Hacker News new | past | comments | ask | show | jobs | submit login

I think it is probably a bad reactor and a questionable company.

1. The company is totally opaque on even basic design details. This is not ghost mode. It's likely hiding incompetence and lack of design work / maturity.

2. It's a fast reactor so lots of high energy neutrons that will cause faster material degradation, higher maintenance cost, more downtime - the economics for fast reactors have never worked (not even in Russia or China), and this is probably why fusion reactors will never be economical (32x greater neutronicity).

3. It has terrible fuel utilization: 1% burn-up of fuel, with 100 metric tons uranium / GWe-year compared to 5-10% in other normal and advanced reactors.

4. The founders lie to congress claiming their reactor “can consume the used fuel from today’s reactors” when each reactor is actually going to require 3 tons of pretty pristine HALEU...

5. The founders peddle some serious BS (bitcoin mining, TED talks ... etc) not unlike the other great MIT nuclear startup Transatomic.

6. NRC really went out of their way to publicly reject this with press release and all. This was not done lightly to a company often featured in the WSJ and Popular Mechanics.

7. I'm disturbed by the way they talk about their reactor as a "community meeting place" with their modern glass A-frame without any power generating equipment. Is there going to be a daycare center or country club in there? Where the hell are the cooling towers? I'm all for nuclear power, but we shouldn't be down playing the seriousness of nuclear power systems.




Look to FFTF for a completely successful fast reactor run in the U.S. that was unfortunately shut down for political reasons that, retrospectively, look like a terrible mistake.

One of the most interesting features of the FFTF was a sodium-to-air heat exchanger which is a key to fast reactors having superior economics.

That is, no nuclear reactor which uses a steam turbine is going to be economically competitive with fossil fuel fired gas turbine generators. Between the absolutely huge and massive steam turbine and absolutely huge and massive heat exchangers (look at how big the steam generators are in the PWR or the huge tube-in-shell heat exchanger used at Dounreay)

A closed cycle gas turbine will fit in the employee break room of the turbine house of a conventional LWR. It requires some kind of reactor that runs at a higher temperature than the LWR. I like fast reactors and molten salts but have a hard time being enthusiastic about HTGR and friends.

So much of the literature still looks like a stopped clock. People still compare nuclear to coal although coal has been economic for a long time for the same reason as the LWR... The cost of that huge steam turbine.

Problems with fast reactors I worry about are the fear of proliferation (not proliferation) constricting what you can use for fuel and (more so) the plutonium nanoparticle problem w/ MOX fabrication. Of course you don't need to use MOX or you'd think in 2022 you could use 100% remote handling and not have the problems that Karen Silkwood was worried about at the place where she worked.


I went looking for operating closed cycle gas turbine power plants- this seems like a research topic all on its own, no matter the heat source.

It's definitely true that simple cycle gas turbine plants are much cheaper than equivalent size steam plants. This right here sets the bar for any kind of thermal power plant.

See table ES3 for cost comparisons..

https://esmap.org/sites/default/files/esmap-files/TR122-09_G...


> One of the most interesting features of the FFTF was a sodium-to-air heat exchanger which is a key to fast reactors having superior economics. > That is, no nuclear reactor which uses a steam turbine is going to be economically competitive with fossil fuel fired gas turbine generators.

OK, but FFTF reactor has not generated electricity at all. How is “sodium to air heat exchanger” supposed to generate electricity, to make it more economical than steam turbines?

> That is, no nuclear reactor which uses a steam turbine is going to be economically competitive with fossil fuel fired gas turbine generators.

That’s highly likely to be true (at least until cheap gas runs out, which will happen at some point, though it will take many decades/centuries until then), but I thought we are aiming to get off fossil fuels, no? We should be willing to pay some premium for nuclear, because it does not emit GHG.


A next generation nuclear reactor is not going to couple to air but probably to carbon dioxide and then to a powerset like

https://www.sciencedirect.com/science/article/pii/S173857331...

