CN101471380A - 横向双扩散金属氧化物半导体晶体管及其制造方法 - Google Patents

横向双扩散金属氧化物半导体晶体管及其制造方法 Download PDF

Info

Publication number
CN101471380A
CN101471380A CNA2008101888310A CN200810188831A CN101471380A CN 101471380 A CN101471380 A CN 101471380A CN A2008101888310 A CNA2008101888310 A CN A2008101888310A CN 200810188831 A CN200810188831 A CN 200810188831A CN 101471380 A CN101471380 A CN 101471380A
Authority
CN
China
Prior art keywords
film
shallow trench
gate dielectric
type
barrier film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2008101888310A
Other languages
English (en)
Inventor
朴日用
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DB HiTek Co Ltd
Original Assignee
Dongbu Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongbu Electronics Co Ltd filed Critical Dongbu Electronics Co Ltd
Publication of CN101471380A publication Critical patent/CN101471380A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7825Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/66704Lateral DMOS transistors, i.e. LDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

一种横向双扩散金属氧化物半导体(LDMOS)晶体管可以包括第一导电型半导体衬底以及在衬底中限定有源区的浅沟槽隔离膜。可以在半导体衬底的部分顶部上方布置第二导电型本体区。可以在本体区的顶部中布置第一导电型源极区。可以在半导体衬底的部分顶部上方布置第一导电型扩展漏极区,并且该第一导电型扩展漏极区与本体区相隔离。栅极介电膜覆盖第二导电型本体区和第一导电型源极区两者的表面以及覆盖第一导电型半导体衬底的部分顶部表面。栅极导电膜可以从第一导电型源极区开始延伸、延伸在栅极介电膜上方、延伸在浅沟槽隔离膜上方,以及在浅沟槽隔离膜的内部延伸。因此,本发明实施例防止了在导通状态下电流流动受到STI干扰,这样可以获得提高的导通电阻特性。

