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Abstract

Neural network quantization aims at reducing bit-widths
of weights and activations for memory and computational
efficiency. Since a linear quantizer (i.e., round(·) function)
cannot well fit the bell-shaped distributions of weights and
activations, many existing methods use pre-defined func-
tions (e.g., exponential function) with learnable parame-
ters to build the quantizer for joint optimization. How-
ever, these complicated quantizers introduce considerable
computational overhead during inference since activation
quantization should be conducted online. In this paper, we
formulate the quantization process as a simple lookup op-
eration and propose to learn lookup tables as quantizers.
Specifically, we develop differentiable lookup tables and in-
troduce several training strategies for optimization. Our
lookup tables can be trained with the network in an end-
to-end manner to fit the distributions in different layers and
have very small additional computational cost. Compari-
son with previous methods show that quantized networks us-
ing our lookup tables achieve state-of-the-art performance
on image classification, image super-resolution, and point
cloud classification tasks.

1. Introduction
Deep neural networks have achieved huge success in

computer vision, natural language processing and many
other fields. However, high computational cost and mem-
ory footprint limit their applications on edge devices. Many
efforts have been made to address this problem, includ-
ing efficient architecture designs [1–3], network pruning
[4–6], weight decomposition [7, 8], knowledge distillation
[9–11], and network quantization [12–14]. Among these
approaches, network quantization can significantly reduce
the computational cost and is widely applied in real-world
applications (e.g., inference framework like TF-lite [15]).

Neural network quantization aims at obtaining low-bit
networks to reduce memory footprint and computational
cost. The decrease in bit-width naturally introduces quanti-
zation errors, which in turn leads to accuracy loss. Network
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Figure 1. An illustration of a linear quantizer and our learned
lookup table (LUT) for 2-bit quantization of activations.

quantization can be divided into uniform approaches and
non-uniform approaches. In this paper, we focus on uni-
form ones since they can be directly deployed on off-the-
shelf hardwares with the support of integer arithmetic [16].

Early uniform quantization methods [16–19] use fixed
linear quantizers (i.e., round(·) function) to quantize float
values. However, these quantizers cannot fit the bell-shaped
and long-tailed distributions of weights and activations well
[20]. Moreover, the distributions in different layers can vary
significantly. Consequently, fixed quantizers have limited
capability to adapt to various layers.

To fit various distributions of weights and activations in
different layers, several works [14,21] adopt trainable quan-
tizers for joint optimization. These methods use a combi-
nation of pre-defined functions (e.g., exponential function
and sigmoid function) with learnable parameters to repre-
sent the quantization function. Since activation quantization
needs to be conducted online during inference, these com-
plicated quantizers introduce considerable computational
overhead.

In this paper, we propose to use learnable lookup tables
(LLTs) to map float values to quantized values for network
quantization (Fig. 1). Specifically, the quantization function
is formulated as a lookup table (Fig. 2(a)) and then trans-
formed to one-hot distributions (Fig. 2(d)) for optimization.
During training, we soften one-hot distributions to temper-
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atured softmax distributions (Fig. 2(e)) to update both the
lookup tables and the network in an end-to-end manner. In
addition, we introduce several training strategies to promote
the convergence of our lookup tables, including an exponen-
tial formulation of scale parameters and a gradient rescaling
scheme. As temperatured softmax distributions converge
to one-hot distributions, our lookup tables learn an adap-
tive mapping from continuous float values to the quantiza-
tion levels. During inference, online activation quantiza-
tion can be achieved by a simple lookup operation with very
small computational cost. Extensive experiments on image
classification, image super-resolution (SR), and point cloud
classification tasks demonstrate the state-of-the-art perfor-
mance of our method.

2. Related Work

In this section, we first briefly review several major
works for network quantization. Then, we discuss typical
applications of these quantization methods.

2.1. Network Quantization

Uniform Quantization. Uniform quantization [16–19]
maps full-precision values to uniform quantization levels
(e.g., {0, 13 ,

2
3 , 1} for 2-bit quantization of activations). Bi-

naryConnect [24] was first proposed to quantize the weights
using binary values {−1,+1}. Trained ternary quantiza-
tion (TTQ) [25] was then introduced to use ternary values
{−1, 0,+1} to represent the weights. However, the acti-
vations in these networks are still full-precision values. To
address this limitation, Rastegari et al. [26] used scale pa-
rameters to binarize the activations. Recently, DoReFa-Net
[27] was developed to further quantize the gradients dur-
ing backward propagation to speed up the training process.
Most uniform quantization methods use linear quantizers
(i.e., round(·) function) to uniformly quantize float values.
However, these quantizers do not take the bell-shaped dis-
tributions of weights and activations into consideration and
thus cannot fit them well.

