XiangShan (香山) is an open-source high-performance RISC-V processor project.
中文说明在此。
Copyright 2020-2022 by Institute of Computing Technology, Chinese Academy of Sciences.
Copyright 2020-2022 by Peng Cheng Laboratory.
XiangShan-doc is our official documentation repository. It contains design spec., technical slides, tutorials and more.
- Micro-architecture documentation of XiangShan has been published. Please check out https://xiangshan-doc.readthedocs.io
Our paper introduces XiangShan and the practice of agile development methodology on high performance RISC-V processors. It covers some representative tools we have developed and used to accelerate the chip development process, including design, functional verification, debugging, performance validation, etc. This paper is awarded all three available badges for artifact evaluation (Available, Functional, and Reproduced).
Paper PDF | IEEE Xplore | BibTeX | Presentation Slides | Presentation Video
Wechat/微信:香山开源处理器
Zhihu/知乎:香山开源处理器
Weibo/微博:香山开源处理器
You can contact us through our mailing list. All mails from this list will be archived here.
The first stable micro-architecture of XiangShan is called Yanqihu (雁栖湖) and is on the yanqihu branch, which has been developed since June 2020.
The second stable micro-architecture of XiangShan is called Nanhu (南湖) and is on the nanhu branch.
The current version of XiangShan, also known as Kunminghu (昆明湖), is still under development on the master branch.
The micro-architecture overview of Kunminghu (昆明湖) is shown below.
Some of the key directories are shown below.
.
├── src
│ └── main/scala # design files
│ ├── device # virtual device for simulation
│ ├── system # SoC wrapper
│ ├── top # top module
│ ├── utils # utilization code
│ └── xiangshan # main design code
│ └── transforms # some useful firrtl transforms
├── scripts # scripts for agile development
├── fudian # floating unit submodule of XiangShan
├── huancun # L2/L3 cache submodule of XiangShan
├── difftest # difftest co-simulation framework
└── ready-to-run # pre-built simulation images
make bsp
make idea
- Run
make verilog
to generate verilog code. The output file isbuild/XSTop.v
. - Refer to
Makefile
for more information.
- Set environment variable
NEMU_HOME
to the absolute path of the NEMU project. - Set environment variable
NOOP_HOME
to the absolute path of the XiangShan project. - Set environment variable
AM_HOME
to the absolute path of the AM project. - Install
mill
. Refer to the Manual section in this guide. - Clone this project and run
make init
to initialize submodules.
- Install Verilator, the open-source Verilog simulator.
- Run
make emu
to build the C++ simulator./build/emu
with Verilator. - Refer to
./build/emu --help
for run-time arguments of the simulator. - Refer to
Makefile
andverilator.mk
for more information.
Example:
make emu CONFIG=MinimalConfig EMU_THREADS=2 -j10
./build/emu -b 0 -e 0 -i ./ready-to-run/coremark-2-iteration.bin --diff ./ready-to-run/riscv64-nemu-interpreter-so