Nuclear also competes with fossil fuel powerplants that capture carbon. There are many options such as: (1) turn the fuel to hydrogen and burn the hydrogen, (2) run the exhaust gas through an amine stripper, (3) burn the fuel in pure oxygen so the amine stripper has less work to do (recycle the combustion products so the turbine doesn't burn up), (4) chemical looping combustion that uses a metal like iron as an oxygen carrier, etc.

The cost of something like that doesn't look crazy, optimizing it is a job for the systems engineering department, you can compress the CO2 to 1500 psi and inject it into saline aquifers which exist in most places. (Drives me nuts that carbfix gets so much press for a process which only works in a few places and consumes much more water than the carbon it captures)

It is not happening because regulators aren't forcing it, there is no carbon tax or carbon credit for it.

You could save the world with a nuclear option that is truly cheaper than the alternatives without subsidy. Anything that involves subsidy is going to give somebody an opportunity to get rich by siphoning off 5% of the credits and keep the gravy train running by paying 1% of that to politicians. Anything like that will run into intense opposition, look like a scam to people, probably be a scam in many cases (extortion like "we'll cut down this forest if you don't pay us" and then the forest gets cut down or burned anyway, unverifiable schemes like grinding up rocks and leaving them at the beach, ...) damage the legitimacy of the government and delay real solutions.


You're exactly right here, and I'd say this is well put in several areas.

I'll add that supercritical CO2 sounds like science fiction to people, but it's actually been pretty well demonstrated at the small sizes. The scaling up is what needs to happen if it's used at sizes beyond a few MWe. We've worked with vendors who have these available at the <5 MWe scale.

And I'll second what you're saying about subsidy. The incredible subsidies out there, if I didn't care about fission, would make me agree with those that are effectively anti-nuclear. If those hundreds millions and billions to single companies are necessary to * ever * get a single nuclear plant built, it just doesn't add up that it will be successful without all that propping it up. I agree it isn't necessary to subsidize, and that's how we believed it was important to run our company to date.

In this case, I'll name names, and I hope this isn't taken in a malicious sense because it isn't meant that way. But I've always wondered why Bill Gates, one of the wealthiest humans on the planet, would go to Capitol Hill for money for his nuclear company. I think I've learned that it's for reasons along the lines of what you said there. Creating a self-sustaining government program goes a long way to guaranteeing that the government cares about your company, and anyone else along the trail of $. I'm not blaming that, of course it is smart, it is just intriguing what paths occur.

PS also agree on "carbfix" - that while I'm all for all solutions to climate issues, it is wild to me too how much press that carbfix gets too in comparison to at least my perception of its reality of potential. But i suspect it goes back also to a great govt relations piece...


RE: your last paragraph:

Basically you're praying for China to succeed at this point. They have full blown LFTR research underway and I think other reactor designs under aggressive research.

Alas private funding of reactor designs is a not starter at this moment, with battery/wind/solar in rapidly evolving economies of scale and R&D. Solar/Wind is closing in on beating the leveled cost of gas turbines, and a reactor project wouldn't hit the market for ten years.

What's the economics of battery/wind/solar at that point? Salt water or Li-Sulfer batteries that are ultracheap, ultracheap but decently efficient perovskite or other techs? Too murky.

I agree we should be funding reactor techs in the billion-per-year range in the US (take it from the boondoggle fusion funding if you have to) and keeping close watch on China's progress, but probably all nuclear startups are fraud for the next decade.


Thank you for your response, it seems to be much better informed about both the technical side, and also the public choice side of the issue, than I typically see on sites like HN.


> the plutonium nanoparticle problem w/ MOX fabrication.

IIRC the Oklo design is using metal fuel, like EBRII or IFR? And the Russians are apparently working to switch from MOX to nitride fuels in their fast reactors.

