IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-03881455.html
   My bibliography  Save this paper

Diffusion in large networks

Author

Listed:
  • Michel Grabisch

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Agnieszka Rusinowska

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Xavier Venel

    (LUISS - Libera Università Internazionale degli Studi Sociali Guido Carli [Roma], PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

We investigate the phenomenon of diffusion in a countably infinite society of individuals interacting with their neighbors in a network. At a given time, each individual is either active or inactive. The diffusion is driven by two characteristics: the network structure and the diffusion mechanism represented by an aggregation function. We distinguish between two diffusion mechanisms (probabilistic, deterministic) and focus on two types of aggregation functions (strict, Boolean). Under strict aggregation functions, polarization of the society cannot happen, and its state evolves towards a mixture of infinitely many active and infinitely many inactive agents, or towards a homogeneous society. Under Boolean aggregation functions, the diffusion process becomes deterministic and the contagion model of Morris (2000) becomes a particular case of our framework. Polarization can then happen. Our dynamics also allows for cycles in both cases. The network structure is not relevant for these questions, but is important for establishing irreducibility, at the price of a richness assumption: the network should contain at least one complex star and have enough space for storing local configurations. Our model can be given a game-theoretic interpretation via a local coordination game, where each player would apply a best-response strategy in a random neighborhood.

Suggested Citation

  • Michel Grabisch & Agnieszka Rusinowska & Xavier Venel, 2022. "Diffusion in large networks," Post-Print halshs-03881455, HAL.
  • Handle: RePEc:hal:journl:halshs-03881455
    DOI: 10.1016/j.jedc.2022.104439
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-03881455v2
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-03881455v2/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jedc.2022.104439?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    2. Förster, Manuel & Grabisch, Michel & Rusinowska, Agnieszka, 2013. "Anonymous social influence," Games and Economic Behavior, Elsevier, vol. 82(C), pages 621-635.
    3. Grabisch, Michel & Poindron, Alexis & Rusinowska, Agnieszka, 2019. "A model of anonymous influence with anti-conformist agents," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    4. Yann Bramoullé & Andrea Galeotti & Brian Rogers, 2016. "The Oxford Handbook of the Economics of Networks," Post-Print hal-01447842, HAL.
    5. Grabisch, Michel & Rusinowska, Agnieszka, 2013. "A model of influence based on aggregation functions," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 316-330.
    6. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    7. Yann Bramoullé & Andrea Galeotti & Brian Rogers, 2016. "The Oxford Handbook of the Economics of Networks," Post-Print hal-03572533, HAL.
    8. Grabisch, Michel & Poindron, Alexis & Rusinowska, Agnieszka, 2019. "A model of anonymous influence with anti-conformist agents," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    9. Manuel Förster & Michel Grabisch & Agnieszka Rusinowska, 2012. "Ordered Weighted Averaging in Social Networks," Documents de travail du Centre d'Economie de la Sorbonne 12056, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    10. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    11. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    12. Jackson Matthew O. & Rogers Brian W., 2007. "Relating Network Structure to Diffusion Properties through Stochastic Dominance," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 7(1), pages 1-16, February.
    13. repec:hal:pseose:halshs-00906367 is not listed on IDEAS
    14. repec:hal:pseose:halshs-00913235 is not listed on IDEAS
    15. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    2. Jingyi Wang & Rui Hu & Hua Xu, 2024. "Coupled Simultaneous Evolution of Policy, Enterprise Innovation Awareness, and Technology Diffusion in Multiplex Networks," Mathematics, MDPI, vol. 12(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Grabisch & Agnieszka Rusinowska & Xavier Venel, 2022. "Diffusion in large networks," Post-Print halshs-03688783, HAL.
    2. Michel Grabisch & Agnieszka Rusinowska & Xavier Venel, 2019. "Diffusion in countably infinite networks," Documents de travail du Centre d'Economie de la Sorbonne 19017, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    4. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.
    5. Grabisch, Michel & Poindron, Alexis & Rusinowska, Agnieszka, 2019. "A model of anonymous influence with anti-conformist agents," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    6. Poindron, Alexis, 2021. "A general model of binary opinions updating," Mathematical Social Sciences, Elsevier, vol. 109(C), pages 52-76.
    7. Alexis Poindron, 2019. "A general model of synchronous updating with binary opinions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02372486, HAL.
    8. Michel Grabisch & Agnieszka Rusinowska, 2016. "Determining models of influence," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 26(2), pages 69-85.
    9. Alexis Poindron, 2019. "A general model of synchronous updating with binary opinions," Post-Print halshs-02372486, HAL.
    10. Alexis Poindron, 2019. "A general model of synchronous updating with binary opinions," Documents de travail du Centre d'Economie de la Sorbonne 19024, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. repec:hal:pseose:hal-01387480 is not listed on IDEAS
    12. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    13. Buechel, Berno & Klößner, Stefan & Meng, Fanyuan & Nassar, Anis, 2023. "Misinformation due to asymmetric information sharing," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    14. Germano, Fabrizio & Sobbrio, Francesco, 2020. "Opinion dynamics via search engines (and other algorithmic gatekeepers)," Journal of Public Economics, Elsevier, vol. 187(C).
    15. Michel Grabisch & Fen Li, 2020. "Anti-conformism in the Threshold Model of Collective Behavior," Dynamic Games and Applications, Springer, vol. 10(2), pages 444-477, June.
    16. Förster, Manuel & Grabisch, Michel & Rusinowska, Agnieszka, 2013. "Anonymous social influence," Games and Economic Behavior, Elsevier, vol. 82(C), pages 621-635.
    17. Michel Grabisch & Agnieszka Rusinowska, 2016. "Determining influential models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01318081, HAL.
    18. Ewerhart, Christian & Valkanova, Kremena, 2020. "Fictitious play in networks," Games and Economic Behavior, Elsevier, vol. 123(C), pages 182-206.
    19. Matthew O. Jackson & Brian W. Rogers & Yves Zenou, 2017. "The Economic Consequences of Social-Network Structure," Journal of Economic Literature, American Economic Association, vol. 55(1), pages 49-95, March.
    20. Ushchev, Philip & Zenou, Yves, 2020. "Social norms in networks," Journal of Economic Theory, Elsevier, vol. 185(C).
    21. Michel Grabisch & Antoine Mandel & Agnieszka Rusinowska & Emily Tanimura, 2015. "Strategic influence in social networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01158168, HAL.

    More about this item

    Keywords

    diffusion; countable network; aggregation function; polarization; convergence; bestresponse;
    All these keywords.

    JEL classification:

    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • D7 - Microeconomics - - Analysis of Collective Decision-Making
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-03881455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.