Bước tới nội dung

Niobi

Bách khoa toàn thư mở Wikipedia
Niobi, 41Nb
Tính chất chung
Tên, ký hiệuNiobi, Nb
Phiên âm/nˈbiəm/
nye-OH-bee-əm;
alternatively, /kəˈlʌmbiəm/
kə-LUM-bee-əm
Hình dạngÁnh kim xám, chuyển thành màu xanh dương nhạt khi bị oxy hóa
Niobi trong bảng tuần hoàn
Hydro (diatomic nonmetal)
Heli (noble gas)
Lithi (alkali metal)
Beryli (alkaline earth metal)
Bor (metalloid)
Carbon (polyatomic nonmetal)
Nitơ (diatomic nonmetal)
Oxy (diatomic nonmetal)
Fluor (diatomic nonmetal)
Neon (noble gas)
Natri (alkali metal)
Magnesi (alkaline earth metal)
Nhôm (post-transition metal)
Silic (metalloid)
Phosphor (polyatomic nonmetal)
Lưu huỳnh (polyatomic nonmetal)
Chlor (diatomic nonmetal)
Argon (noble gas)
Kali (alkali metal)
Calci (alkaline earth metal)
Scandi (transition metal)
Titani (transition metal)
Vanadi (transition metal)
Chrom (transition metal)
Mangan (transition metal)
Sắt (transition metal)
Cobalt (transition metal)
Nickel (transition metal)
Đồng (transition metal)
Kẽm (transition metal)
Gali (post-transition metal)
Germani (metalloid)
Arsenic (metalloid)
Seleni (polyatomic nonmetal)
Brom (diatomic nonmetal)
Krypton (noble gas)
Rubidi (alkali metal)
Stronti (alkaline earth metal)
Yttri (transition metal)
Zirconi (transition metal)
Niobi (transition metal)
Molypden (transition metal)
Techneti (transition metal)
Rutheni (transition metal)
Rhodi (transition metal)
Paladi (transition metal)
Bạc (transition metal)
Cadmi (transition metal)
Indi (post-transition metal)
Thiếc (post-transition metal)
Antimon (metalloid)
Teluri (metalloid)
Iod (diatomic nonmetal)
Xenon (noble gas)
Caesi (alkali metal)
Bari (alkaline earth metal)
Lantan (lanthanide)
Ceri (lanthanide)
Praseodymi (lanthanide)
Neodymi (lanthanide)
Promethi (lanthanide)
Samari (lanthanide)
Europi (lanthanide)
Gadolini (lanthanide)
Terbi (lanthanide)
Dysprosi (lanthanide)
Holmi (lanthanide)
Erbi (lanthanide)
Thulium (lanthanide)
Ytterbi (lanthanide)
Luteti (lanthanide)
Hafni (transition metal)
Tantal (transition metal)
Wolfram (transition metal)
Rheni (transition metal)
Osmi (transition metal)
Iridi (transition metal)
Platin (transition metal)
Vàng (transition metal)
Thuỷ ngân (transition metal)
Thali (post-transition metal)
Chì (post-transition metal)
Bismuth (post-transition metal)
Poloni (metalloid)
Astatin (diatomic nonmetal)
Radon (noble gas)
Franci (alkali metal)
Radi (alkaline earth metal)
Actini (actinide)
Thori (actinide)
Protactini (actinide)
Urani (actinide)
Neptuni (actinide)
Plutoni (actinide)
Americi (actinide)
Curium (actinide)
Berkeli (actinide)
Californi (actinide)
Einsteini (actinide)
Fermi (actinide)
Mendelevi (actinide)
Nobeli (actinide)
Lawrenci (actinide)
Rutherfordi (transition metal)
Dubni (transition metal)
Seaborgi (transition metal)
Bohri (transition metal)
Hassi (transition metal)
Meitneri (unknown chemical properties)
Darmstadti (unknown chemical properties)
Roentgeni (unknown chemical properties)
Copernici (transition metal)
Nihoni (unknown chemical properties)
Flerovi (post-transition metal)
Moscovi (unknown chemical properties)
Livermori (unknown chemical properties)
Tennessine (unknown chemical properties)
Oganesson (unknown chemical properties)
V