To make the quantizers adapt to the distributions of
weights and activations, several efforts [14, 21] were made
to parameterize the quantizers for joint optimization. Jung
et al. [14] formulated the quantizer as a combination of a
transformer and a discretizer. Then, a hand-crafted non-
linear function with learnable parameters was used as the
transformer to be trained with the network. Yang et al. [21]
used a linear combination of sigmoid functions with learn-
able biases and scales to represent the quantization func-
tion. Their reformulated quantization function was trained
via continuous relaxation of the steepness for the sigmoid
functions. However, since quantized activations need to be
calculated online during inference, these complicated quan-
tizers introduce considerable computational overhead.

Non-Uniform Quantization. Non-uniform quantization
[28–30] uses non-uniform levels (e.g., {0, 14 ,

1
2 , 1} for 2-bit

quantization of activations) to quantize the weights and ac-
tivations to match their distributions. Ullrich et al. [28] pro-
posed to fit a mixture of Gaussian prior models over weights
and use cluster centroids as the quantization levels. Xu et
al. [29] followed this idea and performed layer-wise clus-
tering to quantize weights into cluster centroids. Zhang et
al. [31] used a set of floating-point values as the basis to
formulate non-uniform quantization levels. Zhou et al. [32]
and Miyashita et al. [33] introduced logarithmic quantizers
to represent the weights and activations using powers-of-
two values. Recently, Li et al. [20] further proposed an addi-
tive powers-of-two quantization to represent full-precision
values using a sum of powers-of-two values. Nevertheless,
non-uniform quantization methods usually rely on delicate
hardware to achieve acceleration [16].

2.2. Applications

Most network quantization methods are developed for
the image classification task. Recently, increasing attention
has been paid to their extended applications in many other
tasks, including image SR and point cloud classification.
Image Super-Resolution. The powerful feature represen-
tation capability of neural networks facilitates CNN-based
image SR methods [34–36] to achieve advanced perfor-
mance. However, the high computational and memory cost
of these methods limit their applications on mobile devices.
Many efforts [37–43] have been made to improve the ef-
ficiency of SR networks. Specifically, Ma et al. [38] and
Xin et al. [40] binarized SR networks to reduce the model
size and speed up inference with comparable performance.
Li et al. [41] quantized SR networks using a parameterized
max value to obtain models with high accuracy and low bit.
Hone et al. [43] introduced a distribution-aware quantiza-
tion scheme to adaptively determine channel-wise dynamic
ranges for SR networks to produce superior results.
Point Cloud Classification. Qi et al. [44] proposed the first
deep learning based method (namely, PointNet) to directly
process raw point clouds. Specifically, PointNet learns
point-wise features with multi-layer perceptrons (MLPs)
and obtains global features with a max-pooling layer for
classification. Following PointNet, many advanced feature
learners [45–47] and aggregators [48–51] have been pro-
posed, with better performance being achieved. However,
these methods rely on expensive floating-point calculation
and have high computational cost. Recently, Qin et al. [52]
made the first attempt to binarize PointNet to achieve sig-
nificant speedup and memory saving.

3. Method
The main idea of this work is to formulate the quanti-

zation process as a differentiable lookup operation. Given
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Figure 2. An illustration of lookup table construction. For simplicity, 2-bit quantization for activations is used as an example.

a network, layer-wise lookup tables are first constructed.
Then, lookup operation is performed to map full-precision
weights and activations to their low-bit counterparts. Dur-
ing training, we soften the lookup tables for joint optimiza-
tion with the network. During inference, the lookup tables
are hardened to obtain low-bit networks.