Anyway, the French have been producing MOX fuel at industrial scale for decades, AFAIK without poisoning their workers. Maybe they are doing it smarter than the Americans in the 1970'ies.


I have been trying to figure it out and my guess is this.

At that factory Karen Silkwood worked (fuel for the FFTF) at they were making the workers wear respirators 100% of the time because they couldn't eliminate detectable particles.

I think in the US that's considered unacceptable. I think the French consider it OK.

The French tried to build a MOX factory in the US near the Savannah River Site last decade and it was never completed. I think there was some circle they realized they couldn't square. The UK was able to reprocess nuclear fuel and produce plutonium powder but they were unable to turn it into quality MOX fuel.

Metal fuels have a small particle problem too but you can melt the metal, pour it into a glass tube, then break the tube... All things straightforward to do with remote handling in the 1950s.

On paper nitride fuels are very high performing but I have no idea what goes into making them. It seems that with advances in robotics remote handling in fuel fabrication should be capable of much more than it ever was.


> At that factory Karen Silkwood worked (fuel for the FFTF) at they were making the workers wear respirators 100% of the time because they couldn't eliminate detectable particles.

Hmm. Dealing with Pu dust is a well known problem. Nobody knows exactly why, but Pu dust has an amazing capability to rapidly contaminate things. Best guess is that the high alpha activity of Pu produces a lot of recoil events propelling the Pu dust particle around (increasing it's diffusion constant, if you will).

I don't know exactly what the French do to make it work, is it PPE's, robotic handling or whatever.

> On paper nitride fuels are very high performing but I have no idea what goes into making them.

It's in some respects similar to making oxide fuels, you first somehow create microgranules (hopefully evenly sized) of the fuel which you then sinter into pellets. Nitrides, however, present several additional challenges. But it seems that these are not insurmountable problems, it's just that oxides have a large head start; and nitrides not being compatible with LWR's doesn't help finding R&D money either. Here's a recent overview: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267113/

Personally I'm somewhat bullish on nitrides, if large-scale use of metal cooled reactors ever becomes a thing, that is.


Can you elaborate as to why you aren't excited about HTGRs?


Gas is poor as a heat transfer medium, so the reactor vessel is both very large (power density is on the order of one tenth of current LWR designs) and has to withstand high pressure. Hard to make such a thing economical.

OTOH, the high temperature opens up interesting industrial applications outside electricity generation.


HTGR has faced numerous development problems.

One of the coolest sounding ideas is the "pebble bed" reactor where you have carbide coated spheres that are fed into the top of the reactor and get withdrawn from the bottom, taken up an elevator and replaced.

When they tested this out in air the spheres we well lubricated and slipped past each other. In hot helium the Germans found that there was a lot more friction and the spheres were sticking to each other, cracking, getting stuck, and releasing radiation.

"Prismatic" designs where the same material is in blocks seem a little more promising. Still the reactors haven't done that well and as lurid the stories around the plutonium economy have been, the ratio of progress to problems for the liquid metal fast breeder reactor has been better.

We know how to bury oxide fuels for the long term and we know how to reprocess them. If there is a "what to do about the waste" problem it's that we can't make up our minds. Carbide fuels can be encapsulated in concrete and stored for the medium term but the actual mass and volume of the fuel is dramatically more than the LWR fuel because of the low power density. The long term stability for burial is not established, and the amount of material is 10x more. Reprocessing is not developed and faces the problems of dealing with a large amount of 'filler' that is going to be somewhat radioactive and have to be dealt with.


China's HTR-PM pair of test reactors is now grid connected. We'll see how it performs over the next few years.

The demonstration High Temperature Gas-Cooled Reactor - Pebble-bed Module (HTR-PM) at the Shidaowan site in Shandong province of China has been connected to the grid, the partners in the consortium building the plant have announced.

https://www.world-nuclear-news.org/Articles/Demonstration-HT...