Description

横向双扩散金属氧化物半导体晶体管及其制造方法
本申请基于35 U.S.C 119要求第10-2007-0139979号(于2007年12月28日递交)韩国专利申请的优先权,其全部内容结合于此作为参考。
技术领域
本发明涉及一种半导体器件及其制造方法,更具体地,涉及一种横向双扩散金属氧化物半导体(lateral double diffused metal oxidesemiconductor)晶体管及其制造方法,该横向双扩散金属氧化物半导体晶体管具有改善的导通-电阻特性。
背景技术
随着半导体器件集成度的提高和相关制造设计技术的发展,主要的努力集中在将整个半导体系统合并到一块半导体芯片上。已经开发了单芯片系统,这些单芯片系统将控制器、存储器及其他工作在低压下的电路合并在一个芯片中。
然而,为了使系统小巧轻便,需要将控制系统电源的电路和执行主要功能的电路集成在一个芯片上,其中控制系统电源(power)的电路是指输入端和输出端。由于输入端和输出端都是高压电路,所以它们不能以与普通低压CMOS电路相同的方法来制造。输入端和输出端由高压功率晶体管(high voltage power transistor)构成。
因此,为了减少系统的尺寸和重量,需要将电源电路的输入端和输出端以及控制器在一个芯片上制成。用功率IC(power IC)技术实现该目的是可能的,其中在功率IC技术中,使用一个芯片构成高压晶体管和低电压CMOS晶体管电路。
用于功率IC的技术是用来改进垂直DMOS(VDMOS)器件结构,该垂直DMOS器件结构是一种相关的离散功率晶体管。使用这种技术,可以实现横向DMOS(LDMOS)器件。该LDMOS器件能够通过水平布置漏极来确保高击穿电压,并且能够在沟道区和漏极区之间具有漂移区,以允许电流水平地流过。
使用0.25μm之下的设计规则,形成在LDMOS器件中的器件隔离膜具有浅沟槽隔离(STI)结构,而不具有硅的局部氧化(LOCOS)结构,以增加逻辑器件的密度。将参照图1来描述具有上述相关的STI结构的横向双扩散金属氧化物半导体晶体管。
图1是示出了相关的横向双扩散金属氧化物半导体(LDMOS)晶体管的横截面图,该横向双扩散金属氧化物半导体晶体管具有浅沟槽隔离(STI)结构。参照图1,n型半导体衬底10具有由浅沟槽隔离(STI)膜11限定的有源区(active region)。p型本体区12和n-型扩展漏极区(n-type extended drain region)13以预定的距离相互隔离。在p型本体区12的顶部上布置n+型源极区14。p型本体区12的部分顶部是沟道区,其中p型本体区12的这部分顶部与n+型源极区14相邻,并且与栅极介电膜16和栅极导电膜17两者相重叠。在n-型扩展漏极区13的顶部上方布置n+型漏极区15。在沟道区上方顺序堆叠栅极介电膜16和栅极导电膜17,以及在栅极介电膜16和栅极导电膜17两者的侧壁上形成栅极隔离件膜18。通过普通导线(common wire),将n+型源极区14电连接至源极电极S,而将n+型漏极区15电连接至漏极电极D。
然而,在相关的具有STI结构的横向双扩散金属氧化物半导体晶体管中,浅沟槽隔离膜11存在于源极和漏极之间,而栅极导电膜17从源极区14延伸至部分浅沟槽隔离膜11。因此,当横向双扩散金属氧化物半导体晶体管导通时,电流的流动受到浅沟槽隔离膜11的干扰,从而引起导通电阻(on-state resistance)的不期望的增加。
发明内容
