Skip to content

[CVPR 2022] Learnable Lookup Table for Neural Network Quantization

Notifications You must be signed in to change notification settings

AI-Jie01/LLT

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 

Repository files navigation

LLT

Pytorch implementation of "Learnable Lookup Table for Neural Network Quantization", CVPR 2022

[CVF] [Supp]

Overview

Image Classification (CIFAR-10)

Requirements

  • PyTorch
  • TorchVision
  • numpy

Train

python train.py --arch resnet20 --epochs 200 --batch_size 128 --learning_rate 0.01 --weight_decay 1e-4 --w_bits 4 --a_bits 4

Test

python test.py --arch resnet20 --batch_size 128 --w_bits 4 --a_bits 4

Results

Image Super-Resolution

Train & Test

To be updated

Results

Point Cloud Classification

Train & Test

To be updated

Results

Citation

@InProceedings{Wang2022Learnable,
  author    = {Wang, Longguang and Dong, Xiaoyu and Wang, Yingqian and Liu, Li and An, Wei and Guo, Yulan},
  title     = {Learnable Lookup Table for Neural Network Quantization},
  booktitle = {CVPR},
  year      = {2022},
  pages     = {12423--12433},
}

Acknowledgements

Part of the code is borrowed from APot. We thank the authors for sharing the codes.

About

[CVPR 2022] Learnable Lookup Table for Neural Network Quantization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%