3.1. Preliminaries

Given a weight value w and an activation value a in a
full-precision network, they are first transformed to produce
ŵ and â as {

ŵ = clip(w/sw)

â = clip(a/sa)
, (1)

where sw and sa are trainable scale parameters, clip(·) clips
values into [−1, 1] ([0, 1] for a). Then, ŵ and â are further
quantized as {

w = sw ·Q(ŵ, Qw)

a = sa ·Q(â, Qa)
, (2)

where Qw and Qa are the numbers of quantization lev-
els, Q(·) maps float values to a set of discrete values (e.g.,
{0, 1

Qa
, ...Qa−1

Qa
, 1} for a and {−1, ...,− 1

Qw
, 0, 1

Qw
, ..., 1}

forw). For b-bit quantization,Qa=2b−1 andQw=2b−1−1.
In this paper, we formulate the quantization process Q(·)

as a lookup operation and learn lookup tables as quantizers.

3.2. Lookup Table Construction

In this section, we first illustrate our motivation and then
introduce the construction of our lookup tables.
Motivation. As shown in Fig. 1(b), a quantization function
can be formulated as a lookup table that maps float values

to the quantization levels, e.g., {0, 13 ,
2
3 , 1} for 2-bit quanti-

zation of activations1. However, it is challenging to directly
learn lookup tables due to their non-differentiability. To ad-
dress this issue, we simplify the formulation of a lookup
table to make it easier to be optimized. Specifically, the
quantization function in Fig. 2(a) can be considered as a
concatenation of three scaled step functions (ε(·)):

xq = 0.33(ε(x− 0.28)+ ε(x− 0.39)+ ε(x− 0.83)). (3)

Then, the lookup table can be divided into three binary sub-
tables, with each sub-table representing one step function
(Fig. 2(b)). Theoretically, a step function can be formu-
lated as the integral of an impulse function. Consequently,
for each sub-table, we could use K auxiliary parameters
{t1, t2, ..., tK} to model an impulse function (K = 3 in
Fig. 2(d) for simplicity) and then accumulate these param-
eters to represent the binary sub-table (Fig. 2(c)). In this
way, the lookup table can be formulated as three one-hot
distributions, whose optimization has been well studied in
literature.
Implementation. During the training phase, each one-hot
distribution is softened to a temperatured softmax distribu-
tion {p1, p2, ..., pK} (Fig. 2(e)) to make it trainable:

pi =
exp(gi/τ)∑K
i exp(gi/τ)

, (4)

where gi is a learnable parameter and τ is a temperature
parameter. Then, the temperatured softmax distribution is

1Intuitively, float values equaling to the quantization levels (e.g., a= 1
3

)
should not be mapped to other quantized values in order not to intro-
duce quantization error. Consequently, corresponding cells are anchored
to matched quantization levels.
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accumulated to construct a sub-table (Fig. 2(f)). Finally, the
resultant sub-tables are re-scaled and combined to produce
the lookup table (Fig. 2(h)).

In our experiments, gi is initialized as 0 such that the
temperatured softmax distribution is initialized as a uniform
distribution. As τ gradually decreases from a high temper-
ature to a low one, the temperatured softmax distribution
converges to a one-hot distribution. Consequently, each
sub-table becomes binary and our lookup table learns an
adaptive mapping from continuous float values to the quan-
tization levels (Fig. 2(a)). The detailed temperature sched-
uler is presented in Sec. 3.4.

3.3. Differentiable Lookup Operation

With our lookup tables, lookup operation is performed
to map full-precision values to low-bit ones, as shown in
Fig. 1(b). Given a float value (e.g., an activation value a), â
is first calculated according to Eq. 1. Next, the lookup table
is used to find the corresponding quantization level for â
(e.g., Q(â, Qa) = p1) to produce a based on Eq. 2. Then,
a can be used as a proxy of a for forward propagation to
compute the task loss.

During backward propagation, the straight-through-
estimator (STE) [53] is used to calculate gradients to update
the lookup tables (e.g., p1) and full-precision values (i.e., a):

∂a

∂p1
= sa,

∂a

∂a
=

{
1, if a < sa
0, otherwise

. (5)

For the scale parameter sa in Eq. 1, the gradient formula-
tion in [18] is used for optimization. The detailed derivation
of these gradients is provided in the supplemental material.
With these gradients, our lookup tables can be trained with
the network in an end-to-end manner.

