Supplemental Material:
Learnable Lookup Table for Neural Network Quantization

Longguang Wang!, Xiaoyu Dong??, Yinggian Wang®, Li Liu', Wei An', Yulan Guo'*

'National University of Defense Technology

>The University of Tokyo ~ SRIKEN AIP

{wanglongguangl5, yulan.guo}@nudt.edu.cn

Section I presents experimental details. Section II illus-
trates the derivation of gradients in our method. Section III
includes additional analyses. Finally, Section IV discusses
potential negative societal impact of our method.

I. Experimental Details
LI. Experiments on CIFAR-10

During training, the original 32 x 32 images were padded
with 4 pixels on each side. Then, 32 x 32 patches were
randomly cropped and horizontally flipped. The stochastic
gradient descent (SGD) method with momentum of 0.9 was
used for optimization. All quantized models were trained
for 200 epochs with a mini-batch size of 128. For ResNet-
20, the learning rate was initially set to 0.01 and decayed by
a factor of 10 at epoch 80 and 120, with the weight decay
being set to 10~*. The gradients were clipped with a maxi-
mum Lo norm of 5. For VGG-Small, the learning rate was
initially set to 0.02 and decayed by a factor of 10 at epoch
80 and 160, with the weight decay being set to 5 x 1074
The gradients were clipped with a maximum L, norm of 3.
To, T1, and M in Eq. 3 were empirically set to 1, 1073, and
50 for both ResNet-20 and VGG-Small.

LII. Experiments on ImageNet

During training, the original images were resized,
cropped to 224 x 224 and randomly flipped horizontally for
data augmentation. The SGD method with momentum of
0.9 was used for optimization. All quantized models were
trained for 120 epochs with a mini-batch size of 1024. The
learning rate was initially set to 0.01 and decayed by a fac-
tor of 10 at epoch 30, 60, and 90. Weight decay was set to
10~* for 4/3-bit quantization and set to 2 x 1075 for 2-bit
quantization. 7y, 71, and M in Eq. 3 were empirically set to
1, 1073, and 30, respectively.

LIII. Experiments on SR

During training, 12 low-resolution patches with their
corresponding high-resolution counterparts were randomly
cropped. Then, data augmentation was performed through

random rotation and random flipping. The Adam [2]
method with 81 = 0.9 and B2 = 0.99 was used for opti-
mization. An L loss between SR results and HR images
was used as the loss function. The initial learning rate was
set to 10~* and halved every 10 epochs. The gradients were
clipped with a maximum Ly norm of 5. All quantized mod-
els were trained for 40 epochs. 7y, 71, and M in Eq. 3 were
empirically set to 1, 1075, and 10, respectively.

LIV. Experiments on Point Cloud Classification

Following [3, 4], we sampled 1024 points from each ob-
ject as the input of the network. During training, batch size
was set to 24. The Adam [2] method with 3; = 0.9 and
B2 = 0.99 was used for optimization. A cross-entropy loss
was used as the loss function. The learning rate was initial-
ized as 0.001 and multiplied with 0.7 after every 20 epochs.
All models were trained for 200 epochs. 7y, 71, and M in
Eq. 3 were empirically set to 1, 1073, and 50, respectively.

II. Gradient Derivation

The gradients of lookup tables (e.g., (')%El)’ float values

(e.g., %), and scale parameters (e.g., (%a) are derived as
follows. Using these gradients, the lookup tables can be
optimized with the network in an end-to-end manner.

0 _ 9o 00,Q)

Op1 op1

9Q(a, Qa) | = p, (Sec. 3.3) @
= §,
Op1

:Sa



@ _ 8(5(1 : Q(d, Qa))
da da
2Q(a, Qa)

¢ da
¢ oa da
— 1(STE) (I
__0a
= Same
_ dclip(a/sq)
“ da

- { 1, ifa<s,

0, otherwise

da — a(sa ) Q(da Qa))

084 0sq
084
s,

Q@ Qu)) + 5, )

” 0Q(a,Qa) | 0a
=Q(a,Qa)) |+ Sa % 375(1 (1)
= p1(Sec. 3.3) = 1(STE)
oclip(a/sq,)

05,

=p1+Sa

=, ifa<s,
1\ p, otherwise

II1. Additional Analyses

In this section, we first conduct experiments to inves-
tigate the hyper-parameters in our temperature scheduler
(Eq. 6). Then, we provide additional analyses regarding the
evolution of lookup tables during training. Next, we con-
duct efficiency evaluation of our lookup tables. Finally, we
discuss the difference of our method with several previous
relevant approaches.

