요오드화 인화물

Phosphide iodide

요오드화물 또는 요오드화물 인화물은 요오드화물(I)과 인화물(P3−)로 이루어진 음이온을 함유하는 화합물이다.이들은 혼합 음이온 화합물로 간주될 수 있다.그것들은 pnictidehalides의 범주에 속합니다.관련 화합물로는 염화인산염화물, 요오드화 비소화 안티몬화물브롬화인산염이 있다.

인은 이러한 화합물에 군집이나 사슬을 형성할 수 있고, 그래서 어떤 것들은 1차원적이거나 섬유질이다.

요오드화 인산염은 종종 금속성, 검은색 또는 진한 빨간색입니다.

목록.

공식 시스템. 스페이스 그룹 단위 셀 † 용량 밀도 댓글 레퍼런스
[Si40P6]I6.5 입방체의 Pm3n a=10.1293 Z=1 1039.3 3.412 쇄석하다 [1]
K4P21I 직교 혈전성 Ccmmm a = 12.853; b = 21.795; c = 9.748 Z = 4 2730.7 2.271 루비 레드, 공기에 민감한 [2]
Ca2PI 삼각형의 R3m a=4.30 c=22.17 3.2 노란 색 [3]
Ca3PI3 입방체의 I4132 a=12.31 Z=8 3.78 무채색의 [3]
Cu2P3I2 단사정형의 P21c a = 15.343, b = 12.925, c = 15.260, β = 116.38°, Z = 16 밴드 갭 0.72 eV, Cu 이온 전도체 [4][5][6]
Cu3P15I2 단사정형의 P21/n a=9.667, b=19.475, c=9.886, β=108.75(2)°, Z=4 1762.4 잿빛 [5][7]
(CuI)3P12 단사정형의 P21 a=12.846 b=13.857 c=9.651 β=126.43 Z=4 1620.2 3.866 빛나는 [5]
(CuI)2P14 단사정형의 P21/c a = 9.919, b = 9.718, c = 16.478, β = 105.71°, Z = 4 1529.0 3.539 [8]
(CuI)5P16S [9]
(CuI)3P4S4 육각형의 P63cm a=19.082, c=6.691 Z=6 2109.9 [10]
(CuI)8P12 단사정형의 P121/c1 a=15.343, b=12.925, c=15.26, β=180.38 4.64 [11]
Ge38P8I8 큐빅 P43n a=10.507 은빛으로 물결 [12]
(CuI)5PSE16 [9]
(CuI)2PSE83 Pbcm a=9.1348 b=12.351 c=13.873 Z=4 1565.2 3.673 빨간색, 408°C 용해, PSe83 클러스터 [13]
(CuI)3PSE44 육각형의 P63cm a = 19.601, c = 6.7196, Z = 6 오렌지색 [14]
Zn3PI3 입방체의 F42m a=5.945 4.87 짙은 회색, 300°C(데시) [15]
(ZnI2)6 ZnSPS43 [11]
(ZnI2)6ZnSeP4Se3 입방체의 F43c a=19.542 7463.1 4.325 갈색 [11]
Rb4P21I 직교 혈전성 Ccmmm a = 13.281; b = 21.868; c = 9.771 Z= 4 2838.1 2.619 검붉은색 [2]
스르피27 입방체의 P213 a=10.25 암적색, 헵타포스파노르트리시클란을 함유함 [16]
Zr6I14P 직교 혈전성 Cmca [17]
Ag2P3I2 단사정형의 Ag 이온 전도체 [4]
(AgI)2 AgPS34 육각형의 P63mc a=7.395 c=12.224 Z=2 579.1 Ag 이온 전도체 [18]
Cd2P3I 단사정형의 C2/c a=8.255 b=9.304 c=7.514 β=99.66 [19]
Cd3PI3 육각형의 P63mc 밴드갭 2.44 eV [20]
Cd4P2I3 직교 혈전성 Pbca a=12.890 b=12.725 c=12.654 P24−. [19]
SnIP 부드럽고 유연한 이중 나선 SnI+ 및 P-, 밴드 갭 1.9 eV [21][22]
Sn24P19.3I8 입방체의 Pm3n a=10.9554 [23]
Sn24P19.3BrxI8−x 입방체의 Pm3n [24]
SnPCLI2419.3(2)y8−y (y 0 0.8) 입방체의 Pm3n [24]
Sn20Zn4P20.8I8 입방체의 Pm3n a=10.883 Z=1 [25]
Sn17Zn7P22I8 입방체의 Pm3n a=10.8458 Z=1 [25]
Sn14In10P22I8 입방체의 Pm3n a=11.0450 Z=1 1347.4 5.535 블랙입니다. [26]
Sn14In10P21.2I8 P42/m a=24.745, c=11.067, Z=5 6776 5.521 블랙입니다. [26]
[Ge30.5Sn7.7P7.75]I7.88 입방체의 Pm3n a=10.721 Z=1 [27]
Sn24AsxP19.3−xI8 입방체의 Pm3n a = 10.9358—11.1495 [28]
Cs0.35Zr6I14P 직교 혈전성 Cmca a=15.934 b=14.287 c=12.939 Z=4 블랙입니다. [17]
