2001-01-30 2004-01-06 Novellus Systems, Inc. Control of the deposition temperature to reduce the via and contact resistance of Ti and TiN deposited using ionized PVD techniques
US6558836B1 (en) * 2001-02-08 2003-05-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Structure of thin-film lithium microbatteries
US7164206B2 (en) * 2001-03-28 2007-01-16 Intel Corporation Structure in a microelectronic device including a bi-layer for a diffusion barrier and an etch-stop layer
US6743488B2 (en) * 2001-05-09 2004-06-01 Cpfilms Inc. Transparent conductive stratiform coating of indium tin oxide
US6768855B1 (en) * 2001-07-05 2004-07-27 Sandia Corporation Vertically-tapered optical waveguide and optical spot transformer formed therefrom
US7242044B2 (en) * 2001-08-28 2007-07-10 Tdk Corporation Compositions for thin-film capacitance device, high-dielectric constant insulating film, thin-film capacitance device, and thin-film multilayer capacitor
US7115516B2 (en) * 2001-10-09 2006-10-03 Applied Materials, Inc. Method of depositing a material layer
US6750156B2 (en) * 2001-10-24 2004-06-15 Applied Materials, Inc. Method and apparatus for forming an anti-reflective coating on a substrate
US6683749B2 (en) * 2001-12-19 2004-01-27 Storage Technology Corporation Magnetic transducer having inverted write element with zero delta in pole tip width
US20030143853A1 (en) * 2002-01-31 2003-07-31 Celii Francis G. FeRAM capacitor stack etch
US20030174391A1 (en) * 2002-03-16 2003-09-18 Tao Pan Gain flattened optical amplifier
US6884327B2 (en) * 2002-03-16 2005-04-26 Tao Pan Mode size converter for a planar waveguide
US7378356B2 (en) * 2002-03-16 2008-05-27 Springworks, Llc Biased pulse DC reactive sputtering of oxide films
TWI283031B (en) * 2002-03-25 2007-06-21 Epistar Corp Method for integrating compound semiconductor with substrate of high thermal conductivity
US6792026B2 (en) * 2002-03-26 2004-09-14 Joseph Reid Henrichs Folded cavity solid-state laser
US6818356B1 (en) * 2002-07-09 2004-11-16 Oak Ridge Micro-Energy, Inc. Thin film battery and electrolyte therefor
WO2004077519A2 (en) * 2003-02-27 2004-09-10 Mukundan Narasimhan Dielectric barrier layer films
US8728285B2 (en) * 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
JP5095412B2 (ja) * 2004-12-08 2012-12-12 シモーフィックス,インコーポレーテッド LiCoO2の堆積

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082569A (en) * 1977-02-22 1978-04-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solar cell collector

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
J.-Y. Kim, E. Barnat, E. J. Rymaszewski, T.-M. Lu.Frequency-dependent pulsed directcurrentmagnetronsputtering of titanium oxide films.JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS19 2.2001,19(2),429-434页.
J.-Y. Kim, E. Barnat, E. J. Rymaszewski, T.-M. Lu.Frequency-dependent pulsed directcurrentmagnetronsputtering of titanium oxide films.JOURNAL OF VACUUM SCIENCE &amp *
TECHNOLOGY A-VACUUM SURFACES AND FILMS19 2.2001,19(2),429-434页. *
喻志农,郑德修.等离子体显示器的介质保护膜.真空电子技术 2.2001,(2),19-22页.
喻志农,郑德修.等离子体显示器的介质保护膜.真空电子技术 2.2001,(2),19-22页. *
章吉良, 李明, 杨春生,赵小林, 宋柏泉.溅射气体和基板偏压对溅射Al2O3薄膜内应力和密度的影响.真空科学与技术16 1.1996,16(1),58-61页.
章吉良, 李明, 杨春生,赵小林, 宋柏泉.溅射气体和基板偏压对溅射Al2O3薄膜内应力和密度的影响.真空科学与技术16 1.1996,16(1),58-61页. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2

Also Published As

Publication number Publication date
WO2004077519A9 (en) 2005-11-03
US20060071592A1 (en) 2006-04-06
KR100691168B1 (ko) 2007-03-09
EP1597408A2 (en) 2005-11-23
US20050006768A1 (en) 2005-01-13
EP1597408B1 (en) 2012-12-05
WO2004077519A3 (en) 2005-01-06
KR20060007367A (ko) 2006-01-24
CN1756856A (zh) 2006-04-05
US7262131B2 (en) 2007-08-28
US7205662B2 (en) 2007-04-17
WO2004077519A2 (en) 2004-09-10

Similar Documents

Publication Publication Date Title
CN1756856B (zh) 电介质阻挡层膜
KR101756568B1 (ko) 투명 도전성 필름 및 그 제조 방법
JP6261987B2 (ja) 透明導電フィルムおよびその製造方法
US20090286071A1 (en) Transparent conductive film and method for production thereof
WO2021187573A1 (ja) 透明導電性フィルム、および透明導電性フィルムの製造方法
JP6261988B2 (ja) 透明導電フィルムおよびその製造方法
JP6215062B2 (ja) 透明導電フィルムの製造方法
CN104870683A (zh) 成膜方法和成膜装置
US20120107554A1 (en) TCO Coating and Coated Substrate for High Temperature Applications
JP5538361B2 (ja) 透明バリア層システム
JPH02194943A (ja) 透明導電性積層体
JPWO2004065656A1 (ja) Ito薄膜、その成膜方法、透明導電性フィルム及びタッチパネル
JP2000144379A (ja) 透明導電積層体の製造方法
Leng et al. Optical and electrical properties of Y2O3 thin films prepared by ion beam assisted deposition
US20120125423A1 (en) Transparent conductive substrate
JP4842416B2 (ja) 透明導電薄膜付きフィルムおよびその製造方法
Krokoszinski et al. Post-deposition annealing effects in electron-beam-evaporated indium tin oxide thin films
KR20150021776A (ko) 광투과율이 우수한 반사방지막의 제조방법 및 그에 의하여 제조된 반사방지막
TWI334194B (en) Dielectric barrier layer films
Ishibashi et al. Large area deposition of ITO films by cluster type sputtering system
Defaÿ et al. Deposition and Characterisation of SrTiO 3 Thin Films Deposited by Ion Beam Sputtering on Platinized Silicon Substrates
Switzer III Characterization of physical vapor deposited and patterned thin films for roll-to-roll flexible passive and active electronic devices
TWI355683B (en) A dielectric barrier film
WO2023042849A1 (ja) 透明導電性フィルム
Abd El-Moula et al. DC pulsed plasma magnetron sputtering of CdO/Cu/CdO multilayers thin films for self-cleaning and optoelectronic applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SPRINGWORKS, LLC

Free format text: FORMER OWNER: SYMMORPHIX INC.

Effective date: 20130515

Owner name: R. ERNEST. DEMALY

Free format text: FORMER OWNER: SPRINGWORKS, LLC

Effective date: 20130515

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130515

Address after: American California

Patentee after: R. Ennest de Mare

Address before: The University of Minnesota

Patentee before: Spring Waxman LLC

Effective date of registration: 20130515

Address after: The University of Minnesota

Patentee after: Spring Waxman LLC

Address before: California, USA

Patentee before: SYMMORPHIX, Inc.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111012

Termination date: 20180226

CF01 Termination of patent right due to non-payment of annual fee