3.4. Training Strategies

In this section, we introduce several training strategies to
improve the convergence of our lookup tables.
Exponential Formulation of Scale Parameter. The scale
parameters sw and sa in Eq. 1 are positive values used to
clip full-precision weights and activations into [−1, 1] and
[0, 1], respectively. In our experiments, it is observed that
these scale parameters may become negative during train-
ing, which leads to convergence issues. To address this
problem, we introduce auxiliary parameters ew and ea to
formulate scale parameters as:{

sw = exp(ew)
sa = exp(ea)

. (6)

During training, ew is initialized using the standard devia-
tion of full-precision weights (ln(3σw)) and ea is initialized
using the standard deviation of activations in the first itera-
tion (ln(3σa)). It is shown in Sec. 4.4 that such an exponen-
tial formulation facilitates our network to achieve a good
convergence with better performance.

cell index
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Figure 3. An illustration of gradient imbalance among different
cells of our lookup table. Normalized gradient magnitudes aver-
aged over 100 iterations are shown.

Gradient Rescaling. In our experiments, we observe a gra-
dient imbalance among different cells of our lookup table.
Due to the bell-shaped distributions of full-precision activa-
tions and weights, the numbers of values falling into differ-
ent cells during lookup operation are quite different. Conse-
quently, aggregated gradients of cells near 0 are much larger
than those near 1 (blue curve in Fig. 3) and dominate the op-
timization of the lookup table. To handle this problem, gra-
dient gi of the ith cell is rescaled using Navg√

Ni
, where Navg

is the average number of float values in a cell and Ni is the
number of float values falling in the ith cell. With our gra-
dient rescaling scheme, gradients over different cells of the
lookup table are balanced, as shown in Fig. 3. It is further
demonstrated in Sec. 4.4 that our gradient rescaling scheme
contributes to a good convergence of the lookup table and
improves the overall performance.
Temperature Scheduler. The temperature parameter τ in
Eq. 4 controls the sharpness of the temperatured softmax
distribution. In our experiments, we start with a high tem-
perature and then anneal it to a low one. Specifically, an
exponential annealing scheduler is empirically used to up-
date the temperature parameter τ :

τ(n) =

{
τ0 × ( τ1τ0 )

n
MNiter , n < MNiter

τ1, otherwise
, (7)

where τ0 and τ1 are the initial and final temperatures, re-
spectively. n represents the iteration index, Niter is the
number of iterations in an epoch, and M determines the
rate of decline.

3.5. Discussion

It is demonstrated that progressive quantization (e.g.,
32→4→3→2 for 2-bit quantization) can improve the per-
formance of low-bit quantized networks [14, 20]. From the
perspective of progressive quantization, the training of our
lookup table in Fig. 2 can be considered as an evolution
from 10 quantization levels (Fig. 2(h)) to 4 quantization lev-
els (Fig. 2(a)). Intuitively, due to the distribution difference
between (1) weights and activations, (2) various intervals of
float values (e.g., [0, 0.2] vs. [0.8, 1]), and (3) various layers,
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Table 1. Top-1 accuracy (%) achieved on CIFAR-10. Results marked with ∗ are copied from their corresponding papers. Since QIL and
LSQ are not tested on CIFAR-10 in their papers, we used our implementation for evaluation.

Model Method Bit-Width (Weight/Activation)
32/32 4/4 3/3 2/2 2/3 2/4 2/8 2/32 4/8 4/32

ResNet-20

DoReFa-Net∗ [27]

92.96

90.50 89.90 88.20 - - - - - -
PACT∗ [17] 91.30 91.10 89.70 - - - - - -
PACT-SAWB∗ [54] - - 89.23 - - - 90.73 - -
QIL [14] 91.52 91.81 90.45 91.28 91.33 91.77 91.89 91.71 92.02
LSQ [18] 92.30 91.69 90.08 91.32 91.72 91.83 92.02 92.47 92.54
SLB∗ [19] 91.60 - 90.60 - 91.30 91.80 92.00 91.80 92.10
LLT (Ours) 92.71 92.17 90.63 91.65 91.80 92.00 92.15 92.71 92.74

VGG-Small

DoReFa-Net∗ [27]

94.10

88.20 89.90 90.50 - - - - - -
QIL [14] 93.77 93.71 93.45 93.68 93.73 93.85 93.89 93.91 94.02
SLB∗ [19] 93.80 - 93.50 - 93.90 94.00 94.00 94.00 94.10
CPQ∗ [55] 93.23 93.18 92.51 - - - - - -
LLT (Ours) 94.20 94.03 93.83 93.90 94.02 94.10 94.10 94.17 94.24

progressive quantization should be self-paced. However,
the heuristic progressive quantization approach in existing
methods [14,20,56] reduce quantization levels consistently
for all intervals and layers without considering their differ-
ence. In contrast, the evolution of our lookup tables is more
flexible and adaptive, as demonstrated in Sec. 4.4.