IIL.I. Temperature Scheduler

We use different combinations of hyper-parameters to
train quantized ResNet-20 on CIFAR-10 and then compare
their performance. Comparative results are listed in Table 1.
We first trained quantized ResNet-20 using different M. It
can be observed that the model with M = 50 achieves com-
parable or better performance for different bit-widths. Con-
sequently, M is set to 50 as the default setting. Then, we
fixed M and trained quantized ResNet-20 using different
71. Since the model with 7; = 10~ produces higher over-
all accuracy, it is used as the default setting.

Table I. Top-1 accuracy (%) achieved by our quantized ResNet-20
with different settings of the temperature scheduler.

Bit-width (W/A)
Model oo M—y 373 72

25 92,62 9210 90.12
1 107 50 9271 92.17 90.63

ResNet-20 75 9259 9220 90.22
(FP: 92.96)) 107 92.66 92.05 90.42
1 1073 50 9271 9217 90.63

10-2 92.68 9239  90.39

IILII. Evolution of Lookup Tables

We study the evolution of lookup tables for (1) weights
and activations, (2) different intervals of float values, and
(3) different layers. Specifically, we compare the number of
quantization levels in our lookup tables at different epochs
during training. Results are shown in Fig. 1.

Weights vs. Activations. From Fig. I(a), we can see that
the evolution of lookup tables for weights and activations
are quite different. Particularly, the evolution of lookup
tables for weights starts earlier than those for activations.
However, the lookup tables for activations converge faster
than those for weights. We suppose that since the distribu-
tions of activations are usually less steeper than weights, the
lookup tables for activations are easier to be optimized.
Different Intervals of Float Values. From Fig. I(b) and
(c), we can see that the evolution of different intervals in our
lookup table varies a lot. The interval near 1 starts earlier
and converges faster than the interval near 0. We suppose
that since more float values fall into the intervals near O,
these intervals are more difficult to be optimized.

Different Layers. As shown in Fig. I(d) and (e), the evolu-
tion of lookup tables in various layers are also different. The
difference is more significant for lookup tables of weights.
Specifically, the evolution of lookup tables starts from shal-
low layers and then gradually goes to deeper layers.

Overall, the evolution of our lookup tables is adaptive
to the distributions of float values in different intervals and
layers such that better performance can be achieved.

ILIIL Efficiency Evaluation

We use 4-bit ResNet-18 to evaluate the efficiency of our
lookup tables on different types of hardwares. Detailed ex-
perimental settings are as follows:

e GPU (RTX 2080Ti): Win10, CUDA 10.1, PyTorch 1.1.0
e CPU (Intel 19-9900K): Win10, PyTorch 1.1.0
e Mobile Processor (Kirin810): HarmonyOS 2.0.0

+* Mobile CPU: PyTorch Mobile s Mobile NPU: TFLite + NNAPI

Using simple linear quantizers, PACT has shorter in-
ference time but its accuracy is limited (Table II). Using



0 5 10

' '
10
! : 120 —e— layerl.0.convl
| 9
: 3 —e— near 0 : 9 layer2.0.convl
| 38 middle : 3 100 —s— layer3.0.convl
c 7 —e— near 1 c
| O I & 80
T 6 I3
I8 g
| € 5 (= 60
140 - -
—e— layerl.0.convl.act 1 o | T 40
% 120 layer2.0.convl.act I 3 | *
3 —— layerl.0.convlwgt | 2 | 20
= 1001
s T +— layer2.0.convl.wgt | | 0 5 10 15 20 25 30 | 0 s 10 15 20 25 30 35
T 80{ start I epoch I epoch
= earlier | (b) weights I (d) weights
€ ol
g I 1 I 140
S 40 | near 0 I —e— layerl.0.convl
3+ 1 » 9 middle » 120
converge (] near 1 I3 layer2.0.convl
20 faster > g8 ‘ '3 100 —e— layer3.0.convl
0 5 o 15 20 5 30 | §7 : s
epoch ! o 6 = 80
(a) weights vs. activations & I N
' ] €5 | € 60
3 g
4 |
I & S 40
| ¥ 3 |
I ) I 20
| |
| |
| |
' '

epoch
(c) activations

0 5 10 15 20 25 30 35
epoch
(e) activations

15 20 25 30

Figure I. Evolution of the number of quantization levels in the lookup tables for 4/4-bit quantization. We compare the number of quantiza-
tion levels in the lookup tables for (a) weights and activations, (b-c) different intervals of float values, and (d-e) different layers.