> I'm disturbed by the way they talk about their reactor as a "community meeting place" with their modern glass A-frame without any power generating equipment

I'll submit that a nuclear startup that presents such a stylish Architectural Digest concept for its facilities, that by itself is enough for us to be extremely skeptical of the leadership team. Their head is in the wrong place.

You will counter-argue that it takes little effort for them to hire an artist-designer to create the rendering. Nonetheless: their head is in the wrong place. They're not reading the room. None of us (not the public and not the NRC) are looking for a new alpine lodge to grab an espresso. We basically just care that you don't blow up and you don't poison the land, water, and air around you.

If leadership spend any cycles to spend on hiring a stylish designer, then their priorities aren't straight.


It would seem that both could be possible, but you're the expert here. ;) We didn't have to spend much time or money on an actually nice looking design, and the a-frame has a lot of practicalities I'm happy to talk about more (modular construction, resilience against snow, useful angle for the solar panels, strength for the internal cranes). (and yes, the power generating equipment, offices, and other space, is inside)

I guess then again here I am as part of the leadership engaging in communicating with the HN community on a friday night and hopefully transparently answering questions. I guess I can't help myself! I do think the public needs to both learn about the realities of fission, and I don't think it has to be ugly.


> I guess then again here I am as part of the leadership engaging in communicating with the HN community on a friday night and hopefully transparently answering questions.

Are you trying to guilt trip people by showing your dedication? It's in your own interest to do this, if you don't feel like it go and watch TV or something and don't bother. "Here I am on a Saturday morning commenting on HN etc..."


Haha not really. :) I was pretty much laughing at myself, responding to the commenter's idea that Oklo leadership shouldn't be spending cycles on building parameters with architects (i did - it's arguably important on a number of levels - security, regulatory, cost/finance/constructability, human factors, community relations etc...) but here i am spending cycles on like HN comments instead of other work which of course we do all weekend anyway.


Presumably they're trying to shift the image of a nuclear plant from "dangerous, not in my backyard" to something more friendly and appealing.


NuScale Power's choice of communicating this seems a lot better. By contrast this is just like rendered images of hipster micro lodges in the mountains. For a nuclear reactor. A glass metal frame structure? It doesn't inspire safety at all. In the mountains? An avalanche could raze this structure in the blink of an eye.


It's a good thing then that we analyzed to such extreme events as completely losing everything above ground, whether due to an avalanche, a tornado, an earthquake, etc, etc. :) The inherent safety in the fuel type means that there would still be zero dose. (for more info on the tests that showed this result originally in historic research reactors in operation: http://www.thesciencecouncil.com/pdfs/PlentifulEnergy.pdf)

PS I realized that you thought the structure was glass. No wonder. It's not, it's steel panels. Modular construction. There are optional solar panels on the exterior, maybe that's what you saw.


At least use an image of a panel, not glass, geodesic dome then and don't try to sell it as a community meeting point. That's a more acceptable current day view on how a nuclear reactor should look. Also cut the bitcoin BS. It's like trying to associate your project with Bernie Madoff. The hardest thing is to change people's perception and radical approaches don't cut it in this case.


I edited the above comment instead of replying here (whoops). I realized that you thought the structure was glass. No wonder. It's not, it's steel panels. Modular construction. There are optional solar panels on the exterior, maybe that's what you saw. Please see the other comments on why having a heated, lighted building space is important in the communities we've gotten to know. Bitcoin isn't BS when it's a first moving customer, even while we are actively working with plenty of other customers you'll recognize well, when the time comes to announce. It takes time.


I am all for style, but they aren't sending the right message. There's a certain beauty in a cartridge reactor that is buried below grade and shows hardly anything.