4. Experiments
4.1. Experiments on Image Classification

4.1.1 Evaluation on CIFAR-10

Settings. The CIFAR-10 dataset [57] contains 50K training
images and 10K test images of size 32×32 from 10 classes.
We used ResNet-20 [58] and VGG-Small [59] as baseline
networks for quantization. Their pre-trained full-precision
models were used to initialize quantized models2. Follow-
ing [14, 16], the first and the last layers were not quantized
for fair comparison. Implementation details are provided in
the supplemental material.
Performance Evaluation. We compare our method to
several recent uniform quantization methods, including
DoReFa-Net [27], PACT [17], PACT-SAWB [54], QIL [14],
LSQ [18], SLB [19], and CPQ [55]. DoReFa-Net, PACT,
PACT-SAWB, LSQ, and CPQ use fixed linear quantizers
while QIL adopts a learnable quantizer. Note that, we focus
on uniform quantization in this paper and do not include
non-uniform methods (e.g., LQ-Net [31], APoT [20], and
LCQ [30]) for comparison. Baseline networks were quan-
tized to different bit-widths for comparison. Comparative
results are listed in Table 1.

Compared to full-precision baselines, our 4/4-bit
ResNet-20, 4/4-bit and 3/3-bit VGG-Small maintain com-
parable accuracy. For 2/2-bit quantization, the accuracy
drops by 2.33% and 0.27% for ResNet-20 and VGG-
Small, respectively. Compared to previous quantization
methods, quantized models using our lookup tables pro-

2For ResNet-20, the pre-trained full-precision model provided in [20]
was employed. For VGG-Small, we trained a full-precision model for ini-
tialization.

duce notable performance improvements. For example, our
method outperforms the second best approach by 0.41%
(92.71% vs. 92.30%) and 0.40% (94.20% vs. 93.80%) for
4/4-bit quantization. For 3/3-bit quantization, the accuracy
of our method is 0.36% and 0.32% higher than the second
best approach (i.e., QIL) for ResNet-20 and VGG-Small,
respectively. For quantization with different bit-widths for
weights and activations, our method consistently produces
better performance than other approaches. This clearly
demonstrates the superiority of our lookup tables.

4.1.2 Evaluation on ImageNet

Settings. The ImageNet (ILSVRC-2012) dataset [60] in-
cludes ∼ 1.2M training images and 50K validation images
from 1K classes. ResNet-18 was employed as the base-
line network for quantization. We used official pre-trained
model in TorchVision library for the initialization of quan-
tized networks. Following [14,16], the first and the last lay-
ers were not quantized for fair comparison. Implementation
details are provided in the supplemental material.
Performance Evaluation. We compare our method to
several recent uniform quantization methods, including
DoReFa-Net [27], ABC-Net [61], PACT [17], DSQ [16],
QIL [14], and CPQ [55]. Comparative results are presented
in Table 2.

It can be observed that our 4-bit model performs favor-
ably against the full-precision baseline (70.4% vs. 69.8%).
Moreover, our LLT outperforms other quantization methods
by notable margins for different bit-widths. For example,
our method produces 0.3%/0.7% higher Top-1/Top-5 accu-
racy than the second best approach for 3-bit quantization.

4.2. Experiments on Image Super-Resolution

Settings. We used 800 training images in DIV2K [62] as
the training set and included four benchmark datasets (Set5
[63], Set14 [64], B100 [65], and Urban100 [66]) for eval-
uation. EDSR [67] and RDN [34] were used as baselines
to obtain quantized SR networks. Pre-trained full-precision
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Table 2. Top-1/Top-5 accuracy (%) achieved on ImageNet. Results marked with ∗ are copied from their corresponding papers.