Ba2P7I 단사정형의 P21/m a=6.3538 b=6.8990 c=12.0392 β=95.515 Z=2 524.93 3.912 오렌지노란색, 물에 민감한 [29]
Ba3P3I2 직교 혈전성 Pnma a = 17.199, b = 4.624, c = 14.272, Z = 4, [30]
Ba5P5I3 단사정형의 C2/m a = 42.664, b = 4.56.3, c = 9.431, β = 92.20, Z = 4 [30]
La2PI2 삼각형의 P3m1 a=4.236 c=10.199 Z=1 157.25 4.95 [31]
Eu2PI R3m a = 4.445, c = 23.12.6, Z = 3 [32]
Eu2P7I 입방체의 P213 짙은 빨강, 헵타포스파노르트리클레인 함유, 밴드갭 1.7eV [16]
Au7P10I 삼각형의 P31m a=6.180 c=11.180 Z=1 [33]
Hg9P5I6 단사정형의 a=13.112 b=12.486 c=17.031 β=119.90 [34]
Hg4ZnPI4 단사정형의 P21 a = 7.850, b = 12.719, c = 7.861, β = 119.52°, Z = 2 밀론 단계처럼 [35]
Hg7Ag2P8I6 단사정형의 C12/m1 a=13.139 b=11.037 c=8.336 β=102.210 Z=2 1182.1 7.386 블랙입니다. [36]
Hg12Ag41P88I41 입방체의 Fm3 a=26.705 Z=4 19045 5.147 암적색;공기가 안정되어 있다113−;P [37]
HgAg6P20I2 단사정형의 P21/m a = 6.718, b = 27.701, c = 7.383, β = 113.98°, Z = 2 [38]

레퍼런스

  1. ^ Kovnir, Kirill A.; Uglov, Alexei N.; Zaikina, Julia V.; Shevelkov, Andrei V. (January 2004). "New cationic clathrate: synthesis and structure of [Si40P6]I6.5". Mendeleev Communications. 14 (4): 135–136. doi:10.1070/MC2004v014n04ABEH001945.
  2. ^ a b Hönle, Wolfgang; Schmettow, Walter; Peters, Karl; Chang, Jen-Hui; von Schnering, Hans Georg (October 2004). "The Henicosaphosphide Iodides of Potassium and Rubidium, K4P21I and Rb4P21I". Zeitschrift für anorganische und allgemeine Chemie (in German). 630 (12): 1858–1862. doi:10.1002/zaac.200400211. ISSN 0044-2313.
  3. ^ a b Hamon, Christian; Marchand, Roger; Laurent, Yves; Lang, Jean (1974). "Étude d'halogénopnictures. III. Structure de Ca2PI et Ca3PI3. Surstructures de type NaCl". Bulletin de Minéralogie. 97 (1): 6–12. doi:10.3406/bulmi.1974.6909.
  4. ^ a b Möller, M.H.; Jeitschko, W. (November 1986). "Preparation, properties, and crystal structure of the solid electrolytes Cu2P3I2 and Ag2P3I2". Journal of Solid State Chemistry. 65 (2): 178–189. Bibcode:1986JSSCh..65..178M. doi:10.1016/0022-4596(86)90052-6.
  5. ^ a b c Pfitzner, Arno; Freudenthaler, Eva (1995-08-18). "(CuI)3P12: A Solid Containing a New Polymer of Phosphorus Predicted by Theory". Angewandte Chemie International Edition in English. 34 (15): 1647–1649. doi:10.1002/anie.199516471. ISSN 0570-0833.
  6. ^ Freudenthaler, Eva; Pfitzner, Arno; Sinclair, Derek C. (February 1996). "Electrical properties of Cu2P3I2". Materials Research Bulletin. 31 (2): 171–176. doi:10.1016/0025-5408(95)00176-X.