Nb

Ta
ZirconiNiobiMolypden
Số nguyên tử (Z)41
Khối lượng nguyên tử chuẩn (Ar)92,90638
Phân loại  kim loại chuyển tiếp
Nhóm, phân lớp5d
Chu kỳChu kỳ 5
Cấu hình electron[Kr] 4d4 5s1
mỗi lớp
2, 8, 18, 12, 1
Tính chất vật lý
Màu sắcÁnh kim xám
Trạng thái vật chấtChất rắn
Nhiệt độ nóng chảy2750 K ​(2477 °C, ​4491 °F)
Nhiệt độ sôi5017 K ​(4744 °C, ​8571 °F)
Mật độ8,57 g·cm−3 (ở 0 °C, 101.325 kPa)
Nhiệt lượng nóng chảy30 kJ·mol−1
Nhiệt bay hơi689,9 kJ·mol−1
Nhiệt dung24,60 J·mol−1·K−1
Áp suất hơi
P (Pa) 1 10 100 1 k 10 k 100 k
ở T (K) 2942 3207 3524 3910 4393 5013
Tính chất nguyên tử
Trạng thái oxy hóa5, 4, 3, 2, -1Acid nhẹ
Độ âm điện1,6 (Thang Pauling)
Năng lượng ion hóaThứ nhất: 652,1 kJ·mol−1
Thứ hai: 1380 kJ·mol−1
Thứ ba: 2416 kJ·mol−1
Bán kính cộng hoá trịthực nghiệm: 146 pm
Bán kính liên kết cộng hóa trị164±6 pm
Thông tin khác
Cấu trúc tinh thểLập phương tâm khối
Cấu trúc tinh thể Lập phương tâm khối của Niobi
Vận tốc âm thanhque mỏng: 3480 m·s−1 (ở 20 °C)
Độ giãn nở nhiệt7,3 µm·m−1·K−1
Độ dẫn nhiệt53,7 W·m−1·K−1
Điện trở suấtở 0 °C: 152 n Ω·m
Tính chất từThuận từ
Mô đun Young105 GPa
Mô đun cắt38 GPa
Mô đun khối170 GPa
Hệ số Poisson0,40
Độ cứng theo thang Mohs6,0
Độ cứng theo thang Vickers1320 MPa
Độ cứng theo thang Brinell736 MPa
Số đăng ký CAS7440-03-1
Đồng vị ổn định nhất
Bài chính: Đồng vị của Niobi
Iso NA Chu kỳ bán rã DM DE (MeV) DP
91Nb Tổng hợp 680 năm ε - 91Zr
91m1Nb Tổng hợp 60,86 ngày IT 0.104e 91Nb
92Nb Vết 3,47×107 năm ε - 92Zr
γ 0.561, 0.934 -
92m1Nb Tổng hợp 10,15 ngày ε - 92Zr
γ 0.934 -
93Nb 100% 93Nb ổn định với 52 neutron[1]
93mNb Tổng hợp 16,13 năm IT 0.031e 93Nb
94Nb Vết 2,03×104 năm β- 0.471 94Mo
γ 0.702, 0.871 -
95Nb Tổng hợp 34,991 ngày β- 0.159 95Mo
γ 0.765 -
95mNb Tổng hợp 3,61 ngày IT 0.235 95Nb

Niobi hay columbi (phiên từ tên gọi của nguyên tố tại Hoa Kỳ) là tên gọi của một nguyên tố hóa học có ký hiệu Nbsố nguyên tử 41. Là một kim loại chuyển tiếp mềm, dễ uốn, màu xám và hiếm, niobi được tìm thấy trong pyrochlorecolumbit. Nó được phát hiện lần đầu tiên trong khoáng vật thứ hai vừa đề cập và vì thế ban đầu được gọi là columbi; vì thế hiện nay khoáng vật đó còn được gọi là "Niobit".Niobi được sử dụng trong việc sản xuất các hợp kim thép đặc biệt cũng như trong hàn, công nghiệp hạt nhân, công nghiệp điện tử, quang học và ngành kim hoàn.