Model Method Top-1 Accuracy Top-5 Accuracy

32-bit 4-bit 3-bit 2-bit 32-bit 4-bit 3-bit 2-bit

ResNet-18

DoReFa-Net∗ [27]

69.8

68.1 67.5 62.6

89.1

- - -
ABC-Net∗ [61] - 61.0 - - 83.2 -
PACT∗ [17] 69.2 68.1 64.4 89.0 88.2 85.6
DSQ∗ [16] 69.6 68.7 65.2 - - -
QIL∗ [14] 70.1 69.2 65.7 - - -
CPQ∗ [55] 69.6 67.2 - 89.0 87.4 -
LLT (Ours) 70.4 69.5 66.0 89.6 88.9 86.2

Table 3. PSNR results achieved on four benchmarks for ×4 SR. Results marked with ∗ and † are copied from [41] and [43].

Model Dataset Baseline DoReFa-Net∗ [27] PACT∗ [17] LSQ [18] PAMS∗ [41] DAQ† [43] LLT (Ours)

8-bit 4-bit 8-bit 4-bit 8-bit 4-bit 8-bit 4-bit 8-bit 4-bit 8-bit 4-bit

EDSR

Set5 32.46 30.19 29.57 31.52 31.39 32.34 32.27 32.12 31.59 - 32.34 32.43 32.40
Set14 28.77 27.30 26.82 28.18 28.10 28.66 28.60 28.59 28.20 - 28.69 28.77 28.74
B100 27.69 26.77 26.47 27.29 27.25 27.65 27.63 27.57 27.32 - 27.61 27.71 27.70
Urban100 26.54 24.22 23.75 25.25 25.15 26.49 26.34 26.02 25.32 - 26.33 26.60 26.51

RDN

Set5 32.32 - - - - 32.27 32.20 32.34 30.44 - 31.96 32.37 32.26
Set14 28.71 - - - - 28.66 28.63 28.72 27.54 - 28.38 28.73 28.70
B100 27.67 - - - - 27.63 27.60 27.64 26.87 - 27.38 27.68 27.66
Urban100 26.35 - - - - 26.23 26.20 26.37 24.52 - 25.73 26.33 26.29

models were used for initialization3. Following [41, 43],
only backbone blocks were quantized for fair comparison.
Implementation details are provided in the supplemental
material.
Performance Evaluation. We use our method and five re-
cent quantization methods (DoReFa-Net [27], PACT [17],
LSQ [18], PAMS [41], and DAQ [43]) to quantize base-
line SR networks. DoReFa-Net, PACT and LSQ are three
generic quantization methods, while PAMS and DAQ are
two approaches specially developed for SR networks.

As shown in Table 3, our 8-bit and 4-bit models perform
favorably against their full-precision baselines. For exam-
ple, our 4-bit EDSR model achieves comparable PSNR
performance to the baseline (32.40/28.74/27.70/26.51 vs.
32.46/28.77/27.69/26.54). Compared to other quantization
methods, quantized models using our lookup tables pro-
duce higher PSNR results. For 4-bit quantization of RDN,
our LLT outperforms DAQ with significant PSNR improve-
ments (27.66/26.29 vs. 27.38/25.73 on B100/Urban100).

From Fig. 4, we can further see that the quantized EDSR
model using our lookup tables produces results with bet-
ter visual quality and clearer details. Specifically, our 4-bit
EDSR faithfully recovers the grids in the first row while
other models suffer notable distorted artifacts.

4.3. Experiments on Point Cloud Classification

Settings. We used ModelNet40 [68] to evaluate our method
on point cloud classification. This dataset contains 12311
meshed CAD models from 40 categories. PointNet [44]
and PointNet++ [48] were adopted as baselines for quan-

3For EDSR, official pre-trained model was employed. For RDN, since
official models are implemented in Torch while our method is implemented
in PyTorch, we trained a full-precision model for initialization using our
implementation.

Table 4. Overall accuracy (%) achieved on ModelNet40.

Model Method Bit-Width
32 4 3 2

PointNet

DoReFa-Net [27]

90.8

89.4 88.3 80.3
PACT [17] 89.4 87.9 80.8
QIL [14] 89.7 88.6 82.8
LSQ [18] 90.0 88.6 84.7
LLT (Ours) 90.7 89.9 87.6

PointNet++

DoReFa-Net [27]

92.8

92.2 92.2 89.2
PACT [17] 92.3 92.2 88.9
QIL [14] 92.6 92.1 88.7
LSQ [18] 92.6 92.1 90.1
LLT (Ours) 92.8 92.4 92.3

tization. Their pre-trained full-precision models were used
for initialization. Following [52], the first and the last layers
were not quantized. Implementation details are provided in
the supplemental material.
Performance Evaluation. We compare our method with
four uniform quantization methods, including DoReFa-Net
[27], PACT [17], QIL [14], and LSQ [18]. Results achieved
by quantized baseline networks using different methods are
shown in Table 4.