Fair point, but when we examined just having everything underground, it was more expensive actually. Once you consider operational realities in a remote environment (especially in permafrost), it is beneficial to have power conversion equipment indoors, offices, a bathroom, storage areas, etc. and then you're talking a building above ground anyway. There is security protection built in too that I can't elaborate on.


like this one? https://usnc.com


> the economics for fast reactors have never worked (not even in Russia or China)

Russia currently has two sodium-cooled fast reactors that are producing power, the BN-600 and BN-800. They also have another sodium reactor under development, the BN-1200. BREST-OD-300, a lead-cooled fast reactor, is under construction as well.


But those don't have to be economical purely on power generation, right, because they also produce Pu-239? Presumably fast breeder reactors would be useful to the Russian state even if they didn't produce electricity at all...


There's no evidence that they are being used to breed plutonium. In fact the BN-800 burns a mixture of uranium and plutonium to reduce their weapons stockpile.


They have RBMKs which will produce 10 times that, and more cheaply.


They went bankrupt with their arsenal once, so I'd argue it would be more useful to their rivals.


> 2. It's a fast reactor so lots of high energy neutrons that will cause faster material degradation, higher maintenance cost, more downtime - the economics for fast reactors have never worked (not even in Russia or China), and this is probably why fusion reactors will never be economical (32x greater neutronicity).

Commonwealth Fusion Systems's ARC has an interesting approach to handling this -- using a liquid blanket which can be circulated. Of course, ARC isn't built yet! But if that approach is workable, perhaps it can be applied more generally?


I believe it has to be replaced every 4 years of operation as intermediate level radioactive waste.


CFS claims that it's manageable, although I don't know enough to evaluate that claim. It's also not clear from this quote if the once/twice per year is referring to full replacement of the vacuum vessel, or maybe just to inspection or replacement of a subset of components.

"Bob Mumgaard, CEO of Commomwealth Fusion Systems, regards neutron flux as part of a fusion power plant’s wear-and-tear—a routine aspect of its servicing cycle, happening perhaps once or twice a year. “We can simplify the internal components, develop maintenance scenarios,” he says. “We have such a scheme substantially in place.”" https://nautil.us/issue/86/energy/the-road-less-traveled-to-...


Does it produce less waste than a fast reactor without the liquid blanket?


The replaced blanket itself is waste, so I'd venture to say no?


Hey Gloriana, I'm sure PR experts would say I'm probably not making a good decision responding here, and I haven't even had anything to drink, but I'll take a stab at sharing a bit on each of your points. I hope this response will be taken in the good faith in which it is given.

1) There's certainly many hundreds of pages/slides in the fully public docket on the NRC website, but the easiest source for the most information in one place is our application itself: bit.ly/AuroraCOLA. I don't expect anyone to want to read that entire thing either, but it's there. The only main things that are withheld are generally either: export controlled (defined by the Department of Energy, and we take it seriously) which includes detailed core maps, or security-related information (defined by the NRC). But the rest of it is all there. If there's something you want to know that isn't there, I'm happy to respond.

2) We are building our designs off the 30 years of experience and data with EBR-II and other fast reactors (http://www.thesciencecouncil.com/pdfs/PlentifulEnergy.pdf). EBR-II was ended prematurely for political reasons and had plenty of life left. The EBR-II showed how electricity could be put on the grid with higher uptimes than even the commercial fleet at the time. Unfortunately, I can't give details, but let's just say other major developers of historical fast reactors didn't release their economics because they didn't want it to cannibalize their other plants. But you don't need to believe that either. Our business model is to provide power via PPA so if the economics don't work for the customer we simply won't have a deal. Our FOAK plants are economic already in remote or higher cost areas, but the real key to our economics is when we are able to recycle existing waste, a fact unique to fast reactors.

3) 1% was really to be conservative for the FOAK, to try to make the licensing of the FOAK simpler within the datasets we had. I assume you know a number of SFRs have worked toward establishing datasets for up to and beyond 15% burnup. I really don't know where the number of 100 MT of uranium comes from. We would have <5MT total of fuel for 20 years, with <1T of that being uranium. 1.5MWex24hrx350days/yrx20 years is something like 250 GWe?