Đặc trưng

[sửa | sửa mã nguồn]

Niobi là kim loại mềm màu xám nhưng có ánh lam khi bị phơi ra ngoài không khí ở nhiệt độ phòng trong một thời gian dài. Các tính chất hóa học của niobi là gần giống như của tantali, nguyên tố nằm ngay dưới niobi trong bảng tuần hoàn.

Khi cần làm việc với niobi ở nhiệt độ hơi cao thì nó cần được đặt trong môi trường có bảo vệ. Kim loại này bắt đầu bị oxy hóa trong không khí ở nhiệt độ 200 ° C; trạng thái oxy hóa phổ biến nhất của nó là +3, +5, mặc dù các trạng thái khác cũng tồn tại.

Ứng dụng

[sửa | sửa mã nguồn]

Niobi có nhiều ứng dụng: nó là thành phần của một vài loại thép không gỉhợp kim của các kim loại phi sắt khác. Nó cũng là thành phần bổ sung rất quan trọng cho thép HSLA, được sử dụng rộng rãi làm thành phần cấu trúc cho các ô tô ngày nay. Các hợp kim này rất bền và thường được dùng làm các đường ống. Các ứng dụng khác có:

  • Kim loại này có tiết diện bắt neutron thấp đối với các neutron nhiệt và vì thế có ứng dụng trong công nghiệp hạt nhân.
  • Được dùng trong các que hàn hồ quang cho một số cấp ổn định của thép không gỉ.
  • Lượng thích hợp niobi trong dạng ferroniobiniken niobi độ tinh khiết cao được sử dụng trong các siêu hợp kim gốc niken, coban, sắt trong các ứng dụng như chế tạo các bộ phận của động cơ phản lực, tên lửa và các thiết bị chịu nhiệt.
  • Niobi được lượng giá như là vật liệu thay thế cho tantali trong các tụ điện.
  • Do niobi và một số hợp kim của niobi là trơ về mặt sinh lý (và vì thế ít gây dị ứng), chúng được sử dụng trong ngành kim hoàn và trong các thiết bị y tế như máy điều hòa nhịp tim. Niobi được xử lý bằng hiđroxide natri tạo ra các lớp xốp hỗ trợ cho kỹ thuật cấy ghép xương.[2]
  • Cùng với titan, tantali, nhôm, niobi cũng có thể được đốt nóng và anôt hóa bằng điện để tạo ra một mảng các màu sử dụng phương pháp gọi là anôt hóa kim loại phản ứng. Điều này làm cho nó trở nên hấp dẫn để sử dụng trong ngành kim hoàn.
  • Niobi cũng được bổ sung vào thủy tinh để thu được chiết suất cao hơn, một tính chất được sử dụng trong công nghiệp quang học để chế tạo các loại kính điều hòa mỏng hơn.
  • Năm 2005, Sierra Leone làm đồng tiền để tưởng nhớ Giáo hoàng John Paul II có chứa một đĩa vàng 24 cara (100%) được bọc bằng một vòng niobi màu tía.

Niobi trở thành chất siêu dẫn khi hạ nhiệt độ xuống dưới điểm sinh hàn. Ở áp suất thường, nhiệt độ tới hạn cao nhất của nó để có tính siêu dẫn là 9,3 K. Niobi có hiệu ứng Meissner lớn nhất trong số mọi nguyên tố đã biết. Ngoài ra, nó là một trong ba nguyên tố có tính siêu dẫn kiểu II (cùng vanaditecneti). Hợp kim niobi-thiếc và niobi-titan được sử dụng như là dây cuốn cho các nam châm siêu dẫn có khả năng tạo ra từ trường cực mạnh. Niobi cũng được sử dụng ở dạng tinh khiết để làm các cấu trúc gia tốc siêu dẫn cho các máy gia tốc hạt.

Lịch sử

[sửa | sửa mã nguồn]

Niobi (nguồn gốc từ tên gọi một vị thần Hy LạpNiobe, con gái của Tantalus) được Charles Hatchett phát hiện năm 1801.[3] Hatchett tìm thấy niobi trong một mẫu quặng được John Winthrop gởi từ Anh đến Massachusetts, Hoa Kỳ năm 1734[4] và đã đặt tên khoáng vật là columbite và nguyên tố mới là columbium theo tên Columbia.[5] Columbium được Hatchett phát hiện có thể là một hỗn hợp của nguyên tố mới với tantali.[5] Đã có một số nhầm lẫn đáng kể[6] về các khác biệt giữa niobi và tantali có quan hệ gần gũi. Năm 1809, Nhà hóa học Anh William Hyde Wollaston đã so sánh cả hai oxide của columbi—columbit, có mật độ 5,918 g/cm³, và tantali—tantalit, với mật độ 7,935 g/cm³, và kết luận rằng đó là 2 oxide khác nhau đáng kể về mật độ, và do đó ông giữ tên gọi tantali.[6] Kết luận này bị phản đối bởi nhà hóa học Đức Heinrich Rose năm 1846, ông cho rằng có hai nguyên tố khác nhau trong mẫu tantalit, và đặt tên chúng theo tên đứa con của Tantalus: niobium (theo Niobe), và pelopium (theo Pelops).[7][8] Nhầm lẫn này xuất phát từ sự khác biệt được quan sát rất ít giữa tantali và niobi. Cả tantali và niobi phản ứng với clo và các vết cua oxy, bao gồm cả hàm lượng trong khí quyển, với niobi tạo thành hai hợp chất: niobi pentachloride (NbCl5) dễ bay hơi màu trắng và niobi oxychloride (NbOCl3) không bay hơi. Các nguyên tố mới được công bố là pelopium, ilmeniumdianium[9] thực chất là niobi hoặc các hỗn hợp của niobi và tantali.[10]

Sự khác biệt giữa tantalum and niobium được chứng minh rõ ràng năm 1864 bởi Christian Wilhelm Blomstrand,[10]Henri Etienne Sainte-Claire Deville, cũng như Louis J. Troost, họ đã xác định các công thức của một số hợp chất vào năm 1865[10][11] và cuối cùng bởi nhà hóa học Thụy Sĩ Jean Charles Galissard de Marignac[12] năm 1866, tất cả họ đã chứng minh rằng chỉ có 2 nguyên tố. Các phát hiện này đã không ngăn các nhà khoa học dùng trong các bài báo được xuất bản mãi cho đến năm 1871.[13] năm 1864, De Marignac là người đầu tiên điều chế niobi nguyên chất khi ông khử niobi chloride bằng cách nung nóng nó trong môi trường hiđrô.[14]

Mặc dù de Marignac đã có thể điều chế niobi nguyên chất với quy mô lớn vào năm 1866, mãi cho đến đầu thế kỷ 20 niobi mới được dùng trong thương mại, trong sợi tóc đèn dây tóc.[11] Ứng dụng này nhanh chóng lỗi thời khi niobi bị thay thế bởi tungsten, do nguyên tố này có điểm nóng chảy cao hơn và đó là một lợi thế trong việc sử dụng làm dây tóc bóng đèn. Việc phát hiện ra niobi có khả năng làm tăng độ bền của thép được thực hiện vào thập niên 1920, và vẫn được sử dụng cho đến ngày nay.[11] Năm 1961, nhà vật lý người Mỹ Eugene Kunzler và các cộng sự tại Bell Labs phát hiện ra rằng niobi-kẽm thể hiện tính siêu dẫn trong các dòng điện và từ trường mạnh.[15]

Columbium (ký hiệu Cb[16]) là tên gọi ban đầu Hatchett đặt cho nguyên tố, nhưng IUPAC đã chính thức công nhận tên gọi "niobium" như là tên cho nguyên tố số 41 vào năm 1950 sau khoảng 100 năm tranh chấp. Đây là một kiểu thỏa hiệp[17] do IUPAC chấp nhận tên gọi tungsten thay cho tên gọi wolfram để chiều theo cách gọi tại Bắc Mỹ cho nguyên tố số 74; và niobium thay vì columbium để chiều theo cách gọi tại châu Âu cho nguyên tố số 41. Tuy nhiên, không phải là ai cũng đồng ý với điều này và trong khi nhiều hiệp hội hóa chất hàng đầu cũng như các tổ chức chính phủ đề cập tới nguyên tố này bằng tên gọi chính thức của IUPAC thì vẫn còn nhiều hiệp hội kim loại, các nhà luyện kim hàng đầu khác, và phần lớn các nhà sản xuất thương mại hàng đầu tại Hoa Kỳ vẫn dùng tên gọi "columbium".[18][19]

Phổ biến

[sửa | sửa mã nguồn]
Niobi

Nguyên tố này không tồn tại ở dạng tự do trong thiên nhiên mà trong các khoáng vật như columbit ((Fe,Mn)(Nb,Ta)2O6), columbit-tantalit hay coltan ((Fe,Mn)(Ta,Nb)2O6), pyrochlore ((Na,Ca)2Nb2O6OH,F) hay euxenit ((Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6). Các khoáng vật chứa niobi thường cũng chứa tantali. Một lượng lớn trầm tích của niobi được phát hiện gắn liền với cacbonatit (các dạng đá lửa cacbon-silicat) và như là thành phần hợp thành của pyrochlore. BrasilCanada là các nhà sản xuất hàng đầu về khoảng vật niobi cô đặc và các nguồn quặng dự trữ lớn còn có Nigeria, Cộng hòa dân chủ Congo, Nga. Công ty sản xuất lớn nhất tại Brasil là CBMM nằm tại Araxá, Minas Gerais.

Đồng vị

[sửa | sửa mã nguồn]

Niobi nguồn gốc tự nhiên chỉ bao gồm 1 đồng vị ổn định (Nb93). Các đồng vị phóng xạ ổn định nhất có Nb92 với chu kỳ bán rã 34,7 triệu năm, Nb94 (20.300 năm), Nb91(680 năm). Nb93 có dạng đồng phân hạt nhân (Nb93m) với đường năng lượng gama ở 31 keV và chu kỳ bán rã 16,13 năm. Hai mươi ba đồng vị phóng xạ khác cũng đã được nêu đặc trưng. Phần lớn trong số này có chu kỳ bán rã nhỏ hơn 2 giờ, ngoại trừ Nb95 (35 ngày), Nb96 (23,4 giờ) và Nb90 (14,6 giờ). Phương thức phân rã chủ yếu của các đồng vị nhẹ hơn Nb93bắt điện tử còn phương thức phân rã chủ yếu của các đồng vị nặng hơn Nb93bức xạ beta với một số bức xạ neutron diễn ra trong phương thức đầu tiên của hai phương thức phân rã đối với Nb104, Nb109 và Nb110.

Chỉ có Nb95 (35 ngày) và Nb97 (72 phút) và các đồng vị nặng (chu kỳ bán rã chỉ tính bằng giây) là các sản phẩm phân hạch với lượng đáng kể, do các đồng vị khác bị lu mờ bởi các đồng vị rất ổn định hay chu kỳ bán rã rất dài (như Zr93) của nguyên tố zirconi đứng ngay trước nó từ sản phẩm sinh ra thông qua phân rã beta của các mảnh phân rã giàu neutron. Nb95sản phẩm phân rã của Zr95 (64 ngày), vì thế sự biến mất của Nb95 trong nhiên liệu hạt nhân đã qua sử dụng là chậm hơn so với có thể dự kiến từ chu kỳ bán rã 35 ngày của chính nó. Các lượng nhỏ của các đồng vị khác cũng có thể sinh ra như là các sản phẩm phân hạch trực tiếp.

Phòng ngừa

[sửa | sửa mã nguồn]

Các hợp chất chứa niobi là tương đối hiếm gặp, nhưng một số trong chúng có độc tính và cần cẩn thận khi tiếp xúc. Niobi không có vai trò sinh học đã biết nào. Bụi niobi kim loại là tác nhân gây kích thích mắt và da cũng như chứa đựng nguy hiểm cháy. Tuy nhiên, niobi kim loại (không phải bụi) lại là trơ về mặt sinh lý và vô hại. Nó thường được sử dụng trong nghề kim hoàn.

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ Về mặt lý thuyết có khả năng phân hạch tự phát, hạt nhân nhẹ nhất có khả năng như vậy.
  2. ^ Godley, Reut (2004). David Starosvetsky, and Irena Gotman. “Bonelike apatite formation on niobium metal treated in aqueous NaOH” (PDF). Journal of Materials Science: Materials in Medicine. 15: 1073–1077. doi:10.1023/B:JMSM.0000046388.07961.81. Truy cập ngày 7 tháng 9 năm 2006.[liên kết hỏng]
  3. ^ Hatchett, Charles (1802). “Eigenschaften und chemisches Verhalten des von Charlesw Hatchett entdeckten neuen Metalls, Columbium”. Annalen der Physik (bằng tiếng Đức). 11 (5): 120–122. doi:10.1002/andp.18020110507.
  4. ^ William P. Griffith & Morris, Peter J. T. (2003). “Charles Hatchett FRS (1765-1847), Chemist and Discoverer of Niobium”. Notes and Records of the Royal Society of London. 57 (3): 299. doi:10.1098/rsnr.2003.0216.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  5. ^ a b Noyes, William Albert (1918). A Textbook of Chemistry. H. Holt & Co. tr. 523.
  6. ^ a b Wollaston, William Hyde (1809). “On the Identity of Columbium and Tantalum”. Philosophical Transactions of the Royal Society of London. 99: 246–252. doi:10.1098/rstl.1809.0017.
  7. ^ Rose, Heinrich (1844). “Ueber die Zusammensetzung der Tantalite und ein im Tantalite von Baiern enthaltenes neues Metall”. Annalen der Physik (bằng tiếng Đức). 139 (10): 317–341. doi:10.1002/andp.18441391006.
  8. ^ Rose, Heinrich (1847). “Ueber die Säure im Columbit von Nordamérika”. Annalen der Physik (bằng tiếng Đức). 146 (4): 572–577. doi:10.1002/andp.18471460410.
  9. ^ Kobell, V. (1860). “Ueber eine eigenthümliche Säure, Diansäure, in der Gruppe der Tantal- und Niob- verbindungen”. Journal für Praktische Chemie. 79 (1): 291–303. doi:10.1002/prac.18600790145.
  10. ^ a b c Marignac, Blomstrand; H. Deville; L. Troost & R. Hermann (1866). “Tantalsäure, Niobsäure, (Ilmensäure) und Titansäure”. Fresenius' Journal of Analytical Chemistry. 5 (1): 384–389. doi:10.1007/BF01302537.
  11. ^ a b c Gupta, C. K.; Suri, A. K. (1994). Extractive Metallurgy of Niobium. CRC Press. tr. 1–16. ISBN 0-8493-6071-4.
  12. ^ Marignac, M. C. (1866). “Recherches sur les combinaisons du niobium”. Annales de chimie et de physique (bằng tiếng Pháp). 4 (8): 7–75.
  13. ^ Hermann, R. (1871). “Fortgesetzte Untersuchungen über die Verbindungen von Ilmenium und Niobium, sowie über die Zusammensetzung der Niobmineralien (Further research about the compounds of ilmenium and niobium, as well as the composition of niobium minerals)”. Journal für Praktische Chemie (bằng tiếng Đức). 3 (1): 373–427. doi:10.1002/prac.18710030137.
  14. ^ “Niobium”. Universidade de Coimbra. Bản gốc lưu trữ ngày 10 tháng 12 năm 2007. Truy cập ngày 5 tháng 9 năm 2008.
  15. ^ Geballe et al. (1993) gives a critical point at currents of 150 kiloamperes and magnetic fields of 8.8 tesla.
  16. ^ Kòrösy, F. (1939). “Reaction of Tantalum, Columbium and Vanadium with Iodine”. Journal of the American Chemical Society. 61 (4): 838–843. doi:10.1021/ja01873a018.
  17. ^ Rayner-Canham, Geoff; Zheng, Zheng (2008). “Naming elements after scientists: an account of a controversy”. Foundations of Chemistry. 10 (1): 13–18. doi:10.1007/s10698-007-9042-1.
  18. ^ Patel, Zh.; Khul'ka K. (2001). “Niobium for Steelmaking”. Metallurgist. 45 (11–12): 477–480. doi:10.1023/A:1014897029026.
  19. ^ Norman N., Greenwood (2003). “Vanadium to dubnium: from confusion through clarity to complexity”. Catalysis Today. 78 (1–4): 5–11. doi:10.1016/S0920-5861(02)00318-8.

Liên kết ngoài

[sửa | sửa mã nguồn]