本发明实施例涉及一种半导体器件及其制造方法,更具体地,涉及一种横向双扩散金属氧化物半导体晶体管及其制造方法,其中该横向双扩散金属氧化物半导体晶体管具有改善的导通电阻特性。本发明实施例涉及一种横向双扩散金属氧化物半导体(LDMOS)晶体管,该横向双扩散金属氧化物半导体晶体管可以包括第一导电型半导体衬底和在衬底中用于限定有源区的浅沟槽隔离膜。可以在半导体衬底的部分顶部上方布置第二导电型本体区。可以在本体区的顶部中布置第一导电型源极区。可以在半导体衬底的部分顶部上方布置第一导电型扩展漏极区,并且该第一导电型扩展漏极区与本体区相隔离。栅极介电膜覆盖第二导电型本体区和第一导电型源极区两者的表面以及覆盖第一导电型半导体衬底的部分顶部表面。栅极导电膜可以从第一导电型源极区开始延伸、延伸在栅极介电膜上方、延伸在浅沟槽隔离膜上方,以及在浅沟槽隔离膜的内部延伸。
本发明实施例涉及一种制造横向双扩散金属氧化物半导体(LDMOS)晶体管的方法,该方法包括:在第一导电型半导体衬底中形成限定有源区的浅沟槽隔离膜;在半导体衬底的部分顶部上方形成第二导电型本体区;在本体区的顶部中形成第一导电型源极区;在半导体衬底的部分顶部上方形成第一导电型扩展漏极区,该第一导电型扩展漏极区与本体区相隔离;形成栅极介电膜,该栅极介电膜覆盖第二导电型本体区和第一导电型源极区两者的表面以及覆盖第一导电型半导体衬底的部分顶部表面;以及形成栅极导电膜,该栅极导电膜从第一导电型源极区开始延伸、延伸在栅极介电膜的顶部上方、延伸在浅沟槽隔离膜的顶部上方,以及在浅沟槽隔离膜的内部延伸。
附图说明
图1是示出了相关的具有浅沟槽隔离(STI)结构的横向双扩散金属氧化物半导体(LDMOS)晶体管的横截面图。
实例图2是示出了根据本发明实施例的横向双扩散金属氧化物半导体(LDMOS)晶体管的横截面图。
具体实施方式
下文中,将参照附图详细地描述根据本发明实施例的横向双扩散金属氧化物半导体(LDMOS)晶体管,该横向双扩散金属氧化物半导体晶体管具有浅沟槽隔离(STI)结构。实例图2是示出了根据本发明实施例的具有浅沟槽隔离(STI)结构的横向双扩散金属氧化物半导体(LDMOS)晶体管的横截面图。
如实例图2所示,根据本发明实施例的LDMOS晶体管的n型半导体衬底100可以具有有源区,其中,该LDMOS晶体管具有STI结构,而有源区由浅沟槽隔离(STI)膜110来限定。可以在n型半导体衬底100的部分顶部上方布置p型本体区120。可以在n型半导体衬底100顶部的一定区域上布置n-型扩展漏极区130,该n-型扩展漏极区130与p型本体区120相隔预定的距离。可以在p型本体区120的顶部上布置n+型源极区140。p型本体区120的部分顶部可以用作沟道区(channel region),其中,p型本体区120的这部分顶部与n+型源极区140相邻,并且与栅极介电膜(gate dielectricfilm)160和栅极导电膜(gate conductive film)170两者相重叠。可以在n-型扩展漏极区(n-type extended drain region)130的顶部布置n+型漏极区150。
可以在沟道区上方顺序堆叠栅极介电膜160和栅极导电膜170。可以在栅极介电膜160和栅极导电膜170两者的侧壁上形成栅极隔离件膜(gate spacer film)180。更具体地,可以布置栅极介电膜160以覆盖p型本体区120和n+型源极区140两者的表面以及覆盖n型半导体衬底100的顶部表面。
这里,可以在栅极介电膜160的顶部上方和浅沟槽隔离膜110的部分表面上方形成栅极导电膜170。栅极导电膜170可以延伸到部分浅沟槽隔离膜110的内部,其中,通过对靠近源极电极S那一侧的部分浅沟槽隔离膜110进行刻蚀来形成上述的部分浅沟槽隔离膜110。如图2所示,在衬底100之上栅极介电膜160限定了一个平面,而在栅极介电膜的这个平面之下,栅极导电膜延伸到浅沟槽隔离膜110中。这种结构不同于相关结构,在相关结构中,当晶体管导通时,电流的流动受到干扰。如图2所示,根据栅极电场,在硅和位于浅沟槽隔离膜110内部的栅极导电膜170之间形成积累层(accumulation layer)300,从而降低导通电阻(on-resistance)。