4) Oof. Yes, fast reactors can consume the fuel from today's reactors, and even though that supply chain isn't established, the FOAK is using waste fuel from EBR-II. I can assure you it is not pristine. No one else wants it. :) But we are working together with the DOE on a project with Argonne National Lab to begin work on the recycling from today's reactors (https://www.energy.gov/articles/doe-announces-over-65-millio...).

5) Hm. well, I want to be positive here: I'd argue there's a difference between our first customer announcement being Compass and a TEDx with my alma mater, and moving forward for years with something that fellow students and professors said had fundamental issues since grad school, which a professor finally leaked to the press out of frustration (and yes, we might have been fellow students). It's funny, I always said we should never do a TED too because they seem so smarmy, but a friend at my undergrad and the students there were organizing a TEDx and honestly it was cute and was just a fun opportunity to go back there for various reasons. We've been working with other more traditional customers in ways that we can't announce yet. But, we are working with other customers you'll likely approve of more. Remote communities as well as big companies just truly do need reliable power and they do want it to be emission-free.

6. They did seem to go out of their way didn't they. More will come on this once we are able to put out our own account too after 30 days, just because we should have the opportunity to set the record as well. But, to put myself in their shoes, they are trying to defend against an appeal or legal action. Neither of which we really have interest in, we just want to try again, move forward.

7. I responded to this with Paul. TL;DR: I don't think an attractive and functional building with all required security and operational characteristics means we are "down playing the seriousness." If you've been out to these truly poor, remote communities in the Arctic circle as I have, you'll see why they care about having heated, lighted, indoor areas in the long winters. And when the analysis shows the safety and security required, why wouldn't we offer that to them?

Well, there you go. Feel free to pick it apart but hopefully it added some context to the press releases and pretty pictures and whatnot.


Thanks for the response.

I had previously gone though the Oklo COLA, which is indeed hundreds of pages. But quantity is not always quality. I have seen the same types of submissions from other reactor proponents, and they are far more detailed, comprehensive, and informative and they are mostly at earlier stages of NRC engagement in pre-application discussions. As an example, I can't find a basic dimensioned or labeled reactor drawing or system diagram in Oklo's COLA. As far as the COLA illustrates, the Aurora design consists of an A-Frame drawing and a cylindrical vessel in a dugout. The safety analysis provided are generally simplified, rarely showing uncertainties or limitations of the analysis. See the NuScale or GE-Hitachi designs in pre-application or even the Transformational Challenge Reactor (TCR) as an example of a well documented research thrust that has not even begun the regulatory process if it ever will: https://tcr.ornl.gov/publications/

As far as spent fuel goes, the EBR II fuel that Oklo plans to use took decades to reprocess at a cost much greater than 0, which Oklo is not paying for. EBR II is not a civilian power generating reactor like all LWRs and BWRs currently in operation. Perhaps one day, reprocessing spent fuel will be cost effective. But today, it is a totally unnecessary activity as there's plenty of uranium and spent fuel storage is not an issue. I think telling congress that Aurora will consume spent fuel from today's reactors is false and disingenuous, both because it is extremely expensive to do so and because it is not particularly useful.

Aurora is ostensibly a tiny fast reactor, though I have to guess at this as there are no dimensioned figures in the COLA. Neutron leakage is going to be big and burnup low. This might be why Aurora is limited to 1% burnup. Maybe Oklo plans to make much larger reactors in the future, which have very different safety characteristics but can achieve higher burnup. It's curious that of the 70+ reactors in development, there are no fast spectrum and tiny reactors except for Oklo. There are fast reactors like TerraPower Natrium but they 200x larger than Aurora.

The calculation for tons / GWe-yr is as below assuming a 33% efficient power cycle (reasonable given the low temperatures of the heat pipes, but maybe the sCO2 is really good). GWe-yr is a unit of energy.