Compared to full-precision baselines, our 4-bit quantized
models produce on-par accuracy (e.g., 90.7 vs. 90.8 for
PointNet). Moreover, our method outperforms other quan-
tization approaches with notable margins. For example, for
2-bit quantization of PointNet, the accuracy of our LLT is
2.9% higher than the second best approach (i.e., LSQ).

4.4. Model Analyses

In this section, we first use ResNet-20 as the baseline and
conduct ablation study on CIFAR-10 to demonstrate the ef-
fectiveness of our design choices. Then, we conduct exper-
iments to analyze our lookup tables.
Exponential Formulation of Scale Parameter. Since
scale parameters are vulnerable to sign reversal, an expo-
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Figure 4. Visual results produced by 4-bit quantized EDSR models for ×4 SR.

Table 5. Top-1 accuracy (%) achieved on CIFAR-10 with different
settings. ResNet-20 is used as the baseline.

Model Exponential
Formulation

Gradient
Rescaling

Bit-Width (Weight/Activation)
32/32 4/4 3/3 2/2

0 7 7

92.96

92.44 92.02 89.81
1 3 7 92.42 92.08 90.10
2 7 3 92.65 92.08 90.14

3 (Ours) 3 3 92.71 92.17 90.63

nential formulation is introduced for stable convergence. To
demonstrate its effectiveness, we developed a network vari-
ant (model 1 in Table 5) by replacing the scale parameters in
model 0 with an exponential formulation (Eq. 6). Since the
sign reversal of scale parameters largely affects the conver-
gence of the network, model 0 suffers relatively low accu-
racy, especially for 2/2-bit quantization. With our exponen-
tial formulation, a good convergence can be achieved such
that better performance can be obtained (90.10 vs. 89.81).

Figure 5 further plots the curves of scale parameters in
models 0 and 1 during training. It can be observed that the
scale parameter in model 0 has a violent fluctuation and
encounters sign reversals at epoch 50 and 70. Due to the
convergence problem caused by the sign reversal, model 0
suffers limited accuracy. With our exponential formulation,
the training of scale parameters in model 1 is more stable
such that better performance can be obtained.
Gradient Rescaling. Gradient rescaling scheme is intro-
duced to handle the gradient imbalance among different
cells of our lookup tables. To demonstrate its effective-
ness, we developed model 2 by employing the gradient
rescaling scheme. It can be observed from Table 5 that
our gradient rescaling scheme facilitates model 2 to ob-
tain higher accuracy than model 0 (92.65/92.08/90.14 vs.
92.44/92.02/89.81). Without the gradient rescaling scheme,
the gradient imbalance among different cells of our lookup
tables hinders a good convergence. As a result, the perfor-
mance of model 0 is limited. With our rescaling scheme,
gradients over different cells of our lookup tables can be
balanced (Fig. 3) such that a good convergence can be
achieved for superior performance.

We further use models 1 and 3 to investigate the ef-
fects of our gradient rescaling scheme to the convergence

epoch

ws

0

Figure 5. Evolution of scale parameter sw during training.

(a) Model 1 (b) Model 3

clipped: 
9%

clipped:
66%

/ ww s / ww s

Figure 6. Histograms of weights in models 1 and 3 for 2/2-bit
quantization.

of lookup tables. Specifically, histograms of weights in
these models are illustrated in Fig. 6. Without our rescaling
scheme, gradients over cells near 0 dominate the training of
our lookup tables, as analyzed in Sec. 3.4. Consequently,
the lookup tables focus too much on small values and clip
plenty of large values (Fig. 6(a)). Since these clipped values
cannot be updated during training, inferior performance is
produced. With our rescaling scheme, model 3 can balance
the gradients over different cells to achieve a good conver-
gence, as shown in Fig. 6(b). Therefore, higher accuracy
can be obtained (92.71/92.17/90.63 vs. 92.42/42.08/90.10).