这里,在浅沟槽隔离膜110内部形成的栅极导电膜170的厚度可以大于在栅极介电膜160和浅沟槽隔离膜110两者的顶部表面上方形成的栅极导电膜170的厚度。由于这种结构,当晶体管截至时,可以降低栅电极和硅之间的电场。
通过导线,可以将n+型源极区140电连接至源极电极(sourceelectrode)S,并将n+型漏极区150电连接至漏极电极(drainelectrode)D。根据本发明实施例的横向双扩散金属氧化物半导体晶体管可以包括附加的n+型层320,该n+型层320从位于浅沟槽隔离膜110之下的部分延伸至位于栅极介电膜160之下的部分,其中,位于浅沟槽隔离膜110之下的所述部分在形成于沟槽隔离膜110内部的栅极导电膜170的下方。从而,当晶体管导通时,导通电阻可以进一步降低。换句话说,可以在附加的n+型层320和浅沟槽隔离膜110之间,以及在半导体衬底100和栅极介电膜160之间形成积累层300。
下文中,将参照实例图2来描述实例图2中所示的制造横向双扩散金属氧化物半导体晶体管的方法。首先,可以在第一导电型半导体衬底100中形成限定有源区的浅沟槽隔离膜110。
此后,可以在半导体衬底100的部分顶部上方形成第二导电型本体区120。然后,可以在本体区120的顶部上方形成第一导电型源极区140。可以在半导体衬底100顶部的一定区域上方形成第一导电型扩展漏极区130,该第一导电型扩展漏极区130与本体区120相隔离。
可以形成栅极介电膜160,以覆盖第二导电型本体区120和第一导电型源极区140两者的表面以及覆盖第一导电型半导体衬底100的顶部表面。接下来,可以形成栅极导电膜170,该栅极导电膜170从第一导电型源极区140开始延伸、延伸在栅极介电膜160上方、延伸在浅沟槽隔离膜110的顶部上方,然后延伸至浅沟槽隔离膜110内部的一定部分。形成在浅沟槽隔离膜110内部的栅极导电膜170的厚度可以大于形成在栅极介电膜160和浅沟槽隔离膜110两者的表面上方的栅极导电膜170的厚度。
制造横向双扩散金属氧化物半导体晶体管的方法可以进一步包括在栅极导电膜170和栅极介电膜160两者的侧壁上形成多个栅极隔离件膜(gate spacer films)180。此外,根据本发明实施例的制造横向双扩散金属氧化物半导体晶体管的方法可以进一步包括在第一导电型扩展漏极区130内部形成附加的n+型层320,该n+型层320从位于浅沟槽隔离膜110之下的部分延伸至位于栅极介电膜160之下的部分,其中,位于浅沟槽隔离膜110之下的所述部分在形成于浅沟槽隔离膜110内部的栅极导电膜170的下方。
根据本发明实施例的制造横向双扩散金属氧化物半导体晶体管的方法进一步包括在附加的n+型层320和浅沟槽隔离膜110之间,以及在半导体衬底100和栅极介电膜160之间形成积累层300。以上描述的第一导电型可以是n型,而第二导电型可以是p型,或者第一导电型可以是p型,而第二导电型可以是n型。
如上所述,因为在部分STI中形成了栅极,所以根据本发明实施例的横向双扩散金属氧化物半导体晶体管及其制造方法防止在导通状态下电流流动受到STI的干扰,这样可以获得提高的导通电阻特性。
在本发明所披露的实施例中可以作各种修改和变化,这对本领域技术人员来说是明显和显而易见的。因此,如果这些修改和变化落在所附权利要求和其等同替换的范围内,本发明所披露的实施例旨在覆盖这些明显和显而易见的修改和变化。

Claims (20)

1.一种装置,包括:
第一导电型半导体衬底;
浅沟槽隔离膜,在所述衬底中限定有源区;
第二导电型本体区,布置在所述半导体衬底的部分顶部上方;
第一导电型源极区,布置在所述本体区的顶部中;
第一导电型扩展漏极区,布置在所述半导体衬底的部分顶部上方,并且所述第一导电型扩展漏极区与所述本体区相隔离;
栅极介电膜,覆盖所述第二导电型本体区和所述第一导电型源极区两者的表面以及覆盖所述第一导电型半导体衬底的部分顶部表面;以及
栅极导电膜,从所述第一导电型源极区开始延伸、延伸在所述栅极介电膜上方、延伸在所述浅沟槽隔离膜上方,以及在所述浅沟槽隔离膜的内部延伸。
2.根据权利要求1所述的装置,包括:
栅极隔离件膜,这些栅极隔离件膜形成在所述栅极导电膜和所述栅极介电膜两者的侧壁上。
3.根据权利要求1所述的装置,其中,形成在所述浅沟槽隔离膜内部的所述栅极导电膜的厚度大于形成在所述栅极介电膜和所述浅沟槽隔离膜两者表面上方的所述栅极导电膜的厚度。
4.根据权利要求1所述的装置,包括:
n+型层,形成在所述第一导电型扩展漏极区的内部,所述n+型层从位于所述浅沟槽隔离膜之下的区域延伸至位于所述栅极介电膜之下的区域,其中位于所述浅沟槽隔离膜之下的所述区域在形成于所述浅沟槽隔离膜内部的所述栅极导电膜的下方。
5.根据权利要求4所述的装置,包括:
积累层,在所述n+型层和所述浅沟槽隔离膜之间延伸,以及在所述半导体衬底和所述栅极介电膜之间延伸。
6.根据权利要求1所述的装置,其中,所述第一导电型是n型,而所述第二导电型是p型。
7.根据权利要求1所述的装置,其中,所述第一导电型半导体衬底、所述第二导电型本体区、所述第一导电型源极区、所述第一导电型扩展漏极区、所述栅极介电膜和所述栅极导电膜形成横向双扩散金属氧化物半导体晶体管。
8.根据权利要求1所述的装置,包括在所述扩展漏极区的顶部上方布置的第一导电型漏极区。
9.根据权利要求1所述的装置,其中,在所述衬底之上所述栅极介电膜限定了一个平面,并且所述栅极导电膜在所述栅极介电膜的所述平面之下延伸。
10.一种方法,包括:
在第一导电型半导体衬底中形成浅沟槽隔离膜,所述浅沟槽隔离膜限定有源区;
在所述半导体衬底的部分顶部上方形成第二导电型本体区;
在所述本体区的顶部中形成第一导电型源极区;
在所述半导体衬底的部分顶部上方形成第一导电型扩展漏极区,所述第一导电型扩展漏极区与所述本体区相隔离;
形成栅极介电膜,所述栅极介电膜覆盖所述第二导电型本体区和所述第一导电型源极区两者的表面以及覆盖所述第一导电型半导体衬底的部分顶部表面;以及
形成栅极导电膜,所述栅极导电膜从所述第一导电型源极区开始延伸、延伸在所述栅极介电膜的顶部上方、延伸在所述浅沟槽隔离膜的顶部上方,以及在所述浅沟槽隔离膜的内部延伸。
11.根据权利要求10所述的方法,包括:
在所述栅极导电膜和所述栅极介电膜两者的侧壁上形成栅极隔离件膜。
12.根据权利要求10所述的方法,其中,形成在所述浅沟槽隔离膜内部的所述栅极导电膜的厚度大于形成在所述栅极介电膜和所述浅沟槽隔离膜两者的表面上方的所述栅极导电膜的厚度。
13.根据权利要求10所述的方法,包括:
在所述第一导电型扩展漏极区内部形成n+型层,所述n+型层从位于所述浅沟槽隔离膜之下的区域延伸至位于所述栅极介电膜之下的区域,其中,位于所述浅沟槽隔离膜之下的所述区域在形成于所述浅沟槽隔离膜内部的所述栅极导电膜的下方。
14.根据权利要求13所述的方法,包括:
在所述附加的n+型层和所述浅沟槽隔离膜之间、以及在所述半导体衬底和所述栅极介电膜之间形成积累层。
15.根据权利要求10所述的方法,其中,所述形成所述浅沟槽隔离膜、形成所述第二导电型本体区、在所述本体区的顶部上方形成所述第一导电型源极区、形成所述第一导电型扩展漏极区、形成所述栅极介电膜以及形成所述栅极导电膜,这些步骤共同形成横向双扩散金属氧化物半导体晶体管。
16.根据权利要求10所述的方法,其中,所述第一导电型是n型,而所述第二导电型是p型。
17.根据权利要求10所述的方法,包括形成布置在所述扩展漏极区顶部上方的第一导电型漏极区。
18.根据权利要求10所述的方法,其中,在所述衬底之上所述栅极介电膜限定了一个平面,并且所述栅极导电膜在所述栅极介电膜的所述平面之下延伸。
19.一种装置,构造为:
在第一导电型半导体衬底中形成浅沟槽隔离膜,所述浅沟槽隔离膜限定有源区;
在所述半导体衬底的部分顶部上方形成第二导电型本体区;
在所述本体区的顶部中形成第一导电型源极区;
在所述半导体衬底的部分顶部上方形成第一导电型扩展漏极区,所述第一导电型扩展漏极区与所述本体区相隔离;
形成栅极介电膜,所述栅极介电膜覆盖所述第二导电型本体区和所述第一导电型源极区两者的表面以及覆盖所述第一导电型半导体衬底的部分顶部表面;以及
形成栅极导电膜,所述栅极导电膜从所述第一导电型源极区开始延伸、延伸在所述栅极介电膜的顶部上方、延伸在所述浅沟槽隔离膜的顶部上方,以及在所述浅沟槽隔离膜的内部延伸。
20.根据权利要求19所述的装置,构造为:
在所述第一导电型扩展漏极区内部形成n+型层,所述n+型层从位于所述浅沟槽隔离膜之下的区域延伸至位于所述栅极介电膜之下的区域,其中,位于所述浅沟槽隔离膜之下的所述区域在形成于所述浅沟槽隔离膜内部的所述栅极导电膜的下方。
CNA2008101888310A 2007-12-28 2008-12-26 横向双扩散金属氧化物半导体晶体管及其制造方法 Pending CN101471380A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070139979A KR20090072013A (ko) 2007-12-28 2007-12-28 수평형 디모스 트랜지스터
KR1020070139979 2007-12-28

Publications (1)

Publication Number Publication Date
CN101471380A true CN101471380A (zh) 2009-07-01

Family

ID=40797078

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2008101888310A Pending CN101471380A (zh) 2007-12-28 2008-12-26 横向双扩散金属氧化物半导体晶体管及其制造方法

Country Status (4)

Country Link
US (1) US20090166736A1 (zh)
KR (1) KR20090072013A (zh)
CN (1) CN101471380A (zh)
TW (1) TW200929381A (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623489A (zh) * 2011-01-31 2012-08-01 富士通半导体股份有限公司 半导体器件及制造半导体器件的方法
CN102130168B (zh) * 2010-01-20 2013-04-24 上海华虹Nec电子有限公司 隔离型ldnmos器件及其制造方法
CN103189988A (zh) * 2010-10-26 2013-07-03 德克萨斯仪器股份有限公司 具有减少的栅极电荷的横向扩散mos晶体管
CN103383963A (zh) * 2012-05-04 2013-11-06 联华电子股份有限公司 半导体结构及其制造方法
CN103633139A (zh) * 2012-08-23 2014-03-12 联华电子股份有限公司 高压金属氧化物半导体晶体管元件
CN104979210A (zh) * 2014-04-11 2015-10-14 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法
CN105206665A (zh) * 2014-05-27 2015-12-30 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置
CN105336625A (zh) * 2015-10-09 2016-02-17 上海华虹宏力半导体制造有限公司 高压ldmos器件的工艺方法
CN105390546A (zh) * 2014-08-21 2016-03-09 瑞萨电子株式会社 半导体器件和制造半导体器件的方法
CN107731918A (zh) * 2016-08-12 2018-02-23 中芯国际集成电路制造(上海)有限公司 半导体结构及其制造方法
CN108346689A (zh) * 2017-01-23 2018-07-31 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置
CN110323279A (zh) * 2018-03-29 2019-10-11 拉碧斯半导体株式会社 半导体装置
CN112490288A (zh) * 2019-09-12 2021-03-12 株式会社东芝 半导体装置
CN112909095A (zh) * 2021-01-21 2021-06-04 上海华虹宏力半导体制造有限公司 Ldmos器件及工艺方法
CN116072703A (zh) * 2023-01-28 2023-05-05 合肥晶合集成电路股份有限公司 一种半导体器件及其制造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8174071B2 (en) * 2008-05-02 2012-05-08 Taiwan Semiconductor Manufacturing Co., Ltd. High voltage LDMOS transistor
JP5769915B2 (ja) * 2009-04-24 2015-08-26 ルネサスエレクトロニクス株式会社 半導体装置
CN101958346B (zh) * 2009-07-16 2012-07-11 中芯国际集成电路制造(上海)有限公司 横向双扩散金属氧化物半导体场效应管及其制作方法
CN101916777A (zh) * 2010-07-16 2010-12-15 中颖电子有限公司 横向扩散金属氧化物晶体管及静电保护架构
JP5734725B2 (ja) * 2011-04-27 2015-06-17 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN103782390B (zh) 2011-08-11 2016-11-16 沃特拉半导体公司 垂直栅极射频横向扩散金氧半场效晶体管(ldmos)装置
JP2013069861A (ja) 2011-09-22 2013-04-18 Toshiba Corp 半導体装置
TWI562370B (en) * 2013-11-15 2016-12-11 Richtek Technology Corp Lateral double diffused metal oxide semiconductor device and manufacturing method thereof
CN104681605B (zh) * 2013-11-27 2017-12-05 上海华虹宏力半导体制造有限公司 功率mos管的结构及其制造方法
US9306055B2 (en) * 2014-01-16 2016-04-05 Microchip Technology Incorporated High voltage double-diffused MOS (DMOS) device and method of manufacture
US9842903B2 (en) * 2014-10-20 2017-12-12 Globalfoundries Singapore Pte. Ltd. Integrated circuits with laterally diffused metal oxide semiconductor structures and methods for fabricating the same
KR102164721B1 (ko) 2014-11-19 2020-10-13 삼성전자 주식회사 반도체 장치
TWI553870B (zh) * 2014-12-29 2016-10-11 世界先進積體電路股份有限公司 半導體裝置及其製造方法
US10050115B2 (en) * 2014-12-30 2018-08-14 Globalfoundries Inc. Tapered gate oxide in LDMOS devices
US9553143B2 (en) 2015-02-12 2017-01-24 Vanguard International Semiconductor Corporation Semiconductor device and method for fabricating the same
US11515416B2 (en) 2020-09-23 2022-11-29 Nxp Usa, Inc. Laterally-diffused metal-oxide semiconductor transistor and method therefor
US11469307B2 (en) * 2020-09-29 2022-10-11 Taiwan Semiconductor Manufacturing Company, Ltd. Thicker corner of a gate dielectric structure around a recessed gate electrode for an MV device
CN115763478B (zh) * 2022-11-21 2024-10-15 武汉新芯集成电路股份有限公司 半导体器件及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841821B2 (en) * 1999-10-07 2005-01-11 Monolithic System Technology, Inc. Non-volatile memory cell fabricated with slight modification to a conventional logic process and methods of operating same
US6900101B2 (en) * 2003-06-13 2005-05-31 Texas Instruments Incorporated LDMOS transistors and methods for making the same
JP4590884B2 (ja) * 2003-06-13 2010-12-01 株式会社デンソー 半導体装置およびその製造方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130168B (zh) * 2010-01-20 2013-04-24 上海华虹Nec电子有限公司 隔离型ldnmos器件及其制造方法
US9362398B2 (en) 2010-10-26 2016-06-07 Texas Instruments Incorporated Low resistance LDMOS with reduced gate charge
CN103189988A (zh) * 2010-10-26 2013-07-03 德克萨斯仪器股份有限公司 具有减少的栅极电荷的横向扩散mos晶体管
CN103189988B (zh) * 2010-10-26 2016-06-29 德克萨斯仪器股份有限公司 具有减少的栅极电荷的横向扩散mos晶体管
CN102623489B (zh) * 2011-01-31 2014-11-26 富士通半导体股份有限公司 半导体器件及制造半导体器件的方法
CN102623489A (zh) * 2011-01-31 2012-08-01 富士通半导体股份有限公司 半导体器件及制造半导体器件的方法
CN103383963A (zh) * 2012-05-04 2013-11-06 联华电子股份有限公司 半导体结构及其制造方法
CN103633139B (zh) * 2012-08-23 2018-03-13 联华电子股份有限公司 高压金属氧化物半导体晶体管元件
CN103633139A (zh) * 2012-08-23 2014-03-12 联华电子股份有限公司 高压金属氧化物半导体晶体管元件
CN104979210A (zh) * 2014-04-11 2015-10-14 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法
CN104979210B (zh) * 2014-04-11 2018-03-20 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法
CN105206665A (zh) * 2014-05-27 2015-12-30 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置
CN105390546A (zh) * 2014-08-21 2016-03-09 瑞萨电子株式会社 半导体器件和制造半导体器件的方法
CN105336625A (zh) * 2015-10-09 2016-02-17 上海华虹宏力半导体制造有限公司 高压ldmos器件的工艺方法
CN107731918A (zh) * 2016-08-12 2018-02-23 中芯国际集成电路制造(上海)有限公司 半导体结构及其制造方法
US10777660B2 (en) 2016-08-12 2020-09-15 Semiconductor Manufacturing International (Shanghai) Corporation Semiconductor structure
CN108346689A (zh) * 2017-01-23 2018-07-31 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法和电子装置
CN110323279A (zh) * 2018-03-29 2019-10-11 拉碧斯半导体株式会社 半导体装置
CN110323279B (zh) * 2018-03-29 2024-05-31 拉碧斯半导体株式会社 半导体装置
CN112490288A (zh) * 2019-09-12 2021-03-12 株式会社东芝 半导体装置
CN112909095A (zh) * 2021-01-21 2021-06-04 上海华虹宏力半导体制造有限公司 Ldmos器件及工艺方法
CN112909095B (zh) * 2021-01-21 2024-03-19 上海华虹宏力半导体制造有限公司 Ldmos器件及工艺方法
CN116072703A (zh) * 2023-01-28 2023-05-05 合肥晶合集成电路股份有限公司 一种半导体器件及其制造方法

Also Published As

Publication number Publication date
TW200929381A (en) 2009-07-01
US20090166736A1 (en) 2009-07-02
KR20090072013A (ko) 2009-07-02

Similar Documents

Publication Publication Date Title
CN101471380A (zh) 横向双扩散金属氧化物半导体晶体管及其制造方法
US9595517B2 (en) Semiconductor device employing trenches for active gate and isolation
US6989566B2 (en) High-voltage semiconductor device including a floating block
TWI235492B (en) High voltage LDMOS transistor having an isolated structure
US6873011B1 (en) High voltage and low on-resistance LDMOS transistor having equalized capacitance
US11145713B2 (en) High voltage metal-oxide-semiconductor (HVMOS) device integrated with a high voltage junction termination (HVJT) device
CN107123681B (zh) 半导体装置以及半导体装置的制造方法
US7898027B2 (en) Metal-oxide-semiconductor device
CN110610994A (zh) 一种横向双扩散金属氧化物半导体场效应晶体管
CN102738241A (zh) 横向高压晶体管及其制造方法
US10020392B2 (en) Diode, junction field effect transistor, and semiconductor device
US7550803B1 (en) Vertical double-diffusion metal-oxide-semiconductor transistor device
US9263436B2 (en) Semiconductor device and method for fabricating the same
KR20110078621A (ko) 반도체 소자 및 그 제조 방법
US8685824B2 (en) Hybrid high voltage device and manufacturing method thereof
EP1949446A2 (en) Transistor device
US9012979B2 (en) Semiconductor device having an isolation region separating a lateral double diffused metal oxide semiconductor (LDMOS) from a high voltage circuit region
JP5764742B2 (ja) 接合型電界効果トランジスタ、その製造方法及びアナログ回路
US20230246068A1 (en) Field effect transistor having a dielectric structure
KR20110078885A (ko) 수평형 디모스 트랜지스터
KR100948303B1 (ko) 수평형 디모스 트랜지스터의 제조방법
US20060220170A1 (en) High-voltage field effect transistor having isolation structure
CN103579298B (zh) 高压半导体元件的场元件
CN112652665A (zh) 具有完全金属硅化层栅极的器件及其制造方法
CN103325816A (zh) 高压半导体元件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20090701