Table II. Results achieved by 4-bit ResNet-18 on ImageNet.
Time (Online Activation Quantization)

Method Model Size GPU CPU M.CPU M-NPU Acc
PACT 7553.7KB 1ms 1lms 20ms 10ms 69.2
QIL 7553.7KB 3ms 90ms 120ms 120ms 70.1
QNet 7553.7KB 2ms 85ms 95ms 100ms 69.7
LLT (Ours) 7554.9KB 2ms 20ms 40ms 24ms 70.4

learnable quantizers, QIL and QNet produce higher perfor-
mance. However, their complicated quantizers introduce
considerable computational overhead. In contrast, our LLT
has very small additional computational cost and achieves
higher accuracy while being efficient enough. This further
demonstrates the practicability of our method.

From Table II we can further see that our method is hard-
ware friendly and achieves promsing efficiency on different
types of general hardwares. On GPUs, our LLT is as fast
as other methods. On other devices with limited resources
where quantized networks are usually deployed, our LLT
achieves better accuracy with higher efficiency as compared
to QIL and QNet. We believe the advantages of our method
can be further increased on specially-designed hardwares
with better support of lookup operations.

IIL.IV. Difference with Previous Works

Similar to our method, [5] also addresses the problem
of learning thresholds during network quantization. How-

ever, our method has three major differences. 1) Motiva-
tion: [5] aims to partition float parameters into balanced
bins to achieve histogram equalization of quantized values.
In contrast, our method aims to use a learnable lookup ta-
ble as the quantization function to adapt to the bell-shaped
distributions of float values. 2) Methodology: [5] uses dis-
torted weights and percentiles to calculate quantized val-
ues while our method learns a lookup table for quantization.
3) Applicability: [5] can only be used to quantize weights
while our method can be used to quantize both weights and
activations.

Although [1] makes similar attempts to use lookup ta-
bles for network quantization, our method has two major
differences. 1) Methodology: [ ] uses k-means method to
calculate quantized weights while our method is fully differ-
entiable and can be trained in an end-to-end manner. 2) Ap-
plicability: [1] can only be used to quantize weights while
our method can be used to quantize both weights and acti-
vations.

Furthermore, we compare our method to [5] and [1] on
ImageNet. It can be observed from Table 11 that our method
produces much better performance for different bit-widths.

Table III. Top-1/Top-5 accuracy (%) on ImageNet.

Method 32-bit 4-bit 2-bit
[5] 69.8/89.1 - - 59.4/82.0
[1] 69.8/89.1 68.4/ - 64.2/ -
LLT (Ours) 69.8/89.1 70.4/89.6 66.0/86.2




IV. Potential Negative Societal Impact

One potential negative impact would be that the charac-
teristics (e.g., the statistics of weights as shown in Fig. 6)
of a quantized network could be altered from its baseline
model due to the quantization error inside the network.
Consequently, related techniques (e.g., existing network ini-
tialization methods and BN layers) may not be directly used
for quantized models. However, a thorough analysis on the
changes of characteristics is out of the scope of this paper.

Acknowledgments

The authors would like to thank anonymous reviewers
for their insightful suggestions. Xiaoyu Dong was sup-
ported by RIKEN Junior Research Associate Program.

References

[1] Fabien Cardinaux, Stefan Uhlich, Kazuki Yoshiyama,
Javier Alonso Garcia, Lukas Mauch, Stephen Tiedemann,
Thomas Kemp, and Akira Nakamura. Iteratively training
look-up tables for network quantization. /IEEE Journal of Se-
lected Topics in Signal Processing, 14(4):860-870, 2020. 3

[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 1

[3] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, 2017. 1

[4] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan
Qi. Paconv: Position adaptive convolution with dynamic ker-
nel assembling on point clouds. In CVPR, pages 3173-3182,
2021. 1

[5] Shu-Chang Zhou, Yu-Zhi Wang, He Wen, Qin-Yao He, and
Yu-Heng Zou. Balanced quantization: An effective and effi-
cient approach to quantized neural networks. Journal of Com-
puter Science and Technology, 32(4):667-682, 2017. 3