1.5 MWe * 20 yr means you are producing 4.5 MWth for 20 years, and must have fissioned 35 kg of Uranium (you get 200 MeV per U fission which is 2.6 MWyr / kg U). If 1% burnup is assumed, as indicated, Aurora is using 3500 kg or 3.5 tons of HALEU. I think this would change a bit depending on the spectrum.

3 tons HALEU / (1.5 MWe * 20 yr) * (1000 MW / 1 GW) = 100 ton HALUE / GWe-yr


Thanks for the followup as well. I'll just respond on a couple of the points:

- you don't see these detailed core schematics with analyses because in our design they are designated export controlled (ECI) as I mentioned. It doesn't mean that they aren't in there or that they haven't been extensively performed and documented.

- the endeavor (and cost) of downblending EBR-II fuel over many years has been based on the national and state nonproliferation agreements to downblend this high enriched used fuel from EBR-II. Don't confuse that endeavor with processing used, low-enriched fuel from existing plants. In the one case, the downblending work was being performed for many years in the interest of downblending before storing as waste (except now, instead, it can be used to produce clean power and demonstrate a FOAK fission plant). In the other case, recycling existing waste, we are already working with DOE (and starting NRC interactions) about deploying recycling existing nuclear waste for fuel. I can tell you it's incredibly cost effective for a fast reactor to utilize the TRU in existing low-enriched waste and that is our goal for not just feel-good reasons but also for economic reasons. It is not false nor disingenuous.

It's true that the burnup is far less than would be ultimately most economically efficient. The FOAK was intended to serve as a bit of an MVP as I already mentioned. But it's key that larger doesn't mean less safety. The fundamentals of the safety in this case lie in how the fuel has inherent shutdown characteristics, which were proven true of EBR-II (at 65 MWth) even as it's true of Aurora (<10MWth). Many different plants have different mechanisms of safety at various size ranges!

Thanks for engaging and your thoughtful responses.


In Fusion reactors the neutrons are used to breed Tritium from the Lithium so they're not hitting the structure and degrading it.


Not quite. 80% of the energy in D-T fusion reactions are released as neutron energy. I sure hope most of that will be used for generating electrical power rather than breeding tritium... :) The dpa rates and helium embrittlement are way higher for fusion and fast fission reactors than for thermal fission reactors. See Figure 3 and 5 of https://www.annualreviews.org/doi/abs/10.1146/annurev-matsci...


You have to absorb the neutrons to capture that energy, so you will always have to deal with transmutation. You can't choose one or the other.

On this case, the lithium absorbs the neutrons and convert most of the energy into heat, while it becomes tritium.


So, we have half a meter of lithium just sitting there, not contained in any structure?


[flagged]


> Seems like you have an ax to grind

I don't feel like this is at all a fair or appropriate response to GP. They all seemed like very valid points. Which points fall under the "grinding an axe" category, as opposed to "valid criticism" category?


Point 2 is highly debatable. DOE is funding TerraPower's Natrium (Bill Gates company) which is a fast reactor, to the tune of 2.5B as part of the Advanced Reactor Demo Program. So a lot of people in the industry believe fast reactors can be commercially viable.


People being wrong about things is not a reason to accuse them of acting in bad faith.


I mean, I am just criticizing the founders and company based on the information available - which isn't much, but it's their fault. They seem to have a lot of press coverage for an empty landing page, and a lot of it is unreasonably glowing.


Also, it’s far from unusual for someone to find a given company suspicious and go digging to find out more and produce public reports or comments questioning their validity. That’s not “axe to grind” and more “amateur investigative journalism”.


Please feel free to reference a list of Oklo press releases here: https://www.businesswire.com/portal/site/home/search/?search...


Well we're all creatures of opinion; but there is a lot here without much real backing. We have a similar post on tech forums for almost every company from Apple to ... I can't think of a company name starting with Z, Volkswagen will have to do. And pretty much every startup if someone cares to look in to them.