Overall, with both exponential formulation of scale pa-
rameters and gradient rescaling scheme, model 3 achieves
the best performance.
Evolution of Lookup Tables. As analyzed above, a good
convergence of lookup tables is critical to the performance
of quantized networks. Therefore, we illustrate our lookup
tables at different epochs in Fig. 7 to study their evolution.
More results are provided in the supplemental material.

We have three observations: First, the evolution of the
lookup table for activations is faster than that for weights.
At epoch 10, the lookup table of weights remains almost
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Figure 7. Evolution of our lookup tables during training for 4/4-bit quantization.

unchanged for cells near 0. In contrast, the changes of the
lookup table for activations are larger. We suppose that
since the distributions of activations are usually less steeper
than weights, the lookup tables for activations are easier
to be optimized. Second, for the lookup table of weights,
cells near 1 converge faster than those near 0 (Fig. 7(b)).
Since the number of full-precision values near 1 is much
smaller than that of values near 0, cells near 1 are easier to
be optimized. Third, the evolution of lookup tables starts
from shallow layers and then gradually goes to deeper lay-
ers (please see Fig. I in the supplemental material). Over-
all, the evolution of a lookup table can be considered as
a self-paced and adaptive progressive quantization process.
At the beginning, our lookup tables are not limited to 4-bit
quantization and adaptively assign more quantization levels
(Fig. 7(b)). Then, our lookup tables progressively converge
to a mapping from float values to 4-bit quantization levels
(Fig. 7(e)).

Unlike previous methods [14, 20] that perform heuristic
progressive quantization (e.g., 32→4→3→2), our lookup
tables can adaptively reduce quantization levels to fit the
distributions in different layers. As a result, our LLT is
well compatible to different network architectures (e.g.,
ResNets, EDSR, and PointNet) and achieves state-of-the-art
performance on a wide range of tasks (i.e., image classifi-
cation, image SR, and point cloud classification).
Effect of Granularity K. The granularity of lookup ta-
bles determines the number of initial quantization levels
(Fig. 2(h)) and the degree of freedom during optimization.
We conduct experiments to study the effect of different
granularities. Table 6 compares the accuracy of ResNet-
20 trained using lookup tables with different granularities.
When K = 1, our lookup tables become fixed and degrade
to vanilla round(·) function. Consequently, this variant suf-
fers inferior accuracy. With larger granularity, the degree of
freedom for our lookup tables is increased such that bet-
ter performance is achieved. Since granularity larger than 9
does not provide further notable improvement, K is set to 9
as the default setting.
Efficiency. We used 4-bit ResNet-18 to evaluate the effi-
ciency of our lookup tables. Intel i9-9900K and Kirin 810

Table 6. Top-1 accuracy (%) achieved on CIFAR-10 with different
granularities. ResNet-20 is used as the baseline.

Model Granularity (K) Bit-width (W/A)
4/4 3/3 2/2

ResNet-20
(full-precision: 92.96))

1 92.37 91.95 90.42
5 92.60 92.14 90.58
9 92.71 92.17 90.63
13 92.72 92.15 90.62

Table 7. Results achieved by 4-bit ResNet-18 on ImageNet. Ad-
ditional memory consumption of our lookup tables is shown in
brackets. Running time for activation quantization is presented.

Method Model Size Time AccCPU Mobile
QIL [14] 7553.7KB 90ms 120ms 70.1
QNet [21] 7553.7KB 85ms 95ms 69.7
LLT (Ours) (+1.25KB) 7554.9KB 20ms 40ms 70.4

are used as platforms of CPU and mobile processor. It can
be observed from Table 7 that the additional memory cost of
our lookup tables is very small (1.25KB). Moreover, activa-
tion quantization using our lookup operation is much faster
than QIL and QNet. This is because, complicated quantiz-
ers in QIL and QNet introduce considerable computational
overhead during inference. In contrast, the additional com-
putational cost of our lookup tables is very small, which
helps to achieve better inference efficiency.

5. Conclusion

In this paper, we formulate the quantization process as a
lookup operation and propose to learn lookup tables for net-
work quantization. Specifically, we develop differentiable
lookup tables and introduce several training strategies for
optimization. Our lookup tables can be trained with the
network in an end-to-end manner for flexible adaption to
the distributions of weights and activations. Moreover, our
lookup tables have very small computational and memory
cost. Experiments on image classification, image SR, and
point cloud classification tasks demonstrate that our method
is generic and achieves state-of-the-art performance.
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