  7. ^ Pfitzner, A.; Freudenthaler, E. (1995-01-01). Pfitzner, A.; Freudenthaler, E. (eds.). "Crystal structure of tricopper(I) pentadecaphosphide diiodide, Cu 3 P 15 I 2". Zeitschrift für Kristallographie - Crystalline Materials. 210 (1): 59. Bibcode:1995ZK....210...59P. doi:10.1524/zkri.1995.210.1.59. ISSN 2194-4946.
  8. ^ Pfitzner, Amo; Freudenthaler, Eva (1997-02-01). "(CuI) 2 P 14 : ein neues Phosphorpolymer in einer Kupferhalogenid-Matrix /(CuI) 2 P 14 : a Novel Phosphorus Polymer in a Copper Halide Matrix". Zeitschrift für Naturforschung B. 52 (2): 199–202. doi:10.1515/znb-1997-0209. ISSN 1865-7117. S2CID 101576257.
  9. ^ a b Freudenthaler, E (November 1997). "Copper(I) halide-phosphorus adducts: a new family of copper(I) ion conductors" (PDF). Solid State Ionics. 101–103: 1053–1059. doi:10.1016/S0167-2738(97)00169-0.
  10. ^ Reiser, Sara; Brunklaus, Gunther; Hong, Jung Hoon; Chan, Jerry C. C.; Eckert, Hellmut; Pfitzner, Arno (2002). "(CuI)3P4S4: Preparation, Structural, and NMR Spectroscopic Characterization of a Copper(I) Halide Adduct with β-P4S4" (PDF). Chemistry - A European Journal. 8 (18): 4228–4233. doi:10.1002/1521-3765(20020916)8:18<4228::AID-CHEM4228>3.0.CO;2-V. PMID 12298013.
  11. ^ a b c Hong, Jung Hoon (2005). The host/guest clathrate system [(ZnI2)6(ZnQ)]/[Pn4Qx] (Pn=P, As; Q=S, Se). A qualitative approach to structures, identification and synthesis (phd). doi:10.5283/EPUB.10245.
  12. ^ von Schnering, Hans-Georg; Menke, Heinz (January 1972). "Ge38P8I8 and Ge38As8I8, a New Class of Compounds with Clathrate Structure". Angewandte Chemie International Edition in English. 11 (1): 43–44. doi:10.1002/anie.197200431. ISSN 0570-0833.
  13. ^ Pfitzner, Arno; Reiser, Sara; Nilges, Tom (2000). "(CuI)2P8Se3: An Adduct ofD3-Symmetrical P8Se3 Cage Molecules with Cu2I2 Rhomboids". Angewandte Chemie. 39 (22): 4160–4162. doi:10.1002/1521-3773(20001117)39:22<4160::AID-ANIE4160>3.0.CO;2-8.
  14. ^ Pfitzner, A.; Reiser, Sara (1999-05-01). "(CuI) 3 P 4 Se 4 : β-P 4 Se 4 Cages between Columns of Copper Iodide". Inorganic Chemistry. 38 (10): 2451–2454. doi:10.1021/ic981042f. ISSN 0020-1669.
  15. ^ Suchow, Lawrence; Witzen, Margaret Berry; Stemple, Norman R. (May 1963). "Zinc Phosphide Iodide (Zn 3 PI 3 ) and Zinc Arsenide Iodide (Zn 3 AsI 3 ): New Compounds with Disordered Defect Zincblende Structure". Inorganic Chemistry. 2 (3): 441–444. doi:10.1021/ic50007a003. ISSN 0020-1669.
  16. ^ a b Dolyniuk, Juli-Anna; Lee, Shannon; Tran, Nhon; Wang, Jian; Wang, Lin-Lin; Kovnir, Kirill (July 2018). "Eu2P7X and Ba2As7X (X = Br, I): Chiral double-Zintl salts containing heptapnictotricyclane clusters". Journal of Solid State Chemistry. 263: 195–202. Bibcode:2018JSSCh.263..195D. doi:10.1016/j.jssc.2018.04.026. S2CID 103274102.
  17. ^ a b Rosenthal, Guy; Corbett, John D. (January 1988). "Zirconium iodide clusters that encapsulate silicon, germanium, phosphorus, or pyrex". Inorganic Chemistry. 27 (1): 53–56. doi:10.1021/ic00274a012. ISSN 0020-1669.
  18. ^ Jabłońska, Marta; Pfitzner, Arno (September 2004). "Preparation and Crystal Structure of (AgI)2Ag3PS4". Zeitschrift für anorganische und allgemeine Chemie (in German). 630 (11): 1731. doi:10.1002/zaac.200470078. ISSN 0044-2313.
  19. ^ a b Shevelkov, A. V.; Shatruk, M. M. (2001). "Mercury and cadmium pnictidehalides: the inverted Zintl phases". Russian Chemical Bulletin. 50 (3): 337–352. doi:10.1023/A:1011351532249. S2CID 94548971.
  20. ^ Yang, He‐Di; Ran, Mao‐Yin; Wei, Wen‐Bo; Wu, Xin‐Tao; Lin, Hua; Zhu, Qi‐Long (2021-11-02). "The Rise of Infrared Nonlinear Optical Pnictides: Advances and Outlooks". Chemistry: An Asian Journal. 16 (21): 3299–3310. doi:10.1002/asia.202100935. ISSN 1861-4728. PMID 34469055. S2CID 237372337.
  21. ^ Purschke, David N.; Pielmeier, Markus R. P.; Üzer, Ebru; Ott, Claudia; Jensen, Charles; Degg, Annabelle; Vogel, Anna; Amer, Naaman; Nilges, Tom; Hegmann, Frank A. (August 2021). "Ultrafast Photoconductivity and Terahertz Vibrational Dynamics in Double‐Helix SnIP Nanowires". Advanced Materials. 33 (34): 2100978. arXiv:2101.05459. doi:10.1002/adma.202100978. ISSN 0935-9648. PMID 34278600. S2CID 231603155.
  22. ^ Hoff, Diego A.; Rego, Luis G. C. (2021-10-13). "Chirality-Induced Propagation Velocity Asymmetry". Nano Letters. 21 (19): 8190–8196. arXiv:2109.03629. Bibcode:2021NanoL..21.8190H. doi:10.1021/acs.nanolett.1c02636. ISSN 1530-6984. PMID 34551246. S2CID 237439225.
  23. ^ Novikov, Vladimir V.; Matovnikov, Alexander V.; Avdashchenko, Dmitrii V.; Mitroshenkov, Nikolai V.; Dikarev, Evgeny; Takamizawa, Satoshi; Kirsanova, Maria A.; Shevelkov, Andrei V. (April 2012). "Low-temperature structure and lattice dynamics of the thermoelectric clathrate Sn24P19.3I8". Journal of Alloys and Compounds. 520: 174–179. doi:10.1016/j.jallcom.2011.12.171.
  24. ^ a b Zaikina, Julia V.; Schnelle, Walter; Kovnir, Kirill A.; Olenev, Andrei V.; Grin, Yuri; Shevelkov, Andrei V. (August 2007). "Crystal structure, thermoelectric and magnetic properties of the type-I clathrate solid solutions Sn24P19.3(2)BrxI8−x (0≤x≤8) and Sn24P19.3(2)ClyI8−y (y≤0.8)". Solid State Sciences. 9 (8): 664–671. doi:10.1016/j.solidstatesciences.2007.05.008.
  25. ^ a b Kovnir, Kirill A.; Shatruk, Mikhail M.; Reshetova, Lyudmila N.; Presniakov, Igor A.; Dikarev, Evgeny V.; Baitinger, Michael; Haarmann, Frank; Schnelle, Walter; Baenitz, Michael; Grin, Yuri; Shevelkov, Andrei V. (August 2005). "Novel compounds Sn20Zn4P22−vI8 (), Sn17Zn7P22I8, and Sn17Zn7P22Br8: Synthesis, properties, and special features of their clathrate-like crystal structures". Solid State Sciences. 7 (8): 957–968. doi:10.1016/j.solidstatesciences.2005.04.002.
  26. ^ a b Shatruk, Mikhail M.; Kovnir, Kirill A.; Lindsjö, Martin; Presniakov, Igor A.; Kloo, Lars A.; Shevelkov, Andrei V. (November 2001). "Novel Compounds Sn10In14P22I8 and Sn14In10P21.2I8 with Clathrate I Structure: Synthesis and Crystal and Electronic Structure". Journal of Solid State Chemistry. 161 (2): 233–242. Bibcode:2001JSSCh.161..233S. doi:10.1006/jssc.2001.9304.
  27. ^ Kirsanova, M. A.; Reshetova, L. N.; Olenev, A. V.; Shevelkov, A. V. (March 2012). "On the crystal structure of the germanium-based cationic clathrates [Ge38.3Sb7.7]I7.44, [Ge38.1P7.9]I8, and [Ge30.5Sn7.7P7.75]I7.88". Russian Journal of Coordination Chemistry. 38 (3): 192–199. doi:10.1134/S1070328412030062. ISSN 1070-3284. S2CID 98413981.
  28. ^ Kelm, E. A.; Zaikina, Yu. V.; Dikarev, E. V.; Shevelkov, A. V. (April 2009). "Distribution of phosphorus and arsenic atoms in the solid solution Sn24As x P19.3-x I8 with the structure of clathrate-I". Russian Chemical Bulletin. 58 (4): 746–750. doi:10.1007/s11172-009-0089-0. ISSN 1066-5285. S2CID 93897495.
  29. ^ Dolyniuk, Juli-Anna; Kovnir, Kirill (2013-08-26). "Zintl Salts Ba2P7X (X = Cl, Br, and I): Synthesis, Crystal, and Electronic Structures". Crystals. 3 (3): 431–442. doi:10.3390/cryst3030431. ISSN 2073-4352.
  30. ^ a b Nuss, Jürgen; Jansen, Martin (March 2003). "Ba3P3I2 und Ba5P5I3: Stufenweise Oxidation von Bariumphosphid mit Iod". Zeitschrift für anorganische und allgemeine Chemie (in German). 629 (3): 387–393. doi:10.1002/zaac.200390064. ISSN 0044-2313.
  31. ^ Oeckler, Oliver; Mattausch, Hansjürgen; Simon, Arndt (2007-11-01). "Einige Phosphidhalogenide des Lanthans und verwandte Verbindungen/ Some Phosphide Halides of Lanthanum and Related Compounds". Zeitschrift für Naturforschung B. 62 (11): 1377–1382. doi:10.1515/znb-2007-1105. ISSN 1865-7117. S2CID 95077294.
  32. ^ Hadenfeldt, C.; Held, W. (September 1986). "Darstellung, eigenschaften und kristallstruktur der Europium(ii)-phosphidhalogenide Eu2PCl, Eu2PBr und Eu2PI". Journal of the Less Common Metals (in German). 123 (1–2): 25–35. doi:10.1016/0022-5088(86)90111-6.
  33. ^ Jeitschko, W.; Möller, M. H. (1979-03-01). "The crystal structures of Au 2 P 3 and Au 7 P 10 I, polyphosphides with weak Au–Au interactions". Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 35 (3): 573–579. doi:10.1107/S0567740879004180. ISSN 0567-7408.
  34. ^ Ledésert, Μ; Rebbah, A.; Labbé, Ph (1990-11-01). "Hg9P5I6: a new mercury(I, II) structural determination". Zeitschrift für Kristallographie - Crystalline Materials (in German). 192 (1–4): 223–232. doi:10.1524/zkri.1990.192.14.223. ISSN 2196-7105. S2CID 96887350.
  35. ^ OLENEV, A.V.; SHEVEL'KOV, A.V.; POPOVKIN, B.A. (1999). "NEW PHOSPHORUS ANALOGUE OF MILLON'S PHASES (HG2P)2ZNI4: SYNTHESIS AND STRUCTURE". Russian Journal of Inorganic Chemistry. 44 (11): 1814–1816.
  36. ^ Oleneva, Olga S.; Olenev, Andrei V.; Shestimerova, Tatiana A.; Baranov, Alexey I.; Dikarev, Evgeny V.; Shevelkov, Andrei V. (2005-12-01). "Reduction of the Host Cationic Framework Charge by Isoelectronic Substitution: Synthesis and Structure of Hg 7 Ag 2 P 8 X 6 (X = Br, I) and Hg 6 Ag 4 P 8 Br 6". Inorganic Chemistry. 44 (26): 9622–9624. doi:10.1021/ic0513944. ISSN 0020-1669. PMID 16363825.
  37. ^ Oleneva, O. S.; Shestimerova, T. A.; Olenev, A. V.; Dikarev, E. V.; Shevelkov, A. V. (October 2007). "Synthesis and crystal structure of new double mercury silver phosphide iodide Hg12Ag41P88I41". Russian Chemical Bulletin. 56 (10): 1948–1952. doi:10.1007/s11172-007-0302-y. ISSN 1066-5285. S2CID 97426578.
  38. ^ Oleneva, O.S.; Shestimerova, T.A.; Olenev, A.V.; Shevelkov, A.V. (July 2009). "Unprecedented ∞1(P103−) band anion in the crystal structure of HgAg6P20I2". Journal of Alloys and Compounds. 480 (1): 2–4. doi:10.1016/j.jallcom.2008.09.192.