Cynicism is extremely easy. Every company looks dodgy from the outside and most of them are dodgy. Many such posts turn out to be correct. But that is because cynicism is misplaced - the point of these startups is that some of them will, despite looking dodgy, turn out to be keystones for trillions of dollars of industrial success.

The upside of a serious energy revolution completely outweighs any of these points raised. There needs to be a way for dodgy-looking startups to experiment without just getting a "nah, this year's work is a write off. Oh well lol" from regulators.


I completely agree - but let's call it scientific research not startups.

Startups are about industrialising existing working processes. What we are missing here is the multiple different funded experiments that take the different combinations of salts, heat exchangers and so on and come up with "hey this one works best" - make these.

Funding these experiments through VC is just asking for bias and PR not empirical results.

In short, if the government was running 100+ experimental reactors, this press release would be "whoops, 99 to go" and not even create a stir. It's only because there is 100M at stake is anyone fighting back.


> from Apple to ... I can't think of a company name starting with Z

Zeppelin? :)

https://zeppelin-nt.de/en/homepage.html


That's cool! Nice pictures and a couple good videos of the Zeppelin in flight. I was a bit disappointed not to see any ads for beer on the side of the Zeppelins. Seemed like a marketing miss.



Zillow?


Zenefits?


Zeit unfortunately is now Vercel


Oklo has hundreds of pages of information on safety and all kinds of details of their design that is fully public. To say they’re hiding something is ridiculous and disengenuous.

Don’t claim they are lying to Congress about being able to reuse waste. You are the one who is blatantly lying about this to the point I wonder who’s paying you? It does not require “pristine haleu”- the very first reactor is using waste from Idaho National Labs. The DOE and Oklo are also working together on a waste-to-fuel factory as a second project. The fact you’d make up this information is reason enough to question both your motives and the entirety of your post.

Transatomic is nonexistent and Oklo chose not to work with them for a reason. They are quite different.

You also clearly don’t know anything about the NRC and their dealings with this company; they are working with Oklo currently on approval process.

Again, you seem uninformed on this company and their tech; the entire thing is small and on shutdown creates only as much heat as a riding lawnmower. So yes- there can be a country club or a daycare or whatever else you want to put on top. That’s part of why it’s so safe and needs to be approved. I question that you’re actually for nuclear power at all; if you are, stop making up lies about a revolutionary company working to solve our energy crisis.


> You are the one who is blatantly lying about this to the point I wonder who’s paying you?

Ah the good old I disagree or you are wrong therefore you must be a shill accusation. That one is so boring it is actually part of the guidelines so if you're wondering why your comment is dead, that's it.


Engaging in personal attacks is not the way to fight disinformation. This comment will likely be down voted and flagged into oblivion.

Take a look here for guidelines on how to comment on HN: https://news.ycombinator.com/newsguidelines.html


Excuse me- they are the ones claiming this company is lying to Congress, which they are not, and this person has zero proof of. In no way was I personally attacking- I am correcting their blatant lie. You should be standing up against a commenter making up lies about a small company in a huge space that’s doing amazing work.


> You should be standing up against a commenter making up lies

I am trying to help you understand how to do that effectively yourself given that you appear to be new to the site (given your account age) and unfamiliar how to effectively communicate in this community.

People are frequently factually wrong. You will be more effective at correcting those factual errors if your tone remains civil, focused on facts and especially if you provide good citations to back up your corrections.

Additionally, calling out people as shills is specifically discouraged here as it does not lead to productive discussions. If you are concerned that someone is a shill, you should send an email to the HN moderators as they do investigate.

This is also explained the the guidelines (which really are worth reading.):

> Please don't post insinuations about astroturfing, shilling, bots, brigading, foreign agents and the like. It degrades discussion and is usually mistaken. If you're worried about abuse, email [email protected] and we'll look at the data.




Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: